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Abstract  This study, conducted in Combomune, 
Mozambique, investigated land use and land cover 
changes (LULCC) from 2002 to 2021 and their 
causes, utilizing Landsat satellite imagery and the 
land change modeler (LCM). The research mapped 
vegetation changes and analysed identified explana-
tory variables. Sentinel-2 imagery was employed to 
identify charcoal production sites during 2016–2021. 
The findings indicate significant landscape transfor-
mations, with a 20.4% reduction in open forest area 
(approx. 126,000  ha) and an increase of 22.2% in 

Shrub (approx. 138,500  ha). Key explanatory vari-
ables include proximity to rivers influencing the tran-
sition of the class open forest to shrub and proximity 
to villages influencing the transition of open forest 
to agriculture and others. Despite these changes, the 
agriculture and others class exhibited minimal varia-
tion compared to open forest and shrub, likely due to 
a low agricultural productivity influenced by semiarid 
conditions and poor soil quality. Sentinel-2 imagery 
revealed numerous burned areas within open forests, 
suggesting that charcoal production is the primary 
driver of forest degradation. This finding is consist-
ent with statements from key informants and previous 
studies that highlight the role of charcoal production 
in altering forest structure and reducing biomass. The 
study underscores the urgent need for sustainable for-
est management practices to mitigate resource deple-
tion related to charcoal production and enhance com-
munity resilience against environmental challenges.

Keywords  Supervised classification · Landsat · 
Sentinel-2 · Charcoal · Multi-layer perceptron 
(MLP) · Mozambique

Introduction

Woody biomass is still one of Mozambique’s 
primary energy sources and represents about 
85% of the total energy consumed by house-
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holds (Matavel & Chaves, 2015). Rural and 
urban populations mainly use woody biomass 
for cooking food and heating (Falcão, 2013). 
Woody biomass, primarily charcoal, is a vital 
source of income for many people in Mozam-
bique (Mabote, 2011). Charcoal is produced in 
rural areas, but is mainly consumed in urban 
areas (Chavana, 2014).
Some studies suggest that the charcoal value 
chain drives forest degradation and defor-
estation through intensive and selective wood 
extraction (Chidumayo & Gumbo, 2013; Hos-
onuma et  al., 2012; Ryan et  al., 2014). Oth-
ers claim that harvesting rates in Africa could 
significantly exceed regrowth (Baumert et  al., 
2016; Cuvilas et  al., 2010; Woollen et  al., 
2016), causing severe challenges for humans 
relying on forest ecosystem services. Accord-
ing to Sedano et  al. (2020b), charcoal produc-
tion in southern Mozambique is the main driver 
of forest degradation. This is primarily due 
to selective logging rather than clear-felling, 
which reduces forest biomass (Woollen et  al., 
2016), a key indicator of degradation. As for-
est resources become increasingly scarce, local 
populations are turning to nonrecommended 
tree species for charcoal production. This prac-
tice is likely to accelerate forest degradation and 
jeopardise the essential ecosystem services that 
forests provide to local communities Sedano 
et  al. (2020b). Therefore, understanding both 
past and present forest extent, along with the 
impacts of human activities and natural phe-
nomena on forest resources, is crucial for devel-
oping mechanisms that support the sustainable 
development goals (SDGs), particularly SDG 7 
(affordable and clean energy) and SDG 15 (life 
on land) (United Nations, 2015).
Today, satellite data are abundant and provide 
valuable information about the past and present 
of land use and land cover (LULC) (Yismaw 
et  al., 2014). Several studies have shown that 
analysing satellite images is the most effective 
method of monitoring forests (Karlson et  al., 
2015a; Nesha et  al., 2020). Currently, satellite 
imagery, particularly from passive sensors, has 
proven valuable for forest monitoring due to the 
large volume of data available, both commer-
cially and at no cost, which includes both broad 

temporal and spatial coverage. Landsat imagery 
serves as a prominent example. Recent advances 
in the processing and characterisation of the 
Landsat archive have significantly improved 
the ability to map land cover and land use glob-
ally with greater precision, higher temporal fre-
quency, and more detailed thematic resolution 
(Potapov et  al., 2022). Potapov et  al. (2022), 
developed a global project that leverages these 
advancements in Landsat data, to enable annual, 
multidecadal land monitoring. The project gen-
erates critical information for assessing global 
progress toward sustainable development. The 
results were promising, producing highly accu-
rate thematic maps that enabled the detection of 
land cover and land use changes over 20 years. 
At the continental level, Sarfo et al. (2024) con-
ducted analyses using Landsat data and exist-
ing literature to investigate specific drivers and 
mechanisms of land cover change across sub-
regions of Africa, which can support regional 
efforts to achieve the sustainable development 
goals (SDGs). Some land use and cover changes 
(LULCCs) exhibit distinct geographical char-
acteristics, which have led to the development 
of various methods tailored to specific case 
studies. Wu et  al. (2020), investigated the spa-
tiotemporal variations of forests in the subtropi-
cal wetland ecosystem at West Dongting using 
monthly Landsat normalised difference veg-
etation index (NDVI) time series data, detecting 
forest-related changes with an overall accuracy 
of 87%. According to Shimizu et  al. (2019), 
combining dense time-series observations from 
optical and synthetic aperture radar satellites 
can improve forest monitoring over large areas. 
Shimabukuro et al. (2014), distinguished selec-
tively logged forests from burned forests using 
multitemporal image segmentation and classifi-
cation of Landsat data.
Several remote sensing-based studies have been 
carried out in Mozambique, detecting LULCC 
in general, and particularly related to charcoal 
production with a high level of accuracy. (Ryan 
et  al. (2014), quantified changes in the abun-
dance of woody biomass, using a combination 
of radar remote sensing and ground surveys 
to investigate what human activities caused 
the changes. Mahamane et  al. (2017), showed 
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how LULCC affected woodland-based ecosys-
tem services using a probabilistic modelling 
approach combining Bayesian belief networks, 
geographic information systems, remote sens-
ing data, field data, and stakeholders expertise. 
Sedano et  al. (2020a) monitored forest degra-
dation in a charcoal production area, applying 
a change detection method analysing temporal 
NDVI dynamics of historical Landsat imagery.
However, none of the studies above investigated 
transitions between LULC classes. According 
to Eastman (2020), transitions are important 
for understanding the LULC dynamics in the 
study area, as the main transitions can be iden-
tified, grouped, and modelled with potential 
explanatory variables. Therefore, this process 
can enhance our understanding of the dynamics 
between different LULC classes related to char-
coal production.
The causes of LULCC include factors that 
directly or indirectly influence land dynam-
ics (Zhai et  al., 2020). According to Geist and 
Lambin (2002), factors with a direct impact are 
termed proximate causes. These are immedi-
ate actions at the local level, such as agricul-
tural expansion, that result from intentional 
land use decisions and directly affect forest 
cover. In contrast, factors with indirect impacts 
are referred to as underlying driving forces. 
These include broader social processes, such 
as population dynamics or agricultural policies, 
which support the proximate causes and oper-
ate either locally or through indirect influence 
from national or global levels. Geist and Lam-
bin (2002) synthesised findings from local-scale 
case studies to develop a broader understanding 
of the proximate causes and underlying drivers 
of tropical forest change. They identified four 
main categories of proximate causes: agricul-
tural expansion, wood extraction, infrastructure 
development, and other factors. The underlying 
drivers were grouped into five broad catego-
ries: demographic, economic, technological, 
policy and institutional, and cultural factors. 
In Mozambique, Sitoe et  al. (2012), without 
distinguishing between direct and indirect fac-
tors identified a range of factors contribut-
ing to forest change including commercial and 
subsistence agriculture, population growth, 

urban expansion, commercial firewood harvest-
ing, charcoal production, uncontrolled fires, 
and mining activities. Furthermore, changes 
of forest are often shaped by how local popu-
lations respond to livelihood opportunities, for 
example, factors such as the distance to natural 
resources, proximity to infrastructure like major 
roads or urban centres, and access to markets 
can influence land use decisions. These factors 
are frequently integrated with thematic maps 
to better understand and explain the causes of 
LULCC (Iizuka et al., 2017).
The land change modeller (LCM) is a land plan-
ning and decision support tool integrated into 
the TerrSet software (Eastman, 2020). It has 
recently been applied to study LULCC and the 
causes behind the changes because it allows 
users to analyse land cover change, model rela-
tionships with various factors, and simulate 
future land change scenarios. LCM has been 
used to assess and project land use and land 
cover changes, addressing issues of acceler-
ated land conversion and the analytical needs 
required in land management and biodiver-
sity conservation (Gibson et  al., 2018; Pérez-
Vega et al., 2012). The LCM integrates factors 
that contribute to the assessment of historical 
LULCCs, considering the contribution of each 
factor in this process (Megahed et  al., 2015). 
The LCM can also predict future LULCC (Zhai 
et  al., 2018), producing change probability 
maps (Iizuka et al., 2017). Identifying the main 
causes of LULCCs can contribute to improved 
policies to mitigate or prevent adverse effects 
of LULCCs (Zhai et  al., 2018). Overall, LCM 
offers a robust framework for analysing LULCC 
by integrating both proximate causes and under-
lying driving forces into the modelling process, 
thereby enhancing our understanding of land 
change dynamics and their broader implica-
tions.
This study sought to pinpoint significant causes 
of LULCCs between 2002 and 2021 in Com-
bomune, Mozambique, a significant charcoal 
supplier to Maputo and Matola’s urban areas. 
The investigation employed remote sensing 
techniques utilizing Landsat and Sentinel-2 
multitemporal data. Ground observation and 
interviews with local stakeholders were also 
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conducted. The land cover model (LCM) was 
used to analyse the data and determine the spa-
tial dynamics of vegetation in the area in rela-
tion to chosen anthropogenic and biophysical 
factors, called explanatory variables. These con-
tributions address gaps in understanding transi-
tion dynamics and the assessment of explana-
tory variables, which are crucial for developing 
sustainable forest policies. Building on previous 
research in the field, the study presented here 
offers three novel insights. Firstly, it uniquely 
analyses interclass transitions in LULCCs using 
LCM. Secondly, it systematically links explana-
tory variables to LULCC dynamics using LCM, 
providing policy-relevant causality insights. 
Thirdly, it combines data from Landsat, Senti-
nel-2, ground observations, and local interviews 
for validation, enhancing accuracy over single-

method approaches (e.g., Karlson et al., 2015b; 
Wu et al., 2020).

Materials and methods

Study area

The study was conducted in the administrative 
post of Combomune, in the northern part of 
the Mabalane district in the province of Gaza 
in southern Mozambique (Fig. 1). Combomune 
is a rural region with an area of approximately 
511,500 ha. At the time of the latest census 
2021, the population of Mabalane district was 
39 462 (INE, 2022). The population increased 
significantly between 1997 and 2005. From 
that period onward, growth became slower, 

Fig. 1   Map of the study area, Combomune, including rivers, roads, and main villages. The area highlighted in red is the smaller area 
analysed to identify burned areas resulting from charcoal production
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and in the last seven years, the population has 
remained relatively stable. This may indicate 
that, locally, the demand for natural resources 
has not increased significantly (Fig. 2).
The Mabalane district receives a mean annual 
precipitation of approximately 500 mm, with an 
average yearly temperature of 24 °C. About 90% 
of the precipitation falls during the wet season 
between October and April (Woollen et  al., 
2016). The period between May and Septem-
ber is dry and cold, and June and July are com-
monly dry with clear skies. Woodlands cover 
over 80% of Mabalane, mainly Mopane wood-
lands, dominated by the tree species Colophos-
permum mopane (Baumert et  al., 2016). 
Mopane is a dense hardwood species that pro-
duces high-quality, slow-burning charcoal. Most 
of the charcoal produced in Gaza comes from 
Mopane woodlands. Production and sale of 
charcoal is one of the main economic activities 
in the district, along with low-intensity rain-fed 
agriculture and animal husbandry under a com-
munal grazing system (Baumert et al., 2016).

Several studies have identified the Mabalane 
district as an area of significant charcoal produc-
tion from where charcoal is supplied to the two big-
gest cities of southern Mozambique, Maputo, and 
Matola, where the charcoal is consumed (Baumert 

et  al., 2016; Chavana, 2014; Malate, 2017; Smith 
et  al., 2019; Zorrilla-Miras et  al., 2018). Mabalane 
has been a significant supplier of charcoal since 2000 
(Vollmer et al., 2017). The production has gradually 
moved from the south to the north of the district as 
the woody resources become scarcer (Woollen et al., 
2016). Sedano et al. (2020b) showed that the pattern 
of forest degradation in Mabalane district follows the 
distribution of the mopane woodlands, progressively 
moving in two directions first, South–North and then 
West–East outwards from the district’s main villages 
and following the main roads.

In 2001, the administrative post of Combomune 
was situated at the margin of the charcoal production 
area and was primarily unaffected by land use/land 
cover change (LULCC). Since then, charcoal produc-
tion has intensified and spread into the area. Several 
locations experienced increased charcoal production 
during the latter part of the study period (Woollen 
et al., 2016), motivating further investigation by this 
study.

Data acquisition

The vector data (rivers, water bodies, national parks, 
villages, major roads, and administrative bounda-
ries) were acquired through the National Center for 
Cartography and Remote Sensing (CENCARTA), 
responsible for producing and disseminating geo-
spatial data in Mozambique. The available data were 

Fig. 2   Population in 
Mabalane district 1997–
2021, Statistical Yearbooks 
of the Mabalane. Data 
source: (INE, 2022)
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digitalised by CENCARTA from topographic maps 
with a scale of 1: 250,000. The raster data used were 
Landsat multitemporal satellite images with 30-m 
resolution, advanced spaceborne thermal emission 
and reflection radiometer (ASTER) global digital 
elevation model (GDEM) Version 2 with 30-m res-
olution and Sentinel-2 with 10 m resolution. Land-
sat and ASTER GDEM 2 were acquired from the 
Earth Explorer at the United States Geological Sur-
vey (USGS). At the time of collection, the images 
were atmospherically corrected to surface reflec-
tance Level 2 (USGS, 2020). The Landsat data used 
for the analysis were two Landsat 7 Enhanced The-
matic Mapper (ETM +) images and four Landsat 8 
Operational Land Imager (OLI) images. All images 
were acquired in June, recorded with no (0%) clouds 
(Table  1). According to Mananze (2012), an image 
recorded during the dry season allows for better dis-
tinction of different types of vegetation. The weather 
conditions were quite similar during the collection 

period of all images (Fig.  3). All analysis steps for 
LCM are summarised in the methodological flow-
chart (Fig. 4).

To identify where charcoal production occurs, so-
called burn spots, Sentinel-2 images were processed 
on the Google Earth Engine (GEE). Sentinel-2 is a 
high-resolution, multispectral imaging mission that 
offers data suitable for evaluating the condition and 
changes in vegetation, soil, and water cover. The 
images undergo orthorectification and atmospheric 
correction to ensure accurate surface reflectance 
(Gee, 2024). The Sentinel-2 images used cover a sub-
set of the study area of 2021.3 ha (Fig. 1) for six con-
secutive years, using mean values from October 2016, 
October 2017, October 2018, October 2019, Novem-
ber 2020, and October 2021.

On‑site observations and local perceptions of 
LULCC

To allow for supervised classification of the satellite 
images and to better understand human activities in 
the study area, fieldwork was performed in 2021 and 
2023, when on-site observations of LULC and semi-
structured interviews with local key informants were 
conducted. Informants and field guides were selected 
in collaboration with community leaders and required 
to have resided in the Combomune area longer than 
10 years and have knowledge about the local for-
estry, such as tree utilisation, names of commercial 

Table 1   Landsat images used for classification

Date of acquisition Sensor Path/row

18/06/2002 ETM +  168/076
27/06/2002 ETM +  167/076
14/06/2015 OLI 168/076
23/06/2015 OLI 167/076
14/06/2021 OLI 168/076
23/06/2021 OLI 167/076

Fig. 3   Monthly average 
precipitation recorded in 
Combomune for the years 
2002, 2015, and 2021. Data 
source: (NASA, 2021)
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trees and experience in charcoal production and 
agriculture.

The first fieldwork was done in August 2021, 
conducting on-site observations and interviews with 
field guides. The aim was to familiarise the research-
ers with the region and accurately define the LULC 

classes for the satellite data analysis. As the study 
involved the establishment of a temporal change, 
additional observations were made using high-resolu-
tion images from Google Earth and previous LULC 
maps from CENACA​RTA​ to enhance the under-
standing of the region throughout the analysis period. 

Fig. 4   Flowchart presenting the general methodology of the multitemporal part of the study



	 Environ Monit Assess        (2025) 197:1117  1117   Page 8 of 23

Vol:. (1234567890)

Ground control points were collected in 17 instances 
of dense forest, 17 of open forest, and 18 in shrub (a 
total of 52 locations). The classes of agriculture and 
others, sand, and water bodies did not require field 
observations as they were easily identified directly in 
the images.

The second fieldwork was conducted in Febru-
ary 2023, involving additional interviews with local 
informants to focus on their perceptions of the causes 
of LULCC in the area during the study period. Semi-
structured interviews were held with 15 key inform-
ants on charcoal production and agriculture across 
five villages in Combomune. Three of the respond-
ents were community leaders, and twelve were active 
charcoal producers at the time of the interviews, as 
indicated by the community leaders. Each interview 
ranged from 20 to 40 min. The questionnaire used dur-
ing the interviews is provided in Supporting informa-
tion. The questionnaire was divided into two sections. 
The first section aimed to collect sociodemographic 
data of the participants, including age, gender, mari-
tal status, education level, household size, occupation, 
time of residence in the community, and emigration 
history. The second section focused on their percep-
tions of the causes of changes in the region. The inter-
views were conducted during the weekend when the 
informants were available. During weekdays, they 
were occupied with activities that began early in the 
morning and ended in the afternoon, after which they 
attended to their household chores. This limited the 
number of informants, however, during the later inter-
views, no additional information occurred, and an 
information saturation was reached.

LULC mapping and accuracy assessment

The LULC maps were produced through supervised 
classification of Landsat images using the maximum 
likelihood method in ENVI 5.3 software. Maximum 
likelihood is a commonly used method (Norovsuren 
et al., 2019; Shivakumar & Rajashekararadhya, 2018; 
Sisodia et  al., 2014). Sample selection for classifica-
tion was performed by drawing polygons on Landsat 
images for each LULC class through on-screen obser-
vation, informed by fieldwork experience and analysis 
of high-resolution Google Earth imagery. The follow-
ing classes were identified: dense forest, open forest, 
shrub, agriculture and others, sand, and water bod-
ies (Table 2). Due to their spectral similarities, some 

potential classes (villages, transport infrastructure, 
crops, including seasonal or perennial crops, and fal-
low land) were difficult to separate from one another 
in satellite images and were aggregated into one class: 
agriculture and others. A similar issue was observed 
at the boundaries between the dense forest, open for-
est, and shrub classes. In these boundary areas, there 
are mixed pixels that may be influenced by climatic 
or atmospheric conditions on the day the images were 
recorded. This influence may cause these pixels to be 
assigned to one of the adjacent classes, potentially 
influencing the detection of change. Although the 
issue of mixed pixels was not directly addressed in this 
research, this limitation was minimised by acquiring 
images recorded in the same season.

Accuracy assessment was done using the overall 
accuracy, producer’s accuracy, and user’s accuracy. 
The overall accuracy measures the proportion of cor-
rectly classified pixels in the images. Producer’s accu-
racy indicates how well the training set pixels of a given 
class are classified. User’s accuracy indicates the proba-
bility that a pixel classified into a given class represents 
that class on the ground (Campbell & Wynne, 2011).

LULCC analysis

For data analysis, the LCM was used. The analysis 
was based on the multitemporal raster images with 
the same LULC classes, resulting from the classi-
fication of the Landsat images of 2001, 2015, and 
2021. The classes were assigned integer numbers to 
facilitate the comparison. For the analysis, a stepwise 
process was followed (Fig.  4). The process started 
with change analysis, followed by transition potential 
assessment, change prediction, and model validation 
(Hasan et al., 2020; Megahed et al., 2015).

Change analysis

Change analysis was conducted to evaluate the 
LULCC during the study period, focusing on transi-
tions between classes from 2002 to 2015 and from 
2015 to 2021. Given the numerous LULC classes, the 
potential combinations of transitions can be exten-
sive. The key is to identify dominant transitions, 
which can be grouped and modelled, termed submod-
els (Eastman, 2020). For this study, an area threshold 
of 1000 hectares was set for each transition to capture 
significant changes, excluding transitions below this 
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threshold. The submodels were modelled separately 
and combined to simulate a future LULC map. The 
results were presented as maps and a matrix showing 
the changed areas between two classified images.

Based on the LULCC data, for each pair of years 
(2002/2015, 2015/2021, and 2002/2021) annual rate 
of forest cover change was calculated using Eq. 1 pro-
posed by Puyravaud (2003):

Table 2

Classes Description Google Earth images

Dense Forest Woody vegetation consistent with the standards of the definition of forest in Mozam-
bique; an area of at least 1 hectare with a crown cover equal to or greater than 10%, 
and trees greater than 5 meters in height (Mananze, 2012). According to field 
observations, Androstachys johnsonii locally known as Cimbire (local name) is the 
most abundant tree species in this class.

Open Forest Dominantly mopane woodland, characterised by the species Colophospermum 
mopane. Although it is typically composed of homogenous patches, it can also be 
associated with a mix of other tree and shrub species (FNDS, 2019).

Shrub Land with an area greater than or equal to 0.5 hectares, where the occurrence of 
spontaneous vegetation composed of shrubs or bush formations with a cover 
degree greater than 25% and height equal or greater than 50 cm is observed 
(Martins et al., 2016).

Agriculture and 
Others

Combination of classes: villages, transport infrastructure, crops, including seasonal 
or perennial crops, and fallow land.

Water
Bodies

Areas covered by or saturated with water at the time of recording the satellite image.

Sand Sandy areas without vegetation
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where A
1
 and A

2
 are the forest cover at time t

1
 and t

2
 , 

respectively, the unit is percentage per year.

Transition potential modelling

After producing the submodels, the potential for a 
class to transform into another class was determined 
by creating potential transition maps using histori-
cal information from 2002 to 2015 combined with 
explanatory variables. The identification of explana-
tory variables was guided by knowledge acquired 
from the studies previously mentioned in the intro-
duction section, such as Geist and Lambin (2002), 
Sitoe et al.(2012) and Iizuka et al. (2017). Based on 
these references, the following explanatory variables 
were identified within the study area and applied 
in the present study: altitude, slope, distance to riv-
ers, distance to roads, and distance to villages. All 
variables were considered static throughout the time 
series. The multilayer perceptron (MLP) was used to 
model the change potential from one class to another. 
MLP is a machine learning algorithm known for its 
good performance in combining historical maps 
with explanatory variables to estimate future LULC 
(Dzieszko, 2014; Hasan et  al., 2020; Iizuka et  al., 
2017; Megahed et  al., 2015; Zhai et  al., 2016). The 
relative importance of each variable in explaining 
the observed LULCC for each submodel is measured 
using the skill measure, S (Eq. (2) and (3)), ranging 
from −1 to 1, with values smaller than 0 indicating 
lesser influence on LULCC and values close to 1 indi-
cating a better fit (Näschen et al., 2019).

where E(A) is the expected accuracy, T is the number 
of transitions in the submodel, and P the number of 
persistent classes.

where S is the skill measure, while A is the measured 
accuracy, which accounts for the percentage of cor-
rect predictions.

(1)r =

(

1

t
2
− t

1

)

× ln

(

A
2

A
1

)

(2)E(A) =
1

T + P

(3)S =
(A − E(A))

(1 − E(A))

Change prediction

A prediction map for 2021 was constructed based 
on historical changes from 2002 to 2015, transition 
maps, and a transition probability matrix. A transi-
tion probability matrix shows the likelihood of transi-
tioning from one class to another within the observed 
period (Hasan et al., 2020). The transition probability 
matrix was created using transition maps with the ref-
erence year 2021. All this information was then used 
to simulate the LULC map for 2021, with the same 
classes used in the supervised classification: dense 
forest, open forest, shrub, agriculture and others, 
sand, and water bodies.

After simulating the LULC of 2021, a model valida-
tion was conducted to compare the quality of the 2021 
predicted map with the actual 2021 LULC map gen-
erated by supervised classification. The result of this 
process was used to assess how well the explanatory 
variables can explain the LULCC identified through 
supervised classification of the Landsat images from 
2002, 2015, and 2021, adding complementary infor-
mation to the previously mentioned skill measure. 
The validation process used different accuracy meas-
urements called κ coefficients. According to Eastman 
(2020), these coefficients evaluate the agreement of 
maps based on the number of pixels in each class and 
their locations. The κ coefficients used were as follows: 
Kno for overall accuracy, Klocation for location accuracy, 
and Kstandard for quantity accuracy relative to the refer-
ence map classes (Araya & Cabral, 2010).

Mapping of charcoal production sites

To gain further insight into the causes of LULCC, 
mapping of charcoal production sites was conducted 
in a part of the study area (red in Fig.  1). Charcoal 
production sites were identified using Sentinel-2 
imagery, specifically the visible bands (B2, B3, and 
B4) and the near-infrared (NIR) band (B8), all with 
a spatial resolution of 10 m. According to Chuvieco 
et al. (2019) and Sedano et al. (2020b), the NIR band 
is effective for detecting areas affected by charcoal 
production. This mapping could not be performed 
using Landsat imagery due to its lower spatial resolu-
tion. The identification and quantification of charcoal 
production sites were essential for better understand-
ing the proximate causes of LULCC in the region.
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To identify and quantify burnt spots, for each Sen-
tinel-2 image, a supervised classification was carried 
out on the GEE platform over the period 2016–2021. 
Firstly, the open forest class was extracted from a part 
of the classified 2002 Landsat images, representing 
the first year of our study period, when the open for-
est was presumed to be least degraded. The choice of 
open forest was to minimise errors in charcoal kiln 
identification, as this class contains an abundance of 
mopane trees used for charcoal production.

The masked area was classified into two classes: 
open forest and charcoal kilns, using a supervised 
classification. The training samples consisted of pol-
ygons for open forest and points for burned spots. 
Points were used to capture the pixels that represent 
the recently burned areas, which appear black in the 
NIR band, much darker than the surrounding pixels. A 
total of 160 points were generated using an on-screen 
selection, 60 for open forest and 100 for charcoal kilns. 
Then, 80% of the training samples were randomly 
selected for the classification, and the remaining 20% 

were used for accuracy assessment. The random for-
est classifier was used, which, according to Zhao et al. 
(2024), is a widely applied algorithm for image classi-
fication used for change analysis, environmental moni-
toring, and land management applications.

Results

Land use and land cover change analysis

Figure  5 presents the LULC maps for 2002, 2015, 
and 2021. The resulting maps are highly accu-
rate, with an overall accuracy of 94.8%, 95.3%, and 
97.8%, respectively (see Supporting information). 
Comparing the results from 2002 to 2021 reveals a 
decrease in the open forest of 3.7%/year, an increase 
in shrub of 2.4%/year, and a decrease in the dense 
forest of 0.7%/year (Table  3). In 2002, the study 
area was predominantly covered by open forest and 
shrub, which together accounted for nearly 80% 

Fig. 5   Land use and land cover maps 2002, 2015, and 2021
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of the total area. Open forest covered 40.1%, while 
shrub covered 39.4%. Dense forest was the third 
largest class, covering 19.1%. Agriculture and other 
land uses, such as sand and water bodies, made up a 
very small portion of the area, with agriculture and 
other covering 1.1%, sand covering 0.2%, and water 
bodies covering a very small area. In 2015, signifi-
cant changes were observed in the land use and land 
cover (LULC) classes. The area covered by open for-
est decreased substantially to 31.9% of the total area, 
while shrub increased to 45.6%. Dense Forest also 
decreased, covering 16.9%. Agriculture and other 
increased to 5.4%. Sand and water bodies remained 
relatively unchanged. By 2021, shrub covered 61.1% 
of the total area, showing a continued increase. 
Open forest occupied 19.7%, indicating a continued 
decrease. Dense forest covered 16.6%, showing sta-
bility from 2015 to 2021. Water bodies covered 0.3% 
of the study area, indicating an increase likely related 
to increased precipitation that year (Fig.  3), which 
filled intermittent bodies of water. The remaining 
classes experienced only minor changes from 2015 
to 2021 (Table  4). It should be noted that agricul-
ture and other increased from 2002 to 2015 and 
then decreased from 2015 to 2021. This fluctuation 
is related to the class composition, which comprises 
classes with spectral similarities that were difficult 
to discriminate during the classification process, as 

explained in the methods section. The increase in 
agriculture and other could be related to the expan-
sion of settlements and rain-fed agriculture. The sub-
sequent decrease is likely due to the abandonment 
of rain-fed agriculture, which tends to grow vegeta-
tion in the following years. This pattern is common 
in this area, considering the scarce precipitation, as 
described later in Sect. 3.10.

Figure  6 presents spatial transitions between the 
classes 2002–2015, 2015–2021, and 2002–2021. The 
corresponding LULC areas in hectares are shown in 
Table 5, Table 6, and Table 7. The diagonal values in 
Tables  5, 6, and 7 show the areas of each class that 
did not change during the given period. From 2002 
to 2015 (Table  5), the open forest class experienced 
a significant net loss of 8.3%, followed by a further 
net loss of 12.2% from 2015 to 2021 (Table 6). Over 
the entire period from 2002 to 2021 (Table 7), open 
forest had a cumulative net loss of 20.5%, primar-
ily due to its transition to Shrub. Dense Forest also 
experienced a net loss, with a cumulative net loss of 
2.3% (Table 7), mainly due to its transition to Shrub. 
Conversely, the Shrub class experienced cumulative 
net gains of 22.2% (Table  7) over the study period, 
with the major contribution coming from open forest. 
Some of these transitions may be related to pixels with 
mixed coverage at the boundaries of these tree classes, 
which may have introduced some uncertainty that was 
not addressed in the research.

Transition potential modelling and explanatory 
variables

The most influential explanatory variables were dis-
tance to river, altitude, and distance to village, with 
skill measures of 0.49, 0.39, and 0.18, respectively 
(Table 8).

Table 3   Annual rates of LULCC of woody land cover classes

Classes 2002–2015 2015–2021 2002–2021
%/year %/year %/year

Dense forest  − 0.94  − 0.27  − 0.73
Open forest  − 1.77  − 8.01  − 3.74
Shrub 1.12 5.02 2.35

Table 4   Area covered by 
each LULC class for the 
years 2002, 2015, and 2021

Year 2002 2015 2021

Classes ha % ha % ha %

Water bodies 14.4 0.0 15.5 0.0 1660.0 0.3
Dense forest 97,827.8 19.1 86,543.2 16.9 85,138.9 16.6
Open forest 205,259.6 40.1 163,020.2 31.9 100,797.8 19.7
Agriculture and others 5612.1 1.1 27,804.2 5.4 7997.6 1.6
Shrub 201,697.2 39.4 233,276.2 45.6 315,175.1 61.6
Sand 996.5 0.2 748.4 0.1 638.2 0.1
Total 511,407.6 100.0 511,407.6 100.0 511,407.6 100.0
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According to the transition probability matrix 
of 2021, dense forest and shrub are the most stable 
classes, with respective probabilities of 0.89 and 0.88. 
Open forest and human activities have moderate sta-
bility with 0.75 and 0.65, respectively. Water bodies 
is highly dynamic, with a probability of 0.07. Shrub 

increased primarily due to decreasing open forest and 
agriculture and others with the following probability 
of changes: 0.2 and 0.3, respectively (Table  9). The 
change probabilities are shown in Fig.  7. The maps 
show a higher probability of changes from open for-
est to shrub and shrub to agriculture and others. The 

Fig. 6   The main transitions during the study period. The large 
map (left) displays the spatial distribution of the transitions 
presented in the map legend from 2002 to 2021. The small 

maps (right) cover the area within the red box in the large map 
and show the same transitions between the indicated times in 
the maps

Table 5   Land cover change matrix (hectares) during 2002–2015

Classes Water bodies Dense Forest Open forest Agriculture 
and others

Shrub Sand Total loss

Water bodies 0.5 0 0.6 8.6 0.3 4.3 13.8
Dense forest 0 77,489.2 14,406.8 2700.9 3230.8 0.2 20,338.7
Open forest 0.3 6042.4 123,797 10,318.2 65,088.5 13.1 81,462.5
Agriculture and others 6.1 1.4 393.6 2711.3 2418.8 80.9 2819.9
Shrub 4.2 3010 24,379.5 11,731.7 162,519.5 52.4 39,177.8
Sand 4.3 0.3 42.8 333.5 18.3 597.4 399.2
Total gain 14.9 9054.1 39,223.3 25,092.9 70,756.7 150.9
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probability of change from open forest to shrub is 
more evident, reaching around 90% in some areas. 
Probability map a, with changes from shrub to agri-
culture and others shows high probability of change in 
some villages of the study area.

Model validation

The actual classified image of 2021 and the simulated 
image of 2021 are presented in Fig.  8. The two maps 
have good correspondence in terms of locations of 

Table 6   Land cover change matrix (hectares) during 2015–2021

Classes Water Bodies Dense Forest Open Forest Agriculture 
and Others

Shrub Sand Total loss

Water bodies 12.8 0 0 1.5 1 0.2 2.7
Dense forest 16 72,009.2 258.3 33.3 14,226.2 0.2 14,533.8
Open forest 443.5 10,342.9 82,571.4 1507.2 68,141.3 13.8 80,434.9
Agriculture and others 610.6 1496.1 3907.1 3439.4 18,203.7 147.5 24,365
Shrub 473.9 1290.8 14,057.6 2875.1 214,574.9 4.1 18,701.5
Sand 103.1 0 3.5 141.1 28.1 472.5 275.8
Total gain 1647.1 13,129.8 18,226.5 4558.2 100,600.3 165.8

Table 7   Land cover change matrix (hectares) during 2002–2021

Note: The transition matrix presents changes in hectares between different classes, including areas that did not change, represented 
by the values in the shaded diagonal. Transition values are read line by line, e.g., in the first line, 9.1 ha indicates the area classified 
as Water bodies that didn’t change between 2002 and 2021, and the 0 ha value means no water bodies has changed into dense forest. 
The net change (positive or negative) is the difference between the totals

Water Bodies Dense Forest Open Forest Agriculture 
and Others

Shrub Sand Total loss

Water bodies 9.1 0 0.6 2.4 0.9 1.4 5.3
Dense forest 57.2 73,141.2 3254.8 163.8 21,208.6 2.3 24,684.4
Open forest 590.9 8832.2 79,285.9 2006.2 114,522.1 22.2 125,951.4
Agriculture and others 226.4 9.3 914.7 1697 2683.4 81.5 3833.8
Shrub 586.8 3154.9 17,293.1 3910.8 176,700.3 51.3 24,996.9
Sand 189.5 1.4 48.8 217.4 59.8 479.6 516.9
Total gain 1650.8 11,997.8 21,512 6300.6 138,474.8 158.7

Table 8   Performance of explanatory variables for each submodel given by the skill measure. Shading indicates more important vari-
ables

Variables Open forest 
to shrub

Open forest to agri-
culture and others

Open forest to 
dense forest

Shrub to agricul-
ture and others

Dense forest to 
open forest

Dense for-
est to shrub

All 0.504 0.3841 0.3404 0.2811 0.1136 0.1685
Distance to villages (1) 0.05 0.0072  − 0.0049 0.1789 0.0424 0.0028
Distance to roads (2) 0.0051 0.0072  − 0.0049 −0.0042 0.0306 0.0028
Distance to rivers (3) 0.4899 0.2575  − 0.0049 0.2756  − 0.0414 0.1559
Altitude (4) 0.0051 0.3857 0.2966  − 0.0042  − 0.0049 0.0028
Slopes (5) 0.0051 0.0072  − 0.0049  − 0.0042 0.0932 0.0419
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pixels representing the same classes, with a κ location of 
82.4%. The overall accuracy ( � no) is 74.23% (Table 10), 
which indicates a reasonable agreement between the 
simulated map and the actual map. Therefore, the 
applied variables were not sufficient to simulate all the 
LULC of 2021 using historical changes of 2002 to 2015.

Burned areas from charcoal production

The intensity of charcoal production across the 
subset area (Fig.  1) for each year is presented 

in Table 11. In the image from 2016, 72 burned 
areas were identified. The highest number of 
burned areas, 2280, was identified in the image 
from 2019. These results provide insights into the 
spatial distribution of charcoal production and its 
impact on the landscape, showing that charcoal 
production has taken place in almost all open for-
est areas in the subset area. The reduction in the 
number of burned spots after 2019 may be attrib-
uted to the decreased availability of preferred 
trees, which likely motivated the producer to relo-
cate to other areas. Additionally, previously iden-

Table 9   Transition 
probability matrix of land 
use land cover for the year 
2021

Note: Probability values are read line by line, e.g., in the first line, 0.606 indicates that the class 
water bodies has 60.6% probability to change for agriculture and others between 2002 and 2015

Classes Water bodies Dense forest Open forest Agriculture 
and others

Shrub Sand

Water nodies 0.069 0.001 0.017 0.606 0.000 0.306
Dense forest 0.000 0.893 0.091 0.015 0.000 0.000
Open forest 0.000 0.018 0.748 0.032 0.202 0.000
Agriculture and others 0.001 0.000 0.030 0.650 0.306 0.012
Shrub 0.000 0.007 0.078 0.040 0.875 0.000
Sand 0.004 0.001 0.018 0.213 0.000 0.764

Fig. 7   The maps (a–f) represent the probability of one class 
change to another. (a) Shrub to agriculture and others, (b) open 
forest to shrub, (c) open forest to agriculture and others, (d) 

open forest to dense forest, (e) dense forest to open forest, and 
(f) dense forest to shrub
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tified burned areas may have regrown vegetation, 
though they were not identified in the images of 
subsequent years. The spatial distribution of the 
burned spots is presented in Fig. 9.

Local perceptions of the causes of LULCC

During the fieldwork conducted in 2021, the 
main land uses in Combomune were identi-
fied, i.e., livestock rearing, agriculture, char-
coal production, and wood collection. At the 
time of fieldwork, several crop fields appeared 
neglected. According to the field guides, this 
neglect was due to fields being prepared for the 
upcoming rains, which were either delayed or 

did not occur, leading to vegetation growth and 
crop damage. Additionally, most water bodies, 
particularly floodplains, were dry during this 
time. However, the field guides explained that 
during heavy rainfall, certain water bodies in 
the area would accumulate significant volumes 
of water and could sustain extended periods of 
water scarcity. Based on the insights from the 
field guides, our observations, and the literature, 
the class definitions in Table 2 were applied.

To understand the LULCC and its causes in the 
study area from the perspective of the local com-
munities, 15 key informants were interviewed. 
All informants acknowledged that LULCC had 
occurred in the study area. Charcoal produc-
tion and small-scale agriculture were said to be 
the main reasons for LULCC in the study area. 
Charcoal production involves selective tree cut-
ting, not directly contributing to deforestation but 
decreasing the availability of the tree species pre-
ferred for charcoal production. The key inform-
ants stated that the legally permitted tree species 
for exploitation are rapidly declining in the area 
and are expected to become scarce within 5 years. 
The park area (Fig.  1), which contains abundant 

Fig. 8   Actual and simulated land use land cover map for 2021

Table 10   Compiled results of model validation

Validator Results %

� no (no information) 74.23
� location (grid-cell level location) 82.40
� locationStrata (stratum-level location) 82.40
κ standard 69.68

Table 11   Number of identified burnt spots in the subset area for the years 2016–2021

Year 2016 2017 2018 2019 2020 2021

Burnt spots 72 260 1477 2280 1082 517
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tree species for charcoal production, is protected 
by law and cannot be exploited. One of the inter-
viewees, a man of 35 years old, said:

“I started to work in charcoal production in 
2004. When I started, the production site was 
close to my house. When all the desired trees 
for charcoal production are harvested at one 
site, we move to another, increasing the distance 
from home to the production site. Mopane trees 
are still close to here [his house], but they can-
not be harvested as they belong to the park. It’s 
illegal to harvest in the park.”

Key informants said that agriculture in the area is 
a family-based activity, and they have been using the 
same fields for crop production for many years. Clear-
ing new fields requires intensive labour, resulting in a 
limited number of new fields cleared each year. Addi-
tionally, the challenging climatic conditions and poor 
quality of soils limit the potential for high crop yields. 
The community leader in Chaves, a settlement in the 
study area, stated that:

“The practice of agriculture is done near the 
house, not more than 5 km from the homestead. 
We do not do much yearly clearing of fields for 
cultivation. Some of the fields we use are inher-
ited from our parents. Opening new fields for 
agriculture usually happens when the number of 
people in the household increases. For example, 
if my son forms a family and wants to cultivate, 
we can open new fields”.

When asked about restoring forests, the respondents 
said it is challenging to restore forests and that native 
trees take a long time to reach adulthood. There have 
already been several projects for planting fruit trees to 
generate income, but they have always failed because 
the climatic and soil conditions are not favourable for 
this type of tree. One of the interviewees, a community 
leader in Bairro 1, a settlement in the study area, said:

“The trees that are felled take a long time to 
regenerate. I do not know how long it takes to 
reach commercial production. I know it takes a 
very long time, maybe 70 years.”

Discussion

This study aimed to identify land use and land cover 
changes from 2002 to 2021 and their main causes at 
the administrative post of Combomune in Mozam-
bique, a significant charcoal supplier to Maputo’s and 
Matola’s urban areas. To do this, four different analy-
ses were done: LULC mapping using Landsat satel-
lite imagery captured years 2002, 2015, and 2021, 
LCM to identify what explanatory variables drive 
LULCC in the study area, interviews with local rep-
resentatives to record their perceptions of causes of 
LULCC in Combomune, and identification of char-
coal production sites in a smaller subarea, using Sen-
tinel-2 satellite imagery for each year from 2016 to 
2021 to complement the analysis.

Fig. 9   These maps illustrate the distribution of burned spots 
from charcoal production in the Combomune subset area from 
2016 to 2021. The background image visualises the grayscale 

level of the NIR band from Sentinel-2, with red points repre-
senting the burned spots
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The results of the LULCC analysis indicate 
that between 2002 and 2021, the area covered by 
Open Forest decreased by approximately 104,000 
ha, which is 20.4% of the original extent. Dur-
ing the same period, the area of Shrub increased 
by approximately 113,500 ha which is 22.2% of the 
original extent. This change aligns with the findings 
of Malate (2017), showing that the actual demand 
for forest resources exceeds the licensed volume in 
Combomune, which consequently may put the Com-
bomune community at risk of resource shortage 
and increasing poverty due to unsustainable forest 
exploitation.

Proximate causes influencing LULCC

This study used LCM to assess to what extent 
selected explanatory variables contribute to LULCC 
in Combomune. The LCM analysis was also used 
to create a prediction of LULC for the year 2021, in 
order to validate the model, but it did not extend to 
predict future LULC beyond 2021. The analysis of 
explanatory variables revealed that “distance to riv-
ers” and “distance to villages” were the most influ-
ential factors explaining the LULCC from 2002 to 
2021. Distance to rivers influenced the transitions 
from open forest to shrub, reaching a skill measure of 
0.5. This spatial relationship is evident in the Fig. 7, 
illustrating a higher probability of LULCC near riv-
ers and villages. The increased likelihood of change 
near rivers may be attributed to agricultural clearance 
activities along riverbanks. This finding is consistent 
with Malate (2017), who reported that approximately 
39% of the population in Combomune engages in 
agriculture near the Limpopo River due to favourable 
climatic conditions and better access to water, while 
the remaining 61% practice rainfed agriculture. Then, 
distance to villages influenced the transition from 
open forest to agriculture and others reaching a skill 
measure of 0.2. The increased likelihood of changes 
near villages may be attributed to rainfed agriculture. 
Key informants indicate that this activity typically 
occurs within a 5-km radius of the villages, explain-
ing the elevated probabilities of changes observed 
around them. However, Distance to roads was not a 
significant explanatory variable. This can be attrib-
uted to an insufficient coverage of the network of 
smaller roads and paths, used for charcoal transport to 
main roads, in the digitised maps.

The LULC class agriculture and others, which is a 
combination of potential classes of villages, transport 
infrastructure, crops, including seasonal or peren-
nial crops, and fallow land. This class experienced a 
sporadic change in 2015, which is possibly related to 
the typical characteristics of this class, that is, highly 
influenced by climatic conditions. Climatic condi-
tions, erratic rainfall patterns, and poor soil quality 
have contributed to low agricultural productivity in 
areas distant from the Limpopo River (Zorrilla-Miras 
et al., 2018). This dependence on rain for agriculture 
may have contributed to the abandonment of open 
lands for crops due to long waiting periods for rain, 
and consequently, these areas gained vegetation. Field 
observations support this finding, as no new agricul-
tural fields were identified, and many existing crop 
fields were neglected. Additionally, key informants 
stated that crop fields are typically utilised for sev-
eral years without frequent clearing for new cultiva-
tion areas. Visual image inspection indicates no vil-
lage sprawl in Combomune, which aligns with data 
(Fig. 2) from INE (2022), showing that Combomune 
did not experience a population growth that would 
have resulted in an increase in the class Agriculture 
and Others during the analysis period. Distance to 
rivers, distance to villages, abandoned crops, climatic 
conditions, precipitation, and soil conditions were 
the proximate causes identified by the interviews to 
be the most influential of some LULCC that were 
observed in the study area, nevertheless were not suf-
ficient to explain the major transition that occurred 
from open forest to shrub.

Burned areas from charcoal production and their 
implications on LULCC

The research explored an additional understanding of 
the factors that drove the changes between open for-
est and shrub by analysing the perceptions of the key 
informants. According to the key informants inter-
viewed, charcoal production is likely to be the primary 
factor that drove the changes from open forest to shrub. 
Therefore, an additional analysis was done to inves-
tigate this claim. An analysis using the NIR band of 
Sentinel-2 was done to identify charcoal production 
sites in a subset of the study area. The analysis detected 
numerous burned areas attributable to charcoal produc-
tion. These spots were predominantly observed within 
the open forest. Given their abundance, it is likely 
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that close to these hotspots no other activity happens, 
therefore, charcoal production has resulted in a reduc-
tion of the open forest and an increase in Shrub. The 
shrubland typically exhibits lower biomass compared 
to open forests. Previous research findings indicate that 
charcoal production primarily contributes to forest deg-
radation rather than outright deforestation (Hosonuma 
et al., 2012). Degradation is characterised by modifica-
tion or permanent loss of the forest structure, function, 
species composition, or productivity due to damaging 
agricultural and other land uses (Vásquez-Grandón 
et al., 2018). The mopane tree is highly sought after for 
commercial purposes and charcoal production (Malate, 
2017; Sedano et al., 2021). This species is abundant in 
unexploited open forests in the study area.

Based on the findings presented here, charcoal 
production is likely the primary driver of the change 
from open forest to shrub observed in the study area. 
The selectivity of the forest harvesting combined 
with the low growth rate of the preferred wood spe-
cies leads to forest degradation, which aligns with the 
identified transition from open forest to shrub. Wool-
len et  al. (2016) consider some villages in Combo-
mune to have reached the peak of charcoal produc-
tion. This is also in line with Mahamane et al. (2017) 
who forecasted an extensive loss of mopane due to 
charcoal production from 2014 to 2025, and Sedano 
et  al. (2020b) who quantified a significant loss of 
above-ground biomass caused by charcoal produc-
tion from 2008 to 2018. The analysis done in this 
study, identifying charcoal production sites in a part 
of Combomune, supports the findings from previous 
studies in Mozambique.

Underlying driving forces and implications of 
LULCC and sustainable alternatives

Similar to previous studies (Baumert et  al., 2016; 
Chavana, 2014), field research results indicate that 
the study area is inhabited by several families rely-
ing on agriculture for their livelihoods getting into 
precarious situations during the frequently prolonged 
droughts. Many of them resort to charcoal production 
as an alternative due to the unfavourable climatic con-
ditions. Given this scenario, the government should 
implement mechanisms to support the population in 
adopting more sustainable agricultural practices, par-
ticularly in areas near rivers where water is available. 
Such measures could help alleviate food insecurity 

while simultaneously reducing the number of people 
engaged in charcoal production.

The local population did not experience signifi-
cant growth during the study period (Fig.  2), sug-
gesting that local demand for natural resources has 
likely remained relatively stable. In the study area, 
households primarily use firewood for daily domestic 
needs, while charcoal is mainly produced for com-
mercial purposes. The primary demand for charcoal 
appears to originate from urban centres, as Gaza 
Province, where Combomune is located, is consid-
ered a major supplier of charcoal to cities such as 
Maputo, the capital of Mozambique. In these urban 
areas, many households rely on charcoal to meet their 
basic energy needs (De Koning & Atanassov, 2013; 
Sedano et  al., 2021). Continued population growth 
in these cities may further increase charcoal demand, 
thereby intensifying pressure on forest resources and 
contributing to forest degradation (Sedano et  al., 
2021). One potential solution would be to establish 
public–private partnerships to invest in sustainable 
and affordable energy alternatives, promoting mod-
ern energy consumption in urban areas and thereby 
reducing excessive charcoal demand and production.

There is a growing risk that charcoal produc-
tion may shift from selective exploitation to indis-
criminate harvesting due to the scarcity of ideal tree 
species in accessible areas. This concern was high-
lighted by key informants and is supported by previ-
ous studies (Zorrilla-Miras et al., 2018). It is crucial 
to develop a monitoring mechanism for areas where 
charcoal production has already occurred to prevent 
indiscriminate deforestation and ensure forest regen-
eration. Furthermore, the government should encour-
age research on accelerating the recovery of native 
tree species, as reported by the key informants, as 
previous reforestation projects have largely failed due 
to the climatic conditions of the region. These strate-
gies should be analysed and implemented in an inte-
grated manner, involving the entire charcoal value 
chain to ensure greater effectiveness.

Study limitations and recommendations for future 
research

This study presents certain limitations in discriminat-
ing LULC classes due to the complexity of the study 
area. A major challenge was the presence of mixed 
pixels, requiring more detailed analysis to refine the 
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number of LULC classes. Another crucial aspect 
is the need for specific mapping of areas burned for 
charcoal production, distinguishing between legally 
licensed production and illegal production. This 
mapping process should implement a near-real-time 
remote monitoring system to significantly reduce the 
time and resources needed for field inspections. This 
is particularly important given the vast extent of the 
region and the financial and human resource con-
straints that often hinder effective on-site monitor-
ing (Baumert et al., 2016). The government and pri-
vate sector partners should actively seek investment 
opportunities in the energy sector. However, these 
initiatives must be accompanied by in-depth studies 
assessing the economic viability and social accept-
ance of introducing technologies, more efficient both 
in charcoal production and consumption. The suc-
cessful implementation of such technologies should 
be supported by continuous capacity-building and 
monitoring of the communities involved.

Conclusions and recommendations for policy 
and future research

This study, conducted in Combomune, Mozambique, 
aimed to identify LULCC from 2002 to 2021 and 
their main causes. The study utilised various meth-
ods, including Landsat satellite imagery for mapping, 
LCM for analysing explanatory variables, and Sen-
tinel-2 imagery for identifying charcoal production 
sites. The findings reveal significant transformations 
in the landscape. Over the study period, there was a 
notable decrease in open forest area by approximately 
126,000 ha (20.4% of its original extent), while shrub 
increased by approximately 138,500 ha. The analy-
sis identified “distance to river” and “distance to 
village” as key factors influencing transitions from 
open forest to shrub and open forest to agriculture 
and others, respectively. Additional analysis of Senti-
nel-2 imagery detected numerous burned areas in the 
open forests. This suggests that charcoal production 
is the primary proximate driver of forest degrada-
tion, resulting in decreased open forest and increased 
abundance of shrubland in the study area.

This study underscores the need for coordinated 
action between the government and its public and 
private partners to intervene directly or indirectly in 
the charcoal value chain. Key areas for intervention 

include promoting sustainable agriculture to gradu-
ally replace rainfed farming, investing in alternative 
technologies for energy production and consump-
tion, strengthening forest remote sensing monitor-
ing, and developing inclusive policies that support 
local communities. Reforestation efforts must con-
sider the challenges posed by climate variability, 
while governance structures should be enhanced to 
improve the regulation of charcoal production.

Future research should focus on refining remote 
sensing image classification techniques to tackle 
the issue of mixed pixels. Additional analysis of 
the charcoal value chain is also needed to assess 
the economic feasibility of sustainable charcoal 
certification, evaluate community acceptance of 
new energy-efficient technologies, and explore the 
long-term regeneration of native forests. Moreover, 
a deeper understanding of the relationship between 
urban energy demand and forest degradation/defor-
estation could inform policy adjustments aimed at 
balancing rural livelihoods with the conservation of 
natural resources.
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