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 A B S T R A C T

This paper presents inverse systems identification of a horizontal axis wind turbine to bench-mark the complete 
multi-body system. This is achieved by an extended Kalman-based time marching algorithm of a rotor-
effective wind flow model involving rotor speed, generator torque, and power output. In addition to wind 
estimation, comprehensive inverse characterization of the turbine is also presented here. For this purpose, the 
dynamic characterization of a unique wooden tower is considered first, followed by the detailed aeroelastic 
characterization of the blades made of carbon fiber using a series of tests and detailed modeling. The tower 
and blade root measurements are utilized to identify in situ modal characteristics, further validating the model 
and its performance. Finally, the steady-state response of the tower and blade at different mean wind speeds is 
identified for complete bench-marking. The numerical results presented in this article highlight the accuracy 
of the proposed wind estimation and the characterization of the close-loop system under different operating 
conditions.
1. Introduction

The worldwide wind energy landscape is driven by innovation, 
advancement, and a never-ending pursuit of increased efficiency. With 
the surging deployment of Horizontal Axis Wind Turbines (HAWTs), 
whether in utility-scale land-based projects or offshore ventures, the 
quest for optimal and sustainable performance continues to drive this 
sector. The accomplishment of these goals in achieving the full po-
tential of wind power depends on sophisticated modeling and con-
trol systems combined with inverse characterization and continuous 
monitoring techniques. This path towards improved control and opti-
mization requires high-fidelity multi-body dynamic models, which offer 
invaluable insights into the behavior of HAWTs, enabling researchers 
and engineers to fine-tune their performance and accurately predict 
loads for estimating fatigue life. In this context, the need for benchmark 
models, particularly for small-scale HAWTs, is one of the most apparent 
obstacles in this path to precision. Benchmark models are essential 
tools for thorough analysis, allowing for standardized comparisons 
and control strategy optimization. They serve as the foundation for 
innovation and are an indispensable tool for overcoming the challenges 
of wind turbine scaling, whether for onshore or offshore usage.

In the realm of large-scale wind turbines, theoretical benchmark 
models are abundant, e.g., the renowned NREL 5 MW baseline model
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[1], DTU 10 MW [2] and International Energy Agency 15 MW model
[3] stand as a testament to their importance. However, ramifications 
of scaling wind turbines to different sizes in terms of both loads and 
turbine output, it is necessary to have a collection of similar wind 
turbine models of varying sizes. The Wind Partnership for Advanced 
Component Technologies (WindPACT) program, initiated by the NREL, 
charted the way by developing four baseline wind turbine models with 
varying power ratings. 750 kW, 1.5 MW, 3 MW, and 5 MW [4]. These 
models were originally implemented in FAST, (i.e., Fatigue, Aerody-
namics, Structures, and Turbulence) [5], which is a popular aeroelastic 
code for simulating onshore and offshore wind turbines.

These benchmark models have become invaluable tools for com-
parative studies in wind turbine research. They provide standardized 
platforms for evaluating dynamic responses and validating simula-
tion frameworks, enabling effective load estimation strategies under 
varying environmental and fault conditions. Rezaei et al. [6] devel-
oped a complete multibody model of the NREL 5 MW turbine, which 
incorporates geometric nonlinearities to analyze rotor dynamics and 
flutter instabilities and highlighted the importance of full-system mod-
eling compared to simplified approaches. Similarly, Xue et al. [7] 
explored the rigid–flexible coupling of the 5 MW wind turbine under 
elevated wind conditions, providing guidelines for structural improve-
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ments based on the dynamic responses. Mitra et al. [8] utilized a 
high-fidelity aero-servo-elastic model to optimize the composite blade 
fiber orientation and demonstrated how bending-torsion coupling in-
fluences both control response and aerodynamic efficiency of wind 
turbines. Additionally, Liu et al. [9] studied the wake dynamics of 
the offshore 5 MW turbine using large eddy simulations and actuator 
line modeling under varying inflow turbulence conditions. According to 
their research, higher turbulence speeds up the wake recovery, which 
enhances energy extraction for downstream wind turbines. In addition 
to modeling, benchmark turbines play a vital role in the development 
and testing of advanced control algorithms to enhance performance 
and minimize structural loads. Sarkar and Chakraborty [10] intro-
duced a semi-active vibration control strategy that employs multiple 
magnetorheological tuned liquid column dampers on a wind turbine 
tower. This approach demonstrated the effectiveness of magnetorhe-
ological devices in providing adaptive damping under varying wind 
loads. Further, Abdelbaky et al. [11] developed a partially offline 
fuzzy logic-based model-predictive control for pitch regulation of the 
NREL 5 MW turbine. This method successfully addresses pitch actuator 
saturation and outperforms traditional proportional-integral (PI) con-
trollers. A multi-resolution wavelet-based LQR controller was proposed 
by Sarkar et al. [12] for individual pitch control of floating offshore 
wind turbines, demonstrating improved mitigation of blade and tower 
vibrations under combined wind-wave–current conditions by empha-
sizing frequency band-specific dynamics. Hu et al. [13] implemented 
a modular open-source baseline controller for the DTU 10 MW wind 
turbine on a Tension Leg Platform (TLP) using FAST. They compared 
conventional pitch-to-feather and active pitch-to-stall strategies, show-
ing how control frequency tuning affects rotor dynamics, platform 
stability, and thrust-induced responses under extreme offshore condi-
tions. In the context of fatigue and reliability, Sajeer et al. [14] used 
a spinning finite element model to investigate the role of longitudinal 
stiffeners in improving the fatigue life of the 5 MW turbine blade. Their 
findings provide structural enhancement strategies based on dynamic 
loading patterns. Yang et al. [15] studied the failure of tendons in 
a floating 10 MW turbine, showcasing the significance of controller 
robustness during fault scenarios. The emerging 15 MW class turbines, 
in particular, present significant difficulties because of their unpar-
alleled size and flexibility. Chai et al. [16] examined extreme wave 
and wind events for the IEA 15 MW turbine, underlining the need for 
robust modeling and control. Further, Liang et al. [17] emphasized the 
importance of scalable control and monitoring frameworks, as larger 
rotors introduce stronger aeroelastic effects and demand more robust 
load mitigation strategies.

Moreover, for small-scale turbines, such benchmark models are rare, 
without any in-depth analysis and the refinement of control techniques 
for this specific type. This dearth underscores a significant gap in 
our understanding of these smaller, often more localized wind energy 
solutions installed in large numbers. To this end, IEA Wind Task 
27 [18], titled Small Wind Turbines in Turbulent Sites, aims to enhance 
the understanding of how turbulence impacts the performance and reli-
ability of small wind turbines, particularly in complex terrain and urban 
environments. Its objectives include developing standardized methods 
for measuring turbulence, evaluating its effects on turbine performance 
and structural integrity, and fostering international collaboration to 
share data and best practices. Meanwhile, IEA Wind Task 41 [19],
Enabling Wind to Contribute to a Sustainable Future Energy System, focuses 
on supporting the integration of wind energy into future energy sys-
tems. It seeks to analyze the role of wind in decarbonization, develop 
tools for system integration, such as storage and grid flexibility, and 
facilitate knowledge exchange on policy and market design to promote 
the growth of wind energy. Both tasks contribute to understanding the 
performance and reliability of small wind turbines. In this context, the 
paper serves two purposes: firstly, to benchmark a small wind turbine 
against field data, and secondly, to perform inverse identification of 
the dynamics of a wooden wind turbine tower. The wooden tower is a 
2 
unique technology that offers a significantly lower net-carbon-emission 
alternative to traditional steel towers.

Traditionally, the inverse problem is solved in two major paradigms. 
In one approach, the measured response time histories are analyzed us-
ing signal processing tools to identify fundamental structural dynamic 
parameters. This approach is easy to implement and provides fast-hand 
information necessary for model verification. However, output-only 
signal processing-based modal identification may face difficulty as the 
measured responses often contain the rotational frequency of the tur-
bine and its harmonics, which are difficult to segregate from structural 
frequencies. On the other hand, the second approach adopts a model 
whose parameters are updated using filtering algorithms. They are 
often sensitive to modeling inaccuracies and require well-defined noise 
statistics. Both these approaches have their pros and cons, which are 
highlighted below. In recent years, wavelet analysis has become more 
well-known in system identification due to its superior time–frequency 
analysis capabilities and aptitude for handling non-stationary data. 
It offers a distinct viewpoint by presenting the modulus of wavelet 
transforms, often visualized as scalograms, in a time–frequency plane. 
The wavelet coefficients exhibit maximum values at the instantaneous 
frequency, corresponding to the dominant structural frequencies in the 
signal at that instant of time [20,21]. This property allows wavelet anal-
ysis to discern the critical modal parameters of the system accurately. 
Several studies have been made for extracting the natural frequency 
and damping properties [22,23] because of its inherent advantages. 
Some notable studies have explored the potential of wavelet analysis 
in connection with wind turbines. For instance, Murtagh and Basu [24] 
introduced two approaches to evaluate the equivalent modal viscous 
damping ratios for a wind turbine tower. The first method is based 
on the Fourier transformation of the motion equation, using the least 
square method to estimate the equivalent viscous damping ratios. The 
second method utilizes the wavelet transformation, employing a time-
segmented least square approach to extract the damping ratios. For 
identifying time-variant aerodynamic damping matrices of wind tur-
bines, Chen et al. [25] put forth a methodology using a wavelet-based 
equivalent linearization technique. Some studies have explored the 
potential of wavelet-based analysis to identify faults in wind turbines. 
Complex wavelet transform has been utilized to uncover weak bearing 
fault signatures suppressed by dominant gear vibrations, particularly 
in gearboxes with coexisting faults [26]. In parallel, advanced time–
frequency techniques like the reassigned second-order synchrosqueez-
ing transform have been introduced to accurately capture time-varying 
fault features in variable-speed operations, demonstrating improved 
clarity in fault characterization [27]. Further, continuous wavelet trans-
forms for LQR-based gain scheduling, optimizing fore-aft vibration 
control in horizontal axis wind turbine towers were examined by 
Mitra et al. [28]. However, there is a significant gap in the research 
regarding identifying critical modal parameters utilizing measurements 
from wind turbines and validating these findings against actual models.

Model-based methods, on the other hand, use filtering techniques 
to recursively update a dynamic model in order to estimate unknown 
loads or system characteristics. Variants of the Kalman filter have been 
widely used in this field. Schlipf and Cheng [29] used an Extended 
Kalman Filter (EKF) to demonstrate that wind turbine states and inflow 
conditions could be estimated reliably. Using limited sensor response 
data, an augmented Kalman filter (AKF) was used by [30] to esti-
mate unbalanced rotor loads in spinning machinery. Lei et al. [31] 
extended the EKF framework to use under ambient excitations for 
identifying structural element mass and stiffness changes in chain-like 
systems using acceleration data. Similarly, Wei et al. [32] proposed a 
Kalman filter-based approach combining structural acceleration data 
with BeiDou satellite measurements to estimate tower-top thrust and 
distributed bending moments in a full-scale 2.5 MW wind turbine. More 
recently, hybrid estimation frameworks have emerged to leverage the 
advantages of both physics-based and data-driven methods. For in-
stance, Mehrjoo et al. [33] developed a surrogate input load estimation 
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model combining transfer learning and multitask learning, enabling 
real-time load predictions in offshore wind turbines while addressing 
limitations of traditional model fidelity and data availability. While 
model-based and hybrid techniques have appealing capabilities, such as 
real-time performance and robustness under uncertain conditions, they 
are often sensitive to modeling inaccuracies and require well-defined 
noise statistics. In contrast, signal-based methods like the wavelet-based 
framework presented in this study provide a flexible and data-centric 
route for extracting dynamic characteristics from full-scale turbine 
measurements. The identified modal parameters are further validated 
using a high-fidelity finite element model to demonstrate the accuracy 
and applicability of the proposed methodology.

Besides model identification, wind field characterization is key to 
the successful inverse modeling of any multi-body wind turbine system, 
especially with variable pitch rotors acting in a close loop. The wind 
speed measurements obtained from the standard anemometer at the top 
of a wind turbine lack the requisite accuracy for high-fidelity analyses. 
Thus, rotor effective wind speed estimation in modern turbines is 
the prerequisite for designing advanced control strategies, condition 
assessment, power estimation, and downtime regulation. It involves 
various state estimation techniques that have been explored in the 
literature. For example, Kalman filters and their advanced variants 
were adopted in [34] to estimate the rotor-effective wind speed. The 
wind speed estimators were designed using a single-state observer for 
a simplified turbine model. Another approach explained in [35] em-
ployed a state observer to estimate aerodynamic torque. Subsequently, 
the effective wind speed was estimated based on the torque estimate 
through the inversion of the aerodynamic torque model. Besides rotor 
effective wind speed, aerodynamic torque estimation in the presence 
of close loop control is also essential. It helps to characterize the real-
istic power output of a turbine operating in a turbulent environment. 
Comprehensive surveys and comparisons of rotor-effective wind speed 
estimation methods using different state estimation techniques may 
be found in [36]. Based on measured turbine responses such as rotor 
speed and power produced, an effective wind speed, representing the 
wind field averaged over the rotor disc, was proposed in [37]. This 
effective wind speed estimator is based on an Extended Kalman Fil-
ter (EKF), which leverages nonlinear time-varying turbulence models. 
Furthermore, in the ROSCO model [38], the wind speed estimator 
from [37] was utilized for the TSR tracking generator torque controller 
and to set pitch saturation routines. A data-driven framework was 
proposed for real-time estimation of rotor effective wind speed by 
combining Gaussian process regression with an extended Kalman filter. 
This approach eliminates the need for precomputed aerodynamic maps 
by learning the surface of the power coefficient directly from real-
time measurements, enabling accurate estimation of REWS even under 
down-regulated conditions [39]. Despite its improved accuracy, the 
proposed method relies on a regression model trained from limited 
simulation data, which can reduce accuracy under highly unanticipated 
or unmodeled operating conditions.

Recently, light detection and ranging (LiDAR) [40] technology has 
gained traction in wind energy applications due to its ability to provide 
more accurate rotor-aligned wind measurements, enhancing the accu-
racy of turbine response analysis and control strategies. Doppler LiDAR 
scanning has been investigated to reconstruct the site-specific wind pro-
files up to 500 m, allowing detailed response analysis of large offshore 
wind turbines such as the 10 MW and 15 MW models [41]. Similarly, 
a minute-scale prediction framework has been proposed using limited 
LiDAR data and transfer learning, showing improved forecasting of 
incoming wind conditions, but still heavily depends on previously 
acquired data, reducing its adaptability to evolving sites [42]. On the 
control side, uncertainty-aware LiDAR models compatible with robust 
control techniques like 𝜇-synthesis and Quantitative Feedback Theory 
(QFT) have been proposed in [43], but they demand approximations 
of nonlinear sensor dynamics in linear uncertainty sets, which can 
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compromise accuracy under fluctuating conditions. Despite their po-
tential, LiDAR-based solutions for wind turbine monitoring and control 
are still in the early adoption phase, with high implementation costs 
limiting their large-scale deployment in operational wind farms. In 
general, using measurements such as rotor speed, generator torque, and 
other controller inputs, an EKF-based state observer coupled with a 
wind flow model can effectively estimate rotor-effective wind speed to 
tune the critical performance matrices of an operating wind turbine. 
The effectiveness of these models in replicating real-world scenarios 
through complete aeroelastic simulations and validating them with 
actual test data has not been attempted earlier but is addressed in this 
work. This approach offers a practical and cost-effective solution and 
can be a promising alternative to improve wind turbine performance 
and control strategies under varying conditions.

1.1. Objectives

The literature review presented above outlines the demand for 
benchmark reference models of HAWT, especially for small-scale tur-
bines. Most of the benchmark models reported in the literature are 
hypothetical. Only a limited number of benchmark models are available 
in the public domain. To address this issue, a horizontal axis test 
turbine at Björkö, Sweden, provides necessary data for various response 
characterizations under different operating conditions. Modeling this 
turbine and validating it with actual test data involves parameter 
estimation from the actual measurements, which is the key objective 
of this study. Thus, the deliverables of this work are outlined below.

• System characterization of a test turbine, which includes extrac-
tion of the structural properties and other parameters of the tower 
and blade through detailed analysis and signal processing-based 
model validation using field measurements.

• Rotor effective wind field characterization through inverse anal-
ysis of actual measurements using an Extended Kalman Filtering-
based wind flow model identification to replicate the actual op-
erating scenarios of the test turbine through high-fidelity model 
simulation.

• Validation of the detailed multi-body system by comparing differ-
ent response quantities obtained through the complete aeroelastic 
simulation of the turbine using an OpenFAST model over the 
complete operating range of the turbine.

Further, this paper is organized as follows. Section 2 provides a 
comprehensive description of the test turbine, starting with the general 
characteristics, followed by the extraction of structural properties from 
testing and finally, a modal description of the tower and blade. It 
also describes the driven train properties along with other relevant 
parameters necessary for detailed modeling. The turbine’s control sys-
tems are described in Section 3, and the control parameters for the 
desired power output are listed. Section 4 documents the sensor and 
measurement details of the test turbine. In Section 5, the inverse 
analysis of measurements is conducted in two phases. Initially, modal 
parameters are extracted through signal processing, with wavelet-based 
time–frequency analysis as the primary tool. Once these modal param-
eters are identified, a meaningful comparison for benchmark demands 
wind field characterization. To address this issue, the rotor effective 
wind speed is estimated using an EKF-based model updating technique 
to tune the simulated turbine responses with field measurements. Then, 
in Section 6, different simulated responses of the updated aeroelastic 
model in OpenFAST [44] are validated against the test data. Further, 
an analysis of the steady-state responses of the tower and blades is 
included, demonstrating their behavior as functions of wind speeds. 
Finally, conclusions are drawn in Section 7.
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Fig. 1. Chalmers wind turbine and its components: (a) Geographic coordinate, (b) Rotor Nacelle Assembly (RNA), (c) Steel top adopter, (d) CAD model of wooden 
tower body, (e) CAD model of Steel base.
2. General description of the test turbine

This study uses an onshore horizontal axis wind turbine located on 
Björkö Island, approximately 20 km west of Göteborg City, Sweden. 
The turbine was erected in 2020 with the support of the Swedish Wind 
Power Technology Centre, the Swedish Energy Agency, and Region 
Västra Götaland, to facilitate research in wind energy. The coordinates 
are: 57.71818820625921, 11.683382148764485. The novelty of this 
wind turbine is its tower, which is made of wood laminates. The blades 
are made of carbon fiber, hence they are lighter and stiffer compared 
to traditional blade materials. Some critical components of this turbine 
are shown in Fig.  1. The tower begins with a concrete foundation 
upon which a steel footing is anchored. This steel base supports the 
wooden conical tower. On top of the tower, a steel adapter is fitted to 
attach the machine housing. The nacelle includes components such as 
the main shaft, generator, and a yaw motor. It has a direct drivetrain 
without any gearbox. The wooden tower is 30 m high, including the 
top adapter. The rotor blades are mounted upwind of the nacelle. The 
carbon fiber blades are 7.5 m long, with a rotor diameter of 16 m. The 
wind turbine is designed for a maximum power output of 45 kW. This 
study leverages measurements obtained from the turbine for various 
operating conditions. Subsequent sections of this study will thoroughly 
address this test turbine’s structural characteristics and operational 
parameters, which will be used to characterize the complete multi-body 
system and benchmark its properties and performance.

2.1. Tower properties

One of the novelties of this wind turbine is that the tower body is 
constructed using wooden modules. The body comprises five modules, 
4 
each composed of four segments of laminated spruce veneer. Inside 
the wooden structure, 32 vertical studs of 81 × 42 mm are evenly 
distributed to reinforce the tower body, which has a wall thickness of 
63 mm. The tower is shaped like a truncated cone where the diameter 
decreases with height. The outer diameter at the tower’s base is 2.4 m, 
while the same at the top is 0.8 m. The tower is hollow and equipped 
with a door at the base that enables access to the inside of the tower. 
CAD models of the wooden tower, the steel base, and the top adapter 
are shown in Fig.  1. To evaluate the behaviors of the wind turbine 
and to characterize the structural properties of this innovative tower, a 
model of the tower was created using FEM. The material specifications 
for the wooden components are sourced from the manufacturer, and 
structural steel is used for the steel footing and top adapter. Given the 
absence of a defined modulus of elasticity for the wooden structure, the 
focus shifted towards quantifying the bending stiffness. This parameter 
is critical for characterizing the multi-body dynamics of the system. The 
other parts of the model were updated according to the real geometry 
and further refined through calibration, which was carried out using 
a series of tests conducted between April and May 2021, where a 
round collar was attached around the top of the tower and loaded 
with a certain force from two different directions, considering different 
weather conditions. This was carried out in two steps - (i) the strain 
gauges mounted on the tower were calibrated first and (ii) structural 
properties were tuned in the FE model to replicate the test data. During 
the pull test, the towline was first tensioned up to maximum load to 
allow the towline to stretch. The load was gradually released, and the 
sensor data were recorded accordingly to calibrate the tower model. 
The experimental details were documented in the B.Sc thesis [45] and 
hence it is omitted here.
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Table 1
Distributed tower structural properties of the chalmers wind turbine.
 Node HtFract TMassDen (kg∕m) TwFAStif (Nm2) TwSSStif (Nm2) Node HtFract TMassDen (kg∕m) TwFAStif (Nm2) TwSSStif (Nm2) 
 1 0.000000 883.677 1.68E+10 1.68E+10 17 0.516412 244.898 1.30E+09 1.30E+09  
 2 0.018319 881.356 1.68E+10 1.68E+10 18 0.550095 240.816 1.18E+09 1.18E+09  
 3 0.044681 270.408 3.13E+09 3.13E+09 19 0.583812 235.714 1.07E+09 1.07E+09  
 4 0.078364 270.408 3.13E+09 3.13E+09 20 0.617494 230.612 9.64E+08 9.64E+08  
 5 0.112081 270.408 2.98E+09 2.98E+09 21 0.651177 225.510 8.64E+08 8.64E+08  
 6 0.145764 270.408 2.83E+09 2.83E+09 22 0.684894 219.388 7.70E+08 7.70E+08  
 7 0.179447 270.408 2.68E+09 2.68E+09 23 0.718577 213.265 6.82E+08 6.82E+08  
 8 0.213164 269.388 2.53E+09 2.53E+09 24 0.752260 206.122 6.00E+08 6.00E+08  
 9 0.246847 268.367 2.38E+09 2.38E+09 25 0.785977 200.000 5.23E+08 5.23E+08  
 10 0.279979 266.598 2.23E+09 2.23E+09 26 0.819660 191.837 4.53E+08 4.53E+08  
 11 0.314246 264.794 2.09E+09 2.09E+09 27 0.853377 184.694 3.88E+08 3.88E+08  
 12 0.347929 262.245 1.94E+09 1.94E+09 28 0.887060 176.531 3.29E+08 3.29E+08  
 13 0.38309 259.042 1.81E+09 1.81E+09 29 0.920742 168.367 2.76E+08 2.76E+08  
 14 0.415329 256.930 1.67E+09 1.67E+09 30 0.954460 159.184 2.29E+08 2.29E+08  
 15 0.449012 253.061 1.54E+09 1.54E+09 31 0.988142 150.000 1.86E+08 1.86E+08  
 16 0.482729 248.980 1.42E+09 1.42E+09 32 1.000000 289.855 2.51E+07 2.51E+07  
After multiple iterations, the tower’s distributed mass and stiffness 
properties were tuned to align with its first natural frequency, which 
equals 0.79 Hz. Additionally, deflections at different heights of the 
tower were also compared with the results from the test to validate 
the model. To replicate the actual tower, its thickness was adjusted in 
the model to compensate for the studs inside the tower. The resulting 
distributed tower properties are provided in Table  1, which contains the 
mass density and tower stiffness along the fore-aft (FA) and side-to-side 
(SS) directions corresponding to 32 nodes along the tower center line 
relative to its base. In this table, HtFract is the fractional height along 
the tower center line with respect to the base. The other key parameters 
reported are mass density (TMassDen) and stiffness along the fore-aft 
(TwFAStif) and side-to-side direction (TwSSStif), respectively. Here, 
it may be noted that one of the main objectives of this work is to 
develop the benchmark model in OpenFAST, which is widely used by 
researchers and engineers. Hence, the variable names mentioned above 
are defined following the OpenFAST convention.

The complete aero-servo-elastic model of wind turbines requires 
precise mode shape estimation along with the tower properties. Thus, 
the calibrated FE model was further used to estimate tower mode 
shapes. It is a cantilever made of Euler–Bernoulli beam elements rep-
resenting the tower with a lumped mass at the top representing the 
Rotor-Nacelle Assembly (RNA), including blades. Each node has a 
translational and rotational degree of freedom in two orthogonal hor-
izontal directions (i.e., X in FA and Y in SS). The first four natural 
frequencies are 0.79, 7.13, 22.07, and 44.12 Hz. The first two mode 
shapes corresponding to the fore-aft and side-to-side directions of the 
tower are shown in Fig.  2. The corresponding mode shape coefficients 
using a sixth-order polynomial as given in Eq. (1) are provided in
Table  4. 

𝑃𝑖(ℎ) =
6
∑

𝑗=2
𝐶𝑖,𝑗{𝑓 (ℎ)}𝑗 (1)

In the above equation, 𝑖 and ℎ represent the mode shape number and 
the distance from the support, respectively.

2.2. Blade properties

The test turbine is equipped with three upwind rotor blades, each 
measuring 7.5 m in length, as shown in Fig.  1. These blades are made of 
14 distinct airfoils at 19 nodes, each contributing to the aerodynamic 
profile. Detailed aerodynamic properties for specific nodes along the 
blade length are listed in Table  2, where the aerodynamic twist is 
reflected as Aero-Twist.

Numerical Manufacturing and Design Tool (NuMad) [46] is used 
to model the blades as flexible rotating beams attached to the hub, 
which vibrates in flap-wise and edge-wise directions. This modeling 
incorporates the actual material and geometric properties provided by 
5 
Table 2
Blade aerodynamics properties of the chalmers wind turbine.
 Node Nodes (m) Aero twst (deg) Chord (m) Airfoil type  
 1 0.0000 35.0700 0.4200 Cylinder_Hono  
 2 0.3442 31.1884 0.4200 Cylinder_Hono  
 3 0.3492 31.0416 0.4200 Cylinder_Hono  
 4 0.6865 21.4266 0.4550 FFA-W3-357_Hono  
 5 0.9513 18.5855 0.5104 FFA-W3-360_Hono  
 6 0.9864 18.2095 0.5177 FFA-W3-330_Hono  
 7 1.0376 17.6356 0.5272 FFA-W3-301_Hono  
 8 1.1987 15.7822 0.5488 FFA-W3-270_Hono  
 9 1.3494 14.0359 0.5691 FFA-W3-240_Hono  
 10 1.6596 10.0248 0.5791 FFA-W3-211_Hono  
 11 2.6155 2.1538 0.5021 NACA-63-218_Hono 
 12 4.4462 −1.9223 0.3477 NACA-63-215_Hono 
 13 5.3526 −0.2875 0.2713 NACA-63-214_Hono 
 14 6.4009 −0.7119 0.1829 NACA-63-213_Hono 
 15 7.0450 −0.9994 0.1286 NACA-63-238_Hono 
 16 7.3846 0.2858 0.1000 NACA-63-212_Hono 
 17 7.4382 2.0945 0.0850 NACA-63-212_Hono 
 18 7.4727 3.2192 0.0600 NACA-63-212_Hono 
 19 7.4880 3.6568 0.0400 NACA-63-212_Hono 

Table 3
Distributed blade structural properties of the chalmers wind turbine.
 BlFract AeroCent Aero 

twst(deg)
BMassDen 
(kg∕m)

FlpStff (Nm2) EdgStff (Nm2) 

 0.00000 0.25 35.0700 39.50 1.842E+07 1.824E+07  
 0.04462 0.25 31.4700 39.50 1.842E+07 1.223E+07  
 0.08937 0.25 21.6000 17.80 6.821E+06 1.221E+07  
 0.13412 0.25 18.0000 16.30 4.270E+06 1.057E+07  
 0.17874 0.25 14.1500 14.40 2.626E+06 8.871E+06  
 0.22350 0.25 9.8100 12.60 1.716E+06 6.820E+06  
 0.26825 0.25 7.0100 10.40 1.033E+06 4.572E+06  
 0.31287 0.25 3.3800 8.45 0.583E+06 2.922E+06  
 0.35762 0.25 1.8500 7.15 0.357E+06 2.127E+06  
 0.40237 0.25 0.8900 6.02 0.211E+06 1.640E+06  
 0.44699 0.25 0.2100 5.01 0.131E+06 1.166E+06  
 0.49174 0.25 −0.4500 4.15 0.0767E+06 0.847E+06  
 0.53649 0.25 −1.1200 3.66 0.0511E+06 0.643E+06  
 0.58111 0.25 −1.7600 3.34 0.0411E+06 0.517E+06  
 0.62587 0.25 −2.3800 3.00 0.0286E+06 0.401E+06  
 0.67062 0.25 −1.6000 2.70 0.0201E+06 0.317E+06  
 0.71524 0.25 −0.2400 2.50 0.0168E+06 0.242E+06  
 0.75999 0.25 −0.4200 2.29 0.0123E+06 0.187E+06  
 0.80474 0.25 −0.5400 2.04 0.0095E+06 0.132E+06  
 0.84936 0.25 −0.7000 1.79 0.0074E+06 0.084E+06  
 0.89411 0.25 −0.8300 1.54 0.0041E+06 0.052E+06  
 0.93887 0.25 −1.0100 1.29 0.0032E+06 0.031E+06  
 0.98348 0.25 0.0000 1.04 0.0021E+06 0.017E+06  
 0.99534 0.25 3.0000 0.66 0.0004E+06 0.005E+06  
 1.00000 0.25 4.0000 0.52 0.0002E+06 0.003E+06  
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Fig. 2. Tower mode shapes; (a) First FA Mode, (b) First SS Mode,(c) Second FA Mode, (d) Second SS Mode.
the manufacturer and the aerodynamic properties listed in Table  2. 
Fig.  3 shows the blade model in the NuMad graphical user interface 
and the airfoils’ shape. This paper does not include comprehensive 
details on the airfoil characteristics, as it mainly focuses on wind and 
power calibration. The authors will provide these blade details in the 
subsequent work, where the major emphasis will be on blade response 
characterization. The NuMAD model is then exported to ANSYS [47] 
for further finite element simulation. The boundary conditions applied 
to the blade resemble those of a cantilever beam, with the blade being 
6 
fixed at the root and free at the tip. The optimal mesh was selected 
based on the standard mesh test for the modal analysis to obtain higher 
accuracy. The first four natural frequencies of the blade in Hz are 5.63, 
13.82, 18.96, and 32.97, representing 1st flapwise, 1st edgewise, 2nd 
flapwise, and 1st torsional frequencies, respectively. These frequencies 
will be verified through inverse identification of modal properties in 
the subsequent section of this paper. The respective blade mode shapes 
are shown in Fig.  4, and the mode shape coefficients for the first three 
modes are provided in Table  4. In this table, 𝑟 represents the distance 
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Fig. 3. Blade model of Chalmers wind turbine as viewed in the NuMAD GUI with airfoils.
of a point on the blade’s longitudinal axis from its root, while 𝑅 and 
𝑅𝐻  represent the radius of the blade and hub, respectively.

Besides modal characteristics, the distributed structural properties 
of the blades are also evaluated from PreComp [48] using the NuMAD 
model, which is listed in Table  3. The fractional separation between the 
chord line and the pitch axis is represented by the term AeroCent. The 
structural twist of the blade, i.e., StrcTws is assumed to be identical to 
the aerodynamic twist as given in Table  2, and BMassDen represents the 
mass per unit length. The flap-wise and edgewise stiffness properties 
are marked as FlpStff and EdgStff, respectively in this table.

2.3. Hub, nacelle, and drive train properties

This section presents the hub, nacelle, and drivetrain properties 
of the test turbine. As discussed earlier, the tower body is made up 
of wooden modules. The height of the tower above ground level is 
29.095 m. On top of the tower, a steel top adapter is fitted to attach 
the rotor-nacelle assembly. In its undeflected configuration, the hub of 
the test turbine is located at a height of 29.393 m above ground level, 
having a mass of 2799 kg. The vertical distance from the tower top to 
the rotor shaft is 0.292 m, and the distance from the yaw axis to the 
rotor apex is 0.608 m. The distance from the rotor apex to the blade 
root and tip are 0.45 m and 7.95 m, respectively, with no PreCone 
angle. The nacelle has a mass of 6500 kg, with the center of mass 
(i.e., CM) located at 0.563 m downwind of the yaw axis and 0.906 m 
above the yaw bearing. The nacelle inertia about the yaw axis is taken 
to be 6500 kg-m2, while the hub inertia about the rotor axis is taken 
as 255 kg-m2. The test turbine has a high-speed direct drive train. 
The generator’s electrical efficiency is kept at 99.9% with a gearbox 
ratio of 1 (i.e., this value is assumed for FAST modeling replicating no 
gearbox in the drivetrain). The generator inertia about the high-speed 
shaft is taken to be 137 kg-m2, equivalent driveshaft linear-spring and 
damping constants are 7.72E+06N-m/rad and 5.4E+04N-m/(rad/s), 
respectively. 

3. Generator-torque and blade-pitch controller details

This section discusses the baseline torque and pitch control system 
used in the test turbine, along with different parameters selected for 
the simulation in OpenFAST. First, the generator torque control is 
discussed, followed by the pitch controller details used in this study.
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Table 4
Mode Shape Coefficients of Tower and Blade.
 j Tower Blade

 {𝑓 (ℎ)}𝑗 (𝐶1,𝑗 ) (𝐶2,𝑗 ) {𝑓 (𝑟)}𝑗 (𝐶1,𝑗 ) (𝐶2,𝑗 ) (𝐶3,𝑗 )  
 2 (ℎ∕𝐻)2 0.37629 −25.07030

[

𝑟
(𝑅−𝑅𝐻 )

]2
0.0325 0.0005 −0.0881  

 3 (ℎ∕𝐻)3 2.30263 −41.35770
[

𝑟
(𝑅−𝑅𝐻 )

]3
−0.0798 4.3158 3.5029  

 4 (ℎ∕𝐻)4 −4.19699 84.88334
[

𝑟
(𝑅−𝑅𝐻 )

]4
1.7036 −7.7918 −25.3911 

 5 (ℎ∕𝐻)5 3.94659 09.43586
[

𝑟
(𝑅−𝑅𝐻 )

]5
−0.0235 6.8929 37.2812  

 6 (ℎ∕𝐻)6 −1.42852 −26.89120
[

𝑟
(𝑅−𝑅𝐻 )

]6
−0.6327 −2.4174 −14.3049 

There are five control zones where the generator torque is regulated 
depending upon the flow conditions, as shown in Fig.  5. Generator 
torque is zero in Region 1 before cut-in wind speed, where no power 
is extracted from the wind; instead, the wind accelerates the rotor for 
start-up. Region 2 (i.e., cut-in to rated condition)is a control region for 
optimizing power. In this region, the generator torque is proportional 
to the square of the filtered generator speed to maintain a constant 
(i.e., optimal) tip-speed ratio. Region 11∕2 is a linear transition zone 
between Region 1 to Region 2. This region places a lower limit on 
the generator speed to cap the wind turbine’s operational speed range. 
Another linear transition zone between Regions 2 and 3 (i.e., Region 
21∕2) is typically needed to limit tip speed at rated power. Finally, the 
generator power is retained constant in Region 3 (i.e., rated to cut-out 
condition) so that the generator torque is inversely proportional to the 
filtered generator speed. The peak power coefficient of 0.42 occurred at 
a tip-speed ratio of 9.87. Given a gearbox ratio of 1:1, this corresponds 
to an optimal constant of proportionality of 35.17 Nm/(rad∕s2) in the 
Region 2 control law for optimal generator torque as per [49].

Once the operating parameters for the generator are established 
for two different power outputs, 25 kW and 30 kW, respectively. The 
rated generator speed is uniformly set at 7.45 rad/s, corresponding to a 
power of 25 kW with a generator efficiency of 99.9% for a mechanical 
power of 25.025 kW at a generator torque of 3359.06N-m. On the other 
hand, the 30 kW setting resulted in a generator torque of 4030.88N-
m. The transition speeds from one region to another (i.e., Region 1 to 
Region 11∕2, Region 11∕2 to Region 2, and Region 21∕2to Region 3) are 
taken as 5.7 rad/s, 6.2 rad/s, and 7.0 rad/s, for 25 kW configuration 
and 5.7 rad/s, 6.2 rad/s, and 7.2 rad/s for 30 kW configuration, 
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Fig. 4. Blade model and identified mode shapes; (a) First Flapwise, (b) First Edgewise, (c) Second Flapwise (d) First Torsional.
Fig. 5. Generator torque and speed in different control regions; (a) for 25 kW power setting, (b) for 30 kW power setting.
respectively. A consistent generator-slip percentage of 10% is adopted 
in Region 21∕2 for both configurations, similar to the value used in 
the DOWEC study [51]. To safeguard against potential overloads, the 
torque is capped at a maximum of 4500.00 N-m, and a torque rate limit 
of 10,000 N-m/s is enforced. The generator-torque versus generator 
speed response curve of the test turbine for the two power settings are 
illustrated in Fig.  5(a) and Fig.  5(b), respectively.

In Region 3, the blade-pitch control system takes over to maintain 
the generator speed above the rated flow. A full-span blade pitch 
controller used in this study is a single-variable device that changes the 
8 
blade pitch angle to reduce generator speed fluctuation. The full-span 
rotor-collective blade-pitch-angle commands are computed using gain-
scheduled proportional-integral (PI) control on the error between the 
filtered and rated generator speeds. The reference generator speed is 
established at 7.85 rad/s for activating the pitch controller. The system 
allows for a range of pitch angles from a minimum of 0.034 rad to a 
maximum of 1.5707 rad, with the maximum pitch rate limited to 0.2 
rad/s to ensure smooth transitions. Following the procedure explained 
for the NREL 5 MW benchmark turbine [52], the pitch controller’s 
proportional (𝐾 ) and integral (𝐾 ) gains at the minimum pitch angle 
𝑃 𝐼
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Fig. 6. Layout of the measurement and control system of Chalmers wind turbine [50].
Fig. 7. Operating Conditions of Chalmers Wind Turbine with average wind 5.9 m/s; (a) Wind Velocity at hub height, (b) Rotor Speed, (c) Generator Power (d) 
Generator Torque, (e) Blade Pitch angle, (f) Yaw Position.
are set to 0.35 s and 0.22, respectively. Additionally, the blade-pitch 
angle at which the pitch sensitivity has doubled from its value at the 
rated operating point (𝜃𝑘) is determined as 0.4 rad, corresponding to 
the point where the derivative gain (𝐾 ) is zero. This meticulous setup 
𝐷

9 
ensures that pitch adjustments are responsive and tempered, enhancing 
the turbine’s efficiency while safeguarding the mechanical integrity of 
the system. The baseline control system parameters are supplied to the 
test turbine through the controller input panel built on LabVIEW [53] 
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Table 5
Measurement channel details of chalmers wind turbine.
 Location Channel details No of channels Location Channel details No of channels 
 Hub and 
blade

Strain gauges @ blades 15
Foundation and Tower 

Strain gauges @ Foundation 2  
 Pitch angles 3 Stain gauges @ steel base 5  
 Pitch position 3 Strain gauges @ wooden tower 8  
 

Nacelle

Shaft torque 2

Control room 
FFR regulator 2  

 Rotor speed 2 Generator 3  
 Accelerometers 3 DC-link current 1  
 Generator temperature 4 Grid Frequency an Power waste 2  
 Yaw position 2 Met Mast Anemometers 6  
 Air pressure, temperature, humidity 3 Network camera 1  
interface for the measurement record and to the OpenFAST model as 
an external dynamic link library (DLL) [54] for the simulations.

4. Sensor configuration & field measurements

The test turbine has several sensors, including strain gauges on 
different structural components. The turbine’s measurement and con-
trol system layout is shown in Fig.  6. This system is centered around 
the Compact Rio hardware [55] from National Instruments, interfacing 
with an expansion chassis in the nacelle and tower via an EtherCat bus. 
Programming for the system is developed in LabVIEW [53]. The control 
and measurement system operates with dual sampling frequencies of 
100 Hz and 20 Hz for signal measurements, capturing data from 67 
channels summarized in Table  5. The collection of data for a longer 
time duration is available at the Zenodo repository [56,57]. Details 
on the complete measurement setup and sensor configurations are 
documented in the bachelor’s thesis [58]. Notably, the wind estimation 
derived from Eq. (5) outlined in Section 5.2 serves as a basis for 
comparison with the EKF-estimated wind, considered the recorded 
wind in the subsequent sections of this paper.

Figs.  7 to 9 show the data recorded from different sensors at 20 Hz 
under three operating conditions. Out of these three plots, the first 
one, i.e., Fig.  7, shows the response of the turbine recorded on 23rd 
September 2022 at a mean wind speed of 5.9 m/s at hub height 
corresponding to the below-rated condition. The critical parameters 
shown here are rotor speed, generator power, and generator torque 
when the blade pitch controller remained inactive as the wind speed did 
not exceed the threshold for pitch control activation. Besides the below-
rated condition, Fig.  8 demonstrates the above-mentioned responses, 
recorded on 17th January 2022 at a mean wind speed of 9.2 m/s. 
Notably, the torque control parameters, as detailed in Section 3, for the 
25 kW power setting, are employed for this case. Fig.  9 represents the 
operating condition of the test turbine recorded on 5th January 2023, 
employing the control settings tailored for the maximum power output 
of 30 kW. Measurements spanning a total duration of 500 s are shown 
in Fig.  9. During this interval, the average wind speed was around 
7.9 m/s, originating from the southwest. The rotor speed maintained 
a range from ∼ 60 rpm to 78 rpm, while the blade pitch was adjusted 
between 4 and 11 degrees to sustain the target power output of 30 kW, 
as demonstrated in Figs.  9(a) to 9(f).

As mentioned earlier, there are 67 channels, including multiple 
strain gauges in the tower and blade. In the transition between the 
wooden structure and the concrete foundation is the steel footing, 
where a total of eight strain gauges have been placed as two sensors. 
Refer to Fig.  10 for the details of these sensor placements. These are 
positioned in the north-south and east–west direction at a height of 
0.53 m, representing one-third of the height of the steel footing. Each 
blade consists of 8 strain gauges placed along the length of the blade, 
positioned at the blade root, at a distance of 2 m, 3.5 m, and 5 m away 
from the blade root.
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Table 6
Identified tower and blade frequencies from tower and blade root measure-
ments.
 Record date Mean wind 

(m/s)
Actual and identified frequencies (Hz)

 Tower Blade

 1st freq. Identified 1st Flap 
freq.

Identified  

 29-01-2022 21.9

0.79

0.82 [3.79]
5.63

5.42 [3.73] 
 17-01-2022 9.22 0.82 [3.79] 5.41 [3.90] 
 05-01-2023 7.92 0.82 [3.79] 5.41 [3.90] 
 23-09-2022 5.93 0.82 [3.79] 5.40 [4.08] 
N.B.: The values within [.] indicate the percentage error between the actual and 
identified frequencies.

5. Inverse analysis using field measurements

This section uses measured response quantities to identify in-situ 
structural parameters, which are further needed for model validation. 
This is carried out in two steps. First, the modal parameters are ex-
tracted through signal processing, where any time–frequency analysis 
(e.g., short-time Fourier transform [59], Hilbert-Huang transforma-
tion [60], wavelet transformation [61], among many others) can be 
adopted. In this study, the continuous wavelet transform is used for 
signal processing. The rationale behind the selection of wavelet-based 
time–frequency analysis is due to its superior ability in signal pro-
cessing, which has already been established in the literature [62,63]. 
Once the modal parameters are identified, the rotor effective wind 
speed is estimated to tune the simulated turbine responses with field 
measurements.

5.1. Modal identification of tower and blade from measurements

As stated earlier, the Wavelet Transform (WT) has an inherent ad-
vantage compared to other time–frequency representation techniques 
when extracting instantaneous features from signals. In wavelet anal-
ysis, a signal 𝑓 (𝑡), a function of time, is expressed with a composition 
of several time-localized, translated, and scaled basis functions, 𝜓𝑎,𝜏 (𝑡), 
called the mother wavelet. The Continuous Wavelet Transform (CWT) 
processes a time signal 𝑓 (𝑡) and converts it into a new 2D sequence. 
This transformation yields the wavelet coefficients 𝑊𝑓 (𝑎, 𝜏) and is 
mathematically defined as follows [64] 

𝑊𝑓 (𝑎, 𝜏) =
1
√

𝑎 ∫

+∞

−∞
𝑓 (𝑡)𝜓∗

( 𝑡 − 𝜏
𝑎

)

𝑑𝑡 ; 𝑎, 𝜏 ∈ 𝑅 (2)

The shift parameter 𝜏 is used to center the wavelet function to obtain 
information about the signal around the location 𝑡 = 𝜏. The scale 
parameter 𝑎, which is inversely proportional to frequency, can be 
varied to extend the basis function to control the range of frequencies 
about which information can be obtained, and 𝜓∗

𝑎,𝜏 (.) is the complex 
conjugates of the mother wavelet 𝜓 (.). For a discrete-time series 
𝑎,𝜏
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Fig. 8. Operating Conditions of Chalmers Wind Turbine for rated conditions with average wind 9.2 m/s; (a) Wind Velocity at hub height, (b) Rotor Speed, (c) 
Generator Power, (d) Generator Torque, (e) Blade Pitch angle, (f) Yaw Position.
Fig. 9. Operating Conditions of Chalmers Wind Turbine for rated conditions with average wind 7.9 m/s; (a) Wind Velocity at hub height, (b) Rotor Speed, (c) 
Generator Power (d) Generator Torque, (e) Blade Pitch angle, (f) Yaw Position.
signal, 𝑦𝑛(𝑡) having 𝑁 data points and 𝑑𝑡 time step, can be expressed in 
the frequency domain using CWT as 

𝑊𝜓 𝑦̃𝑘(𝑎, 𝑛) =
𝑁−1
∑

𝑘=0
𝑦̃𝑘 𝜓̃

∗(𝑎𝜔𝑘)𝑒𝑖 𝜔𝑘 𝑛 𝑑𝑡 (3)

𝑦̃𝑘 and 𝜓̃∗ are the discrete Fourier transform of the signal and the 
mother wavelet, respectively. In essence, the continuous wavelet trans-
form convolves the mother wavelet 𝜓𝜏,𝑠 with the signal 𝑓 (𝑡). The 
wavelet coefficients take on maximum values at the locations where the 
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frequency of the scaled wavelet 𝑓0 coincides with the local frequency 
of the signal 𝑓𝑖(𝑡). This defines the ridges in the time–frequency plane 
as 𝑎𝑟(𝜏) = 2𝜋𝑓0

𝑓𝑖(𝑡)
. Extracting the values of the wavelet coefficients along 

each ridge yields a wavelet skeleton. Similarly, a slice of the scalogram 
at a given time, across the range of frequencies, yields the instantaneous 
spectrum of the signal, indicating the frequency content at that instant 
in time. By finding out the points where wavelet coefficients reach 
local maxima 𝑖.𝑒., |

|

|

𝑊𝑓 (𝑎𝑟, 𝜏)
|

|

|

=
(

|

|

|

𝑊𝑓 (𝑎, 𝜏)
|

|

|

)

max
, the corresponding 

frequencies can be identified.
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Fig. 10. Sensors in the Steel Base; (a) Orientation of the strain gauges, (b) Compass Directions.

Fig. 11. Wooden tower response in parked condition (i.e., mean wind speed of 21.9 m/s); (a) Base moment along the fore-aft direction, (b) Energy spectrum 
with wavelet scalogram in inset.

Fig. 12. Blade response in parked condition (i.e., mean wind speed of 21.9 m/s); (a) Root moment along flap wise direction, (b) Energy spectrum with wavelet 
scalogram in inset.
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Fig. 13. Tower base measurement and corresponding CWT scalogram with the energy density for operating condition with mean wind 9.2 m/s ; (a) Tower base 
measurements along fore-aft direction, (b) Identified tower frequencies.
Table 7
RRMSE and TRAC values of simulated and measured responses.
 Responses Wind speed (m/s) Rotor speed (rpm) Generator torque (kN-m) Generator power (kW)
 Record date RRMSE TRAC RRMSE TRAC RRMSE TRAC RRMSE TRAC  
 23-09-2022 0.027 0.999 0.004 0.999 0.033 0.998 0.034 0.998  
 05-01-2023 0.031 0.999 0.008 0.999 0.061 0.996 0.062 0.996  
 17-01-2022 0.049 0.997 0.009 0.999 0.104 0.990 0.102 0.991  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

In this context, it may be noted that the resolution of the scalogram
sometimes needs to be enhanced using different advanced versions
of the CWT, e.g., Combined Wavelet Hilbert Transformation [65] or
Synchro-squeezing [66]. These are particularly required when there
are closely spaced modes or poor resolution of the energy spectrum,
leading to erroneous frequency tracking. However, as the frequencies
of the HAWT used in this study are well separated and the resolution
of the spectrogram did not offer any difficulty in frequency tracking,
these advanced versions were not invoked, and a regular CWT was
found to be sufficient to meet the objectives. Thus, an analytic Morse
wavelet, a complex-valued wavelet containing positive real-frequency
components, is employed for the modal identification. This choice of
wavelet offers the inherent advantage of effectively representing signals
with varying amplitudes and frequency content over time [67,68] and
free from the end effect errors arising from time resolution [20]. The
amplitude spectrum of this wavelet in the frequency domain is given
by 
𝜓𝛼,𝛾 (𝜔) = 𝐻(𝜔)𝑎𝛼,𝛾𝜔𝛼𝑒−𝜔

𝛾 (4)

In this equation, 𝐻(𝜔) is the Heaviside step function, and 𝑎𝛼,𝛾 repre-
sents a normalizing constant. These parameters are crucial and signify
the compactness and symmetry of the wavelet. The time-bandwidth
product of the resulting wavelet, characterizing the trade-off between
time and frequency localization, is determined as 𝑃 2 = 𝛼 × 𝛾. Efficient
algorithms for computing Morse wavelet coefficients, developed by
Lily [69], are available in MATLAB [70], which is utilized in this
study. The Morse wavelet exhibits zero skewness when the symmetry
parameter 𝛾 is set to 3. Hence, for this study, default parameter values
of 𝛾= 3 and a specific value for 𝛼 corresponding to the time-bandwidth
product value as 60 are employed to ensure symmetry in the basis
function.

To identify the tower frequencies, the measurements of tower root
moments with a sampling frequency of 20 Hz are considered. Here, it
may be noted that turbine response during regular operating conditions
has contributions from both structural and rotational frequencies of the
turbine. Therefore, to avoid false identification of structural frequen-
cies, the parked condition is chosen first. Fig.  11 and Fig.  12 show the
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recorded measurements of the tower and blade during this condition. 
These measurements were recorded on 29th January 2022 at a mean 
wind speed of 21.9 m/s. The energy spectrum shows the identified 
tower and blade frequencies along the fore-aft and flapwise directions, 
which are 0.82 Hz and 5.42 Hz, respectively. The estimated error for 
these frequencies is well within 5% with respect to the designed fre-
quencies for the respective structural components. Similarly, the tower 
and blade measurements in orthogonal directions (i.e., side-to-side and 
edge-wise, respectively) are also considered to identify the respective 
structural frequencies, which are not presented here to avoid repetition. 
Once these frequencies are identified, this process is repeated for other 
operating conditions to cross-verify these results. Thus, Fig.  13 shows 
the tower base measurement and the corresponding CWT scalogram 
with the instantaneous spectra demonstrating the energy density across 
ridge frequencies obtained from the wavelet analysis, respectively, at 
an average wind speed of 9.2 m/s. As stated earlier, the energy density 
across ridge frequencies shows the tower 1st fore-aft frequency at 
0.82 Hz with 3.79% error as compared to the frequency obtained from 
the FEM model. This plot also shows the presence of other frequencies 
in the spectrum, as expected, which can be easily identified further. Si-
multaneously, the blade frequencies were verified, analyzing blade root 
measurements in the flapwise directions. Fig.  14 shows similar results 
for the blades corresponding to a mean wind speed of 9.2 m/s. The first 
flapwise frequency identified from this measurement displays 3.90%
estimation error compared to the NuMAD model. Besides structural 
frequencies, rotational frequencies of the turbine and its harmonics are 
also identified from the response during regular operating conditions, 
which are marked in the respective plots. Table  6 enumerates the iden-
tified frequencies and their comparison with the frequencies estimated 
from the FEM models of the tower and blade, which establishes the 
accuracy of the inverse system characterization.

5.2. Wind field characterization

The rotor effective wind speed has been derived using two different 
methods in this paper. In the first method, the rotor effective wind 
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Fig. 14. Blade root measurement and corresponding CWT scalogram with the energy density for operating condition with mean wind 9.2 m/s ; (a) Root 
measurement along flap wise direction, (b) Identified blade frequencies.

Fig. 15. Comparison of EKF and recorded wind velocity at hub height; (a) for below-rated conditions with mean wind 5.9 m/s, (b) for rated conditions with 
mean wind 7.9 m/s (c) for rated conditions with mean wind 9.2 m/s.
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Fig. 16. Response comparison between ‘‘simulated’’ (using openFAST) and ‘‘measured’’ (field measurements) responses for below-rated conditions with mean 
wind 5.9 m/s; (a) Rotor Speed, (b) Generator Torque, (c) Generator Power.
Table 8
Simulated and measured turbine response comparison.
 Mean wind (m/s) 5.9 7.9 9.2

 Responses Measured Simulated Measured Simulated Measured Simulated  
 Rotor speed (rpm) 𝜇 62.83 62.82 [0.02] 70.08 70.01 [0.10] 72.83 72.64[0.26] 
 𝜎 4.06 4.08 [0.49] 2.88 2.91[1.04] 2.91 2.92 [0.34] 
 Generator torque (kN-m) 𝜇 1.55 1.54 [0.65] 2.96 2.93 [1.01] 3.09 2.93 [5.17] 
 𝜎 0.51 0.52 [1.96] 0.79 0.80[1.26] 0.39 0.42 [7.69] 
 Generator power (kW) 𝜇 10.41 10.39 [0.19] 21.91 21.69 [1.01] 23.58 22.51[4.53] 
 𝜎 4.08 4.15 [1.71] 6.39 6.52 [2.03] 2.69 2.89 [7.43] 
N.B.:The values within [.] indicate the percentage error between measured and simulated turbine responses.
speed is estimated directly from the electrical power using the following 
expression 

𝑣̂𝑒𝑠𝑡 = 3

√

2𝑃𝑒𝑙
𝜌𝐴𝐶𝑝(𝜆, 𝛽)

(5)

where 𝑃𝑒𝑙 is the measured electrical power, the power coefficient 
𝐶𝑝(𝜆, 𝛽) is calculated from the measured rotor speed and blade pitch 
angle, and the estimated wind speed 𝑣̂𝑒𝑠𝑡 fed back to Eq.  (5).

In the second method, for inverse characterization and comparison, 
the rotor effective wind speed is also estimated using an extended 
Kalman filter (EKF). For this purpose, the wind speed estimator used in 
ROSCO [38] for the TSR tracking generator torque controller and pitch 
saturation routines is used in this study. The choice of the standard EKF 
for this paper is based on the fact that the EKF has demonstrated suf-
ficient accuracy in estimating the rotor average effective wind speeds 
in previous studies. The interested reader is referred to the following 
15 
papers on the comparison of different real-time wind speed estimation 
techniques [71–73] The wind speed estimate 𝑣̂𝑘 can be expressed as 
𝑣̂𝑘 = (𝑣𝑡 + 𝑣𝑚), where 𝑣𝑡 and 𝑣𝑚 are the turbulent and the mean 
component of wind speed, respectively.

The nonlinear state-space wind estimator model and measurement 
equations used in the EKF-based updating algorithm are given by 
𝑥̇ = 𝑓 (𝑥 , 𝑢) + 𝑔𝑠 (6a)

𝑦 = ℎ (𝑥, 𝑢) + 𝑔𝑚 = 𝜔𝑟 + 𝑔𝑚 (6b)

where 𝑓 (𝑥 𝑢) and ℎ (𝑥, 𝑢) are the nonlinear state transition and out-
put functions, respectively. In these equations, the model noise 𝑔𝑠 =
[𝑛1 𝑛2 𝑛3]𝑇  and the measurement noise 𝑔𝑚 are assumed to be Gaussian 
white noise with a finite covariance. The state and input vectors are 
denoted by 𝑥 = [𝜔𝑟 𝑣𝑡 𝑣𝑚]𝑇 , and 𝑢 = [𝜃 𝜏𝑔], respectively. Blade pitch 
angle and generator torque are assumed to be noise-free inputs and are 
directly obtained from their respective measurements. The nonlinear 
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Fig. 17. Response comparison between ‘‘simulated’’ (using openFAST) and ‘‘measured’’ (field measurements) responses for rated operating condition with mean 
wind 7.9 m/s; (a) Rotor Speed, (b) Generator Torque, (c) Generator Power, (d) Blade Pitch.
state space equations for the EKF-based identification are given by 

𝜔̇𝑟 =
1
𝐽
(𝜏𝑎 −𝑁𝑔𝜏𝑔) (7a)

𝑣̇𝑡 = −
𝜋𝑣𝑚
2𝐿𝑡

𝑣𝑡 + 𝑛1 (7b)

𝑣̇𝑚 = 𝑛2 (7c)

where 𝜔𝑟 is the rotor speed, 𝐽 is the rotor inertia, 𝑁𝑔 is the gearbox 
ratio, and 𝜏𝑔 is the generator torque. 𝐿𝑡 is a turbulence length scale 
parameter generically defined as 𝐿𝑡 = 3𝐷, where 𝐷 is the rotor 
diameter. In this model the aerodynamic torque 𝜏𝑎 can be calculated 
as 

𝜏𝑎 = 0.5𝜌𝐴𝐶𝑝(𝜆, 𝜃)𝑣̂3𝜔−1
𝑟 (8)

In Eq. (8), 𝜌 is the air density, 𝐴 is the rotor area, 𝜃 is the blade pitch 
angle, and 𝜆 is the tip speed ratio, i.e., 𝜆 = 𝜔𝑟𝑅

𝑣̂ . A second-order central 
differencing approach calculates the 𝐶𝑝 surface gradients at operating 
points.

The process noise (𝑄) and measurement noise (𝑅𝑚) covariances in 
the EKF algorithm are considered as per [37], which are given by 

𝑄 =

⎛

⎜

⎜

⎜

⎝

10−50 0

0
𝜋𝑣3𝑚𝑡

2
𝑖

𝐿 0

0 0 22
600

⎞

⎟

⎟

⎟

⎠

, 𝑅𝑚 = 0.02 (9)

The turbulence intensity is considered as 𝑡𝑖 = 0.18, the upper zone of 
the turbulence intensity for standard inflow wind conditions as defined 
by [74]. Therefore, the state estimation for the prediction step in the 
16 
EKF algorithm uses the following equation 
𝑥̇(𝑡) = 𝑓

(

𝑥 𝑘−1|𝑘−1 , 𝑢𝑘
)

(10)

In this algorithm the predicted covariance estimate is given by 
𝑃̇ (𝑡) = 𝐹 (𝑡)𝑃 𝑘|𝑘 + 𝑃 𝑘|𝑘𝐹 𝑇 (𝑡) +𝑄𝑘 −𝐾𝑘−1𝑅𝑚𝐾𝑇

𝑘−1 (11)

It may be noted that the Kalman gain (𝐾𝑘) is computed as 
𝐾𝑘 = 𝑃 𝑘|𝑘−1𝐽

𝑇
𝑘
[

𝐽𝑘𝑃 𝑘|𝑘−1𝐽
𝑇
𝑘 + 𝑅𝑚

]−1 (12)

Where the Jacobians corresponding to the measurement equations are 
defined as 𝐹 (𝑡) = 𝜕𝑓

𝜕𝑥
|

|

|𝑥 𝑘−1|𝑘−1 , 𝑢𝑘
,  and 𝐽𝑘 = 𝜕ℎ

𝜕𝑥
|

|

|𝑥 𝑘|𝑘−1
, respectively. 

Once the state prediction is completed, the measurement is updated as 
𝑦̃𝑘 = 𝑦𝑘 − ℎ𝑘(𝑥 𝑘|𝑘−1) (13)

It is followed by state updation using updated measurement 𝑦̃𝑘, which 
is given by 
𝑥 𝑘|𝑘 = 𝑥 𝑘|𝑘−1 + 𝐾𝑘𝑦̃𝑘 (14)

Finally, the covariance is updated as follows 
𝑃 𝑘|𝑘 = (𝐼 −𝐾𝑘 𝐽𝑘 )𝑃 𝑘|𝑘−1 (15)

Once the state is updated at the 𝑘𝑡ℎ time instance, the rotor effective 
wind speed is then estimated as follows 
𝑣̂𝑘 = [0 1 1] 𝑥 𝑘|𝑘 (16)

Using the above-mentioned wind estimator, the rotor effective wind 
speed time history is evaluated for three operating conditions discussed 
earlier. Fig.  15 shows the details of these estimated time histories, 
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Fig. 18. Response comparison between ‘‘simulated’’ (using openFAST) and ‘‘measured’’ (field measurements) responses for above-rated conditions with mean 
wind 9.2 m/s; (a) Rotor Speed, (b) Generator Torque, (c) Generator Power, (d) Blade Pitch.
which closely match the measured speed, indicating the accuracy of 
the EKF-based model updating. Furthermore, the relative root mean 
square (RRMS) error and Time Response Assurance Criteria (TRAC) for 
these three cases are estimated using the following expressions 

𝑅𝑅𝑀𝑆𝐸 =

√

(𝑦 − 𝑦̂)𝑇 (𝑦 − 𝑦̂)
𝑦𝑇 𝑦

(17a)

𝑇𝑅𝐴𝐶 =
(𝑦𝑇 𝑦̂)2

(𝑦𝑇 𝑦)(𝑦̂𝑇 𝑦̂)
(17b)

The values of these model indicators are highlighted in Table  7. 
The estimated relative error values, i.e., RRMS, are mostly well within 
10%, indicating an accurate estimation of these parameters. Besides 
RRMS of error, TRAC values are also presented in the same table, which 
indicates the degree of correlation between the measured and modeled 
responses. The values of this indicator are more than 99% in all the 
cases, supporting the accuracy of the updated model.

6. Model validation

In this section, the OpenFAST model of the test turbine is validated. 
Firstly, a comprehensive description of the turbine model implemented 
in OpenFAST [44] is provided. Following this, the turbine’s perfor-
mance is validated by comparing its key performance indicators, specif-
ically rotor speed, generator torque, generator power, blade pitch oper-
ations, and tower base moments, with field measurements under three 
operational conditions, as outlined in Section 4. These comparisons are 
made using the estimated wind speeds described in the previous Section 
to ensure a rigorous evaluation. Lastly, an analysis of the tower and 
17 
blades’ steady-state responses is included, demonstrating their behavior 
as functions of wind speeds. This analysis offers a comprehensive 
insight into the overall dynamics of the turbine components.

6.1. Turbine response validation

The National Renewable Energy Laboratory’s (NREL) OpenFAST is a 
popular tool for wind turbine aerodynamics and dynamic simulation. It 
uses a primary input file to describe the wind turbine operating parame-
ters and basic geometry. However, the blade, tower, and aerodynamic 
parameters and wind-time histories are read from separate files. The 
layout of the mode of operation, along with the detailed descriptions 
of individual input files, are provided in [5]. For the current study, 
the ADAMS post-processor is not employed. This study adopts the 
estimated rotor effective wind realizations in the InflowWind [75] 
module and are applied as uniform wind fields at hub height. Finally, 
the baseline torque and pitch control parameters are delineated through 
a dynamic link library (DLL) interface described in Section 3.

The simulated turbine responses for the three different operating 
conditions, as described in Section 4, are shown in Figs.  16 to 18. The 
comparisons of different performance parameters are listed in Table 
8. The numerical figures presented in this table show that the mean 
and standard deviation of rotor speed, generator torque, and generator 
power remain within 2% except at 9.22 m/s, where the difference is 
around 5 to 7% (i.e., < 10%). In addition to the key turbine parameters, 
Figs.  17(d) and 18(d) also show the variable pitch time histories applied 
in two different cases, i.e., test setup and updated OpenFAST model. 
The minor discrepancies between the simulated and measured pitch 
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Fig. 19. Response comparison between simulated and actual tower base measurements; (a) FA moment with mean wind 5.9 m/s, (b) SS moment with mean 
wind 5.9 m/s, (c) FA moment with mean wind 7.9 m/s, (d) SS moment with mean wind 7.9 m/s (e) FA moment with mean wind 9.2 m/s, (f) SS moment with 

mean wind 9.2 m/s.

may be attributed to several factors - (i) improper quantification of 
the measurement error, (ii) use of aerodynamic power coefficient (𝐶𝑝)
based on steady wind flow conditions as a general practice (as opposed 
to turbulent flow in reality), (iii) unmodeled pitch actuator dynamics. 
These aspects will be investigated in subsequent works.

6.2. Tower responses validation

Further, the tower base moments are validated to demonstrate the 
accuracy of the benchmark model. The strain sensors in the steel 
base are considered for these measurements. Moment equations are 
18 
systematically derived from the test data documented in [45]. The fore-
aft and side-to-side moments are derived based on nacelle orientation 
and transformations. In this formulation, the effect of temperature is 
ignored, while the wind direction and yaw bearing position are con-
sidered for meaningful moment estimation. This conversion of strains 
into moments using different measurements is bound to have inherent 
errors. On the other hand, the simulated moments are based on a 
multi-body dynamic model having some modeling error no matter how 
accurate it may be. Hence, Kalman-based updating is adopted here to 
minimize the error between the measurement and simulation, which 
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Fig. 20. Estimation error between simulated and actual tower base measurements; (a) FA innovations with mean wind 5.9 m/s, (b) SS innovations with mean 
wind 5.9 m/s, (c) FA innovations with mean wind 7.9 m/s, (d) SS innovations with mean wind 7.9 m/s (e) FA innovations with mean wind 9.2 m/s, (f) SS 

innovations with mean wind 9.2 m/s.

can be expressed as follows. 
𝑥𝑘+1 = 𝐴𝑥𝑘 +𝑤𝑘 (18)

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 (19)

Where 𝑥𝑘 represents the state vector at time step k (simulated fore-aft 
and side-to-side moments), and 𝑧𝑘 represents the measurement vector 
at time step 𝑘 (i.e., fore-aft and side-to-side moments). A and H are 
the state transition and the observation matrix. 𝑤𝑘 is the process noise 
vector, assumed to be Gaussian with zero mean and covariance Q, and 
𝑣  is the measurement noise vector with covariance R. The covariance 
𝑘

19 
R is chosen based on the quality of the measurement and defined 
as 𝑅 = 𝑑𝑖𝑎𝑔(𝑣𝐹𝐴, 𝑣𝑆𝑆 ), where 𝑣𝐹𝐴 and 𝑣𝑆𝑆 are noise covariances of 
tower base fore-aft and side-to-side measured moments, respectively. 
Typically, these noise covariance are approximately 5% to 10% of the 
variance of the measurements. In this study, this covariance is initiated 
with 10% of the variance of the measurements. The Kalman algorithm 
is then implemented through the following steps.

Time Update (Prediction): 

𝑥̂ = 𝐴𝑥̂ (20)
𝑘+1|𝑘 𝑘|𝑘
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Fig. 21. Normalized innovation squared test; (a) NIS with mean wind 5.9 m/s, (b) CDF of NIS with mean wind 5.9 m/s, (c) NIS with mean wind mean wind 
7.9 m/s, (d) CDF of NIS with mean wind 7.9 m/s (e) NIS with mean wind mean wind 9.2 m/s, (f) CDF of NIS with mean wind 9.2 m/s.
𝑃 𝑘+1|𝑘 = 𝐴𝑃 𝑘|𝑘𝐴
𝑇 +𝑄 (21)

Measurement Update (Correction): 
𝐾𝑘+1 = 𝑃 𝑘+1|𝑘𝐻

𝑇 (𝐻 𝑃 𝑘+1|𝑘𝐻
𝑇 + 𝑅)−1 (22)

𝑥̂ 𝑘+1|𝑘+1 = 𝑥̂ 𝑘+1|𝑘 +𝐾𝑘+1(𝑧𝑘+1 −𝐻𝑥̂ 𝑘+1|𝑘)𝑃 𝑘+1|𝑘 (23)

𝑃 𝑘+1|𝑘+1 = (𝐼 −𝐾𝑘+1𝐻)𝑃 𝑘+1|𝑘 (24)

The simulated and measured tower root moments for the three different 
operating conditions, as described in Section 4, are presented in Figs. 
20 
19. The comparison plots demonstrate the closeness of the simulated 
and measured tower base moments.

The Kalman filter is tuned statistically based on the estimation error 
between the system states (𝑥𝑘−𝑥̂𝑘) and the error between measurements 
𝑒𝑘 = (𝑧𝑘 − 𝐻𝑥̂𝑘), which are Gaussian and white. In other words, the 
statistics of the state and measurement errors should be consistent 
with the chosen covariances 𝑄 and 𝑅 [76]. Since the true system 
state 𝑥𝑘 is often hard to obtain, filter tuning is typically done by 
examining the measurement errors 𝑒𝑘, also known as innovation. By 
definition of a well-tuned filter, the innovation sequence 𝑒𝑘 should have 
a zero mean, and approximately 99.7% of the innovations should be 
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Fig. 22. Steady state response of tower and blade.

bounded within ±3𝜎 where the innovation covariance matrix at time 
step k is defined as 𝑆𝑘 = 𝐻𝑃𝑘𝐻𝑇 + 𝑅. The fore-aft and side-to-side 
innovations and their ±3𝜎 boundaries for the three different operat-
ing scenarios are shown in Fig.  20. Further, to satisfy the Gaussian 
assumption of the innovation sequences, two innovation sequences in 
this study can be normalized into one quantity. That is the normalized 
innovation squared (NIS), denoted as 𝜈𝑘 = 𝑒𝑇𝑘𝑆

−1
𝑘 𝑒𝑘. For a well-tuned 

filter, the normalized innovation squared is expected to be Chi-squared 
distributed with 𝑛 degrees of freedom (𝜈𝑘 ∼ 𝜒2

𝑛 ). In other words, the 
normalized innovation squared must lie within the confidence interval 
𝜈𝑘 ∈

[

𝐹−1
𝑋

(

𝛼
2 , 𝑛

)

, 𝐹−1
𝑋

(

1 − 𝛼
2 , 𝑛

)]

, where 𝐹−1 is the inverse cumulative 
distribution function of the Chi-squared distribution. In this case, the 
number of measurements is 𝑛 = 2; thus, the upper and lower bounds are 
[

𝐹−1
𝑋 (0.025, 2), 𝐹−1

𝑋 (0.975, 2)
]

= [0.05, 7.38] with 𝛼 = 0.05 (two-sided 95% 
confidence interval). Fig.  21 shows most of the normalized innovation 
squared lies within the confidence intervals, and the right plot shows 
the cumulative distribution of the normalized innovation squared 𝜈. 
Thus, the hypothesis is acceptable, and the innovation sequences 𝑒𝑘 are 
unbiased Gaussian distributed, as shown in Fig.  21.

6.3. Steady-state behavior of tower and blade

Once the model was validated satisfactorily, further effort was made 
to investigate the steady-state performance envelope of the tower and 
blade. For this purpose, different steady wind fields are generated 
using TurbSim [77]. Using these wind fields, the updated model of 
the turbine is simulated, and the peak performance curve for tower 
and blade tip response in two orthogonal directions at different mean 
wind speeds are presented in Fig.  22. The out-of-plane tip deflection of 
the blade (Blade 1) reaches a maximum at the rated operating point 
before dropping again. This response characteristic results from the 
rotor thrust attaining peak value at the rated speed. This feature is 
typical of a wind turbine with a variable pitch rotor because of the 
transition in the control system at rated between the active generator-
torque and the active blade-pitch control regions. This behavior is also 
visible in the in-plane tip deflection of the blade and the tower-top 
fore-aft and side-to-side displacement.

7. Conclusions

This paper presents an inverse identification of the Chalmers Wind 
Turbine [78], which is a small-scale horizontal-axis wind turbine. The 
paper presents a detailed procedure for inverse identification and pro-
vides a benchmarked model of the Chalmers small-scale wind turbine 
21 
to the wind energy community for research and development. Please 
note that the Chalmers Wind Turbine is one of the listed facilities 
under the EAWE Test Wind Turbines Committee (TWTC) [79], which 
provides direct access to all measurements. These research turbines are 
essential for understanding the behavior of wind and wind turbines in 
research and education. Therefore, benchmarking the numerical model 
of the Chalmers Wind Turbine against field measurements is a big step 
forward in this direction. The paper’s contribution is broken down as 
follows.

• The main aim of this study is to focus on the system charac-
terization of a small onshore horizontal-axis test turbine. It is 
achieved through rigorous testing of the tower, followed by finite 
element modeling of these components. The modal characteristics 
of these components are also identified through signal process-
ing of measurements from the combined tower-drive train-rotor 
assembly operating under different wind flow conditions. The 
wavelet-based signal processing successfully identifies the modal 
parameters of the tower and the blades with a significant level of 
accuracy when compared with the detailed FE model. This system 
characterization, encompassing every level (i.e., local features to 
global behavior), using turbines in various operating conditions, 
has not been attempted in the literature earlier.

• The wind flow model used to estimate the rotor effective wind 
speed proposed by [37], incorporating power and control pa-
rameters, is adopted in this study. Abbas et al. [38] also used 
this model to develop the ROSCO controller for TSR tracking 
generator torque control, adopting simulated hypothetical bench-
mark turbines. However, the performance of this model was never 
tested using actual data under different operating conditions, 
which is attempted here. This is achieved through an EKF-based 
filtering algorithm. The rotor effective wind speed is tracked in 
real-time using the actual measurements, i.e., rotor speed, gener-
ator torque, and power output. The numerical results presented 
in this paper highlight the accuracy of the wind estimation pro-
cess. The relative error estimates and correlation of the modeled 
turbine response with measurement indicate the robustness of 
the wind flow model, which can be further utilized for turbine 
response analysis and design.

• Finally, the complete description of the multi-body dynamic 
model in OpenFAST is presented here. This can serve as the 
benchmark for further studies on modeling, analysis, and con-
troller design, among many other aspects of horizontal-axis wind 
turbines. In this context, it is worth noting that all other bench-
mark models available in the literature are based mainly on 
code-to-code comparisons and validations. In contrast, the bench-
mark model of the 45 kW turbine presented in this paper is 
based entirely on the actual test bed. The simulated responses 
of the model turbine are compared with exact measurements, 
including rotor speed, generator power, generator torque, blade 
pitch angle, and tower base moments. These simulated results 
closely match the measurement, confirming the accuracy of the 
multi-body dynamic model. Finally, the steady-state responses of 
the tower and blade as a function of wind speed are also included 
for further studies on this topic.

In summary, this paper focuses on the validation of the multi-
body dynamic modeling and analysis of horizontal-axis wind turbines. 
Although a complete description of the HAWT and the wind flow 
model is presented here with significant emphasis on the key turbine 
parameters, i.e., rotor speed, generator power, generator torque, blade 
pitch angle, and tower base moments, the blade response is not covered 
in this paper except for a few basic features. The authors wish to 
cover these details, i.e., aeroelastic behavior, aero-dynamic damping 
estimation, and transient blade responses operating in a closed-loop 
control network, in their future communications, as accommodating all 
these details in a single paper is complex.
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