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Quantum information engines: Bounds on performance metrics by measurement time
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Information engines, sometimes referred to as Maxwell Demon engines, utilize information obtained through
measurement to control the conversion of energy into useful work. Discussions around such devices often
assume the measurement step to be instantaneous, assessing its cost by Landauer’s information erasure within
the measurement device. While this simplified perspective is sufficient for classical feedback-controlled engines,
for nanoengines that often operate in the quantum realm, the overall performance may be significantly affected
by the measurement duration (which may be comparable to the engine’s cycle time) and cost (energy needed to
create the system-meter correlation). In this study, we employ a generalized von Neumann measurement model to
highlight that obtaining a finite amount of information requires a finite measurement time and incurs an energetic
cost. We investigate the crucial role of these factors in determining the engine’s performance, particularly in terms
of efficiency and power output. Furthermore, for the information engine model under consideration, we establish
a precise relationship between the acquired information in the measurement process and the maximum energy
extractable through the measurement. We also discuss ways to extend our considerations using these concepts,
such as in measurement-enhanced photochemical reactions.

DOI: 10.1103/vdm1-4ryg

I. INTRODUCTION

A prominent example of energy conversion devices are
heat engines which operate between reservoirs at different
temperatures. Alternatively, a single heat bath may be used
as the energy source in feedback-controlled devices [1–8],
referred to below as information engines (IEs), in which infor-
mation about the system’s state, obtained by some “Maxwell
demon”—a general intelligent outside controller—is used to
guide the engine’s operation [9–16]. In general, the second
law in these engines is accounted for by the increase in en-
tropy during the demon’s restoration to its initial state, also
implying a minimal added operation cost—Landauer’s era-
sure work [17]. In the case of a classical Maxwell’s demon,
the measurement is ideally arbitrarily precise and system and
demon are classically correlated. In the fully quantum ver-
sion of such devices, the demon’s acquisition of information
is often described as a quantum measurement process. As
in the case of a classical meter, a quantum (von Neumann)
measurement involves an interaction between the system (S)
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being measured and a quantum meter (M), which leads to a
correlated system-meter state [18,19], so that a subsequent
observation of the meter yields information about the system.
Such quantum measurement models that were the subjects of
recent theoretical studies [20,21] pose several practical and
conceptual difficulties. First, the aforementioned studies have
demonstrated that achieving ideal quantum measurements,
which correlate the state of the meter precisely with the
state of the system, is unfeasible with finite resources (finite
energy, finite time, and finite complexity, i.e., dimension-
ality of the meter space). Consequently, real measurements
are inherently nonideal owing to the limitations of finite re-
sources and their dependence on the amounts of resources
allocation determines the efficiency and operating power of
the associated energy conversion device. Second, the state
of a quantum meter can only be determined by a quantum
measurement, leading to the well-known conundrum of a
sequence of subsequent measurements that need to be trun-
cated by some supplementary assumption to go from the
quantum to the classical “objective” state description of the
meter [22]. An alternative technique to describe real and
nonideal measurements with possible measurement errors is
to coarse grain over the meters’ degrees of freedom, leading
to positive operator-valued measures (POVM) like Kraus op-
erators that act on the system in some assumed form (see,
e.g., Refs. [23–26]). Such an approach makes it possible to
investigate important thermodynamic characteristics of infor-
mation engines (such as the aforementioned Landauer lower
bound on the unavoidable dissipation, which recent studies
have shown to be compatible with fluctuation theorems of
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stochastic thermodynamics [1,27,28]). However, in this
framework, the actual dynamics of the coupled system and
meter is not explicitly described, making it impossible to
address the time and related cost involved in acquiring infor-
mation through measurement.

The energetic and temporal aspects of measurement-driven
information engines were subjects of several recent studies
[3,6,8]. A notable experimental example involves measuring a
qubit state in a microwave cavity where the cavity acts as the
measuring entity or “demon” [3]. In this work the experimen-
tal setup is an autonomous driven process in which an internal
process (photon occupation of the cavity identified as demonic
“measure”) affects another internal process (energy extraction
by resonant-stimulated emission) making the identification of
cost and gain open to interpretation. Generally, information
gain is not instantaneous; rather, it is characterized by the
correlation established between the system and the measure-
ment apparatus, quantified by the mutual information acquired
over time and the (energy) cost of coupling and decoupling
the quantum system and the meter in order to affect their
mutual correlation. Consequently, measurement time and cost
are intrinsically linked and must be considered when evalu-
ating performance metrics such as efficiency and operational
power in cyclic IEs. This interrelation between the informa-
tion gained by quantum measurement and the measurement
time and energy cost has not been extensively explored in
the literature, although there are some significant early excep-
tions (see [8,29–32]). This paper examines this interrelation
and its consequences for performance metrics for a cyclic
operating IE.

As already alluded to above, a crucial step in the mea-
surement process is the “objectification” of the measurement
outcome [33], which describes the transition of the appara-
tus from quantum to classical behavior, thereby transforming
the measurement outcome into an objective fact that can be
verified by independent observers. The outcome of this step
provides the information that drives the IE. One might argue
that the quantum-to-classical transition is an inconsequen-
tial issue since, in practice, measurements typically involve
large measurement devices. However, as we develop smaller
measurement devices down to the nanoscale, this question
becomes increasingly important [21]. This is particularly true
if the characteristic operational time scale of the device is of
the same order as the time required to acquire information
about it. Although this paper does not solve the “measurement
problem” at the quantum-classical interface [21,22], we pro-
pose a different route that circumvents this problem: we place
the step of quantum-to-classical transition, the Heisenberg cut
[22,34], one step further away from the physical system, that
is, between a quantum meter and a classical meter. This makes
it possible to fully consider the joint evolution of the coupled
quantum system and meter to explore the role played by the
measurement duration (i.e., the time during which the system
and meter are coupled) and the energetic cost required for
information acquisition.

This paper is structured as follows. First, we outline
the general setup of an IE engine cycle in Sec. II, where
information about a working system, acquired through time-
dependent interaction with a meter, is used to extract useful

FIG. 1. General schematics of an IE model. A system (S) and a
meter (M), each coupled to their own thermal bath of temperatures TS

and TM, respectively, are entangled by an time-dependent interaction
V (t ). The state of M is projectively monitored by a classical meter
M1 accompanied by an entropy flow S between M and M1. Infor-
mation I on the state of the system, obtained by the meter, is used
to extract energy Wout from the system bath. The measurement time
and its energy cost Win are computed and used to calculate the energy
efficiency and operating power.

work. Section III details a specific implementation of the
IE using a two-level system monitored by a free quantum
particle. In Sec. IV, we examine the operation of this specific
IE implementation and evaluate its performance in power
and efficiency. Finally, Sec. V provides a conclusion for this
paper.

II. GENERAL IE MODEL

A general scheme for an IE based on a quantum von Neu-
mann measurement is shown in Fig. 1 and is characterized by
the following steps.

(i) Initialization. The system (S) and meter (M) are initially
in thermal equilibrium with their respective bath. In the energy
range of interest the system is assumed to have a discrete
energy described by the Hamiltonian ĤS = ∑

i Ei |i〉 〈i|. Its
initial state is thus represented by a density operator ρ̂S,in =∑

i pi |i〉 〈i|, with pi = exp (−βSEi )/ZS being the thermal pop-
ulation of the state of the system with the partition function
ZS = tr[exp (−βSĤS)] and βS = kBTS. In the example consid-
ered below we specify to a two-level system. The meter is in a
thermal state of its own, characterized by a temperature TM, so
that ρ̂M,in = exp (−βMĤM)/ZM with ZM = tr[exp −(βMĤM)],
where ĤM is the Hamiltonian of the meter [35].

(ii) Unitary evolution. After decoupling the system (S) and
the meter (M) from their respective baths, the measurement
process occurs by coupling S with the meter M with each
other, which is characterized by a coupling operator V̂ (t )
that is different from zero during the measurement inter-
val 0 � t � tm. This measurement is designed to determine
the energy state of the system and is therefore taken in the
form V̂ (t ) = ∑

i gi(t ) |i〉 〈i| ⊗ M̂, where |i〉 are eigenstates of
HS , M̂ is an operator in the meter subspace, and gi(t ) �= 0
during the measurement interval 0 < t < tm. The condition
[M̂, ĤM] �= 0 ensures that the states of the system and the
meter become correlated. Given the instantaneous switching
on at t = 0+ and switching off at t = t−

m of the system-meter
interaction, the change of energy can be associated to the cost
of this switching process, the measurement cost (see detailed

032201-2
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discussion in Appendix D),

Wmeas(tm) ≡ tr[(ρ̂(tm) − ρ̂(0)){ĤS + ĤM}]
= tr[(ρ̂(tm) − ρ̂(0))ĤM], (1)

while the last line in Eq. (1) holds since [ĤS, Ĥ (t )] =
0, i.e., the energy invested in the measurement ends up
in the meter. In Eq. (1) we have the joint density ma-
trix of the system-meter evolution ρ̂(t ) = Û (t )[ρ̂S,in ⊗ ρ̂M,in]
Û †(t ) with Û (t ) = T exp {− i

h̄

∫ t
0 dt ′Ĥ (t ′)}, where T is the

time-ordering operator and Ĥ (t ) = ĤS + ĤM + V̂ (t ), while
ρ̂(0) = ρ̂S,in ⊗ ρ̂M,in.

(iii) Projective measurement and information gain. Af-
ter time tm, systems S and M become decoupled from each
other. The state |m〉 (an eigenstate of ĤM) of the meter is
then determined by an associated projective measurement
by a classical meter M1 that yields the reduced state af-
ter measuring P̂(m, tm) ≡ 〈m|ρ̂(tm)|m〉, ρ̂(tm) being the joint
system-meter density operator [36]. The result of this mea-
surement provides the necessary information used to drive the
IE. Since M and M1 are classically correlated, this correlation
incurs no cost beyond the classical Landauer cost associated
with information theory, given by WL = TM1S, where TM1 is
the temperature of meter M1 and S is the entropy flow between
M and M1 [17]. In our analysis, we assume that the classical
readout reservoir has a temperature of zero, TM1 = 0, allowing
us to disregard the Landauer erasure work. Given that the
temperature of the classical meter can be chosen somewhat
arbitrarily, setting TM1 = 0 is a justifiable approach to explore
potential maximal energy conversion processes in feedback-
controlled processes through measurement, as discussed in
[5,37]. Shifting the projective measurement or Heisenberg
cut—the interface between quantum events and a classical ob-
server’s information [38]—one step further from the physical
system [20,22,39] allows one to perform a separate analysis of
the entangling evolution of the coupled system and meter, the
duration of the measurement (i.e., the time during which the
system and meter are coupled), and its actual energetic cost
Win = Wmeas + WL. With the reasoning as discussed above, we
take WL = 0, such that Win ≡ Wmeas.

(iv) Work extraction. The acquired knowledge about the
system is utilized to convert thermal energy (at the system
temperature TS) into useful work. We will discuss different
models for estimating the extracted work in the next section.

(v) Restoration. The IE cycle concludes by returning both
the system and the meter to their initial states, achieved by
coupling them to their respective thermal baths and resetting
the classical meter.

The ratio of the net work extracted (work extraction mi-
nus measurement energy cost) to the energy invested along
the working cycle determines the device’s efficiency, while
the net work extracted per cycle time represents its power.
Note that the measurement time, tm, serves as a lower
bound for the cycle time, which means that this calculation
will provide an upper bound on the operational power. In
Sec. IV, we explore these quantities within a specific device
model.

The IE cycle described above is general and specific IE
models will differ by their realization of the system and
meter and the associated input and output energies. One

such specific example is described and analyzed in the next
Sec. III.

III. TWO-LEVEL SYSTEM MONITORED
BY FREE-PARTICLE METER

The working entity S (Fig. 1) is taken to be a two-level
system (TLS) with energy levels E0 = 0 and E1 = �E > 0
for the lower (|0〉) and upper state (|1〉), respectively. This
system is monitored by coupling it to a meter M modeled as an
otherwise free particle. The IE operation cycle starts with the
system and meter at thermal equilibrium with their respective
baths, but during the measurement (while mutually interacting
and when the meter state is determined to acquire information
about the system) they are assumed to be decoupled from
these baths. The Hamiltonian of this combined TLS-M sys-
tem reads Ĥ = �E |1〉 〈1| + p̂2

2 + V̂ (t ), where p̂ is the mass
weighted momentum operator of the meter and V̂ (t ) is the
system-meter interaction. In the present analysis we assume a
sudden switch on and off of the interaction to a constant value
g and take it to be

V̂ (t ) = gD(t ) · x̂ ⊗ |1〉 〈1| = D(t )V̂ , (2)

where x̂ is the meter position operator and D(t ) = 1 for 0 �
t � tm, while D(t ) = 0 otherwise. This form implies that dur-
ing the measurement interval the meter responds to the system
only if the latter is in state 1 and that its response is expressed
by a momentum shift (an often used model [40] which is
potentially realizable in practice [41]). The detailed IE engine
cycle along the steps described in the previous Sec. II are as
follows.

(i) Initialization. The initial density matrix of system and
meter is defined as

ρ̂(t = 0) = ρ̂S(t = 0) ⊗ ρ̂M(t = 0), (3)

with

ρ̂S(t = 0) = a |0〉 〈0| + b |1〉 〈1| (4)

and

ρ̂M(t = 0) =
(

1

2π h̄2kBTM

)1/2 ∫
d p̃ e−p̃2/2kBTM | p̃〉 〈p̃| ,

(5)

with the eigenstates | p̃〉 of the momentum operator of the
meter.

In Eq. (4) a and b are real positive numbers satisfying
TS = �E/kB[ln(a/b)]−1 and a + b = 1. Similarly, Eq. (5)
represents the meter at thermal equilibrium at temperature TM,
written in the momentum representation.

(ii) Unitary evolution. Uncoupled from their respective
thermal baths, the system and meter evolve under the Hamil-
tonian Ĥ during the time interval (0, tm), leading to an
entangled state described by the density matrix ρ̂(tm) =
e−iT

∫ tm
0 dt ′Ĥ (t ′ )/h̄ρ̂(0)eiT

∫ tm
0 dt ′Ĥ (t ′ )/h̄. The energy needed to

create the system-meter entanglement, see Eq. (1) and the
detailed derivation in Appendix D, is given by

Wmeas(tm) ≡ tr[ρ̂(0)V̂ ] − tr[ρ̂(tm)V̂ ] = bgt2
m

2
, (6)
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where tr[. . . ] ≡ ∫
d p

∑
i=0,1 〈p| 〈i| . . . |i〉 |p〉. Equation (6)

follows from Eq. (1) by using the fact that the switching is
instantaneous to a constant value. For our choice of initial
states and system-meter interaction tr[ρ̂(0)V̂ ] = 0, namely
switching on the interaction costs no energy.

(iii) Projective measurement and information gain. Follow-
ing the unitary evolution, the state of the meter is projectively
determined in the basis of eigenstates of the momentum
operator. Note that, technically, projecting a meter onto a
continuous variable requires infinite energy. However, it is
assumed that this process is instantaneously registered by the
classical meter M1, which is considered to have "infinite"
resources [21]. As discussed above, we assume that this step
does not incur an additional energy cost. The conditional
probability of the TLS to be in state i = 0, 1 given the meter
outcome p is thus determined by

Pi(tm|p) = 〈i| 〈p|ρ̂(tm)|p〉 |i〉
Q(p, tm)

= Pi(p, tm)

Q(p, tm)
, (7)

where Q(p, tm) = ∑1
i=0 Pi(p, tm), while for our IE model (see

Appendix A),

P0(p, t ) =
√

1

2πkBTM
a e− p2

2kBTM , (8)

P1(p, t ) =
√

1

2πkBTM
b e− (p+gt )2

2kBTM . (9)

Next, we define the conditional density matrix P̂(tm|p) to
be in state i = 0, 1 given the meter outcome p, which reads

P̂(tm|p) = P0(tm|p) |0〉 〈0| + P1(tm|p) |1〉 〈1| . (10)

The information gain, I (tm), in this measurement process
can be quantified by averaging the conditional system entropy
S(tm|p) = −kB

∑1
i=0 Pi(tm|p) ln Pi(tm|p) over an ensemble of

identical measurements by

S(tm) =
∫

d p Q(p, tm)S(tm|p)

= −kB

∫ ∞

−∞
d p

1∑
i=0

Pi(p, tm) ln Pi(tm|p) (11)

leading to [42,43]

I (tm) ≡ S(0) − S(tm), (12)

which is equal to the mutual information expression associ-
ated with the measurement process; see Appendix C.

(iv) Work extraction. Given the measurement result p, the
state of the working system is given by Eq. (10). Consider first
the ergotropy of this state, namely the maximum work that can
be extracted from it under a unitary transformation [44]

Werg(tm|p) ≡ trS[P̂(tm|p)ĤS] − min
Û

trS[Û P̂(tm|p)Û †ĤS]

= �E (P1(tm|p) − P0(tm|p))�(P1(tm|p)

− P0(tm|p)), (13)

where �(x) is the Heaviside function �(x) = 1 for x > 0 and
�(x) = 0 otherwise.

Although this work (13) is defined as an abstract concept,
it is of interest to demonstrate a potentially practical imple-
mentation of extracting this energy: A π pulse can be used to
interconvert between the molecular ground and excited states
with probability 1. To obtain a net gain from applying such
a pulse, the molecular population needs to be inverted. We
define p′

P0(tm|p′) = P1(tm|p′) = 0.5, (14)

where we note that Werg(p � p′) = 0. This implies that send-
ing a π -pulse photon onto the system results in net loss if
p > p′ and net gain if p < p′. This gain through state-
inversion �E [P1(tm|p) − P0(tm|p)] is equal to the ergotropy.
Averaging over the measurement results leads to

Werg(tm) = �E
∫ p′

−∞
d p Q(p, tm)[P1(tm|p) − P0(tm|p)]. (15)

Note that using Eq. (15) as a quantifier for the measurement
enhanced gain is based on the assumption that preparing the
π pulse costs only the energy embedded in the pulse itself and
spontaneously emitted photons do not contribute to the gain.

We emphasize that, while the general definition of er-
gotropy does not explicitly consider the time needed to
execute the optimal unitary transformation, the demonstration
that this optimal extraction can only be done with a photon π

pulse indicated that this part of the IE cycle can be carried out
on a timescale of order h̄/�E (10−12–10−15 s in molecular
systems).

(v) Restoration. Following the measurement-driven extrac-
tion of useful energy, the engine cycle is closed by restoring
the TLS and meter to their initial thermal states. The tempera-
ture of the final state of the system is given by (see discussion
Appendix E)

Tp(p, tm) = �E

kB

(
ln

[
P1(tm|p)

P0(tm|p)

])−1

�(P1(tm|p) − P0(tm|p))

+ �E

kB

(
ln

[
P0(tm|p)

P1(tm|p)

])−1

× �(P0(tm|p) − P1(tm|p)). (16)

The final state of the system at the end of the IE cycle is
in thermal equilibrium with the bath TS. A common scenario
is to achieve this by spontaneous thermal equilibration (which
may be fast as ∼10−12 s for molecular-scale engines) without
further gain of useful work. It is interesting, however, to con-
sider also the maximum additional work that can be extracted
on the way to full thermal relaxation by an adiabatically slow
Carnot process. This additional gain, obtained when a TLS at
the initial temperature Tp comes to a final equilibrium with a
bath at temperature TS can be obtained by using incremental
Carnot steps in which a high-temperature bath releases an
amount of heat dQ on the way to equilibration with a low
temperature bath. The maximal part of this heat that can be
converted to work is

dW = dQ
(

1 − Tlow

Thigh

)
. (17)
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FIG. 2. (a) Conditional probability Pi=0;1(tm|p) that a TLS is in state 0 or 1 given that the meter outcome is p. The TLS is initially in
thermal equilibrium at temperature TS. The parameters used are TS = 300 K, �E = kBTS and the initial meter state is given by Eq. (5) with
TM = 300 K. The horizontal red and green lines represent the conditional probability P0(0|p) = a and P1(0|p) = b, respectively. The red and
green dotted lines are the conditional probabilities to be in state 1 and 0 for gtm/

√
kB� = 10, where kB� = 1 meV. (b) The information

gain I (tm ) (solid lines, left axis) and the measurement energy cost Wmeas(tm ) (dotted lines, right axis) plotted against measurement time tm for
different choices of �E/kBTS with TS = 300 K and TM = 300 K.

At each incremental step, the change in the TLS tempera-
ture can be calculated from its known heat capacity

C(T ) = kBβ2 d2 ln ZS

dβ2
= �E2

kBT 2

e− �E
kBT[

1 + e− �E
kBT

]2
, (18)

where ZS = 1 + exp (−β�E ) is the partition function of the
TLS of specific temperature T = k−1

B β−1.
Integrating along the relaxation path and averaging over

measurement results leads to (see Appendix E)

Wth =
∫ ∞

−∞
d p Q(p, tm)

∫ TS

Tp(p,tm )
dT C(T )

(
TS

T
− 1

)
, (19)

valid for both Tp > TS and Tp < TS. The fact that work is
generated in both cases just reflects the fact that a Carnot
engine generates work irrespective of which bath is hotter.
The source of the work is the heat released by the hotter bath.
Note that while this extra work can be taken into account
in the evaluation of the engine efficiency it is not relevant
in consideration of power (given the underlying adiabatically
slow Carnot process).

For the meter, any extra energy spent on switching on
and off the system-meter connection (5) will be dissipated
into the meter reservoir, denoted as QM ≡ Wmeas. While one
could theoretically devise a process to recycle this energy back
as work, in the subsequent analysis, we will disregard this
possibility.

In quantum IE based on molecular systems, work extrac-
tion (e.g., by using a π pulse as described above) and thermal
relaxation can take place on timescales faster or comparable to
the time interval between the coupling and decoupling of the
system and the measurement apparatus. Thus the latter can
emerge as the predominant timescale for the cyclic process.
Implications on performance metrics of such engines will be
discussed in Sec. IV.

IV. OPERATION AND PERFORMANCE

In this section we show, for the IE model described in
Sec. III, some examples for how the IE characteristic pa-
rameters affect the engine operation and its performance. In
particular, we examine the way gaining information is mani-
fested in the resulting performance characteristics.

A. Information gain and energetic cost

Figure 2(a) illustrates the conditional probability
Pi=0;1(tm|p) to be in the ground or excited state given the meter
outcome p. Obviously, Pi=0;1(tm = 0|p) = a, b is independent
of p. For tm > 0, the evolution of these probabilities may be
written as a → a − δ and b → b + δ, where, if g is chosen
positive, δ > 0 if the meter outcome is negative (p < 0) and
δ < 0 when p > 0, indicating a higher or lower likelihood that
the TLS is in the excited state, respectively. The information
gain I (tm) [Eq. (12)] and measurement cost Wmeas(t ) [Eq. (6)]
are depicted in Fig. 2(b) as a function of tm for different initial
TLS states defined by b/a = exp[− �E

kBTS
]. Three observations

are notable.
(i) The information gain is a monotonously increasing

function of tm that approaches its maximal value which
is the entropy of the initial state, −kB(a ln a + b ln b), as
tm → ∞ (see Appendix C). This stands in contrast to the
model of Ref. [8] where, because of the discrete nature of
the meter (another two state system), the dependence on
tm reflects the intrinsic Rabi oscillation in the system-meter
dynamics.

(ii) The rate of information gain, given by the slope
dI (tm)/dtm of I (tm) in Fig. 2(b), is maximal near tm =
b
√

〈δp(t=0)〉2

|d〈p〉/dt |t=0
=

√
2kBTM

g , where |d〈p〉/dt |t=0 is the change rate
of the expectation value of the momentum of the meter im-
mediately after switching on the interaction between system
and meter (see Appendices A and B). This characteristic time
is determined by the width of the initial meter wave packet,
∼kBTM, and the system-meter coupling, g.
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FIG. 3. TSI [Eq. (12)], Werg + Wth [Eqs. (15)+(19)], Werg

[Eq. (15)], and Wth [Eq. (19)] plotted against the measurement time
tm with TS = 300 K, �E = kBTS, kB� = 1 meV, and TM = 300 K.

(iii) As measurement time tm increases the information
gain I approaches its maximal value. However, in the model
considered, the measurement energy cost Wmeas = bgt2

m/2
[Eq. (6)] increases indefinitely [see dotted lines in Fig. 2(b)]
resulting in a decreasing trend of the information gain to
energy ratio. These observations lead to the conclusion that
tm must be finite and constitute a lower bound for the cycle
time of the IE as without information no work can be extracted
from the system.

B. Work extraction

As seen above, consideration of the maximum work that
can be extracted may include the maximum work that can be
extracted in the final thermalization of both system and meter.
In most practical engines this is not done. For example, we do
not usually include the work that can be extracted for a hot
car exhaust in evaluating its motor efficiency. We find that it
is of interest to consider this contribution for the system as
discussed below.

Figure 3 shows two components of the measurement
provided gain as discussed in Sec. III: the ergotropy Werg,
Eq. (15), and the maximum work achievable in the subsequent
thermalization, Wth, Eq. (19), as well as their sum, Wtot =
Werg + Wth, evaluated for different values of temperature and
plotted against the measurement time tm. The extracted work
is seen to increase with measurement time and reach a
plateau as tm → ∞. Two observations are significant. First,
Werg(tm → ∞) = b�E = exp [−�E/kBTS]

1+exp [−�E/kBTS]�E . Second, the to-
tal work that can be extracted from the system (TS) thermal
bath using the information provided by the measurement is
determined by this information according to (see derivation in
Appendix F)

Wtot (tm) = Werg(tm) + Wth(tm) = TSI (tm), (20)

where I (tm) is given by Eq. (12). We note that the second law
of thermodynamics sets the product TSI as an upper bound on
the energy that can be extracted in measurement-controlled
engines [1,45]. Here we find this relation as an equality, pro-
vided that the maximum thermalization work is included in
the extracted work.

To further examine the relationship, we define the ra-
tio between the measurement determined ergotropy and the
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ΔE/kBTS = 4, TM = TS
ΔE/kBTS = 1, TM = TS

ΔE/kBTS = 1, TM = 0.02T S

FIG. 4. Ratio Y , Eq. (21), plotted against the measurement time
tm with TS = 300 K and kB� = 1 meV.

maximum given by Eq. (20)

Y (tm) ≡ Werg(tm)

TSI (tm)
. (21)

This ratio is plotted against tm for various system temperatures
in Fig. 4. It is seen to increase with measurement time before
reaching a plateau, as more energy can be extracted per gained
information. The initial rate of gain in Y increases with the
accuracy of the meter as expressed by its equilibrium temper-
ature [the measurement is more accurate when the Gaussian
peak in Eq. (5) is narrower, namely when the meter is cooler].
The small maximum in Y seen for some system parameters
(green and blue lines in Fig. 4) indicates the possibility of
optimal performance in terms of work extraction per infor-
mation gained. In all scenarios, Y goes to zero when tm → 0,
highlighting the fact that a finite measurement time is needed
for the extraction of work assisted by measurement.

C. Efficiency and power output

We define the efficiency of work extraction for information
engines (IEs) following [5,6] by

η(tm) = Wout (tm) − Wmeas(tm)

QS(tm) + Wmeas(tm)
. (22)

Here, Wmeas (see Fig. 1) is the measurement cost, Eq. (6),
while Wout is the useful energy gained during the cycle. In
the result for engine efficiency displayed in Fig. 6 we take
it as either Werg [Eq. (15)] or Wtot [Eq. (20)]. Note that
QS(tm) represents the average heat per cycle extracted from
the system’s thermal bath to restore the two-level system to
its thermal state after work (photon) extraction. This average
heat is equivalent to the average work extracted per cycle,

-0.02

0

 0.02

 0.04

 0.06

 0.08

 0.1

0 1 2 3 4 5 6 7 8

(Π
)/

gk
B
T

S

gtm /√⎯k⎯B⎯Θ

√⎯k⎯
B⎯Θ

TM = 0.02TS
TM = 0.1TS
TM = 0.2TS

FIG. 5. Upper bound on the output power 	(tm ), Eq. (23), shown
as a function of the system-meter interaction time, tm, for different
values of the meter temperature. The other parameters are the same
as those used in Fig. 2(a).
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FIG. 6. Efficiency ηerg by using ergotropy, Eq. (15), for
Wout (tm ) = QS(tm ) = Werg(tm ) in Eq. (22), and ηmax by using the up-
per bound on the extracted work, Eq. (20), for Wout (tm ) = QS(tm ) =
TSI (tm ) in Eq. (22), shown as functions of the system-meter inter-
action time tm for different values of the meter temperature. The
parameters used are TS = 300 K, kB� = 1 meV, and �E = kBTS.

denoted as QS(tm) ≡ Wout(tm). For the consideration of power
Wtot is irrelevant as discussed in Sec. III (although one may
envision scenarios in which part of the thermalization work
can be extracted on relevant timescales and hence modify the
power) and only Wout = Werg is considered in finding bounds
on the engine power (denoted 	):

	(tm) � Werg(tm) − Wmeas(tm)

tm
. (23)

Equation (23) is written as an inequality because the cy-
cle time (sum of times associated with measurement, work
extraction, and restoration) is larger than tm. Above we ar-
gued that the measurement time can be as short as h̄/�E
(10−12–10−15 s in molecular systems). Restoration (thermal
relaxation) may be also short (∼10−12 s in condensed molec-
ular systems), so that the bound provided by Eq. (23) may give
a useful estimate as upper bound.

Figures 5 and 6 illustrate, respectively, the power output,
	(tm), and the efficiency, η(tm), as functions of the measure-
ment time, tm. Several observations can be made.

(i) To achieve a positive power output, the work output
Wout must exceed the measurement cost Wmeas. Specifically,
a lower meter temperature increases the extracted power. A
reduced meter temperature narrows the initial meter distribu-
tion [as described in Eq. (5)], enabling more information to be
obtained about the system state to facilitate work extraction.

(ii) The power increases from zero, reaching a peak at
intermediate measurement times before declining. This key
characteristic highlights once again that information cannot be
instantly acquired (even at low meter temperatures) to extract
net work.

(iii) In the IE model analyzed, where the system-meter
interaction remains constant until cutoff at time tm, the satura-
tion in information gain over time [see Fig. 2(b)] and the rising
energy cost result in negative power output as tm approaches
infinity.

(iv) Both power and efficiency indicate better IE per-
formance at lower meter temperature, in accordance with
expectations for higher quality measurement obtained using a
better defined meter state, i.e., a narrower width of the initial
meter distribution, Eq. (5).

(v) The efficiency (Fig. 6) peaks at intermediate measure-
ment times, necessary for the IE operation to gain information.

(vi) In Fig. 6 we also show the efficiencies associated with
the total work that include in addition to the ergotropy also the
Carnot thermalization work. Recall that they they both add up
to TSI , as shown in Eq. (20). This provides an upper bound on
the efficiency associated with our IE model.

As performance indicators, efficiency η and power 	

typically offer complementary perspectives on machine op-
erations. In conventional heat engines, maximum efficiency
occurs at zero power. This behavior is also observed for the
efficiency using the theoretical maximum extractable work
Wout = Wtot in Eq. (22) whose maximal value is at tm = 0
(black and blue lines in Fig. 6) where the power is zero
(Fig. 5). Nonetheless, in realistic work extraction scenarios,
despite smaller magnitudes, there are operation times where
both efficiency and power peak simultaneously.

V. CONCLUSIONS

We have analyzed the operation of a quantum information
engine that transforms heat into useful work by exploiting
quantum measurement. For energy conversion devices op-
erating at the nanoscale, the time and energy cost of the
observations needed for feedback control become important
aspects of the engine’s performance and must be considered.
Specifically, we have examined the role of measurement time
(during which the system and meter are coupled) and the cost
(work needed to couple and decouple the system and meter)
when acquiring the information used to extract useful work.

Because the details of the information engine’s charac-
teristics depend on the information acquisition process used,
the measurement time sets a lower bound for the operation
time. This time, together with the measurement energy cost,
is crucial for estimating standard performance metrics such as
engine efficiency and power.

In a specific example of an information engine, we have
explored the role of ergotropy in providing an estimate of the
measurement-enhanced extracted energy and have described
a potentially practical route for extracting this work. Addi-
tionally, we found that the total extractable work associated
with the measurement process, including the maximal work
obtainable during the subsequent restoration of the system
to its initial thermal state, is equal to the mutual information
between the system and the meter multiplied by the system’s
temperature. This consideration makes it possible to optimize
the trade-off between engine power and efficiency.

It is interesting to note that a simple variant of our model
can be used as a setup for a measurement-enhanced photo-
chemical process. In this variant, a and b = 1 − a are the
thermal probabilities for a molecule to be in the ground and
a (reactive) excited state and p′ is chosen to ensure that the
ground-state population is larger than the equilibrium popula-
tion a. If a photon is sent only when the probability exceeds
p′, the photochemical yield per incident photon will be greater
than the yield when photons are used indiscriminately.

Moving forward, it will be important to investigate other
information engine models with different working and mea-
surement protocols, especially in terms of studying the impact
of measurement accuracy. More crucially, we must address
fundamental issues concerning the finite-time operation of
information-enhanced processes, such as the following. What
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is the maximum amount of information that can be extracted
by observing a system during a given time period? Given
a measurement-determined state or distribution of a system,
what is the maximum amount of work that can be extracted
from this system in a given time interval? These and similar
questions will be the subject of future research.
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APPENDIX A: DYNAMICS OF SYSTEM AND METER

In this appendix, the dynamics of the coupled system meter are investigated before calculating the expectation value of
the meter state in Appendix B. The mutual information between system and meter is analyzed in Appendix C. Appendix D
examines the energy change of the meter and the measurement energy required for the measurement protocol and the possible
energy extraction after the measurement. Appendix E presents the detailed derivation of work extraction during rethermalization.
Finally, Appendix F demonstrates that the total work extraction during the cycle can be written by the ergotropy plus work
extraction during rethermalization. We use an iterative numerical scheme to determine unitary time evolution of the density
matrix for the coupled 2SS and meter given under the total Hamiltonian Ĥ given the initial density matrix [Eq. ((4) in the main
text where we define ρ̂M ≡ |
〉 〈
| with 〈p|
〉 = 
(p) = 1

(2πkBTM )1/4 exp [p2/4kBTM] by

ρ̂(t ) = e−iĤt/h̄ρ̂(0)eiĤt/h̄

= a
(
e−iĤ0�t/h̄e−i p̂2

2 �t/h̄e−iV̂ �t/h̄
)N |0〉 〈0| ⊗ |
〉 〈
| (eiĤ0�t/h̄ei p̂2

2 �t/h̄eiV̂ �t/h̄
)N

+ b
(
e−iĤ0�t/h̄e−i p̂2

2 �t/h̄e−iV̂ �t/h̄
)N |1〉 〈1| ⊗ |
〉 〈
| (eiĤ0�t/h̄ei p̂2

2 �t/h̄eiV̂ �t/h̄
)N

, (A1)

while using the Trotter splitting ei(Ĥ0+ p̂2

2 +V̂ )t/h̄ = (eiĤ0�t/h̄ei p̂2

2 �t/h̄eiV̂ �t/h̄)
N

with �t = t/N for N → ∞.
The joint probability Pi(p, t ) can be solved analytically using the Trotter splitting in Eq. (A2), which results to

Pi(p, t ) =
∑

i

〈i| 〈p| ρ̂(t ) |p〉 |i〉 =
∑

i

〈i| 〈p| e−iĤt/h̄ρ̂(0)eiĤt/h̄ |p〉 |i〉 (A2)

= a 〈
| 〈0| (eiĤ0�t/h̄ei p̂2

2 �t/h̄eiV̂ �t/h̄
)N |0〉 〈0| ⊗ |p〉 〈p| (e−iĤ0�t/h̄e−i p̂2

2 �t/h̄e−iV̂ �t/h̄
)N |0〉 |
〉

+ b 〈
| 〈1| (eiĤ0�t/h̄ei p̂2

2 �t/h̄eiV̂ �t/h̄
)N |1〉 〈1| ⊗ |p〉 〈p| (e−iĤ0�t/h̄e−i p̂2

2 �t/h̄e−iV̂ �t/h̄
)N |1〉 |
〉

= a| 〈p|
〉 |2 + b
∫

ds
∫

dm
∫

ds′
∫

dm′
∫

dx 〈
|s〉 ei s2

2 �t/h̄ 〈s|x〉 eigx�t/h̄ 〈x|m〉 (A3)

〈m| (ei p̂2

2 �t/h̄eigx̂�t/h̄
)N−1 |p〉 〈p| (e−i p̂2

2 �t/h̄e−igx̂�t/h̄
)N−1 |m′〉 〈m′| e−i p̂2

2 �t/h̄ |s′〉 〈s′| e−igx̂�t/h̄ |
〉
= a| 〈p|
〉 |2 + b 〈
|p + gN�t〉 	N

k=1[ei(p+gk�t )2�t/2h̄]	N
k=1[e−i(p+gk�t )2�t/2h̄] 〈p + gN�t |
〉

= a|
(p)|2 + b|
(p + gN�t )|2 = a|
(p)|2 + b|
(p + gt )|2, (A4)

where we have exploited the completeness relation for the momentum eigenstates
∫

dm |m〉 〈m| = ∫
dm′ |m′〉 〈m′| =∫

ds |s〉 〈s| = ∫
ds′ |s′〉 〈s′| = I and for the position eigenstates

∫
dx |x〉 〈x| = I in line (A3). Using the relation 〈x|m〉 =

eimxt/h̄/
√

2π and the identity
∫

dx ei(q−a)x/h̄ = 2πδ(q − a), one arrives iteratively to the expression in line (A4).

APPENDIX B: AVERAGE METER STATE

The expectation value of the meter outcome 〈p(tm)〉 after the measurement of duration tm, while using the Trotter splitting

ei(Ĥ0+ p̂2

2 +V̂ )tm/h̄ = (eiĤ0�t/h̄ei p̂2

2 �t/h̄eiV̂ �t/h̄)
N

with �t = tm/N for N → ∞, reads

〈p(tm)〉 = tr[ρ̂(tm) p̂]

= a 〈
| 〈0| (eiĤ0�t/h̄ei p̂2

2 �t/h̄eiV̂ �t/h̄
)N

p̂
(
e−iĤ0�t/h̄e−i p̂2

2 �t/h̄e−iV̂ �t/h̄
)N |0〉 |
〉

+ b 〈
| 〈1| (eiĤ0�t/h̄ei p̂2

2 �t/h̄eiV̂ �t/h̄
)N

p̂
(
e−iĤ0�t/h̄e−i p̂2

2 �t/h̄e−iV̂ �t/h̄
)N |1〉 |
〉
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= bg
∫ ∞

−∞
d p
(p + gN�t )	N

k=1[ei(p+gk�t )2�t/2h̄]p	N
k=1[e−i(p+gk�t )2�t/2h̄]
(p + gN�t )

= bg

(
1

2πkBTM

)1/2 ∫ ∞

−∞
d p e−(p+gtm )2/2kBTM p = −bgtm. (B1)

APPENDIX C: MUTUAL INFORMATION

The information gain, I (tm), Eq. (12), in the main text, in this measurement process can be quantified by averaging the
conditional system entropy S(tm|p) = −kB

∑1
i=0 Pi(tm|p) ln Pi(tm|p) over an ensemble of identical measurements by

S(tm) =
∫

d p Q(p, tm)S(tm|p)

= −kB

∫ ∞

−∞
d p

1∑
i=0

Pi(p, tm) ln Pi(tm|p) (C1)

leading to

I (tm) ≡ S(0) − S(tm) (C2)

= −kB

∫ ∞

−∞
d p

1∑
i=0

Pi(p, 0) ln Pi(0|p) + kB

∫ ∞

−∞
d p

1∑
i=0

Pi(p, tm) ln Pi(tm|p), (C3)

= −kB

∫ ∞

−∞
d p

1∑
i=0

Pi(p, tm) ln Pi(0|p) + kB

∫ ∞

−∞
d p

1∑
i=0

Pi(p, tm) ln
Pi(p, tm)

Q(p, tm)
, (C4)

= kB

∫ ∞

−∞
d p

1∑
i=0

Pi(p, tm) ln
Pi(p, tm)

Q(p, tm)Pi(0|p)
= kB

∫ ∞

−∞
d p

1∑
i=0

Pi(p, tm) ln
Pi(p, tm)∑

i[Pi(p, tm)]
∫

d p Pi(p, tm)
� 0. (C5)

In Eq. (C4) we have used the fact that Pi(0|p) is independent of p and gives P0(0|p) = a = ∫
d p P0(p, tm) and P1(0|p) = b =∫

d p P1(p, tm), which is equal to the marginal probabilities by tracing out the meter. Equation (C5) is the mutual information
expression associated with the measurement process. The second term in Eq. (C4) reads

S(tm) = −kB

∫ ∞

−∞
d p

1∑
i=0

Pi(p, tm) ln
Pi(p, tm)

Q(p, tm)

= −kB

∫ ∞

−∞
d p

√
1

2πkBTM
ae− p2

2kBTM ln
ae− p2

2kBTM

ae− p2

2kBTM + be− (p+gtm )2

2kBTM

− kB

∫ ∞

−∞
d p

√
1

2πkBTM
be− (p+gtm )2

2kBTM ln
be− (p+gtm )2

2kBTM

ae− p2

2kBTM + be− (p+gtm )2

2kBTM

,

(C6)

which in the limit tm → ∞ can be written as

S(tm → ∞) = −kB

∫ ∞

−∞
d p

√
1

2πkBTM
ae− p2

2kBTM ln
ae− p2

2kBTM

ae− p2

2kBTM

− kB

∫ ∞

−∞
d p

√
1

2πkBTM
be− (p+gtm )2

2kBTM ln
be− (p+gtm )2

2kBTM

be− (p+gtm )2

2kBTM

= 0, (C7)

so that the second term S(tm → ∞) → 0 in Eq. (C4) vanishes and I (tm → ∞) = −kB(a ln a + b ln b).

APPENDIX D: ENERGY INVEST FOR MEASUREMENT

As discussed in the main text the total Hamiltonian for the system, meter, and their time-dependent coupling reads

Ĥ (t ) = ĤS + ĤM + V̂ (t ), (D1)

with

V̂ (t ) = gD(t ) · x̂ ⊗ |1〉 〈1| = D(t )V̂ , (D2)

032201-9



HENNING KIRCHBERG AND ABRAHAM NITZAN PHYSICAL REVIEW A 112, 032201 (2025)

while D(t ) �= 0 during the measurement interval 0 < t < tm. The energy invest for the measurement is determined by the total
change of energy during the measurement interval while Ĥ (0) = Ĥ (tm) = ĤS + ĤM and reads

Wmeas(tm) ≡
∫ tM

0
dt

d

dt
〈Ĥ (t )〉 =

∫ tm

0
dt

d

dt
tr[Ĥ (t )ρ̂(t )] = tr[Ĥ (tm)ρ̂(tm)] − tr[Ĥ (0)ρ̂(0)]

= tr[[ĤS + ĤM](ρ̂(tm) − ρ̂(0))] = tr[ĤM(ρ̂(tm) − ρ̂(0))], (D3)

where ρ̂(t ) = Û (t )ρ̂(0)Û †(t ) with Û (t ) = exp {−i/h̄T
∫ t

0 dt ′Ĥ (t ′)}, where T is the time-ordering operator while ρ̂(0) = ρ̂S,in ⊗
ρ̂M,in. Furthermore, the last equality in Eq. (D3) holds since [ĤS, ˆH (t )] = 0. Equation (D3) can be alternatively written as

Wmeas(tm) =
∫ tM

0
dt[tr[ ˙̂H (t )ρ̂(t )] + tr[Ĥ (t ) ˙̂ρ(t )]] =

∫ tm

0
dt tr[ ˙̂V (t )ρ̂(t )], (D4)

where we used ˙̂ρ(t ) = − i
h [Ĥ (t ), ρ̂(t )] and the cyclic permutation of the trace such that tr[Ĥ (t ) ˙̂ρ(t )] = 0.

We can now apply Eq. (D4) to a sudden switch on and off to and from a constant value as in our example in the main text
where V̂ (t ) = gx̂ ⊗ |1〉 〈1| θ (t )θ (tm − t ) = V̂ θ (t )θ (tm − t ). In this particular case Eq. (D4) reads

Wmeas(tm) =
∫ tM

0
dt tr[ ˙̂V (t )ρ̂(t )] = [tr[ρ̂(0)V̂ ] − tr[ρ̂(tm)V̂ ]]. (D5)

By using the Trotter splitting as in Eq. (B1) with �t = tm/N we can further write Eq. (D5) by

Wmeas(tm) = −[tr[ρ̂(tm)V̂ ] − tr[ρ̂(0)V̂ ]]

= −bg 〈
| (eip̂2�t/2h̄eiV̂ �t/h̄
)N

x̂
(
e−i p̂2�t/2h̄e−iV̂ �t/h̄

)N |
〉

= −bg

(
1

2πkBTM

)1/2
[ ∫ ∞

−∞
d p e− (p+gN�t )2

4kBTM

N∏
k=1

[ei(p+gk�t )2�t/2h̄]ih̄
d

d p

{ N∏
k=1

[e−i(p+gk�t )2�t/2h̄]e− (p+gN�t )2

4kBTM

}]

= −bg

(
1

2πkbTM

)1/2[ ∫ ∞

−∞
d p e− (p+gN�t )2

2kBTM

N∑
k=1

(p + gk�t )�t

]

= −bg

(
1

2πkBTM

)1/2[ ∫ ∞

−∞
d p e− (p+gN�t )2

2kBTM

(
pN�t +

N∑
k=1

gk�t2

)]

= −bg

(
1

2πkBTM

)1/2[ ∫ ∞

−∞
d p e− (p+gN�t )2

2kBTM (ptm + gN (N + 1)(tm/N )2/2)

]

= −bg
[( − gt2

m + gt2
m/2 + gt2

m/2N
)]

=
lim N→∞

bg2t2
m

2
. (D6)

We consider next the average energy change of the meter (change of kinetic energy of the free particle) 〈�WM(tm)〉 =
1
2 (〈p̂2(tm)〉 − 〈p̂2(0)〉) after the entangling system-meter evolution of time tm by using the Trotter splitting as in Eq. (B1) with
�t = tm/N

WM(tm) = 1

2
[tr[ρ̂(tm) p̂2] − tr[ρ̂(0) p̂2]]

= b

2

[ 〈
| (eip̂2�t/2h̄eiV̂ �t/h̄
)N

p̂2
(
e−i p̂2�t/2h̄e−iV̂ �t/h̄

)N |
〉 − 〈
| p̂2 |
〉 ]

= b

2

(
1

2πkBTM

)1/2[ ∫ ∞

−∞
d p e− (p+gN�t )2

2kBTM p2 −
∫ ∞

−∞
d p e− p2

2kBTM p2

]

= bg2t2
m

2
. (D7)

Note that the 〈δ p̂2(tm)〉 = 〈p̂2(tm)〉 − 〈p(tm)〉2 ≡ 2〈�WM(tm)〉.
From Eq. (D7) we can identify WM(tm) ≡ Wmeas(tm). As a consistency check we have shown that both Eqs. (D7) and (D6)

lead to the same result.
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APPENDIX E: WORK EXTRACTION
BY RETHERMALIZATION

Given the 2SS passive state after maximum work extrac-
tion under unitary transformation, we now discuss the possible
work extraction from this 2SS passive state on the way to
equilibrium with the thermal bath TS .

Given the partition function for the 2SS ZS = 1 +
exp (−β�E ) of specific temperature T = k−1

B β−1, its heat
capacity is given by

C(T ) = kBβ2 d2 ln ZS

dβ2
= �E2

kBT 2

e− �E
kBT[

1 + e− �E
kBT

]2
. (E1)

We recognize that any passive state of the 2SS is char-
acterized by a positive temperature, Tp. This depends on the
outcome of the measurement and can be determined by

Tp(p, tm) = �E

kB
ln

[
P1(tm|p)

P0(tm|p)

]−1

�(P1(tm|p) − P0(tm|p))

+ �E

kB
ln

[
P0(tm|p)

P1(tm|p)

]−1

�(P0(tm|p) − P1(tm|p)),

(E2)

with �(x) being the Heaviside function. As the 2SS ap-
proaches thermal equilibrium with a bath at temperature TS,
it exchanges heat and its temperature changes. Recall that the
maximum work W that can be generated from a heat transfer
Q between two baths at temperatures Tlow and Thigh is given
by the Carnot efficiency

W = Q
(

1 − Tlow

Thigh

)
. (E3)

We apply this principle to the heat bath at temperature TS

and the 2SS, acknowledging that the temperature of the 2SS
changes as it absorbs and emits heat. Therefore, we must

evaluate the work output incrementally, expressed as

dW = dQ
(

1 − Tlow

Thigh

)
. (E4)

Here, we need to express dQ in terms of the temperature
change dT . Specifically, we must distinguish between the
scenarios where Tp > TS and TS > Tp.

(i) Tp > TS. In this scenario, Tlow = TS and Thigh = T ,
which changes from Tp(p) to TS. Using the relation dQ =
C(T )dT , which represents the infinitesimal amount of heat
flowing from the system into the bath, the maximum work
that can be extracted is given by

Wth(p, tm) = −
∫ TS

Tp(p,tm )
dT C(T )

(
1 − TS

T

)
. (E5)

(ii) TS > Tp. In this scenario, Tlow = T , which increases
from Tp to TS, and Thigh = TS. Work can be extracted in this
situation; however, the source of this work is the energy flow-
ing out of the bath. When the bath transfers heat dQ, a portion
of it, dW = dQ(1 − T/TS), is the maximum work that can
be obtained. The remaining energy, dQsys = dQ T

TS
, is the heat

entering the system, which raises the system’s temperature

by dT = dQsys

C(T ) = dQ T
C(T )TS

. The maximum possible work ex-
tracted given measurement outcome p is then given by

Wth(p, tm) = TS

∫ TS

Tp(p,tm )
dT

C(T )

T

(
1 − T

TS

)
. (E6)

Surprisingly, in both scenarios, additional work is gener-
ated. In scenario (i), the source of energy is the system itself,
whereas in scenario (ii) the energy comes from the bath. It is
important to note that, because a Carnot process is involved,
the time required to extract this work is infinite. In fact,
both Eqs. (E5) and (E6) are the same and the average work
extracted by rethermalization reads as

Wth =
∫ ∞

−∞
d p Q(p, tm)

∫ TS

Tp(p,tm )
dT C(T )

(
TS

T
− 1

)
, (E7)

where the average is taken over all measurement outcomes p
whose probability density is given by Q(p, tm).

APPENDIX F: BOUND ON WORK EXTRACTION

We can find an analytical solution for the integral (E6) by

Wth(p, tm) = −�E
∫ −�E/kBTS

−�E/kBTp

dy
ey

(1 + ey)2

[
kBTS

�E
y + 1

]

= −�E

{[
yey

1 + ey
− ln

[
ey + 1

]]−�E/kBTS

−�E/kBTp

kBTS

�E
+

[ −1

1 + ey

]−�E/kBTS

−�E/kBTp

}

= −�E

{( TS
Tp

− 1
)
e−�E/kBTp

1 + e−�E/kBTp
+ ln

[
1 + e−�E/kBTp

1 + e−�E/kBTS

]
kBTS

�E

}
, (F1)

where we have used y = −�E/kBT and dy = �E/kBT 2dT .
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Next we use the definition of the temperature Tp(p, tm) in Eq. (E2) and evaluate Eq. (F1), which then reads

− �E
∫ −�E/kBTS

−�E/kBTp(p,tm )
dy

ey

(1 + ey)2

[
kBTS

�E
y + 1

]

= kBTS{[P0(tm|p) ln P0(tm|p) + P1(tm|p) ln P1(tm|p) − P0(tm|p) ln b − P1(tm|p) ln a]�(P1(tm|p) − P0(tm|p))

+ [P0(tm|p) ln P0(tm|p) + P1(tm|p) ln P1(tm|p) − P1(tm|p) ln b − P0(tm|p) ln a]�(P0(tm|p) − P1(tm|p))}. (F2)

The result of Eq. (F2) can be used to evaluate the work extraction by thermalization in Eq. (E7) which then reads

Wth = kBTS

∫ ∞

−∞
d p Q(p, tm){[P0(tm|p) ln P0(tm|p) + P1(tm|p) ln P1(tm|p) − P0(tm|p) ln b − P1(tm|p) ln a]

× �(P1(tm|p) − P0(tm|p)) + [P0(tm|p) ln P0(tm|p) + P1(tm|p) ln P1(tm|p) − P1(tm|p) ln b − P0(tm|p) ln a]

× �(P0(tm|p) − P1(tm|p))}. (F3)

The result of Eq. (F3) can be rearranged. By adding and subtracting [P0(tm|p) ln P0(tm|p) + P1(tm|p) ln P1(tm|p) − P1(tm|p) ln b −
P0(tm|p) ln a]�(P1(tm|p) − P0(tm|p)) and using the fact that �(P1(tm|p) − P0(tm|p)) + �(P0(tm|p) − P1(tm|p)) = 1, Eq. (F3) can
be recast to

Wth = kBTS

∫ ∞

−∞
d p Q(p, tm)

{
[P1(tm|p) − P0(tm|p)] ln

(
b

a

)
�

(
P1(tm|p) − P0(tm|p)

)

+ [P0(tm|p) ln P0(tm|p) + P1(tm|p) ln P1(tm|p) − P1(tm|p) ln b − P0(tm|p) ln a]

}
. (F4)

Using ln(b/a) = −�E/kBTS, exploiting the definition of the ergotropy Eq. (13) in the main text, and realizing that the second
term in Eq. (F4) is the mutual information between system and meter as defined in Eq. (12) in the main text, we can recast
Eq. (F4) to

Wth(tm) = −Werg(tm) + TSI (tm) (F5)

or

Wth(tm) + Werg(tm) = TSI (tm). (F6)
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