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ARTICLE INFO ABSTRACT

Dataset link: https://github.com/tsofiac/LAGO Metabolite identification studies are an essential but costly and time-consuming component of drug develop-
M ment. Computational methods have the potential to accelerate early-stage drug discovery, particularly with
Keywords: recent advances in deep learning which offer new opportunities to accelerate the process of metabolite
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prediction. We present LAGOM (Language-model Assisted Generation Of Metabolites), a Transformer-based
approach built upon the Chemformer architecture, designed to predict likely metabolic transformations of drug
candidates. Our results show that LAGOM performs competitively with, and in some cases surpasses, existing
state-of-the-art metabolite prediction tools, demonstrating the potential of language-model-based architectures
in chemoinformatics. By integrating diverse data sources and employing data augmentation strategies, we
further improve the model’s generalisation and predictive accuracy. The implementation of LAGOM is publicly

available at github.com/tsofiac/LAGOM.

1. Introduction

Prior to clinical development, a comprehensive characterisation of
a novel drug candidate’s pharmacokinetic profile is essential to ensure
adequate exposure within relevant tissues and to establish robust safety
margins. Early incorporation of biotransformation studies is particu-
larly critical at this stage of drug development [1,2]. For example, iden-
tifying a compound’s metabolic soft spots can guide medicinal chemists
towards structurally related analogs with enhanced metabolic stabil-
ity [3], while simultaneously reducing the risks of generating reac-
tive, toxic, or drug-drug interaction-prone metabolites [4,5]. Although
present experimental approaches for investigating biotransformations
are capable of detecting drug-related metabolites at trace concentra-
tions, the entire process remains both time- and resource-intensive.
Thus, computational methods for predicting xenobiotic metabolism
prior to compound synthesis have gathered considerable attention over
the past two decades [3,6,7].

While many in silico approaches rely on 3D structure information,
e.g., to predict how a molecule interacts with metabolic enzymes such
as the cytochrome P450 family [8-10], others utilise machine learning
(ML) to predict sites of metabolism (SoMs) and chemical structures
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of potential drug metabolites [11,12]. SoMs are the atom positions in
molecules that undergo metabolic transformations [13]. Typically, ML
models that propose drug metabolite structures utilise predicted SoM
information to apply rule-based transformations and thus filter and
rank potential metabolites [11,12,14-16]. Such a two-step approach —
first predicting SoMs, then applying site-specific chemical modifications
— relies on pattern-based rule matching that commonly covers general
biotransformations of phase I and phase II metabolism [3]. In addi-
tion, knowledge-based systems such as Meteor Nexus [17] integrate
biotransformation rules curated from the scientific literature and expert
input to predict metabolites of chemical compounds that conform
to the presence of such target fragments. Their primary advantage
lies in offering a clear and rational foundation for each prediction,
such as supporting literature references and brief descriptions outlin-
ing each biotransformation mechanism. This provides a clear benefit
over the ML-based approaches that often lack an explainability com-
ponent behind their predictions (“black box” character). Moreover,
understanding of safety liabilities associated with certain metabolic
transformations encoded by knowledge-based systems helps to avoid
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designing drugs carrying the potential for generating toxic metabo-
lites [3]. Apart from their robustness and explainability, methods that
depend on rule-based transformations possess several disadvantages.
First, rule-based methods utilise empirically derived biotransformation
rules as reported in the scientific literature, which are subsequently
compiled into databases. While these databases demonstrate broad
coverage of biotransformation rules — including both frequent and
less common metabolic transformations — as seen in the case of
SyGMa [18], they are by no means comprehensive and may lack certain
reaction types, hence limiting their applicability domain. For example,
GLORYx [11] extends SyGMa with additional biotransformation rules,
such as glutathione conjugation reactions, which are not reported in
the original SyGMa collection. Therefore, further manual curation by
biotransformation experts, especially utilising proprietary sources, is
required to incorporate less commonly observed metabolic processes
that may have safety implications for molecular design. This may,
in part, be due to a lack of suitable machine-readable formats of
metabolite identification data that would enable easier extraction and
curation of biotransformation rules for a more comprehensive pattern
coverage [19]. Second, these models are highly dependent on SoM
predictor accuracy which, if insufficient, may lead to errors being
propagated to the coupled rule-based algorithms, giving rise to a high
number of false positives (i.e., low model precision). Consequently,
this poses a challenge in interpreting model results by domain experts,
thus requiring an effective post-processing pipeline to filter and rank
structures of potential drug metabolites.

General-purpose molecular language models such as Chemformer
[20] and ChemBERTa [21] have demonstrated that Transformer archi-
tectures can effectively learn chemical syntax and reaction semantics
directly from SMILES representations. Building on these advances,
recent work has explored adapting sequence-to-sequence models for
the task of metabolite prediction [22,23]. One of the principal advan-
tages of neural machine translation methods like Transformers is their
capacity for direct sequence-to-sequence prediction (e.g., translating
one compound’s SMILES representation to another), without the need
for explicitly defining transformation templates. This enables a single-
step, end-to-end approach for molecular translation, a method that has
demonstrated success in areas such as de novo molecular generation and
computer-aided synthesis planning [24]. Here, metabolite prediction
tasks can be related to the latter, where a metabolite structure sequence
(a product) is predicted from its original drug molecule structure
sequence (a reactant). However, a key difference between the two
lies in the number of experimentally conceivable products: while a
chemical reaction is typically optimised to yield a single product (one-
to-one), a drug molecule is metabolically transformed by a variety of
enzymatic and non-enzymatic mechanisms, resulting in several distinct
metabolites (one-to-many). Furthermore, for model development only
several thousand drug-related metabolite transformations exist in the
public domain, in contrast to the hundreds of thousands or even
millions of reactions well-documented in chemical reaction databases.
Collectively, these factors make the metabolite prediction task more
challenging to tackle.

Working in the low data regimes for sequence-to-sequence pre-
diction tasks can potentially be addressed using a Transformer archi-
tecture that, beyond relying on the attention layers to capture inter-
dependencies present in the sequences, can effectively be optimised via
a task-aligned pre-training strategy in combination with fine-tuning by
a well-curated task-specialised dataset. While Transformer-based mod-
els for metabolite prediction have previously been published [22,23], a
systematic evaluation of different pre-training approaches, task-specific
data augmentation techniques, and use of ensemble models trained on
differently specialised datasets originating from a rigorously curated
collection of drug-focused metabolic reactions accessible in the public
domain has not yet been reported.

Herein, we make the following three key contributions:
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1. A rigorous data curation pipeline for publicly available datasets
for metabolite prediction, including datasets for (i) general
chemical pre-training (Virtual Analogs), (ii) metabolite-specific
pre-training (MetaTrans), (iii) fine-tuning (MetXBioDB and Drug-
Bank), and (iv) benchmarking (GLORYx).

2. A curriculum-style transfer learning pipeline leveraging the
Transformer architecture. Our model, termed LAGOM
(Language-model Assisted Generation Of Metabolites), achieves
performance superior to traditional rule-based methods (GLO-
RYx and SyGMa) and an earlier Transformer-based model for
metabolite prediction (MetaTrans), while performing on par
with the more recent MetaPredictor model, on the established
GLORYx benchmark, using a single language model.

3. A comprehensive ablation-type study systematically evaluating
the effectiveness of various modelling strategies for metabolite
prediction. We identify beneficial practices, such as SMILES
randomisation and metabolite-specific curriculum pre-training,
while highlighting strategies that provided limited benefit.

2. Methods
2.1. Datasets

The datasets used herein can be categorised into three distinct
types: (1) pre-training data, (2) fine-tuning data, and (3) external test
data. These are summarised in Fig. 1. All metabolism/pre-training data
discussed herein are structured as parent—child pairs, where the parent
represents the parent compound and the child represents a product of
a chemical transformation (e.g., a metabolite of the parent compound).
These are all represented using reaction SMILES.

Pre-training data. Two major transformation datasets were used for
pre-training models. First, we acquired nearly 11 million compound
pairs [25] (version v1) composed of publicly disclosed bioactive
molecules and their virtual matched molecular pair analogs generated
through R-group decomposition and substitution using retrosynthetic
fragmentation rules. The dataset was compiled along with the corre-
sponding chemical structures, which were obtained from
CHEMBL35 [26]. The compiled dataset is here-on after referred to as
the Virtual Analogs (VA) dataset. Then, we acquired the MetaTrans
dataset [22], which in turn is based on various databases reporting
human-related metabolic transformation reactions (xenobiotic- and
endogenous compound-related).

Fine-tuning. The dataset of drug-related metabolic reactions used for
fine-tuning models was generated from the publicly available
MetXBioDB [27] (version NORMAN-SLE-S73.0.1.7) and DrugBank [28]
(version 5.1.13) databases. These contained 2130 and 3489 parent—
child pairs, respectively, before pre-processing.

Hold-out test set. The well-established GLORYx dataset [11], containing
a selection of parent molecules and associated metabolites from the top
100 best-selling drugs of 2018 list, was used as an external validation
set. GLORYx contains 136 first-generation parent—child pairs.

2.2. Data curation

In the case of metabolic reactions occurring in multiple steps, inter-
mediate compounds and their subsequent metabolites often have their
own entries in DrugBank and MetXBioDB. This means that seemingly
independent reaction pairs actually trace back to the same original
drug. Therefore, to ensure appropriate stratification, each multi-step
reaction in DrugBank and MetXBioDB was associated with its starting
node (i.e., drug of origin), which was later used to define training/val-
idation/test data splits (see Data Splitting Section 2.3). The parsed
DrugBank dataset and MetXBioDB dataset were combined into one
single dataset, referred to here-on after as the LAGOM dataset.
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Fig. 1. Overview of the LAGOM pipeline. (a) Summary of the three main models developed in this work: the baseline Chemformer model, the ChemVA model,
and the ChemVA-Met model. (b) Exemplary metabolic transformations present in the MetXBioDB/DrugBank/MetaTrans datasets and a matched molecular pair
transformation available in the Virtual Analogs (VA) dataset. (c) The LAGOM dataset consists of the curated DrugBank and MetXBioDB transformations (13.3%

overlap).

The data curation procedure was based on the properties of the
LAGOM dataset, keeping the external test set intact. The same curation
procedure was then applied to the pre-training data, with an additional
step of removing any overlapping reactions with the LAGOM dataset.

First, each SMILES strings was standardised using the RDKit [29]
and ChEMBL Structure Pipeline [30] packages in Python. This included
removal of solvent molecules and salts, neutralisation of acids and
bases, removal of stereochemical information, conversion of isotopes,
and canonicalisation of compound structures. Duplicate parent—child
pairs were removed, including instances where a parent structure was
identical to its child following the SMILES standardisation procedure.
Reactions with overlapping parent molecules with the GLORYx test
dataset were also removed from the dataset. This was essential to
ensure an unbiased benchmarking of the results against the external
test dataset.

To remove any potential outliers in the dataset, we applied addi-
tional filtering steps to the data. First, we kept compound reaction pairs
that only contained the following elements: C, O, N, CL, F, S, P, Br, and
I. Atom elements that were detected in drugs and their metabolites,
including their frequencies prior to curation, are displayed in Fig. 2a.
Thereafter, we applied a molecular weight cut-off to remove reactions
with either too small or very large parent molecules from the dataset.

We also filtered the dataset based on parent—child chemical similarity.
Here, a cut-off based on Tanimoto similarity using Morgan fingerprints
(radius=2, nBits=1024) was applied. This score ranges from 0 to 1,
with 1 indicating perfect structural similarity. Based on the distribution,
reactions with a similarity score < 0.20 were excluded.

This resulted in a well-curated drug metabolism reaction dataset
for fine-tuning, which was dubbed the LAGOM dataset. It consists of
4055 parent—child pairs with 2248 unique drugs listed as reaction
parents. In terms of the data source composition, the majority of the
data originates only from DrugBank (more than half), whereas ~13%
of parent—child pairs were reported in both DrugBank and MetXBioDB
(Fig. 1c) following careful curation. The LAGOM dataset contains on
average 1.8 metabolites per drug molecule, with a mean Tanimoto
similarity between drugs and associated metabolites of 0.61. Only a
small proportion of data was filtered out after applying molecular
weight and similarity threshold requirements (~5%), resulting in a
highly robust dataset well-suited for developing a chemical language
model for drug metabolism prediction.

The number of parent—child pairs and unique parent compounds
in each of the datasets following the data curation pipeline are sum-
marised in Table 1.
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Fig. 2. LAGOM dataset summary. (a) Heavy atom distribution of the parent (drug) and child (metabolite) compounds before curation, with the inset highlighting
the less common atom types. (b) Histogram of molecular weight (Dalton or Da) of drug and metabolite compounds before and after the filtering steps, highlighting
how outliers with low and high molecular weights were removed. Note that there is a drug with a molecular weight > 4000 Da that is not included in the graph.
(c) Histogram of Tanimoto similarities between corresponding parents and children (using Morgan fingerprints) before and after the filtering steps, displaying
how metabolic transformation pairs with low structural similarity were eliminated. (d) Histogram illustrating the number of metabolites per drug following data
curation, with the inset focusing on the tail end of the histogram corresponding to more metabolites.

Table 1

Summary of curated datasets used for model training and evaluation. The table
reports the number of parent—child reaction pairs and the number of unique
parent compounds remaining after data processing and filtering. All dataset
sizes correspond to unique, non-overlapping pairs following cleaning, ensuring
fair comparison across sources.

Dataset # parent—child pairs # unique parents
VA 10 762 115 1 251 518
MetaTrans 4243 2139

LAGOM 4055 2248

GLORYx 136 37

2.3. Data splitting

The LAGOM dataset was split into training, validation and test sets.
For this, the drug origin for each metabolic reaction was used to split the
data. The drug origin refers to the first parent compound in a multi-step
reaction. In this way, we can guarantee that all reactions with the same
drug origin are in the same set, thus minimising the potential of data
leakage. Specifically, 85% of the data was allocated for training, 10%
for validation, and 5% for testing. These sets were kept consistent for
all different setups of the model in the project.

The VA dataset and MetaTrans dataset were split into a training
set and a validation set at random. The ratio was 99.5% for training
and 0.5% for validation, which is the same ratio as for the pre-trained
Chemformer model [20]. The validation set was used to monitor the
validation loss during training. No additional test set was created
since the test set from the LAGOM dataset was used for testing the
performance of the pre-trained model further fine-tuned by the training
subset of the LAGOM dataset.

2.3.1. Data augmentation strategies

Given the relatively small fine-tuning training set of approximately
3400 reaction pairs, augmentation techniques were employed to ex-
pand it so as to enhance model performance. To gain a clear picture
of each augmentation technique’s impact, each of them was explored
independently.

The first data augmentation technique involved extending the train-
ing set by generating new reactions from the existing ones. Since
metabolic reactions typically occur in multiple steps, every reaction can
be connected to its drug of origin. New reactions were thus generated
by connecting the origin drug to all of its metabolites’ metabolites
as new parent—child pairs, dubbed “parent-grandchild”. These new
reactions were then curated in a manner consistent with the original
dataset to maintain coherence.

The second augmentation technique involved adding new reac-
tions to the training set by linking each parent to itself, which is
representative of a drug that does not undergo or only partially under-
goes metabolism (i.e., metabolically stable drugs). This approach was
dubbed “parent-parent”. Given that a metabolite typically resembles
its parent, this approach can enhance a model’s ability to capture these
similarities more effectively.

The third augmentation technique involved extending the training
set by SMILES randomisation, as a single molecule can have sev-
eral non-canonical SMILES representations. To form a random non-
canonical SMILES string, the ordering of the atoms can be randomised.
The potential advantage of SMILES randomisation is that the model
does not need to learn to produce canonical SMILES strings, but rather
learn the inter-relationship of atom/bond characters present in SMILES
strings. During fine-tuning, each SMILES string had a 50% chance of
being randomised.

Finally, while not strictly a data augmentation technique, enhancing
the input data of the LAGOM dataset with descriptive annotations
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can provide a model with additional information to learn from. The
additional properties explored here were LogP (lipophilicity) and car-
bon sp’ fraction (Csp3), as these properties are known to affect drug
metabolism [31]. This was done by calculating these properties for each
drug molecule, codifying property ranges as tokens, and subsequently
appending the property tokens to each molecular embedding in the
data.

2.4. Models

We present our three pre-trained models as well as the ensemble
model approach for enhancing model performance.

2.4.1. Chemformer

As our baseline we employed Chemformer [20], an encoder-
-decoder Transformer model pre-trained on roughly 108 SMILES from
ZINC-15 [32] by reconstructing the input after randomisation (50%
probability) and random token-span masking (10% probability, Pois-
son distributed). For metabolite prediction we fine-tuned the public
Chemformer using the updated Chemformer codebase in aizynthmodels
v1.0.0 on the curated LAGOM dataset using the forward translation task
(parent — metabolite) with teacher forcing for up to 200 epochs; the
checkpoint with the best score (see Section 2.5) was used in subsequent
experiments. The scoring function, together with the validation loss,
was used to monitor the progress during fine-tuning.

Unless otherwise noted, hyperparameters for fine-tuning matched
the original implementation: Adam optimiser (41 = 0.9, 2 = 0.999), no
weight decay, an initial learning rate (LR) of 1x10~3 with 8000 warm-
up steps followed by cosine LR decay, dropout 0.1 on all Transformer
layers, an effective batch size of 512 (8*64) reaction pairs, and a
validation set evaluation every epoch.

All experiments were conducted using PyTorch v2.5.1 on either a
single NVIDIA A100 or V100 (with at least 128 GB) GPU.

2.4.2. ChemVA

The ChemVA model extends the chemical knowledge learned by
the baseline Chemformer via additional pre-training on the VA dataset.
Similar to the Chemformer pre-training, this extended pre-training was
conducted over two days and employed both randomisation and mask-
ing. The same hyperparameters as for the fine-tuning were applied,
except a batch size of 128 was used and the validation set was evaluated
every third epoch. The final epoch of the new pre-training was used for
fine-tuning on the LAGOM dataset.

2.4.3. ChemVA-Met

The ChemVA-Met model extends the ChemVA model via additional
pre-training on the MetaTrans dataset, using the same settings as those
applied to the previous pre-training. However, the best epoch was
chosen differently due to the considerably smaller size of the dataset.
The model was trained for 100 epochs, and the epoch with the lowest
validation loss was selected for subsequent fine-tuning on the LAGOM
dataset.

2.4.4. Ensemble models

With the aim of correctly predicting a greater range of metabolites,
the concept of ensemble models was explored. An ensemble model was
produced by combining four models, fine-tuned on different splits of
the dataset. Three different splitting approaches were explored.

As drug molecules can potentially metabolise into several metabolic
products, this poses a challenge for chemical language models to con-
fidently predict multiple correct metabolite structures originating from
a single drug molecule (one-to-many problem). Thus, one approach to
split the data was to decrease the number of metabolites per drug in
each model. If a drug had more than one metabolite, these were put into
different splits. If it had fewer metabolites than the number of splits,
the drug and its metabolites were also put in the remaining split(s). For
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drugs with only one metabolite, the parent—child pair was added to all
splits. Consequently, all splits had at least one occurrence of each drug.
This approach was named “Stratified Split”.

Another approach was to split the data based on similarities be-
tween either the drug molecules or the metabolites, with the intention
of creating models with different expertise. For splitting based on
similarity, Morgan fingerprints and Tanimoto similarity scores between
the molecules were calculated with RDKit. RDKit’s Butina clustering
algorithm divided the molecules into different clusters with a set dis-
tance threshold of 0.8, implying that molecules with a similarity of 0.2
or higher were clustered together. When dividing the data into splits,
the clusters with the largest number of pairs were assigned first into
separate splits and the remaining clusters were then used to fill up the
splits to balance out their sizes. These approaches, aimed at splitting the
training data for ensemble models into parent- or child-based clusters,
were named “Parent Split” and “Child Split”, respectively.

2.5. Evaluation

Since drugs are often metabolised to multiple metabolites, a single
predicted metabolite for a given reaction does not represent a unique
correct solution. To account for this, we designed a scoring function
for the fine-tuning process that considers all known metabolites during
evaluation. Specifically, predictions were generated using beam search
(n=>5) and subsequently canonicalised to ensure consistency in com-
parisons. The evaluation score was calculated as the fraction of true
metabolites identified within these top-5 predictions relative to the
total known metabolites for each drug (i.e., metabolite coverage, see
Appendix A). This scoring function, alongside validation loss, guided
model selection during fine-tuning. Specifically, we saved the three
model checkpoints with the highest scores and subsequently selected
the earliest epoch checkpoint among these three for further evaluation,
provided that the validation loss had reached its minimum. Choosing
the earliest epoch ensured that the selected model was closest to the
minimum validation loss point, thereby mitigating potential overfitting.
Appendix D illustrates how the values of the metabolite recall and
the validation loss change during fine-tuning, as well as the three
selected epochs with the highest metabolite coverage proceeded for
model consideration.

Each fine-tuned model was tasked with predicting up to 20 metabo-
lites per drug molecule in the test dataset. To ensure a fair and con-
sistent evaluation, post-processing steps were applied to the predicted
SMILES strings. Initially, all predictions were canonicalised, standardis-
ing their representations to match the format of the reference metabo-
lites. During this process, invalid SMILES strings were filtered out.
Subsequently, duplicate predictions were identified and removed, along
with any predicted structures identical to the original drug molecule.
Thus, the final set of predictions consisted solely of valid, unique, and
distinct metabolic candidates.

To enhance statistical reliability, the test set was partitioned into
four batches of approximately equal size (around 38 compounds each),
and evaluation scores were computed separately for each batch and
subsequently averaged. In contrast, the GLORYx test set was sufficiently
small and thus evaluated as a single batch.

2.5.1. Evaluation metrics
Several metrics were implemented to comprehensively evaluate and
benchmark model performance:

» Validity: The proportion of generated SMILES strings that are
chemically valid.

» Accuracy@k: The fraction of drugs for which at least one true
metabolite is predicted within the top-k predictions. Note that this
is distinct from typical definitions of accuracy.
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Recall Precision Accuracy

Fig. 3. Performance comparison of the different models presented in this work. (a) Metrics show recall, precision, and accuracy @ k = 3. (b) The same metrics @
k = 10. All results shown are on the held-out LAGOM test set. Note that accuracy refers to the fraction of drugs with at least one metabolite correctly predicted.

* Precision@k: The ratio of correctly predicted metabolites to the
total number of predicted metabolites, considering the top-k pre-
dictions per drug. High precision indicates fewer incorrect predic-
tions.

* Recall@k: The ratio of correctly predicted metabolites to the total
number of known metabolites across all drugs, based on the top-k
predictions per drug. High recall signifies effective coverage of
possible metabolites.

* F; score: The harmonic mean of precision and recall. Values closer
to one indicate superior performance.

The top-k predictions used in computing accuracy, precision, and
recall were based only on valid and unique SMILES strings generated
by the model. See Appendix A for details.

3. Results and discussion

We evaluated our models along several axes, including different pre-
training strategies, ensemble approaches, and benchmark comparisons.
Our findings are organised into three parts: the effect of pre-training,
ensemble performance, and comparison with prior baselines.

3.1. Pre-training on metabolite-specific data improves model performance

As an initial baseline, we fine-tuned the publicly available Chem-
former model on our curated LAGOM dataset. We first confirmed that
SMILES randomisation during fine-tuning significantly improved model
performance (p < 0.05; Appendix B). None of the other augmentation
strategies significantly improved performance to warrant their further
use in the experiments. Moreover, tokenisation of SMILES strings using
Csp3 and LogP ranges, particularly the latter, worsened the perfor-
mance compared to the baseline model. Therefore, only randomisation
configuration was used for all subsequent experiments.

We then compared this to two additional models: ChemVA, which
adds domain-relevant pre-training using the VA dataset, and ChemVA-
Met, which further incorporates metabolic-specific pre-training using
the MetaTrans dataset. Fig. 3 shows the comparative performance of
the three pre-trained models across recall, precision, and accuracy at
top-3 and top-10 prediction thresholds. We observe that pre-training
with the VA dataset does not significantly improve precision and recall,
whereas the addition of metabolic-specific pre-training (MetaTrans)
leads to an increase in recall. For example, at k = 10, ChemVA-
Met achieved significantly higher recall than the Chemformer baseline
(with a p-value of 0.0162). On the other hand, the mean F, score,
particularly at k = 10, was higher for the Chemformer model (k = 3:
0.28, k = 10: 0.24), compared to both ChemVA (k = 3: 0.26, k =
10: 0.20) and ChemVA-Met (k = 3: 0.28, k = 10: 0.20). However,
at the point of model pre-training we decided to base our model
selection criteria on recall, thus proceeding with the ChemVA-Met pre-
training setup for further evaluation. Nevertheless, we also included the

Chemformer baseline in our final model evaluation experiment using
the independent GLORYX test set.

During pre-training experiments, we also evaluated the chemical
validity of the SMILES predictions generated by each model, which is
critical for their practical utility in drug discovery. All models consis-
tently produced highly valid predictions, with mean validity scores of
96.6% for Chemformer, 95.4% for ChemVA, and 96.9% for ChemVA-
Met. These consistently high validity rates (all above 95%) demonstrate
that our fine-tuning and pre-training procedures effectively preserve
the chemical correctness of the generated metabolites.

3.2. Ensemble strategies improve recall and accuracy

Next, we explored whether ensemble learning could improve
metabolite prediction by combining multiple fine-tuned ChemVA-Met
models trained on diverse data splits. Three splitting strategies were
tested: stratified split, child-based clustering (grouping reactions by
metabolite similarity), and parent-based clustering (grouping reactions
by drug similarity) (Fig. 4a). The results are shown in Fig. 4b for the
held-out LAGOM test set.

All ensemble models exhibited a modest increase in recall com-
pared to the single-model baseline. However, this came at the cost of
lower precision, consistent with the broader search space generated by
combining predictions across models. Notably, the child-split ensemble
achieved the best balance overall, offering an accuracy improvement
while maintaining relatively stable precision on the LAGOM test set.
As ensemble models can be considered methodologically distinct from
the single model fine-tuned on all curated metabolite data, they were,
irrespective of their performance on the held-out LAGOM test set,
included in the final model evaluation using the external GLORYx
dataset.

3.3. ChemVA-Met outperforms current benchmarks on GLORYx dataset

We benchmarked the best-performing models on the held-out GLO-
RYx dataset and compared them to previous rule-based methods
(SyGMa [18] and the original GLORYx model [11]). As this is not the
first Transformer-based model to predict drug-related metabolic reac-
tions, we also compared our results against the previously introduced
MetaTrans Transformer model [22] and a more recent MetaPredictor
model [33]. Results of our baseline model and best-performing model
are summarised in Table 2. Additional results for the ensemble models
are found in Appendix C.

Our best model ChemVA-Met, fine-tuned with SMILES randomi-
sation, outperformed the Chemformer baseline, fine-tuned with no
augmentation, in all metrics, increasing recall from 0.37 to 0.43 and
precision from 0.14 to 0.18. Additionally, it excelled in both recall
and precision compared to the ensemble models, obviating the need to
weigh between these two scores. Importantly, this model also achieved
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Fig. 4. (a) Overview of how the different splitting approaches for the ensemble models were performed. (b) Performance comparison of the ensemble model
following different training strategies. The metrics on the single model are reported @ k = 10 on the held-out LAGOM test set, whereas the metrics on the
ensemble models are reported so that the predictions per drug per split achieved a total value as close to 10 as possible. Note that accuracy refers to the fraction

of drugs with at least one metabolite correctly predicted.

a substantially higher F, score (0.25) than SyGMa and GLORYx. These
models achieved seemingly higher recall values, but it should be noted
that the total number of predictions per molecule vastly exceeded the
LAGOM number of predictions. This suggests that end-to-end, learned
models can match or exceed the performance of curated rule-based
tools while offering simpler and more scalable workflows.

Of particular importance was the comparison with MetaTrans, an
existing Transformer model for predicting drug-related metabolic re-
actions. To enable direct comparison, we evaluated this model on
the same, original GLORYx test dataset used to validate our models,
even though some of the GLORYx parent—child pairs were included
in the MetaTrans training set and could lead to an overestimation of
its performance. We find, however, that our best-performing model
has a comparable recall score (0.43 against 0.40) and a drastically
better precision score (0.18 against 0.11), resulting in considerably
better F; score (0.25 to 0.17). We name our model that displayed the
best performance against the external hold-out set (i.e., ChemVA-Met
model, fine-tuned with SMILES randomisation) the LAGOM model.

In addition, we evaluated a more recent, Transformer-based model
for drug metabolite prediction, named MetaPredictor [33] using the
same GLORYx hold-out set. MetaPredictor performance is comparable
to the LAGOM model presented herein, with identical precision and
marginally better recall, while being trained on a considerably larger
number of drug-metabolite pairs (14 782 pairs) and using a SoM
prompt as part of its predictive framework. Unfortunately, the exact
dataset used to train MetaPredictor is not publicly available, and we
cannot ascertain whether there is any overlap between the training set
and the GLORYx hold-out set.

Although SyGMa and GLORYx achieve higher recall scores than
LAGOM (Table 2), we emphasise that this higher recall comes at the
cost of very low precision, driven by the very large number of predic-
tions generated per molecule. This imbalance makes it difficult for end
users to interpret and prioritise results as it introduces a substantial
burden of false positives. Our focus here is therefore on methods that
achieve a more appropriate balance between recall and precision, as
reflected in the F; score. We believe this balance is critical for many
drug discovery applications, where it is not only important to recover
true metabolites but also to avoid overwhelming users with excessive,
low-confidence predictions. By this standard, LAGOM substantially
outperforms the rule-based baselines.

Finally, it should be stressed that the ensemble models that per-
formed well on the LAGOM test set did not consistently outperform
the single model on the GLORYx benchmark. For example, although
the child-split ensemble showed promise in development, it had lower
recall and F; score than the single ChemVA-Met model, as well as the
Random Split ChemVA-Met model. On the other hand, the ensemble
models were either better or equivalent to the other benchmark models

Table 2

Performance comparison for the predictions of the best-performing model,
ChemVA-Met @ k = 10, and the initial Chemfomer baseline model, on the
GLORYX test set, against existing benchmarks of GLORYx [11], SyGMa [18],
MetaTrans [22], and MetaPredictor [33]. The number of true metabolites is

out of 136.

Model Recall  Precision F, True met.  Total pred.
Chemformer baseline 0.37 0.14 0.20 50 358
ChemVA-Met (LAGOM)  0.43 0.18 0.25 58 328
MetaPredictor 0.47 0.18 0.26 64 350
MetaTrans 0.35 0.15 0.21 48 316
SyGMa 0.68" 0.12% 0.20> 93¢ 800°
GLORYx 0.77% 0.061* 0.11> 105" 1724°

2 Values obtained from de Bruyn Kops et al. [11].
b Scores calculated from values obtained according to Egs. (1)-(3) in Appendix A.

when F; score was considered. These inconsistencies highlight the
difficulty of selecting a single “best” model when held-out data and
internal validation do not fully align, a common challenge in low-data
domains like metabolite prediction.

4. Conclusions

In this work, we introduced a rigorously curated and standard-
ised set of publicly available datasets tailored for metabolite predic-
tion. By employing a curriculum-style transfer learning strategy with
Transformer-based models, our ChemVA-Met model demonstrated su-
perior performance compared to traditional rule-based benchmarks
(SyGMa and GLORYx) and an existing Transformer-based model Meta-
Trans on the widely adopted GLORYx dataset. Additionally, we provide
a robust and reproducible data processing pipeline suitable for future
metabolite prediction tasks. Our thorough data curation ensured that
these results were obtained without data leakage between pre-training,
fine-tuning, and benchmark datasets.

Through a systematic ablation-type of study, we identified SMILES
randomisation and metabolite-specific pre-training as particularly ben-
eficial strategies for improving model performance. Conversely, we
identified strategies that provided limited or inconsistent benefit, such
as simple data augmentation methods and property annotations.

Nonetheless, the study has certain limitations. The relatively small
size and chemical diversity of available metabolite datasets pose in-
herent constraints on model generalisability. Additionally, our results
underline the difficulty in selecting optimal models based solely on
internal validation, due to inconsistencies when generalising to external
benchmarks. Metabolite prediction remains a fundamentally challeng-
ing task, primarily due to its one-to-many nature, data scarcity, and
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the fraction of drugs with at least one metabolite correctly predicted.

Table 3

Performance of the ensemble models on the GLORYx test set. The number of true metabolites is out of 136.

Model Recall Precision F, True met. Total pred.
ChemVA-Met Ensemble Stratified Split 0.43 0.15 0.22 58 380
ChemVA-Met Ensemble Child Split 0.35 0.15 0.21 48 330
ChemVA-Met Ensemble Parent Split 0.38 0.16 0.23 52 326
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Fig. 6. Metabolite recall score and validation loss during fine-tuning on the LAGOM dataset with no augmentation on Chemformer. The dashed lines mark the
three epochs (epochs 38, 39 and 116) with the highest metabolite coverage, of which epoch 38 (thicker dashed line) is closest to the validation loss minimum

and was therefore proceeded with for model development.

high chemical diversity. This complexity was particularly evident in the
limited generalisation performance of the child-split ensemble model,
which, despite promising initial results, underperformed on external
benchmarks. Future work may further explore evaluation schemes that
explicitly account for user burden in metabolite prediction, as well as
systematic evaluations of coverage across different biotransformation
classes to better understand when our model succeeds and when it fails.

Future research directions include expanding curated datasets with
richer, experimentally validated metabolic transformations collected
under the same conditions, potentially in collaboration with industry
partners, as well as the development of improved model selection
and validation strategies. These steps could significantly enhance the
robustness, accuracy, and practical applicability of Transformer-based
models in metabolite prediction tasks.
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Appendix A. Metrics
For evaluating the model performance, precision and recall scores

are used, defined as follows:
TP

Precision = ————, (@D)]
TP+ FP
Recall = L, 2)
TP+ FN

where TP denotes true positives, i.e., the correctly predicted metabolites,
FP denotes false positives, i.e., the valid but incorrect predictions, and
FN denotes false negatives, i.e., the true metabolites not identified in the
predictions.

To balance the metrics of precision and recall the F, score is used. It
is defined as the harmonic mean between precision and recall according
to the following equation:

. Precision - Recall
Precision + Recall”

F =2 3

Appendix B. Data augmentation

In Fig. 5 we illustrate the results of data augmentation in the
Chemformer model. We observed that randomisation performed best,
especially for precision, and proceeded to use those settings for the
rest of the analyses in this work. To verify that randomisation was
significantly better, a t-test was performed on the precision metric. The
randomised model showed a p-value below 0.05 compared to all other
models, which verified the decision of proceeding this these settings.

Appendix C. Ensemble models

Table 3 summarises the performance of the ensemble models on the
GLORYX test set. We can observe that, although the child-split ensemble
showed promise in development, it displays the lowest recall and F,
score of all the utilised splitting approaches. Additionally, the stratified
split approach shows the same recall score as our best-performing
model.

Appendix D. Additional fine-tuning details

Fig. 6 illustrates scoring of the different epochs during the initial
fine-tuning. The three epochs, illustrated with dashed lines, with the
highest metabolite coverage, i.e., the value of the scoring function
described in Section 2.5, were saved. Of these, epoch 38 was selected
for further evaluation as it was the epoch closest to the validation loss
minimum.
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Data and code availability

Data and code is available on GitHub at https://github.com/tsofiac/
LAGOM.
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