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ARTICLE INFO ABSTRACT

Keywords: This paper presents inverse systems identification of a horizontal axis wind turbine to bench-mark the complete
Horizontal Axis Wind Turbine multi-body system. This is achieved by an extended Kalman-based time marching algorithm of a rotor-
Multibody dynamics effective wind flow model involving rotor speed, generator torque, and power output. In addition to wind

Extended Kalman filter
Wind field estimation
Modal identification

estimation, comprehensive inverse characterization of the turbine is also presented here. For this purpose, the
dynamic characterization of a unique wooden tower is considered first, followed by the detailed aeroelastic
characterization of the blades made of carbon fiber using a series of tests and detailed modeling. The tower
and blade root measurements are utilized to identify in situ modal characteristics, further validating the model
and its performance. Finally, the steady-state response of the tower and blade at different mean wind speeds is
identified for complete bench-marking. The numerical results presented in this article highlight the accuracy
of the proposed wind estimation and the characterization of the close-loop system under different operating
conditions.

1. Introduction [1], DTU 10 MW [2] and International Energy Agency 15 MW model

[3] stand as a testament to their importance. However, ramifications

The worldwide wind energy landscape is driven by innovation,
advancement, and a never-ending pursuit of increased efficiency. With
the surging deployment of Horizontal Axis Wind Turbines (HAWTS),
whether in utility-scale land-based projects or offshore ventures, the
quest for optimal and sustainable performance continues to drive this
sector. The accomplishment of these goals in achieving the full po-
tential of wind power depends on sophisticated modeling and con-
trol systems combined with inverse characterization and continuous
monitoring techniques. This path towards improved control and opti-
mization requires high-fidelity multi-body dynamic models, which offer
invaluable insights into the behavior of HAWTSs, enabling researchers
and engineers to fine-tune their performance and accurately predict
loads for estimating fatigue life. In this context, the need for benchmark
models, particularly for small-scale HAWTs, is one of the most apparent
obstacles in this path to precision. Benchmark models are essential
tools for thorough analysis, allowing for standardized comparisons
and control strategy optimization. They serve as the foundation for
innovation and are an indispensable tool for overcoming the challenges
of wind turbine scaling, whether for onshore or offshore usage.

In the realm of large-scale wind turbines, theoretical benchmark
models are abundant, e.g., the renowned NREL 5 MW baseline model
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of scaling wind turbines to different sizes in terms of both loads and
turbine output, it is necessary to have a collection of similar wind
turbine models of varying sizes. The Wind Partnership for Advanced
Component Technologies (WindPACT) program, initiated by the NREL,
charted the way by developing four baseline wind turbine models with
varying power ratings. 750 kW, 1.5 MW, 3 MW, and 5 MW [4]. These
models were originally implemented in FAST, (i.e., Fatigue, Aerody-
namics, Structures, and Turbulence) [5], which is a popular aeroelastic
code for simulating onshore and offshore wind turbines.

These benchmark models have become invaluable tools for com-
parative studies in wind turbine research. They provide standardized
platforms for evaluating dynamic responses and validating simula-
tion frameworks, enabling effective load estimation strategies under
varying environmental and fault conditions. Rezaei et al. [6] devel-
oped a complete multibody model of the NREL 5 MW turbine, which
incorporates geometric nonlinearities to analyze rotor dynamics and
flutter instabilities and highlighted the importance of full-system mod-
eling compared to simplified approaches. Similarly, Xue et al. [7]
explored the rigid—flexible coupling of the 5 MW wind turbine under
elevated wind conditions, providing guidelines for structural improve-
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ments based on the dynamic responses. Mitra et al. [8] utilized a
high-fidelity aero-servo-elastic model to optimize the composite blade
fiber orientation and demonstrated how bending-torsion coupling in-
fluences both control response and aerodynamic efficiency of wind
turbines. Additionally, Liu et al. [9] studied the wake dynamics of
the offshore 5 MW turbine using large eddy simulations and actuator
line modeling under varying inflow turbulence conditions. According to
their research, higher turbulence speeds up the wake recovery, which
enhances energy extraction for downstream wind turbines. In addition
to modeling, benchmark turbines play a vital role in the development
and testing of advanced control algorithms to enhance performance
and minimize structural loads. Sarkar and Chakraborty [10] intro-
duced a semi-active vibration control strategy that employs multiple
magnetorheological tuned liquid column dampers on a wind turbine
tower. This approach demonstrated the effectiveness of magnetorhe-
ological devices in providing adaptive damping under varying wind
loads. Further, Abdelbaky et al. [11] developed a partially offline
fuzzy logic-based model-predictive control for pitch regulation of the
NREL 5 MW turbine. This method successfully addresses pitch actuator
saturation and outperforms traditional proportional-integral (PI) con-
trollers. A multi-resolution wavelet-based LQR controller was proposed
by Sarkar et al. [12] for individual pitch control of floating offshore
wind turbines, demonstrating improved mitigation of blade and tower
vibrations under combined wind-wave—current conditions by empha-
sizing frequency band-specific dynamics. Hu et al. [13] implemented
a modular open-source baseline controller for the DTU 10 MW wind
turbine on a Tension Leg Platform (TLP) using FAST. They compared
conventional pitch-to-feather and active pitch-to-stall strategies, show-
ing how control frequency tuning affects rotor dynamics, platform
stability, and thrust-induced responses under extreme offshore condi-
tions. In the context of fatigue and reliability, Sajeer et al. [14] used
a spinning finite element model to investigate the role of longitudinal
stiffeners in improving the fatigue life of the 5 MW turbine blade. Their
findings provide structural enhancement strategies based on dynamic
loading patterns. Yang et al. [15] studied the failure of tendons in
a floating 10 MW turbine, showcasing the significance of controller
robustness during fault scenarios. The emerging 15 MW class turbines,
in particular, present significant difficulties because of their unpar-
alleled size and flexibility. Chai et al. [16] examined extreme wave
and wind events for the IEA 15 MW turbine, underlining the need for
robust modeling and control. Further, Liang et al. [17] emphasized the
importance of scalable control and monitoring frameworks, as larger
rotors introduce stronger aeroelastic effects and demand more robust
load mitigation strategies.

Moreover, for small-scale turbines, such benchmark models are rare,
without any in-depth analysis and the refinement of control techniques
for this specific type. This dearth underscores a significant gap in
our understanding of these smaller, often more localized wind energy
solutions installed in large numbers. To this end, IEA Wind Task
27 [18], titled Small Wind Turbines in Turbulent Sites, aims to enhance
the understanding of how turbulence impacts the performance and reli-
ability of small wind turbines, particularly in complex terrain and urban
environments. Its objectives include developing standardized methods
for measuring turbulence, evaluating its effects on turbine performance
and structural integrity, and fostering international collaboration to
share data and best practices. Meanwhile, IEA Wind Task 41 [19],
Enabling Wind to Contribute to a Sustainable Future Energy System, focuses
on supporting the integration of wind energy into future energy sys-
tems. It seeks to analyze the role of wind in decarbonization, develop
tools for system integration, such as storage and grid flexibility, and
facilitate knowledge exchange on policy and market design to promote
the growth of wind energy. Both tasks contribute to understanding the
performance and reliability of small wind turbines. In this context, the
paper serves two purposes: firstly, to benchmark a small wind turbine
against field data, and secondly, to perform inverse identification of
the dynamics of a wooden wind turbine tower. The wooden tower is a
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unique technology that offers a significantly lower net-carbon-emission
alternative to traditional steel towers.

Traditionally, the inverse problem is solved in two major paradigms.
In one approach, the measured response time histories are analyzed us-
ing signal processing tools to identify fundamental structural dynamic
parameters. This approach is easy to implement and provides fast-hand
information necessary for model verification. However, output-only
signal processing-based modal identification may face difficulty as the
measured responses often contain the rotational frequency of the tur-
bine and its harmonics, which are difficult to segregate from structural
frequencies. On the other hand, the second approach adopts a model
whose parameters are updated using filtering algorithms. They are
often sensitive to modeling inaccuracies and require well-defined noise
statistics. Both these approaches have their pros and cons, which are
highlighted below. In recent years, wavelet analysis has become more
well-known in system identification due to its superior time—frequency
analysis capabilities and aptitude for handling non-stationary data.
It offers a distinct viewpoint by presenting the modulus of wavelet
transforms, often visualized as scalograms, in a time-frequency plane.
The wavelet coefficients exhibit maximum values at the instantaneous
frequency, corresponding to the dominant structural frequencies in the
signal at that instant of time [20,21]. This property allows wavelet anal-
ysis to discern the critical modal parameters of the system accurately.
Several studies have been made for extracting the natural frequency
and damping properties [22,23] because of its inherent advantages.
Some notable studies have explored the potential of wavelet analysis
in connection with wind turbines. For instance, Murtagh and Basu [24]
introduced two approaches to evaluate the equivalent modal viscous
damping ratios for a wind turbine tower. The first method is based
on the Fourier transformation of the motion equation, using the least
square method to estimate the equivalent viscous damping ratios. The
second method utilizes the wavelet transformation, employing a time-
segmented least square approach to extract the damping ratios. For
identifying time-variant aerodynamic damping matrices of wind tur-
bines, Chen et al. [25] put forth a methodology using a wavelet-based
equivalent linearization technique. Some studies have explored the
potential of wavelet-based analysis to identify faults in wind turbines.
Complex wavelet transform has been utilized to uncover weak bearing
fault signatures suppressed by dominant gear vibrations, particularly
in gearboxes with coexisting faults [26]. In parallel, advanced time—
frequency techniques like the reassigned second-order synchrosqueez-
ing transform have been introduced to accurately capture time-varying
fault features in variable-speed operations, demonstrating improved
clarity in fault characterization [27]. Further, continuous wavelet trans-
forms for LQR-based gain scheduling, optimizing fore-aft vibration
control in horizontal axis wind turbine towers were examined by
Mitra et al. [28]. However, there is a significant gap in the research
regarding identifying critical modal parameters utilizing measurements
from wind turbines and validating these findings against actual models.

Model-based methods, on the other hand, use filtering techniques
to recursively update a dynamic model in order to estimate unknown
loads or system characteristics. Variants of the Kalman filter have been
widely used in this field. Schlipf and Cheng [29] used an Extended
Kalman Filter (EKF) to demonstrate that wind turbine states and inflow
conditions could be estimated reliably. Using limited sensor response
data, an augmented Kalman filter (AKF) was used by [30] to esti-
mate unbalanced rotor loads in spinning machinery. Lei et al. [31]
extended the EKF framework to use under ambient excitations for
identifying structural element mass and stiffness changes in chain-like
systems using acceleration data. Similarly, Wei et al. [32] proposed a
Kalman filter-based approach combining structural acceleration data
with BeiDou satellite measurements to estimate tower-top thrust and
distributed bending moments in a full-scale 2.5 MW wind turbine. More
recently, hybrid estimation frameworks have emerged to leverage the
advantages of both physics-based and data-driven methods. For in-
stance, Mehrjoo et al. [33] developed a surrogate input load estimation
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model combining transfer learning and multitask learning, enabling
real-time load predictions in offshore wind turbines while addressing
limitations of traditional model fidelity and data availability. While
model-based and hybrid techniques have appealing capabilities, such as
real-time performance and robustness under uncertain conditions, they
are often sensitive to modeling inaccuracies and require well-defined
noise statistics. In contrast, signal-based methods like the wavelet-based
framework presented in this study provide a flexible and data-centric
route for extracting dynamic characteristics from full-scale turbine
measurements. The identified modal parameters are further validated
using a high-fidelity finite element model to demonstrate the accuracy
and applicability of the proposed methodology.

Besides model identification, wind field characterization is key to
the successful inverse modeling of any multi-body wind turbine system,
especially with variable pitch rotors acting in a close loop. The wind
speed measurements obtained from the standard anemometer at the top
of a wind turbine lack the requisite accuracy for high-fidelity analyses.
Thus, rotor effective wind speed estimation in modern turbines is
the prerequisite for designing advanced control strategies, condition
assessment, power estimation, and downtime regulation. It involves
various state estimation techniques that have been explored in the
literature. For example, Kalman filters and their advanced variants
were adopted in [34] to estimate the rotor-effective wind speed. The
wind speed estimators were designed using a single-state observer for
a simplified turbine model. Another approach explained in [35] em-
ployed a state observer to estimate aerodynamic torque. Subsequently,
the effective wind speed was estimated based on the torque estimate
through the inversion of the aerodynamic torque model. Besides rotor
effective wind speed, aerodynamic torque estimation in the presence
of close loop control is also essential. It helps to characterize the real-
istic power output of a turbine operating in a turbulent environment.
Comprehensive surveys and comparisons of rotor-effective wind speed
estimation methods using different state estimation techniques may
be found in [36]. Based on measured turbine responses such as rotor
speed and power produced, an effective wind speed, representing the
wind field averaged over the rotor disc, was proposed in [37]. This
effective wind speed estimator is based on an Extended Kalman Fil-
ter (EKF), which leverages nonlinear time-varying turbulence models.
Furthermore, in the ROSCO model [38], the wind speed estimator
from [37] was utilized for the TSR tracking generator torque controller
and to set pitch saturation routines. A data-driven framework was
proposed for real-time estimation of rotor effective wind speed by
combining Gaussian process regression with an extended Kalman filter.
This approach eliminates the need for precomputed aerodynamic maps
by learning the surface of the power coefficient directly from real-
time measurements, enabling accurate estimation of REWS even under
down-regulated conditions [39]. Despite its improved accuracy, the
proposed method relies on a regression model trained from limited
simulation data, which can reduce accuracy under highly unanticipated
or unmodeled operating conditions.

Recently, light detection and ranging (LiDAR) [40] technology has
gained traction in wind energy applications due to its ability to provide
more accurate rotor-aligned wind measurements, enhancing the accu-
racy of turbine response analysis and control strategies. Doppler LiDAR
scanning has been investigated to reconstruct the site-specific wind pro-
files up to 500 m, allowing detailed response analysis of large offshore
wind turbines such as the 10 MW and 15 MW models [41]. Similarly,
a minute-scale prediction framework has been proposed using limited
LiDAR data and transfer learning, showing improved forecasting of
incoming wind conditions, but still heavily depends on previously
acquired data, reducing its adaptability to evolving sites [42]. On the
control side, uncertainty-aware LiDAR models compatible with robust
control techniques like u-synthesis and Quantitative Feedback Theory
(QFT) have been proposed in [43], but they demand approximations
of nonlinear sensor dynamics in linear uncertainty sets, which can
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compromise accuracy under fluctuating conditions. Despite their po-
tential, LIDAR-based solutions for wind turbine monitoring and control
are still in the early adoption phase, with high implementation costs
limiting their large-scale deployment in operational wind farms. In
general, using measurements such as rotor speed, generator torque, and
other controller inputs, an EKF-based state observer coupled with a
wind flow model can effectively estimate rotor-effective wind speed to
tune the critical performance matrices of an operating wind turbine.
The effectiveness of these models in replicating real-world scenarios
through complete aeroelastic simulations and validating them with
actual test data has not been attempted earlier but is addressed in this
work. This approach offers a practical and cost-effective solution and
can be a promising alternative to improve wind turbine performance
and control strategies under varying conditions.

1.1. Objectives

The literature review presented above outlines the demand for
benchmark reference models of HAWT, especially for small-scale tur-
bines. Most of the benchmark models reported in the literature are
hypothetical. Only a limited number of benchmark models are available
in the public domain. To address this issue, a horizontal axis test
turbine at Bjorko, Sweden, provides necessary data for various response
characterizations under different operating conditions. Modeling this
turbine and validating it with actual test data involves parameter
estimation from the actual measurements, which is the key objective
of this study. Thus, the deliverables of this work are outlined below.

+ System characterization of a test turbine, which includes extrac-
tion of the structural properties and other parameters of the tower
and blade through detailed analysis and signal processing-based
model validation using field measurements.

Rotor effective wind field characterization through inverse anal-
ysis of actual measurements using an Extended Kalman Filtering-
based wind flow model identification to replicate the actual op-
erating scenarios of the test turbine through high-fidelity model
simulation.

Validation of the detailed multi-body system by comparing differ-
ent response quantities obtained through the complete aeroelastic
simulation of the turbine using an OpenFAST model over the
complete operating range of the turbine.

Further, this paper is organized as follows. Section 2 provides a
comprehensive description of the test turbine, starting with the general
characteristics, followed by the extraction of structural properties from
testing and finally, a modal description of the tower and blade. It
also describes the driven train properties along with other relevant
parameters necessary for detailed modeling. The turbine’s control sys-
tems are described in Section 3, and the control parameters for the
desired power output are listed. Section 4 documents the sensor and
measurement details of the test turbine. In Section 5, the inverse
analysis of measurements is conducted in two phases. Initially, modal
parameters are extracted through signal processing, with wavelet-based
time-frequency analysis as the primary tool. Once these modal param-
eters are identified, a meaningful comparison for benchmark demands
wind field characterization. To address this issue, the rotor effective
wind speed is estimated using an EKF-based model updating technique
to tune the simulated turbine responses with field measurements. Then,
in Section 6, different simulated responses of the updated aeroelastic
model in OpenFAST [44] are validated against the test data. Further,
an analysis of the steady-state responses of the tower and blades is
included, demonstrating their behavior as functions of wind speeds.
Finally, conclusions are drawn in Section 7.
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Fig. 1. Chalmers wind turbine and its components: (a) Geographic coordinate, (b) Rotor Nacelle Assembly (RNA), (c) Steel top adopter, (d) CAD model of wooden

tower body, (¢) CAD model of Steel base.

2. General description of the test turbine

This study uses an onshore horizontal axis wind turbine located on
Bjorko Island, approximately 20 km west of Goteborg City, Sweden.
The turbine was erected in 2020 with the support of the Swedish Wind
Power Technology Centre, the Swedish Energy Agency, and Region
Véstra Gotaland, to facilitate research in wind energy. The coordinates
are: 57.71818820625921, 11.683382148764485. The novelty of this
wind turbine is its tower, which is made of wood laminates. The blades
are made of carbon fiber, hence they are lighter and stiffer compared
to traditional blade materials. Some critical components of this turbine
are shown in Fig. 1. The tower begins with a concrete foundation
upon which a steel footing is anchored. This steel base supports the
wooden conical tower. On top of the tower, a steel adapter is fitted to
attach the machine housing. The nacelle includes components such as
the main shaft, generator, and a yaw motor. It has a direct drivetrain
without any gearbox. The wooden tower is 30 m high, including the
top adapter. The rotor blades are mounted upwind of the nacelle. The
carbon fiber blades are 7.5 m long, with a rotor diameter of 16 m. The
wind turbine is designed for a maximum power output of 45 kW. This
study leverages measurements obtained from the turbine for various
operating conditions. Subsequent sections of this study will thoroughly
address this test turbine’s structural characteristics and operational
parameters, which will be used to characterize the complete multi-body
system and benchmark its properties and performance.

2.1. Tower properties

One of the novelties of this wind turbine is that the tower body is
constructed using wooden modules. The body comprises five modules,

each composed of four segments of laminated spruce veneer. Inside
the wooden structure, 32 vertical studs of 81 x 42 mm are evenly
distributed to reinforce the tower body, which has a wall thickness of
63 mm. The tower is shaped like a truncated cone where the diameter
decreases with height. The outer diameter at the tower’s base is 2.4 m,
while the same at the top is 0.8 m. The tower is hollow and equipped
with a door at the base that enables access to the inside of the tower.
CAD models of the wooden tower, the steel base, and the top adapter
are shown in Fig. 1. To evaluate the behaviors of the wind turbine
and to characterize the structural properties of this innovative tower, a
model of the tower was created using FEM. The material specifications
for the wooden components are sourced from the manufacturer, and
structural steel is used for the steel footing and top adapter. Given the
absence of a defined modulus of elasticity for the wooden structure, the
focus shifted towards quantifying the bending stiffness. This parameter
is critical for characterizing the multi-body dynamics of the system. The
other parts of the model were updated according to the real geometry
and further refined through calibration, which was carried out using
a series of tests conducted between April and May 2021, where a
round collar was attached around the top of the tower and loaded
with a certain force from two different directions, considering different
weather conditions. This was carried out in two steps - (i) the strain
gauges mounted on the tower were calibrated first and (ii) structural
properties were tuned in the FE model to replicate the test data. During
the pull test, the towline was first tensioned up to maximum load to
allow the towline to stretch. The load was gradually released, and the
sensor data were recorded accordingly to calibrate the tower model.
The experimental details were documented in the B.Sc thesis [45] and
hence it is omitted here.
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Table 1
Distributed tower structural properties of the chalmers wind turbine.
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Node HtFract TMassDen (kg/m) TwFAStif (Nm?) TwSSStif (Nm?)

Node HtFract TMassDen (kg/m) TwFAStif (Nm?) TwSSStif (Nm?)

1 0.000000 883.677 1.68E+10 1.68E+10 17 0.516412 244.898 1.30E+09 1.30E+09
2 0.018319 881.356 1.68E+10 1.68E+10 18 0.550095 240.816 1.18E+09 1.18E+09
3 0.044681 270.408 3.13E+09 3.13E+09 19 0.583812 235.714 1.07E+09 1.07E+09
4 0.078364 270.408 3.13E+09 3.13E+09 20 0.617494 230.612 9.64E+08 9.64E+08
5 0.112081 270.408 2.98E+09 2.98E+09 21 0.651177 225.510 8.64E+08 8.64E+08
6 0.145764 270.408 2.83E+09 2.83E+09 22 0.684894 219.388 7.70E+08 7.70E+08
7 0.179447 270.408 2.68E+09 2.68E+09 23 0.718577 213.265 6.82E+08 6.82E+08
8 0.213164 269.388 2.53E+09 2.53E+09 24 0.752260 206.122 6.00E+08 6.00E+08
9 0.246847 268.367 2.38E+09 2.38E+09 25 0.785977 200.000 5.23E+08 5.23E+08
10 0.279979 266.598 2.23E+09 2.23E4+09 26 0.819660 191.837 4.53E+08 4.53E+08
11 0.314246 264.794 2.09E+09 2.09E+09 27 0.853377 184.694 3.88E+08 3.88E+08
12 0.347929 262.245 1.94E+09 1.94E+09 28 0.887060 176.531 3.29E+08 3.29E+08
13 0.38309 259.042 1.81E+09 1.81E+09 29 0.920742 168.367 2.76E+08 2.76E+08
14 0.415329 256.930 1.67E+09 1.67E+09 30 0.954460 159.184 2.29E+08 2.29E+08
15 0.449012 253.061 1.54E+09 1.54E+09 31 0.988142 150.000 1.86E+08 1.86E+08
16 0.482729 248.980 1.42E+09 1.42E+09 32 1.000000 289.855 2.51E+07 2.51E+07
After multiple iterations, the tower’s distributed mass and stiffness Table 2

properties were tuned to align with its first natural frequency, which
equals 0.79 Hz. Additionally, deflections at different heights of the
tower were also compared with the results from the test to validate
the model. To replicate the actual tower, its thickness was adjusted in
the model to compensate for the studs inside the tower. The resulting
distributed tower properties are provided in Table 1, which contains the
mass density and tower stiffness along the fore-aft (FA) and side-to-side
(SS) directions corresponding to 32 nodes along the tower center line
relative to its base. In this table, HtFract is the fractional height along
the tower center line with respect to the base. The other key parameters
reported are mass density (TMassDen) and stiffness along the fore-aft
(TwFAStif) and side-to-side direction (TwSSStif), respectively. Here,
it may be noted that one of the main objectives of this work is to
develop the benchmark model in OpenFAST, which is widely used by
researchers and engineers. Hence, the variable names mentioned above
are defined following the OpenFAST convention.

The complete aero-servo-elastic model of wind turbines requires
precise mode shape estimation along with the tower properties. Thus,
the calibrated FE model was further used to estimate tower mode
shapes. It is a cantilever made of Euler-Bernoulli beam elements rep-
resenting the tower with a lumped mass at the top representing the
Rotor-Nacelle Assembly (RNA), including blades. Each node has a
translational and rotational degree of freedom in two orthogonal hor-
izontal directions (i.e., X in FA and Y in SS). The first four natural
frequencies are 0.79, 7.13, 22.07, and 44.12 Hz. The first two mode
shapes corresponding to the fore-aft and side-to-side directions of the
tower are shown in Fig. 2. The corresponding mode shape coefficients
using a sixth-order polynomial as given in Eq. (1) are provided in
Table 4.

6
P(h) =Y C (f()) ¢8)
j=2
In the above equation, i and & represent the mode shape number and
the distance from the support, respectively.

2.2. Blade properties

The test turbine is equipped with three upwind rotor blades, each
measuring 7.5 m in length, as shown in Fig. 1. These blades are made of
14 distinct airfoils at 19 nodes, each contributing to the aerodynamic
profile. Detailed aerodynamic properties for specific nodes along the
blade length are listed in Table 2, where the aerodynamic twist is
reflected as Aero-Twist.

Numerical Manufacturing and Design Tool (NuMad) [46] is used
to model the blades as flexible rotating beams attached to the hub,
which vibrates in flap-wise and edge-wise directions. This modeling
incorporates the actual material and geometric properties provided by

Blade aerodynamics properties of the chalmers wind turbine.

Node Nodes (m) Aero twst (deg) Chord (m) Airfoil type
1 0.0000 35.0700 0.4200 Cylinder_Hono
2 0.3442 31.1884 0.4200 Cylinder_Hono
3 0.3492 31.0416 0.4200 Cylinder_Hono
4 0.6865 21.4266 0.4550 FFA-W3-357_Hono
5 0.9513 18.5855 0.5104 FFA-W3-360_Hono
6 0.9864 18.2095 0.5177 FFA-W3-330_Hono
7 1.0376 17.6356 0.5272 FFA-W3-301_Hono
8 1.1987 15.7822 0.5488 FFA-W3-270_Hono
9 1.3494 14.0359 0.5691 FFA-W3-240_Hono
10 1.6596 10.0248 0.5791 FFA-W3-211_Hono
11 2.6155 2.1538 0.5021 NACA-63-218_Hono
12 4.4462 -1.9223 0.3477 NACA-63-215_Hono
13 5.3526 —-0.2875 0.2713 NACA-63-214_Hono
14 6.4009 -0.7119 0.1829 NACA-63-213_Hono
15 7.0450 —0.9994 0.1286 NACA-63-238_Hono
16 7.3846 0.2858 0.1000 NACA-63-212_Hono
17 7.4382 2.0945 0.0850 NACA-63-212_Hono
18 7.4727 3.2192 0.0600 NACA-63-212_Hono
19 7.4880 3.6568 0.0400 NACA-63-212_Hono
Table 3

Distributed blade structural properties of the chalmers wind turbine.
BlFract BMassDen FIpStff (Nm?) EdgStff (Nm?)

AeroCent  Aero

twst(deg) (kg/m)
0.00000 0.25 35.0700  39.50 1.842E+07 1.824E+07
0.04462  0.25 31.4700  39.50 1.842E+07 1.223E+07
0.08937  0.25 21.6000 17.80 6.821E+06 1.221E+07
0.13412  0.25 18.0000  16.30 4.270E+06 1.057E+07
0.17874  0.25 14.1500  14.40 2.626E+06 8.871E+06
0.22350  0.25 9.8100 12.60 1.716E+06 6.820E+06
0.26825  0.25 7.0100 10.40 1.033E+06 4.572E+06
0.31287  0.25 3.3800 8.45 0.583E+06 2.922E+06
0.35762  0.25 1.8500 7.15 0.357E+06 2.127E+06
0.40237  0.25 0.8900 6.02 0.211E+06 1.640E+06
0.44699  0.25 0.2100 5.01 0.131E+06 1.166E+06
0.49174  0.25 —-0.4500 4.15 0.0767E+06 0.847E+06
0.53649  0.25 -1.1200  3.66 0.0511E+06 0.643E+06
0.58111 0.25 -1.7600 3.34 0.0411E+06 0.517E+06
0.62587  0.25 -2.3800 3.00 0.0286E+06 0.401E+06
0.67062  0.25 -1.6000 2.70 0.0201E+06 0.317E+06
0.71524  0.25 —-0.2400 2.50 0.0168E+06 0.242E+06
0.75999  0.25 -0.4200 2.29 0.0123E+06 0.187E+06
0.80474  0.25 —-0.5400 2.04 0.0095E+06 0.132E+06
0.84936  0.25 -0.7000 1.79 0.0074E+06 0.084E+06
0.89411 0.25 -0.8300 1.54 0.0041E+06 0.052E+06
0.93887  0.25 -1.0100 1.29 0.0032E+06 0.031E+06
0.98348  0.25 0.0000 1.04 0.0021E+06 0.017E+06
0.99534  0.25 3.0000 0.66 0.0004E+06 0.005E+06
1.00000 0.25 4.0000 0.52 0.0002E+06 0.003E+06
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Fig. 2. Tower mode shapes; (a) First FA Mode, (b) First SS Mode,(c) Second FA Mode, (d) Second SS Mode.

the manufacturer and the aerodynamic properties listed in Table 2.
Fig. 3 shows the blade model in the NuMad graphical user interface
and the airfoils’ shape. This paper does not include comprehensive
details on the airfoil characteristics, as it mainly focuses on wind and
power calibration. The authors will provide these blade details in the
subsequent work, where the major emphasis will be on blade response
characterization. The NuMAD model is then exported to ANSYS [47]
for further finite element simulation. The boundary conditions applied
to the blade resemble those of a cantilever beam, with the blade being

fixed at the root and free at the tip. The optimal mesh was selected
based on the standard mesh test for the modal analysis to obtain higher
accuracy. The first four natural frequencies of the blade in Hz are 5.63,
13.82, 18.96, and 32.97, representing 1st flapwise, 1st edgewise, 2nd
flapwise, and 1st torsional frequencies, respectively. These frequencies
will be verified through inverse identification of modal properties in
the subsequent section of this paper. The respective blade mode shapes
are shown in Fig. 4, and the mode shape coefficients for the first three
modes are provided in Table 4. In this table, r represents the distance
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Fig. 3. Blade model of Chalmers wind turbine as viewed in the NuMAD GUI with airfoils.

of a point on the blade’s longitudinal axis from its root, while R and
Ry represent the radius of the blade and hub, respectively.

Besides modal characteristics, the distributed structural properties
of the blades are also evaluated from PreComp [48] using the NuMAD
model, which is listed in Table 3. The fractional separation between the
chord line and the pitch axis is represented by the term AeroCent. The
structural twist of the blade, i.e., StrcTws is assumed to be identical to
the aerodynamic twist as given in Table 2, and BMassDen represents the
mass per unit length. The flap-wise and edgewise stiffness properties
are marked as FlpStff and EdgStff, respectively in this table.

2.3. Hub, nacelle, and drive train properties

This section presents the hub, nacelle, and drivetrain properties
of the test turbine. As discussed earlier, the tower body is made up
of wooden modules. The height of the tower above ground level is
29.095 m. On top of the tower, a steel top adapter is fitted to attach
the rotor-nacelle assembly. In its undeflected configuration, the hub of
the test turbine is located at a height of 29.393 m above ground level,
having a mass of 2799 kg. The vertical distance from the tower top to
the rotor shaft is 0.292 m, and the distance from the yaw axis to the
rotor apex is 0.608 m. The distance from the rotor apex to the blade
root and tip are 0.45 m and 7.95 m, respectively, with no PreCone
angle. The nacelle has a mass of 6500 kg, with the center of mass
(i.e., CM) located at 0.563 m downwind of the yaw axis and 0.906 m
above the yaw bearing. The nacelle inertia about the yaw axis is taken
to be 6500 kg-m?2, while the hub inertia about the rotor axis is taken
as 255 kg-m?. The test turbine has a high-speed direct drive train.
The generator’s electrical efficiency is kept at 99.9% with a gearbox
ratio of 1 (i.e., this value is assumed for FAST modeling replicating no
gearbox in the drivetrain). The generator inertia about the high-speed
shaft is taken to be 137 kg-m2, equivalent driveshaft linear-spring and
damping constants are 7.72E+06N-m/rad and 5.4E+04N-m/(rad/s),
respectively.

3. Generator-torque and blade-pitch controller details

This section discusses the baseline torque and pitch control system
used in the test turbine, along with different parameters selected for
the simulation in OpenFAST. First, the generator torque control is
discussed, followed by the pitch controller details used in this study.

Table 4

Mode Shape Coefficients of Tower and Blade.
j  Tower Blade

{(f(my (€ (G,)) {(rmy (&) (G, (G5

2 (h/H)?* 0.37629 —25.07030 [(RfR")]z 0.0325 0.0005 —-0.0881
3 (h/H)® 2.30263 —41.35770 [(RJRH)r —0.0798 4.3158 3.5029
4 (h/H)* -4.19699 84.88334 [(Rflz,,)r 1.7036 -7.7918 -25.3911
5 (h/H)> 3.94659 09.43586 [(R:RH)]S —0.0235 6.8929 37.2812
6 (h/H)® -1.42852 -26.89120 [(R:R,,)]ﬁ -0.6327 -2.4174 -14.3049

There are five control zones where the generator torque is regulated
depending upon the flow conditions, as shown in Fig. 5. Generator
torque is zero in Region 1 before cut-in wind speed, where no power
is extracted from the wind; instead, the wind accelerates the rotor for
start-up. Region 2 (i.e., cut-in to rated condition)is a control region for
optimizing power. In this region, the generator torque is proportional
to the square of the filtered generator speed to maintain a constant
(i.e., optimal) tip-speed ratio. Region 11/2 is a linear transition zone
between Region 1 to Region 2. This region places a lower limit on
the generator speed to cap the wind turbine’s operational speed range.
Another linear transition zone between Regions 2 and 3 (i.e., Region
21/2) is typically needed to limit tip speed at rated power. Finally, the
generator power is retained constant in Region 3 (i.e., rated to cut-out
condition) so that the generator torque is inversely proportional to the
filtered generator speed. The peak power coefficient of 0.42 occurred at
a tip-speed ratio of 9.87. Given a gearbox ratio of 1:1, this corresponds
to an optimal constant of proportionality of 35.17 Nm/(rad/s?) in the
Region 2 control law for optimal generator torque as per [49].

Once the operating parameters for the generator are established
for two different power outputs, 25 kW and 30 kW, respectively. The
rated generator speed is uniformly set at 7.45 rad/s, corresponding to a
power of 25 kW with a generator efficiency of 99.9% for a mechanical
power of 25.025 kW at a generator torque of 3359.06N-m. On the other
hand, the 30 kW setting resulted in a generator torque of 4030.88N-
m. The transition speeds from one region to another (i.e., Region 1 to
Region 11/2, Region 11/2 to Region 2, and Region 2!/2to Region 3) are
taken as 5.7 rad/s, 6.2 rad/s, and 7.0 rad/s, for 25 kW configuration
and 5.7 rad/s, 6.2 rad/s, and 7.2 rad/s for 30 kW configuration,
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Fig. 4. Blade model and identified mode shapes; (a) First Flapwise, (b) First Edgewise, (c) Second Flapwise (d) First Torsional.
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Fig. 5. Generator torque and speed in different control regions; (a) for 25 kW power setting, (b) for 30 kW power setting.

respectively. A consistent generator-slip percentage of 10% is adopted
in Region 21/2 for both configurations, similar to the value used in
the DOWEC study [51]. To safeguard against potential overloads, the
torque is capped at a maximum of 4500.00 N-m, and a torque rate limit
of 10,000 N-m/s is enforced. The generator-torque versus generator
speed response curve of the test turbine for the two power settings are
illustrated in Fig. 5(a) and Fig. 5(b), respectively.

In Region 3, the blade-pitch control system takes over to maintain
the generator speed above the rated flow. A full-span blade pitch
controller used in this study is a single-variable device that changes the

blade pitch angle to reduce generator speed fluctuation. The full-span
rotor-collective blade-pitch-angle commands are computed using gain-
scheduled proportional-integral (PI) control on the error between the
filtered and rated generator speeds. The reference generator speed is
established at 7.85 rad/s for activating the pitch controller. The system
allows for a range of pitch angles from a minimum of 0.034 rad to a
maximum of 1.5707 rad, with the maximum pitch rate limited to 0.2
rad/s to ensure smooth transitions. Following the procedure explained
for the NREL 5 MW benchmark turbine [52], the pitch controller’s
proportional (Kp) and integral (K;) gains at the minimum pitch angle
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Fig. 7. Operating Conditions of Chalmers Wind Turbine with average wind 5.9 m/s; (a) Wind Velocity at hub height, (b) Rotor Speed, (c) Generator Power (d)
Generator Torque, (e) Blade Pitch angle, (f) Yaw Position.

are set to 0.35 s and 0.22, respectively. Additionally, the blade-pitch
angle at which the pitch sensitivity has doubled from its value at the
rated operating point (6,) is determined as 0.4 rad, corresponding to
the point where the derivative gain (K}) is zero. This meticulous setup

ensures that pitch adjustments are responsive and tempered, enhancing
the turbine’s efficiency while safeguarding the mechanical integrity of
the system. The baseline control system parameters are supplied to the
test turbine through the controller input panel built on LabVIEW [53]
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Table 5
Measurement channel details of chalmers wind turbine.
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Location Channel details No of channels Location Channel details No of channels
Strain gauges @ blades 15 Strain gauges @ Foundation 2

Hub and . . .

blade Pitch angles 3 Foundation and Tower Stain gauges @ steel base 5
Pitch position 3 Strain gauges @ wooden tower 8
Shaft torque 2 FFR regulator 2
Rotor speed 2 Generator 3

Control room .

Nacelle Accelerometers 3 DC-link current 1
Generator temperature 4 Grid Frequency an Power waste 2
Y'fiw position » 2 Met Mast Anemometers 6
Air pressure, temperature, humidity 3 Network camera 1

interface for the measurement record and to the OpenFAST model as Table 6

an external dynamic link library (DLL) [54] for the simulations.

4. Sensor configuration & field measurements

The test turbine has several sensors, including strain gauges on
different structural components. The turbine’s measurement and con-
trol system layout is shown in Fig. 6. This system is centered around
the Compact Rio hardware [55] from National Instruments, interfacing
with an expansion chassis in the nacelle and tower via an EtherCat bus.
Programming for the system is developed in LabVIEW [53]. The control
and measurement system operates with dual sampling frequencies of
100 Hz and 20 Hz for signal measurements, capturing data from 67
channels summarized in Table 5. The collection of data for a longer
time duration is available at the Zenodo repository [56,57]. Details
on the complete measurement setup and sensor configurations are
documented in the bachelor’s thesis [58]. Notably, the wind estimation
derived from Eq. (5) outlined in Section 5.2 serves as a basis for
comparison with the EKF-estimated wind, considered the recorded
wind in the subsequent sections of this paper.

Figs. 7 to 9 show the data recorded from different sensors at 20 Hz
under three operating conditions. Out of these three plots, the first
one, i.e., Fig. 7, shows the response of the turbine recorded on 23rd
September 2022 at a mean wind speed of 5.9 m/s at hub height
corresponding to the below-rated condition. The critical parameters
shown here are rotor speed, generator power, and generator torque
when the blade pitch controller remained inactive as the wind speed did
not exceed the threshold for pitch control activation. Besides the below-
rated condition, Fig. 8 demonstrates the above-mentioned responses,
recorded on 17th January 2022 at a mean wind speed of 9.2 m/s.
Notably, the torque control parameters, as detailed in Section 3, for the
25 kW power setting, are employed for this case. Fig. 9 represents the
operating condition of the test turbine recorded on 5th January 2023,
employing the control settings tailored for the maximum power output
of 30 kW. Measurements spanning a total duration of 500 s are shown
in Fig. 9. During this interval, the average wind speed was around
7.9 m/s, originating from the southwest. The rotor speed maintained
a range from ~ 60 rpm to 78 rpm, while the blade pitch was adjusted
between 4 and 11 degrees to sustain the target power output of 30 kW,
as demonstrated in Figs. 9(a) to 9(f).

As mentioned earlier, there are 67 channels, including multiple
strain gauges in the tower and blade. In the transition between the
wooden structure and the concrete foundation is the steel footing,
where a total of eight strain gauges have been placed as two sensors.
Refer to Fig. 10 for the details of these sensor placements. These are
positioned in the north-south and east-west direction at a height of
0.53 m, representing one-third of the height of the steel footing. Each
blade consists of 8 strain gauges placed along the length of the blade,
positioned at the blade root, at a distance of 2 m, 3.5 m, and 5 m away
from the blade root.

10

Identified tower and blade frequencies from tower and blade root measure-
ments.

Record date Mean wind  Actual and identified frequencies (Hz)
(m/s)
Tower Blade
1st freq. Identified 1st Flap Identified
freq.

29-01-2022 21.9 0.82 [3.79] 5.42 [3.73]
17-01-2022 9.22 0.79 0.82 [3.79] 5.63 5.41 [3.90]
05-01-2023 7.92 : 0.82 [3.79] ’ 5.41 [3.90]
23-09-2022 5.93 0.82 [3.79] 5.40 [4.08]

N.B.: The values within [.] indicate the percentage error between the actual and
identified frequencies.

5. Inverse analysis using field measurements

This section uses measured response quantities to identify in-situ
structural parameters, which are further needed for model validation.
This is carried out in two steps. First, the modal parameters are ex-
tracted through signal processing, where any time—frequency analysis
(e.g., short-time Fourier transform [59], Hilbert-Huang transforma-
tion [60], wavelet transformation [61], among many others) can be
adopted. In this study, the continuous wavelet transform is used for
signal processing. The rationale behind the selection of wavelet-based
time-frequency analysis is due to its superior ability in signal pro-
cessing, which has already been established in the literature [62,63].
Once the modal parameters are identified, the rotor effective wind
speed is estimated to tune the simulated turbine responses with field
measurements.

5.1. Modal identification of tower and blade from measurements

As stated earlier, the Wavelet Transform (WT) has an inherent ad-
vantage compared to other time-frequency representation techniques
when extracting instantaneous features from signals. In wavelet anal-
ysis, a signal f(¢), a function of time, is expressed with a composition
of several time-localized, translated, and scaled basis functions, v, . (),
called the mother wavelet. The Continuous Wavelet Transform (CWT)
processes a time signal f(r) and converts it into a new 2D sequence.
This transformation yields the wavelet coefficients W;(a,7) and is
mathematically defined as follows [64]

1 +eo s (1—T
Wy(a,7) = —/ fOw (—)dt . a,reR @
\/Z o a
The shift parameter z is used to center the wavelet function to obtain
information about the signal around the location + = 7. The scale
parameter a, which is inversely proportional to frequency, can be
varied to extend the basis function to control the range of frequencies
about which information can be obtained, and v, () is the complex
conjugates of the mother wavelet v, (.). For a discrete-time series
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signal, y,(¢) having N data points and dt time step, can be expressed in
the frequency domain using CWT as
N-1

W, Flam = Y 5o @wpe "
k=0

3

7, and y* are the discrete Fourier transform of the signal and the
mother wavelet, respectively. In essence, the continuous wavelet trans-
form convolves the mother wavelet y,; with the signal f(r). The
wavelet coefficients take on maximum values at the locations where the

11

frequency of the scaled wavelet f,, coincides with the local frequency
of the signal f;(r). This defines the ridges in the time-frequency plane
as a,(r) = 2”_t0 Extracting the values of the wavelet coefficients along
each ridge yields a wavelet skeleton. Similarly, a slice of the scalogram
at a given time, across the range of frequencies, yields the instantaneous
spectrum of the signal, indicating the frequency content at that instant
in time. By finding out the points where wavelet coefficients reach
local maxima i.e., |Wf(a,, r)| = (‘Wf(a, r)|) , the corresponding
frequencies can be identified. e
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Table 7
RRMSE and TRAC values of simulated and measured responses.

Responses Wind speed (m/s) Rotor speed (rpm) Generator torque (kN-m) Generator power (kW)
Record date RRMSE TRAC RRMSE TRAC RRMSE TRAC RRMSE TRAC
23-09-2022 0.027 0.999 0.004 0.999 0.033 0.998 0.034 0.998
05-01-2023 0.031 0.999 0.008 0.999 0.061 0.996 0.062 0.996
17-01-2022 0.049 0.997 0.009 0.999 0.104 0.990 0.102 0.991

In this context, it may be noted that the resolution of the scalogram
sometimes needs to be enhanced using different advanced versions
of the CWT, e.g., Combined Wavelet Hilbert Transformation [65] or
Synchro-squeezing [66]. These are particularly required when there
are closely spaced modes or poor resolution of the energy spectrum,
leading to erroneous frequency tracking. However, as the frequencies
of the HAWT used in this study are well separated and the resolution
of the spectrogram did not offer any difficulty in frequency tracking,
these advanced versions were not invoked, and a regular CWT was
found to be sufficient to meet the objectives. Thus, an analytic Morse
wavelet, a complex-valued wavelet containing positive real-frequency
components, is employed for the modal identification. This choice of
wavelet offers the inherent advantage of effectively representing signals
with varying amplitudes and frequency content over time [67,68] and
free from the end effect errors arising from time resolution [20]. The
amplitude spectrum of this wavelet in the frequency domain is given
by

a ,—wf

Vo, (@) = H(w)a, 0% 4

In this equation, H(w) is the Heaviside step function, and a,, repre-
sents a normalizing constant. These parameters are crucial and signify
the compactness and symmetry of the wavelet. The time-bandwidth
product of the resulting wavelet, characterizing the trade-off between
time and frequency localization, is determined as P?> = a x y. Efficient
algorithms for computing Morse wavelet coefficients, developed by
Lily [69], are available in MATLAB [70], which is utilized in this
study. The Morse wavelet exhibits zero skewness when the symmetry
parameter y is set to 3. Hence, for this study, default parameter values
of y= 3 and a specific value for « corresponding to the time-bandwidth
product value as 60 are employed to ensure symmetry in the basis
function.

To identify the tower frequencies, the measurements of tower root
moments with a sampling frequency of 20 Hz are considered. Here, it
may be noted that turbine response during regular operating conditions
has contributions from both structural and rotational frequencies of the
turbine. Therefore, to avoid false identification of structural frequen-
cies, the parked condition is chosen first. Fig. 11 and Fig. 12 show the
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recorded measurements of the tower and blade during this condition.
These measurements were recorded on 29th January 2022 at a mean
wind speed of 21.9 m/s. The energy spectrum shows the identified
tower and blade frequencies along the fore-aft and flapwise directions,
which are 0.82 Hz and 5.42 Hz, respectively. The estimated error for
these frequencies is well within 5% with respect to the designed fre-
quencies for the respective structural components. Similarly, the tower
and blade measurements in orthogonal directions (i.e., side-to-side and
edge-wise, respectively) are also considered to identify the respective
structural frequencies, which are not presented here to avoid repetition.
Once these frequencies are identified, this process is repeated for other
operating conditions to cross-verify these results. Thus, Fig. 13 shows
the tower base measurement and the corresponding CWT scalogram
with the instantaneous spectra demonstrating the energy density across
ridge frequencies obtained from the wavelet analysis, respectively, at
an average wind speed of 9.2 m/s. As stated earlier, the energy density
across ridge frequencies shows the tower 1st fore-aft frequency at
0.82 Hz with 3.79 % error as compared to the frequency obtained from
the FEM model. This plot also shows the presence of other frequencies
in the spectrum, as expected, which can be easily identified further. Si-
multaneously, the blade frequencies were verified, analyzing blade root
measurements in the flapwise directions. Fig. 14 shows similar results
for the blades corresponding to a mean wind speed of 9.2 m/s. The first
flapwise frequency identified from this measurement displays 3.90 %
estimation error compared to the NuMAD model. Besides structural
frequencies, rotational frequencies of the turbine and its harmonics are
also identified from the response during regular operating conditions,
which are marked in the respective plots. Table 6 enumerates the iden-
tified frequencies and their comparison with the frequencies estimated
from the FEM models of the tower and blade, which establishes the
accuracy of the inverse system characterization.

5.2. Wind field characterization

The rotor effective wind speed has been derived using two different
methods in this paper. In the first method, the rotor effective wind



D. Panda et al. Renewable Energy 256 (2026) 124343

-4
48210 . - : T T 1.2

o
(-3
1P (L.24 Hz)

Energy Density
o
=

e
S

100 20) 300 400 500 600
I \(Sec)

Blade 1 Root Measurement (v/v)

0.2
1°¢ Flap Freq.

N
=
-
v

o
@
~
@
©

AR : ; : ;
0 100 200 300 400 500 600 o 1 2 3 4

Time (sec)

(a) (b)

Fig. 14. Blade root measurement and corresponding CWT scalogram with the energy density for operating condition with mean wind 9.2 m/s ; (a) Root
measurement along flap wise direction, (b) Identified blade frequencies.

v (m/sec)
o

v (m/sec)
®

100 200 300 400 50 100 200 88

Wind Velocity (m/sec)

Wind Velocity (m/sec)

3
150 160 170 180 190 200 210 220 230 240 250 0 50 100 150 200 250 300 350 400 450 500
Time (s) Time (s)

(a) (b)

400 50

Wind Velocity (m/sec)

5
150 160 170 180 190 200 210 220 230 240 250

Time (s)
(c)

Fig. 15. Comparison of EKF and recorded wind velocity at hub height; (a) for below-rated conditions with mean wind 5.9 m/s, (b) for rated conditions with
mean wind 7.9 m/s (c) for rated conditions with mean wind 9.2 m/s.

14



D. Panda et al

75 T T T T T T T T T

mulated
Measured

70

0 100 200 300 400 500

65 t(s)

Rotor Speed (rpm)

60

55 . . . . . . . . .
150 160 170 180 190 200 210 220 230 240

Time (s)

(a)

250

20 T T T T

Renewable Energy 256 (2026) 124343

3t

mulated 3
Measured
2
25+ £
X
B “1
S .
3 200 300 400 5
=
215
S
©
2
s 1
O
0.5
150 160 170 180 190 200 210 220 230 240 250
Time (s)
(b)

Generator Power (kW)

100 200 300 400 500

2
150 160 170 180 190

200

Time (s)

(©)

Fig. 16. Response comparison between “simulated” (using openFAST) and “measured” (field measurements) responses for below-rated conditions with mean

wind 5.9 m/s; (a) Rotor Speed, (b) Generator Torque, (c) Generator Power.

Table 8
Simulated and measured turbine response comparison.
Mean wind (m/s) 5.9 7.9 9.2
Responses Measured Simulated Measured Simulated Measured Simulated
Rotor speed (rpm) " 62.83 62.82 [0.02] 70.08 70.01 [0.10] 72.83 72.64[0.26]
P P c 4.06 4.08 [0.49] 2.88 2.91[1.04] 291 2.92 [0.34]
Generator torque (kN-m) " 1.55 1.54 [0.65] 2.96 2.93 [1.01] 3.09 2.93 [5.17]
4 c 0.51 0.52 [1.96] 0.79 0.80[1.26] 0.39 0.42 [7.69]
Generator power (kW) I 10.41 10.39 [0.19] 21.91 21.69 [1.01] 23.58 22.51[4.53]
P 4.08 4.15 [1.71] 6.39 6.52 [2.03] 2.69 2.89 [7.43]

N.B.:The values within [.] indicate the percentage error between measured and simulated turbine responses.

speed is estimated directly from the electrical power using the following
expression

2P,

_ 5
PAC,(1. ) ®

where P, is the measured electrical power, the power coefficient
C,(4,p) is calculated from the measured rotor speed and blade pitch
angle, and the estimated wind speed 9,,, fed back to Eq. (5).

In the second method, for inverse characterization and comparison,
the rotor effective wind speed is also estimated using an extended
Kalman filter (EKF). For this purpose, the wind speed estimator used in
ROSCO [38] for the TSR tracking generator torque controller and pitch
saturation routines is used in this study. The choice of the standard EKF
for this paper is based on the fact that the EKF has demonstrated suf-
ficient accuracy in estimating the rotor average effective wind speeds
in previous studies. The interested reader is referred to the following
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papers on the comparison of different real-time wind speed estimation
techniques [71-73] The wind speed estimate 0, can be expressed as
o, = (v; +v,), where v, and v, are the turbulent and the mean
component of wind speed, respectively.

The nonlinear state-space wind estimator model and measurement
equations used in the EKF-based updating algorithm are given by

= f(x,u)+ g (6a)

y=hx, )+ g, =0, +8g, (6b)

where f (x u) and h(x, u) are the nonlinear state transition and out-
put functions, respectively. In these equations, the model noise g
[n, nyn;]T and the measurement noise g, are assumed to be Gaussian
white noise with a finite covariance. The state and input vectors are
denoted by x = [w, v, v,,]T, and u = [0 7,1, respectively. Blade pitch
angle and generator torque are assumed to be noise-free inputs and are
directly obtained from their respective measurements. The nonlinear
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state space equations for the EKF-based identification are given by

1
@, = 7 (tq — Ny7p) (7a)
v
O = _Z_Lr:lvt"""l (7b)
Uy = Ny (7¢)

where , is the rotor speed, J is the rotor inertia, N, is the gearbox
ratio, and 7, is the generator torque. L, is a turbulence length scale
parameter generically defined as L, = 3D, where D is the rotor
diameter. In this model the aerodynamic torque 7, can be calculated

as

7, = 0.50AC, (4, 0)0° ;! ®)

In Eq. (8), p is the air density, A is the rotor area, 6 is the blade pitch
angle, and 4 is the tip speed ratio, i.e., 1 = ""ﬁR. A second-order central
differencing approach calculates the Cp surface gradients at operating
points.

The process noise (Q) and measurement noise (R,,) covariances in

the EKF algorithm are considered as per [37], which are given by

107°0 0
3.2
o=| o X% 0 |, R,=002 9
2
0 R
600

The turbulence intensity is considered as r; = 0.18, the upper zone of
the turbulence intensity for standard inflow wind conditions as defined
by [74]. Therefore, the state estimation for the prediction step in the
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EKF algorithm uses the following equation

0 = (X it > #) (10)
In this algorithm the predicted covariance estimate is given by
P(t)= F(t) Py + Py FT (0 + Q; — K4 R, K], an
It may be noted that the Kalman gain (K} ) is computed as
-1
Ky = Py Il [ I Prot IT + R, 12

Where the Jacobians corresponding to the measurement equations are

defined as F(r) = % , and J, = = , respectively.
X k—1k—=1 Uk XX k-1

Once the state prediction is completed, the measurement is updated as

Vi = vk = (X gpe-1) 13)

It is followed by state updation using updated measurement j,, which
is given by

Xplk = X -1+ KiFy 14)
Finally, the covariance is updated as follows
Py = =K Ji) Prjp—y (15)

Once the state is updated at the k" time instance, the rotor effective
wind speed is then estimated as follows

O =10 1 1] x (16)

Using the above-mentioned wind estimator, the rotor effective wind
speed time history is evaluated for three operating conditions discussed
earlier. Fig. 15 shows the details of these estimated time histories,
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which closely match the measured speed, indicating the accuracy of
the EKF-based model updating. Furthermore, the relative root mean
square (RRMS) error and Time Response Assurance Criteria (TRAC) for
these three cases are estimated using the following expressions

T A
RRMSE = 1/ Q=9 =9
Ty

2
TRAC= I
OTVETH)
The values of these model indicators are highlighted in Table 7.
The estimated relative error values, i.e., RRMS, are mostly well within
10%, indicating an accurate estimation of these parameters. Besides
RRMS of error, TRAC values are also presented in the same table, which
indicates the degree of correlation between the measured and modeled
responses. The values of this indicator are more than 99% in all the
cases, supporting the accuracy of the updated model.

(17a)

(17b)

6. Model validation

In this section, the OpenFAST model of the test turbine is validated.
Firstly, a comprehensive description of the turbine model implemented
in OpenFAST [44] is provided. Following this, the turbine’s perfor-
mance is validated by comparing its key performance indicators, specif-
ically rotor speed, generator torque, generator power, blade pitch oper-
ations, and tower base moments, with field measurements under three
operational conditions, as outlined in Section 4. These comparisons are
made using the estimated wind speeds described in the previous Section
to ensure a rigorous evaluation. Lastly, an analysis of the tower and

17

blades’ steady-state responses is included, demonstrating their behavior
as functions of wind speeds. This analysis offers a comprehensive
insight into the overall dynamics of the turbine components.

6.1. Turbine response validation

The National Renewable Energy Laboratory’s (NREL) OpenFAST is a
popular tool for wind turbine aerodynamics and dynamic simulation. It
uses a primary input file to describe the wind turbine operating parame-
ters and basic geometry. However, the blade, tower, and aerodynamic
parameters and wind-time histories are read from separate files. The
layout of the mode of operation, along with the detailed descriptions
of individual input files, are provided in [5]. For the current study,
the ADAMS post-processor is not employed. This study adopts the
estimated rotor effective wind realizations in the InflowWind [75]
module and are applied as uniform wind fields at hub height. Finally,
the baseline torque and pitch control parameters are delineated through
a dynamic link library (DLL) interface described in Section 3.

The simulated turbine responses for the three different operating
conditions, as described in Section 4, are shown in Figs. 16 to 18. The
comparisons of different performance parameters are listed in Table
8. The numerical figures presented in this table show that the mean
and standard deviation of rotor speed, generator torque, and generator
power remain within 2% except at 9.22 m/s, where the difference is
around 5 to 7% (i.e., < 10%). In addition to the key turbine parameters,
Figs. 17(d) and 18(d) also show the variable pitch time histories applied
in two different cases, i.e., test setup and updated OpenFAST model.
The minor discrepancies between the simulated and measured pitch
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may be attributed to several factors - (i) improper quantification of
the measurement error, (ii) use of aerodynamic power coefficient (Cp)
based on steady wind flow conditions as a general practice (as opposed
to turbulent flow in reality), (iii) unmodeled pitch actuator dynamics.
These aspects will be investigated in subsequent works.

6.2. Tower responses validation
Further, the tower base moments are validated to demonstrate the

accuracy of the benchmark model. The strain sensors in the steel
base are considered for these measurements. Moment equations are
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systematically derived from the test data documented in [45]. The fore-
aft and side-to-side moments are derived based on nacelle orientation
and transformations. In this formulation, the effect of temperature is
ignored, while the wind direction and yaw bearing position are con-
sidered for meaningful moment estimation. This conversion of strains
into moments using different measurements is bound to have inherent
errors. On the other hand, the simulated moments are based on a
multi-body dynamic model having some modeling error no matter how
accurate it may be. Hence, Kalman-based updating is adopted here to
minimize the error between the measurement and simulation, which
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can be expressed as follows.

Xy = Axy + wy (18)

zp = Hxp + vy 19

Where x, represents the state vector at time step k (simulated fore-aft
and side-to-side moments), and z, represents the measurement vector
at time step k (i.e., fore-aft and side-to-side moments). A and H are
the state transition and the observation matrix. wy is the process noise
vector, assumed to be Gaussian with zero mean and covariance Q, and
vy is the measurement noise vector with covariance R. The covariance

19

R is chosen based on the quality of the measurement and defined
as R = diag(vp,,vgs), where vy, and vgg are noise covariances of
tower base fore-aft and side-to-side measured moments, respectively.
Typically, these noise covariance are approximately 5% to 10% of the
variance of the measurements. In this study, this covariance is initiated
with 10% of the variance of the measurements. The Kalman algorithm
is then implemented through the following steps.

Time Update (Prediction):

R g1k = A% i (20)
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P = AP AT + 0 21)
Measurement Update (Correction):

Kiy1 = P H (H Py H + R (22)

Rtk = X + Kig1 Zigr = HX 1) Prey i (23)

Priiperr = = Ky i HYPyyy i 24)

The simulated and measured tower root moments for the three different
operating conditions, as described in Section 4, are presented in Figs.

20

19. The comparison plots demonstrate the closeness of the simulated
and measured tower base moments.

The Kalman filter is tuned statistically based on the estimation error
between the system states (x,—%,) and the error between measurements
e, = (z; — H%y), which are Gaussian and white. In other words, the
statistics of the state and measurement errors should be consistent
with the chosen covariances Q and R [76]. Since the true system
state x, is often hard to obtain, filter tuning is typically done by
examining the measurement errors ¢, also known as innovation. By
definition of a well-tuned filter, the innovation sequence ¢, should have
a zero mean, and approximately 99.7% of the innovations should be
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Fig. 22. Steady state response of tower and blade.

bounded within +3c where the innovation covariance matrix at time
step k is defined as S, = HP,H" + R. The fore-aft and side-to-side
innovations and their +3c boundaries for the three different operat-
ing scenarios are shown in Fig. 20. Further, to satisfy the Gaussian
assumption of the innovation sequences, two innovation sequences in
this study can be normalized into one quantity. That is the normalized
innovation squared (NIS), denoted as v, = e[S;lek. For a well-tuned
filter, the normalized innovation squared is expected to be Chi-squared
distributed with n degrees of freedom (v, ~ ;(3). In other words, the
normalized innovation squared must lie within the confidence interval
v, € LF;‘ (%n) ,F;l (1 - %n) , where F~! is the inverse cumulative
distribution function of the Chi-squared distribution. In this case, the
number of measurements is n = 2; thus, the upper and lower bounds are
[F;'(0.025,2), F;'(0.975,2)] = [0.05,7.38] with a = 0.05 (two-sided 95%
confidence interval). Fig. 21 shows most of the normalized innovation
squared lies within the confidence intervals, and the right plot shows
the cumulative distribution of the normalized innovation squared v.
Thus, the hypothesis is acceptable, and the innovation sequences ¢, are
unbiased Gaussian distributed, as shown in Fig. 21.

6.3. Steady-state behavior of tower and blade

Once the model was validated satisfactorily, further effort was made
to investigate the steady-state performance envelope of the tower and
blade. For this purpose, different steady wind fields are generated
using TurbSim [77]. Using these wind fields, the updated model of
the turbine is simulated, and the peak performance curve for tower
and blade tip response in two orthogonal directions at different mean
wind speeds are presented in Fig. 22. The out-of-plane tip deflection of
the blade (Blade 1) reaches a maximum at the rated operating point
before dropping again. This response characteristic results from the
rotor thrust attaining peak value at the rated speed. This feature is
typical of a wind turbine with a variable pitch rotor because of the
transition in the control system at rated between the active generator-
torque and the active blade-pitch control regions. This behavior is also
visible in the in-plane tip deflection of the blade and the tower-top
fore-aft and side-to-side displacement.

7. Conclusions

This paper presents an inverse identification of the Chalmers Wind
Turbine [78], which is a small-scale horizontal-axis wind turbine. The
paper presents a detailed procedure for inverse identification and pro-
vides a benchmarked model of the Chalmers small-scale wind turbine
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to the wind energy community for research and development. Please
note that the Chalmers Wind Turbine is one of the listed facilities
under the EAWE Test Wind Turbines Committee (TWTC) [79], which
provides direct access to all measurements. These research turbines are
essential for understanding the behavior of wind and wind turbines in
research and education. Therefore, benchmarking the numerical model
of the Chalmers Wind Turbine against field measurements is a big step
forward in this direction. The paper’s contribution is broken down as
follows.

+ The main aim of this study is to focus on the system charac-
terization of a small onshore horizontal-axis test turbine. It is
achieved through rigorous testing of the tower, followed by finite
element modeling of these components. The modal characteristics
of these components are also identified through signal process-
ing of measurements from the combined tower-drive train-rotor
assembly operating under different wind flow conditions. The
wavelet-based signal processing successfully identifies the modal
parameters of the tower and the blades with a significant level of
accuracy when compared with the detailed FE model. This system
characterization, encompassing every level (i.e., local features to
global behavior), using turbines in various operating conditions,
has not been attempted in the literature earlier.

The wind flow model used to estimate the rotor effective wind
speed proposed by [37], incorporating power and control pa-
rameters, is adopted in this study. Abbas et al. [38] also used
this model to develop the ROSCO controller for TSR tracking
generator torque control, adopting simulated hypothetical bench-
mark turbines. However, the performance of this model was never
tested using actual data under different operating conditions,
which is attempted here. This is achieved through an EKF-based
filtering algorithm. The rotor effective wind speed is tracked in
real-time using the actual measurements, i.e., rotor speed, gener-
ator torque, and power output. The numerical results presented
in this paper highlight the accuracy of the wind estimation pro-
cess. The relative error estimates and correlation of the modeled
turbine response with measurement indicate the robustness of
the wind flow model, which can be further utilized for turbine
response analysis and design.

Finally, the complete description of the multi-body dynamic
model in OpenFAST is presented here. This can serve as the
benchmark for further studies on modeling, analysis, and con-
troller design, among many other aspects of horizontal-axis wind
turbines. In this context, it is worth noting that all other bench-
mark models available in the literature are based mainly on
code-to-code comparisons and validations. In contrast, the bench-
mark model of the 45 kW turbine presented in this paper is
based entirely on the actual test bed. The simulated responses
of the model turbine are compared with exact measurements,
including rotor speed, generator power, generator torque, blade
pitch angle, and tower base moments. These simulated results
closely match the measurement, confirming the accuracy of the
multi-body dynamic model. Finally, the steady-state responses of
the tower and blade as a function of wind speed are also included
for further studies on this topic.

In summary, this paper focuses on the validation of the multi-
body dynamic modeling and analysis of horizontal-axis wind turbines.
Although a complete description of the HAWT and the wind flow
model is presented here with significant emphasis on the key turbine
parameters, i.e., rotor speed, generator power, generator torque, blade
pitch angle, and tower base moments, the blade response is not covered
in this paper except for a few basic features. The authors wish to
cover these details, i.e., aeroelastic behavior, aero-dynamic damping
estimation, and transient blade responses operating in a closed-loop
control network, in their future communications, as accommodating all
these details in a single paper is complex.
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