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Abstract

Bosonic quantum error correcting codes are primarily designed to protect against single-photon
loss. To correct for this type of error, one can encode the logical qubit in code spaces with a definite
photon parity, such as cat codes or binomial codes. Error correction requires a recovery operation
that maps the error states—which have opposite parity—back onto the code space. Here, we realize
a collection of photon-number-selective, simultaneous photon addition operations on a bosonic
mode, a microwave cavity, assisted by a superconducting qubit. These operations are implemented
as two-photon transitions that excite the cavity and the qubit at the same time. The additional
degree of freedom of the qubit makes it possible to implement a coherent, unidirectional mapping
between spaces of opposite photon parity. We present the successful experimental implementation
of the drives and the phase control they enable on superpositions of Fock states. The presented
technique, when supplemented with qubit reset, is suitable for autonomous quantum error
correction in bosonic systems and, more generally, opens the possibility to realize a range of
non-unitary transformations on a bosonic mode.

1. Introduction

Encoding quantum information in bosonic modes, such as harmonic oscillators, is a promising platform for
error correctable quantum computing [1]. However, in order to control the quantum information in a linear
mode beyond Gaussian operations, some nonlinearity is required, which is commonly realized by an ancilla
qubit dispersively coupled to the bosonic mode. The dispersive interaction enables an indirect control of the
oscillator states and allows for different gates to be implemented. Examples are the selective number-
dependent arbitrary phase (SNAP) gate [2—4] that changes only the phases of the Fock states, echoed
conditional displacement [5] that generates conditional displacements in phase-space, and optimal control
pulses [6] that in general can change both the phases and the populations of the bosonic mode.

Precise control of the bosonic mode enables quantum error correction against unwanted or uncontrolled
errors [7]. Often, the dominant source of error in a bosonic mode is single-photon loss. Bosonic codes such
as the cat and binomial codes remain invariant under discrete-order rotations in phase space. The order of
such a rotation determines their Fock space structure and, consequently, their robustness against photon loss
and gain errors. For instance, the four-component cat code [8], i.e. a superposition of four orthogonal
coherent states, is the smallest-order version of the cat code which is robust against single-photon losses [9].
The logical words of the cat code are parity eigenstates and therefore by periodically monitoring the parity of
the system we find whether an error has happened or not. Ofek et.al. [10] successfully implemented the
real-time parity detection of cat codes and subsequent active reset of the qubit, but they did not correct the
deterministic loss of amplitude of the cat states. Another approach is to use the binomial code [11, 12] and

© 2025 The Author(s). Published by IOP Publishing Ltd
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after parity detection use optimal control pulses synthesized by GRAPE [6] to go back to the code space. An
alternative to the above protocols corresponds to the recently introduced parity recovery by selective photon
addition (PReSPA) [13]. This is an autonomous, measurement-free error correction scheme realized by
means of number-selective continuous wave driving fields. PReSPA is implemented by driving two sets of
microwave combs, both of which have to be photon-number selective. This is a disadvantage as it restricts the
rates of all the drives. If we were to implement PReSPA in a pulsed version, both pulses would have to be long
compared to the inverse of the dispersive shift. We propose to implement the same autonomous recovery of
parity by applying a selective number-dependent arbitrary-phase photon-addition (SNAPPA) gate followed
by a fast unconditional qubit reset.

The SNAPPA gate is described by

Spa ({(9 ”14)”14»1}) Zelg|n + )|e) (m; |{g] + h.c., (1)

where |#;) are the Fock states which are affected by the transformation when the qubit is in the ground state,
{0;} are the corresponding phases they acquire, and |g) and |e) are the ground and excited states of the qubit,
respectively. We implement this gate by driving a two-photon transition of the combined qubit-cavity
system. We show that we can selectively add photons to the odd-parity subspace without affecting the even-
parity subspace. Moreover, we control the relative phases of the added photons by adjusting the phases of the
off-resonant drives. The two-photon transition |0)|g) — |1)|e) was previously implemented in order to
create entanglement between two distant transmon qubits [14]. A special case of the SNAPPA gate, where the
transitions for all Fock states |n) are driven simultaneously and 6,, = 0 for all # corresponds to the so-called
‘conventional’ single-photon addition on the bosonic mode, which was implemented in trapped ions [15].
The latter operation is not to be confused with the bosonic ladder operator at [16].

2. Methods

We implement SNAPPA in a circuit quantum electrodynamics setup comprising a long-lived microwave
cavity [17, 18], a dispersively coupled transmon qubit, and a readout resonator. We cool down the device,
which is similar to reference [4], in a dilution refrigerator with a base temperature below 10 mK. We control
the whole system with a single microwave transceiver that uses direct digital synthesis to generate microwave
pulses up to 8.5 GHz with an instantaneous bandwidth of 1 GHz [19].

The relevant part of the qubit-cavity system is described by the Hamiltonian [2]

K.
H:wcaTa 5 a?a® + w q q— quzqz aq q— TZazq]Lq (2)

where w, and w, are the resonance frequencies of the cavity and the transmon qubit, K, is the Kerr
nonlinearity of the cavity, « is the qubit anharmonicity, ¥ is the dispersive shift between the cavity and the
qubit, x/ is a photon-number-dependent correction to the dispersive shift, a' (a) is the creation
(annihilation) operator of the cavity field and similarly, and g' (g) is the raising (lowering) operator of the
qubit. The Hamiltonian parameters and the coherence properties of the system are listed in [20].

We implement SNAPPA by applying off-resonant drives to the qubit and the cavity, whose frequencies
sum up to implement the two-excitation transitions |#)|g) to [+ 1)|e) at frequencies w. +w, — (n+1)x.
We apply one qubit drive at frequency w, — A, where A is detuning between the qubit transition frequency
and the drive frequency and a frequency comb to the cavity at frequencies {w. + A — (n; + 1) x}, with one
component for each transition |n;)|g) to |n; 4+ 1)|e). Which states {#;} are addressed is chosen by applying
the appropriate frequency of the cavity frequency comb. The phase 6; that will be added to the final Fock
state |n; + 1) is determined by the relative phases of the drive at the frequency w. + A — (n; + 1) x. The level
diagram in figure 1 illustrates the SNAPPA gate Spa (612,054, 05—,6), which requires one frequency tone to
the qubit (green arrows) and three tones to the cavity (in shades of magenta arrows).

When choosing A, the condition |A — (#ax + 1) x| >> 1/7 (where 7 is the gate time) has to hold, so that
the pulses we send are not driving cavity displacements or qubit rotations directly. In our experiments we
simultaneously address up to 3 transitions with a maximum Fock number of 5. On the other hand, A should
be smaller than qubit anharmonicity |cp| to avoid driving the first-to-second-excited-state qubit transition.
A smaller A is also preferable to achieve the same effective strength with less power in the driving tones. In
principle, driving the qubit at the frequency w, 4+ A should avoid this restriction. Nevertheless, our
experimental attempts did not yield the desired results. Based on an analysis of the effective
Hamiltonian [21], we suspect the presence of a destructive interference effect arising from Stark shifts. The
pulses have to be selective depending on the Fock number in the cavity, thus we require 7 > 1/x. At the
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Figure 1. (a) Level diagram sketching the SNAPPA gate, here implemented to map the cavity odd parity subspace onto the
even-parity subspace, without compromising the even-parity states. The qubit off-resonant drive at frequency w, — A is common
for all the transitions(green arrows). In different shades of magenta arrows, the cavity off-resonant drives at frequencies

we + A — (n+ 1)y enable the transition from |n)|g) to €l |n 4 1)), for each odd 1 respectively. The phase 6, is directly related
to the relative phases of the drives w. + A — (n+ 1)x (b) Pulse sequence used to apply the SNAPPA gate. We initialize the cavity
and the qubit to | )|g), apply the SNAPPA gate, and perform direct Wigner tomography to measure the state of the cavity.

same time, 7 should be chosen as short as possible to avoid qubit dephasing and decoherence during the
operation. Based on these tradeoffs, we choose pulses with length of 7 = 4.2 s with a 100 ns sin” rise- and
fall-time for 1y, = 5, x = 1.4 MHz, and A/(27) = 30 MHz.

The off-resonant drives induce Stark shifts of both the qubit and the cavity frequencies and hence the
two-excitation transitions require a frequency correction dw,, which we include in the cavity off-resonant
drives w. + A — (n+1)x + dw,,, where dw, /(27) is of the order of a few hundred kHz and is calibrated
together with the amplitudes and phases of all the drives in the self-consistent procedure we explain in [20].

To characterize SNAPPA, we initially prepare a range of non-classical states using a sequence of three
displacements and two optimized SNAP gates [4]. After the gate, we perform direct Wigner tomography of
the cavity mode [2], where we apply a displacement of varying complex amplitude « followed by a Ramsey
measurement at a fixed time delay of 1/(2)x) = 360 ns, which returns the photon parity of the cavity mode as
the outcome of the qubit measurement. The Wigner function is obtained as

W(a) = %Tr (D' (a) pD ()11, (3)

where II is the parity operator. We reconstruct the density matrix of the target state from the Wigner
function using a recently developed neural-network-based approach [22, 23] which reconstructs the density
matrix of the state by minimizing a cost function between the reconstructed state and the measured Wigner
tomography data.

3. Results

3.1. Using SNAPPA to recover parity with controllable relative phase

For logical states with a fixed parity, single-photon loss projects the states into the orthogonal parity
subspace. Thus, we use two-excitation selective transitions to project the states back into the logical states.
The two-excitation selective transitions have to map the phase of odd Fock states (error) to their even
counterparts (computational) and excite the qubit. At the same time, they should keep the even-parity
subspace unchanged and leave the qubit in the ground state.

We evaluate these requirements by preparing (|1) + [3)) |g)/v/2 and (|2) + [4))|g)/V/2 shown in
figures 2(a) and (e), respectively. We apply the SNAPPA gate Spa (01-,2,63—4) for 65,4, =0, m,—7/2 by
applying a qubit off-resonant drive at frequency w, — A and two cavity off-resonant drives at frequencies
we + A —2x and w, + A — 4 in order to drive transitions |1)|g) — |2)]e) and |3)|g) — |4}|e)
simultaneously. We then vary the phase of the second cavity drive at frequency w, + A — 4 to vary the phase
93—)4-

Qubit population and fidelity of the cavity state are listed in table 1. Because we perform Wigner
tomography directly after applying the state preparation gates and the SNAPPA gates, the reported fidelities
suffer from different type of errors due to residual qubit population and qubit-cavity entanglement. We
measure an average excited state population of the qubit of about 5% after preparing the initial states. We
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Figure 2. Characterization of the SNAPPA gate Spa (01—2,63—4) to map odd-parity states, i.e. {|1),|3)} to even-parity states, i.e.
{|2),]4)}, while the even states are almost unaffected by the SNAPPA gate. Wigner functions of experimental versus target states
when the SNAPPA gate is applied to (a)—(d) an error initial state and (e)—(h) a computational initial state. (a) Initial state

(1) 4+ 13))|g)/V/2 and final/target states (|2) + |4)ei®—+)|e) /v/2, where 03_,4 is the phase of the cavity off-resonant drive
we+ A — 4y, given by (b) 654 = 0, (c) 354 = 7, (d) O34 = 7/2. The lower panels show that the drives have little to no

effect on the even-parity subspace. (e) Initial state (|2) + |4))|g)/+/2 and (f)—(h) identical final state (|2) + |4))|g) /v/2 for
03%4 = 0, T, —7'('/2.

also observe a reduced contrast in the Ramsey sequence used for Wigner tomography, corresponding to an
additional 3 to 4% change in qubit population, due to the SNAPPA gate. Resetting the qubit prior to the
tomography step would lead to a more accurate estimate of the fidelity. In [20], we show that any initial
population in the qubit leads to a direct misassignment of the measured photon-number parity, with the
error probability equal to the initial qubit excitation. This highlights the importance of qubit reset before
tomography to ensure an accurate reconstruction of the Wigner function, which we leave for future work.
We analyze the error budget of the SNAPPA gate by numerically simulating the transitions |1)|g
) = [2)]e) and |3)|g) — |4)|e) simultaneously, both with and without decoherence error channels.
Additionally, we simulate the system with incoherent errors only in either the qubit or cavity, respectively, to
assess the error contributions from each component. The drive parameters are numerically optimized to
maximize the fidelity of the target state. The fidelity of the simulated bosonic state is calculated by tracing out
the qubit and determining the overlap with the target state.

4



Quantum Sci. Technol. 10 (2025) 045037 M Kudra et al

Table 1. Qubit population and fidelity to target state. Fidelities marked with * are fidelities to the rotated state (|2) 4 |4)e5)|g) /v/2.

Qubit Fidelity
Figure Target state population bosonic state
2(a) 1/V2(11) +13)|g) 0.04 0.96
2(b) 1/v/2()2) +14))]e) 0.92 0.94
2(c) 1/vV2([2) + [4)€™)e) — 0.93
2(d) 1/v2(]2) + |4)e™™/?)e) — 0.94
2(e) 1/V2(12) + 14)|g) 0.06 0.93
2(f) 1/vV2(12) + [4))|g) 0.09 0.92*
2(g) 1/v2(]2) +14)g) — 0.93"
2(h) 1/V2(]2) +14))lg) — 0.92
3(a) 1/V/3(11) +13) + 15)19) 0.05 0.92
3(b) 1/v/3(12) +14) +6))le) 0.90 0.93
3(c) 1/v/3(]2) +14)€™ + [6))e) — 0.93
3(d) 1/v/3(]2) +14) + [6)e™)|e) — 0.93
3(e) 1/v/3(]2) +4)e™ 4 [6)e™) e) — 0.93
4(a) 1/v/2(]0) +[1)e™)g) 0.02 0.93
4(b) 1/v/2(]1) + [2)e™) ) 0.94 0.92
4(c) (V2//3]1) + 1//3|3))|g) 0.05 0.90
4(d) (V2//312) + 1//4|3))e) 0.91 0.96

Table 2. Simulated error budget for the transition % () +13)lg) — % (12) + |4))|e), with and without decoherence.

Qubit Fidelity
Included error population bosonic state
No error 0.98 0.97
Qubit relaxation 0.88 0.87
Cavity relaxation 0.96 0.94
Both qubit & cavity 0.87 0.85

The simulated qubit populations and cavity state fidelities are presented in table 2. The results indicate
that qubit decoherence is the dominant incoherent error. The drive parameters used in the simulation were
optimized assuming the absence of losses, which explains the larger infidelities observed here compared to
the experimental results presented in table 1.

Note that while coherent errors due to entanglement also exist, table 2 indicates that the qubit relaxation
is the dominant contribution.

Abrupt transition to the phase of the second cavity drive, we directly change the phase of the Fock state
|4) for the odd-parity initial state (figures 2(b)—(d)). The fidelity is 0.02-0.03 lower than the state preparation
fidelity. The observed reduction in fidelity following the application of SNAPPA can likely be attributed to
two factors. First, during SNAPPA drives, the injection of photons into the cavity will increase its
susceptibility to loss errors. Second, fidelity diminishes during Wigner tomography when the qubit starts in
its excited state, as it is more susceptible to decoherence.

As seen in table 1, particularly after applying the SNAPPA gate, the qubit error is larger than the cavity
error for transitions that excite the qubit due to the stronger decay rate of the qubit. As mentioned above, the
dominant source of error in SNAPPA is qubit relaxation. During the gate operation, transitions such as
(1) +13)) |g) /v/2 to (|2) + |4)) |e) /+/2, shown in table 1 2(b), are driven by tuning the drive parameters to
induce Rabi oscillations. At the point of full transition, which we set to occur at 4.2 us, a single photon is
already being injected into the cavity, and the qubit is expected to be in its excited state. If the qubit decays
during this period, the resulting incoherent errors primarily affect the qubit population rather than the
cavity photon number, leading to a higher error rate for the transmon. So the transmon is expected to
experience greater error than the cavity.

For the even-parity initial state, the outcome remains unchanged with the change of the phase
(figures 2(f)—(h)), except for the rotation of all the states by 0.53 4- 0.03 rad that is found by maximizing the
fidelity to the (1/v/2)(|2) + |4)) state. Part of the rotation, 0.25 rad, can be attributed to cavity Kerr
evolution during the two-photon drive. The remaining rotation likely results from other contributions to the
Hamiltonian, such as Stark shifts induced by the drives and drive-dependent higher-order Kerr effects. The
code words undergo a deterministic rotation under the action of the error-correcting drives, which can be
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Figure 3. Wigner functions of experimentally obtained and target states when SNAPPA gate Spa (01— 2, 03—s4,05—¢) is applied. (a)
Initial state 1/+/3(|1) 4+ |3) 4+ |5))|g) and the resulting states after one iteration of applying the drives (|2) 4 |4)ei®>—1 +|6)
€i%5—4)|e) //3, where (05_4,05—¢) is the phase of cavity off-resonant drive with frequency w, + A — 4x and w, + A — 6,
respectively, given by (b) (0,0), (c) (7,0), (d) (0,7) and (e) (7, 7).

compensated for by rotating the cavity states (or updating the reference frame of the cavity drive),
conditioned on the outcome of the qubit measurement.

3.2. Scaling SNAPPA

It is important to be able to drive more transitions without significantly impacting the fidelity of the
operation. This would allow our codewords to contain higher Fock states. Importantly, the SNAPPA gates
can be scaled by adding additional drives without a significant overhead in calibration or significant
degradation of fidelity. In [20], we present a calibration procedure that adds small overhead when adding
additional drives. We demonstrate the case of three simultaneous drives to the cavity where we have added a
drive for the transition |5)|g) — |6)|e). We prepare (|1) + |3) +(5))|g)/+/3 shown in figure 3(a). Qubit
population and fidelity after state preparation are given by 0.05 and 0.92, respectively, shown in table 1.
Applying the off-resonant drives, the qubit population becomes 0.90, meaning that the SNAPPA adds 0.05
error to the qubit population. We apply three cavity drives and one qubit drive. Now the phase of the second
cavity drive at frequency w, + A — 4 directly maps onto the phase of Fock state |4), and the phase of the
third cavity drive at frequency w, + A — 6y maps onto the phase of Fock state |6). Phases of the qubit drive
and the first cavity drive at frequency w, + A — 2 are always kept at 0 as reference. We show four states in
figures 3(b)—(d), namely (1/v/3)(|2) + |4)ei%~* + |6)e%5~¢)|e), where (63_,4,05_6) is equal to (0,0), (7,0),
(0,7) and (7, 7) respectively. The state fidelity is equal for all four states (0.93) and the error introduced by
the SNAPPA gate to the qubit state population is 0.05. This is similar to the errors introduced by the SNAPPA
gate in figure 2 that is driving one less transition.

In this work, we demonstrate SNAPPA gates involving up to three simultaneous photon transitions.
Scaling to higher photon numbers introduces technical challenges. A primary limitation is the complexity of
calibrating multi-tone control pulses, which grows with the number of tones. The calibration procedure used
in this work (for more details, see [20]) is recursive and local: we add one drive at a time and iteratively
recalibrate earlier ones, which makes it difficult to guarantee globally optimal parameters as the number of
transitions increases. To address this, more recently, some of us have developed a theoretical model [21] that
accurately captures the dynamics of SNAPPA gates, enabling more systematic and efficient optimization of
multitone drives. This model can be used in future work to streamline calibration and extend the protocol to
higher Fock states more efficiently. In addition, as the system scales, higher-order nonlinearities intrinsic to
the qubit-cavity interaction may become more prominent and must be carefully managed to maintain gate
fidelity [3, 6].

In figure 4 we demonstrate one more application of the SNAPPA gate. One can drive transitions for all
photon numbers # smaller than a maximum number to implement deterministic photon addition [15]. This
operation is a sibling to the probabilistic photon creation operator a' often referred to as ‘single-photon
addition’ in quantum optics [16]. As an example, we apply the SNAPPA gate Sps (0p—,1,01—,2) by drives
|0)|g) — |1)|e) and |1)|g) — |2)|e) on the initial state (|0) + |1)e™)|g)/v/2 shown in figure 4(a) with qubit
population 0.02 and cavity state fidelity 0.93 in table 1. Thus, the cavity state becomes (|1) + |2)e™)/v/2
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Figure 4. Wigner functions of experimental and target states. (a) Initial state (|0) 4 |1)e'™)|g)/+/2 and (b) [1) + |2)e™)|e) /v/2,
when drives [0)|g) — |1)|e) and |1)]g) — |2)|e) are applied. (c) Initial state (v/2/v/3]1) 4+ 1/4/3|3))|g) and (d) state (v/2/+/3|2)
+1/+/3]4))e), when drives |1)|g) — |2)|e) and |3)|g) — |4)|e) are applied.

(figure 4(b)), with the qubit population 0.94 and the state fidelity 0.92 (table 1). Another example is shown
in figures 4(c) and (d) for unequal superpositions of the two Fock states. Preparing the cavity in the
state(v/2/+/3) |1) + (1//3) |3) (figure 4(c)), we apply the same drives as in the case of figure 2(b) to create
(V2/V/3) |2) + (1/V/3) |4)(figure 4(d)) with qubit population 0.91 and state fidelity 0.96 (table 1).

4. Discussion

By using off-resonant drives, we have demonstrated the ability to selectively climb the Fock ladder and add
arbitrary phases to the Fock states whose number is increased. Multiple such operations can be performed
simultaneously. Similar to SNAP gates, SNAPPA gates need to be much longer than the inverse of the
dispersive shift between the qubit and the cavity (tsnappa > 1/x). However, it is likely possible to optimize
the envelope shapes of off-resonant drives in order to shorten the gate time, as demonstrated for SNAP
gates [4]. Furthermore, using the third level of the qubit, SNAP gates were made path independent [24, 25]
which could possibly be adapted to make SNAPPA gates path independent as well. It is also straightforward
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to implement a gate that selectively subtracts a photon while adding an arbitrary phase and exciting the
qubit, as in the transformation |1+ 1)|g) — el%|n)|e). To drive this transition, we need drives whose
frequencies satisfy wys — wes = wy — w, — nx. Keeping the qubit off-resonant drive the same, as in the case of
SNAPPA gates (w; — A), we should further apply # cavity off-resonant drives at frequencies w. — A 4 nx to
implement SNAP photon subtraction. These drives can be combined with SNAPPA drives to give more
functionality.

In our protocol, the SNAPPA drives are designed to selectively convert odd-parity states into even-parity
states while leaving even-parity states unaffected. Regardless of the initial state’s parity, the combined effects
of the Stark shift and Kerr nonlinearity result in a rotation of the Wigner function. For odd-parity states, we
compensate for this rotation by optimizing the phases of the SNAPPA drives, which selectively target the
odd-parity states. In contrast, for even-parity states, no compensation is done, as the SNAPPA drives are
intentionally configured to avoid interaction with these states, thereby maintaining the selective nature of our
protocol. Importantly, in the context of error correction, we have the flexibility to choose the reference phase.
This allows us to align the phase of the corrected state with the phase it would have acquired deterministically
in the absence of errors. Consequently, the error correction process ensures that the final state retains the
expected phase, effectively mitigating any unwanted phase deviations. However, this argument is valid when
considering a superposition of only two Fock states, as in figure 2, where the Kerr effect simply introduces a
global phase that can be factored out while preserving the relative phase between the states. For larger
superpositions, such as in figure 3, the Kerr effect leads to different phases on each Fock component. In the
case of odd-to-even parity transitions, SNAPPA corrects the phases on odd states caused by Kerr, since we are
actively addressing the odd-parity states. For even-parity states, however, the Kerr effect cannot be corrected
by a simple rotation of the reference frame. Instead, it could be mitigated by applying a selective SNAP gate,
as SNAP gates are specifically designed to apply phase corrections to individual Fock states.

To further improve SNAPPA, several aspects could be explored. First, improving the qubit lifetime would
significantly enhance the fidelity of the gate [11]. Second, optimizing the pulse shapes and parameters to
minimize qubit-induced errors, such as relaxation, dephasing, and leakage, could enhance the fidelity of the
gate. Third, developing techniques that decouple the qubit from the cavity more efficiently after the gate
operation could mitigate transmon-induced decoherence in subsequent steps. Additionally, implementing
an active or passive qubit reset immediately after the SNAPPA gate would prevent qubit population errors
from propagating into the Wigner tomography. More generally, alternative state-reconstruction methods
that do not rely on direct qubit involvement, such as using auxiliary qubits for indirect measurement [26,
27], could further reduce errors and are an important direction for future work.

A more precise characterization of the SNAPPA gate fidelity could, in principle, be obtained by applying
the gate multiple times to amplify errors. While such an approach is not implemented in this work, we
highlight it as a promising direction for future experiments aiming to study and benchmark gate
performance more thoroughly.

The error recovery map probably could also be realized by using gradient-based optimization protocols
such as GRAPE [5, 6, 28]. However, such black-box optimization will likely be very sensitive to system
parameter calibration (including detailed stark shifts depending on precise driveline transmittance). In
contrast, SNAPPA provides an interpretable calibration procedure.

In principle, the SNAPPA gate presented in equation (1) could be decomposed into a sequence of
displacement and SNAP gates or via full optimal control such as GRAPE. However, in this work, we focus on
the direct implementation of the exact recovery map in equation (1), using the control drives and approach
outlined in this paper and leave a detailed comparison for future work. We limit our comparison to noting,
(i) incorporating displacement gates into the unitary process likely leads to temporary population of higher
Fock states, which might make the protocol more susceptible to noise, (ii) GRAPE-based optimization might
be very sensitive to parameter calibration in contrast to our implementation of SNAPPA where the gate is
tuned up in a systematic iterative way.

In the context of quantum error correction, the SNAPPA drives can autonomously detect and correct
changes in the parity of an initial superposition of Fock states, due to single-photon loss. To complete the
error correction cycle, qubit reset must be performed. Importantly, since the reset operation in our protocol
does not need to be photon-number dependent, it can be implemented using established techniques for
unconditional reset, such as all-microwave protocols [29] or active reset via measurement and feedback [30].
These methods allow for fast and efficient reinitialization of the ancillary qubit without disturbing the cavity
state. Depending on the desired architecture, the reset can be applied either continuously, using autonomous
schemes with additional drive tones [13], or in a pulsed manner, alternating photon addition and qubit reset.
These strategies are well established and compatible with our proposed SNAPPA-based gates. More generally,
SNAPPA gates make it possible to realize a family of non-unitary operations on the cavity, assisted by the
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ancillary qubit. These operations may be useful in the context of quantum algorithms to implement block
encodings [31].
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