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Abstract

We present a description of the electronic structure of xenon within the density-
functional theory formalism with the goal of accurately modeling dark-matter-induced
ionisation in liquid xenon detectors. We compare the calculated electronic structures of
the atomic, liquid and crystalline solid phases, and find that the electronic charge density
and its derivatives in momentum space are similar in the atom and the liquid, consis-
tent with the weak interatomic van der Waals bonding. The only notable difference is
a band broadening of the highest occupied 5p levels, reflected in the densities of states
of the condensed phases, as a result of the inter-atomic interactions. We therefore use
the calculated density of states of the liquid phase, combined with the standard litera-
ture approach for the isolated atom, to recompute ionisation rates and exclusion limit
curves for the XENON10 and XENON1T experiments. We find that the broadening of
the 5p levels induced by the liquid phase is relevant only for dark matter masses below
6 MeV, where it increases the ionisation rate relative to that of the isolated atom. For
most of the explored mass range, the energies of the discrete 4d and 5s levels have the
strongest effect on the rate. Our findings suggest a simple scheme for calculating dark
matter-electron scattering rates in liquid noble gas detectors, using the calculated values
for the atom weighted by the density of states of the condensed phase.
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1 Introduction

According to the current cosmological standard model, more than 80% of matter in the uni-
verse is so-called dark matter (DM) [1]. DM exerts a gravitational pull on galaxies and stars
and plays a crucial role in the large-scale structure formation of the universe. Although its in-
direct effects have been demonstrated across a wide range of measurements, non-gravitational
detection of dark-matter particles [2] has not yet been achieved.

Until recently, one of the most extensively investigated candidates for DM has been the
weakly interacting massive particle (WIMP) [3]. WIMPs are proposed particles with interac-
tions at the weak scale that originally arose from theories outside of the area of DM, such
as supersymmetry [4, 5]. The expected mass range of WIMPs is between the GeV and few
hundreds of TeV energy scale, which is comparable to the mass of atomic nuclei [4]. Elastic
scattering of WIMPs with atomic nuclei should therefore be kinematically favourable, moti-
vating large-scale experiments to detect the possible signal coming from individual nuclear
recoils. In particular, earth-based detectors containing liquid xenon as the target material
have achieved the highest sensitivity to spin-independent DM interactions in the WIMP mass
range [6,7]. The lack of an unambiguous detection, however, is now motivating a search out-
side of the WIMP paradigm, particularly in regions of smaller DM particle masses in the range
between the MeV and the GeV [8]. This is the mass window where known standard model
particles, such as protons, neutrons and electrons, lie, and where the present DM cosmological
density could be explained by the chemical decoupling from standard model matter of a DM
species that couples to visible matter through beyond-the-standard-model interactions [8].
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While nuclear recoil experiments are used to search for WIMPs, DM particles lighter than
WIMPs must be sought in the recoils of lighter targets such as electrons [9]. Since large
volumes of high-purity liquid xenon are already available in existing detectors, they have
been progressively repurposed to detect DM-electron interactions together with nuclear re-
coils [10–13]. The possibility of detecting sub-GeV DM with xenon detectors is based on the
fact that a non-relativistic particle heavier than a few MeV carries enough kinetic energy to
ionise xenon atoms in a medium [9]. To guide such an effort, an accurate calculation of the
sensitivity of these detectors is crucial. In particular, reliable estimates of the expected event
rates, DM-mass reach and exclusion limits for DM-electron scattering are needed.

To calculate these properties, precise knowledge of the electronic wave functions and ener-
gies in liquid xenon is essential, as these are key ingredients in the quantum mechanical mod-
eling of the DM-electron interaction [14,15]. So far, the modeling of DM-electron interactions
in liquid xenon detectors has assumed that atoms can be treated as being isolated [10, 16],
neglecting the impact that the liquid phase has on the electronic wave functions and binding
energies.

Here, we develop a framework that describes the electronic structure of xenon in its con-
densed phases (solid and liquid), with a particular focus on the liquid due to its use in current
detectors. Our method of choice is density functional theory (DFT), whose combination of
chemical accuracy and computational affordability makes it the leading choice for the calcu-
lation of DM-electron scattering processes in materials [9,15,17–22]. Based on the theorems
of Hohenberg and Kohn [23], DFT minimizes the electronic energy, which is a functional of
the charge density, in a variational procedure to obtain the energy and charge density of the
ground state. Using an approximation proposed by Kohn and Sham [24], a set of simultaneous
single-particle eigenvalue equations, with the many-body exchange and correlation interac-
tions mapped into an additional effective potential, is solved self-consistently. This procedure
is conveniently implemented in computer codes, and the resulting electron density completely
describes the ground-state properties of the system, within the approximation chosen for the
exchange-correlation term.

We proceed by first observing, in Sec. 2, that the DM-electron scattering rate can be evalu-
ated from two main physical observables: i) the electron density in momentum space and its
gradients and ii) the binding energies of the electrons, which are described by the density of
states in the condensed phases. Since DFT is a convenient tool for computing these quantities
for all the phases, including the liquid, we next determine the most appropriate flavour of DFT,
both in terms of fundamental physical approximations - in particular, the choice of exchange-
correlation functional - and in terms of computational parameters for modeling the various
phases of xenon (Sec. 3). Next, in Secs. 4.1 and 4.2, we compare the calculated electron den-
sities and density gradients in momentum space for the atom and the liquid, to visualize the
impact of the condensation on the DM-electron scattering process. We also compare the DFT
atomic charge densities with those obtained from the standard Roothan-Hartree-Fock (RHF)
choice for modeling initial electronic states in noble gases [10, 16]. Based on these compar-
isons, we propose an efficient scheme for calculating DM-electron scattering rates in liquid
xenon detectors in which all the information about the liquid phase is carried by the density
of states. Finally, we use our scheme to quantify the effects of the liquid phase on exclusion
limits from XENON10 and XENON1T experimental data (Sec. 4.3).

2 Xenon and dark matter direct detection

In this section, we introduce a general notation that enables us to describe the rate of DM-
induced ionisation in atomic or liquid xenon in a unified manner, and is useful in highlighting
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the main differences and similarities between the two xenon phases. In Part A, we write the
ionisation rate in a form that is independent of the choice of initial and final states (labelled
{1} and {2}), while in Part B, we show that this rate can be written in terms of the electron
density and its gradients in momentum space.

2.1 Dark matter-induced ionisation in xenon detectors

The rate at which an isolated xenon atom or a liquid xenon sample can be ionised by DM-
electron interactions is [16],

R1→2 =

∫

d3q
(2π)3

∫

d3v fχ(v) (2π)δ(E2 − E1 +∆Eχ)
nχ

16m2
χm2

e
|M1→2|

2 . (1)

Here, we adopt a general notation where {1} collectively denotes the quantum numbers of
the initial state electron bound to the isolated xenon atom or liquid xenon sample, while {2}
describes the quantum numbers of the electron ejected in the ionisation process 1 → 2. In
Eq. (1), v is the incoming DM particle velocity, fχ(v) is the local DM velocity distribution
in the detector rest frame, ∆Eχ ≡ q2/(2mχ) − v · q is the difference between the outgoing
and incoming DM particle energy, q is the momentum transfer in the ionising DM-electron
interaction, nχ is the local DM number density, and mχ and me are the DM and electron mass,
respectively. For fχ(v), we assume a truncated Maxwell-Boltzmann distribution with most
probable speed v0 = 238 km s−1 [25], galactic escape speed vesc = 544 km s−1 [25] and
Earth’s speed in a reference frame with zero mean DM particle velocity given by ve = 250.5
km s−1 [25]. We calculate nχ ≡ ρχ/mχ assuming ρχ = 0.4 GeV cm−3 [26]. Finally, we denote

by E1 (E2) the initial (final) state electron energy, and by |M1→2|
2 the squared modulus of

the DM-electron scattering amplitude summed (averaged) over final (initial) DM and electron
spin states. We assume that it is given by [19]

|M1→2|
2 = c2

1 |FDM(q)|2 | f1→2(q)|2 , (2)

where c1 is a coupling constant,1 and FDM(q) is the so-called “DM form factor”, associated
with the range of the underlying DM-electron interaction. For example, for interactions me-
diated by a heavy particle, FDM(q) = 1, whereas for DM-electron interactions associated with
a light mediator, FDM(q) = q2

ref/q
2, where qref = αme is a reference momentum, and α is

the fine structure constant. Within the non-relativistic effective theory of DM-electron inter-
action [16], Eq. (2) arises when the underlying DM-electron interaction is described by the
quantum mechanical operator O1 = 1e1χ , where 1e and 1χ are the identities in the electron
and DM spin spaces, respectively. Eq. (2) also arises from the non-relativistic reduction of the
so-called dark photon model [27].

In Eq. (2), f1→2(q) is the overlap integral between the initial and final state electron wave
functions, and is given by

f1→2(q) =

∫

d3k
(2π)3
eψ∗2(k) eψ1(k− q) , (3)

where eψ1 ( eψ2) is the initial (final) state electron wave function in k space. Notice thatR1→2 in
Eq. (1) gives the rate for the specific ionisation process corresponding to initial and final states
labelled by the quantum numbers generically denoted by {1} and {2}. The total ionisation
rate is therefore

R = 2
∑

{1}{2}

R1→2 , (4)

1Note that here the label 1 refers to a specific DM-electron coupling constant and not to the initial state quantum
numbers.
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where the factor of 2 accounts for the electron spin degeneracy.
Inspection of Eq. (1) shows that the double sum in Eq. (4) acts only on the product between

the energy conservation Dirac delta and the modulus squared of the electron wave function
overlap integral f1→2(q). Consequently, it is convenient to introduce the following function

∆(q,v) =
∑

{1}{2}

(2π)δ(E2 − E1 +∆Eχ(q,v)) | f1→2(q)|
2 , (5)

and rewrite the rate R in the following compact form,

R =
c2
1 nχ

8m2
χm2

e

∫

d3q
(2π)3

∫

d3v fχ(v) |FDM(q)|2∆(q,v) . (6)

Ionisation in the atomic limit. When the initial state electron wave function describes an
atomic orbital with principal, orbital and magnetic quantum numbers denoted by n, ℓ and
m, respectively, and the final state electron wave function is a positive energy solution of the
atomic Schrödinger equation, ψk′ℓ′m′ (defined below in Eq. (26)) the sum in Eq. (4) reads as
follows,

∑

{1}{2}

=
∑

nℓm

∑

k′ℓ′m′
=

1
4π

∑

nℓm

∑

k′ℓ′m′
→

1
4π

∑

nℓm

∑

ℓ′m′

∫

Vd3k′

(2π)3
, (7)

where k′ = |k′| and k′2/(2me) is the outgoing electron kinetic energy.
By writing the initial- and final-state electron energies as E1 = Enℓ−Φ and E2 = k′2/(2me),

for ∆(q,v) we find

∆(q,v) =
π

2

∑

nℓ

∫

dk′

k′
δ

�

k′2

2me
+Φ− Enℓ +∆Eχ(q,v)

�

W nℓ(k′, q) . (8)

Here Enℓ ≤ 0 is the energy of the (n,ℓ) orbital relative to the highest occupied energy level
of xenon, which lies at energy −Φ, where Φ is the ionisation potential, that is, the energy
difference between the highest occupied energy level and the vacuum level at 0 eV. For the
case of the isolated Xe atom, Φ is known experimentally to be 12.1 eV [28]. Furthermore [16],
the material response function can be defined as

W nℓ(k′, q) = V
4k′3

(2π)3
∑

m

∑

ℓ′m′
| fnℓm→k′ℓ′m′(q)|

2 . (9)

Ionisation in the condensed phase with periodic boundary conditions. When periodic bound-
ary conditions (PBC) apply, the initial state electron can be described by a Bloch state. In this
case, and assuming a plane wave as the final state, we can rewrite the double sums in Eq. (4)
as integrals by taking the continuous limit:

∑

{1}{2}

=
∑

iK

∑

k′
−→
∑

i

∫

BZ

Vd3K
(2π)3

∫

Vd3k′

(2π)3
. (10)

Here V is a finite normalisation volume, k′ is the final-state plane-wave momentum, i is the
initial-state band index and K is the wave vector in the first Brillouin Zone (BZ).

In this situation, with ψ1 =ψiK (Bloch state), ψ2 =ψk′ (plane wave) and with initial and
final-state electron energies given by E1 = Ei(K)−Φ and E2 = k′2/(2me), we find

∆(q,v) = Ncell

∫

d3k′
∫

dEe W (k′ − q, Ee)(2π)δ

�

k′2

2me
+Φ− Ee +∆Eχ

�

, (11)
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where [19],

W (k′ − q, Ee) =
Vcell

(2π)3
∑

i

∫

BZ

d3K
(2π)3

δ (Ee − Ei(K))
�

�

�

eψiK(k
′ − q)
�

�

�

2
. (12)

Again, Φ is the energy difference between the highest occupied energy level, which in this case
is the top of the valence band density of states, and the vacuum level at 0 eV. We note that
Φ is distinct from the work function, which is the energy needed to remove an electron from
the condensed phase, and also contains the energy cost needed to overcome any barrier at the
surface. Here, we have rewritten the normalisation volume V as the product between the unit
cell volume, Vcell, and the number of unit cells in the xenon target, Ncell. This factorization is
relevant in the DFT calculations presented below.

The function W (k′ − q, Ee) is normalised as follows
∫

d Ee

∫

d3(k′ − q)W (k′ − q, Ee) = Nbands , (13)

where Nbands is the number of occupied bands included in the calculation.

2.2 Ionisation rate and electron density in xenon detectors

We now use the formalism introduced in Part A to relate the rate of DM-induced ionisations
to the electron density in a xenon target, assuming that the ejected electron is described by a
wave function that has a narrow distribution around a specific momentum. The description
in terms of the electron density will be important when comparing predictions obtained for
different xenon phases.

When the final state wave function eψ2 peaks at a definite momentum k′, and the initial
state wave function eψ1 varies slowly around k′, we can expand f1→2 in Eq. (3) as

f1→2(q) =

∫

d3k
(2π)3
eψ∗2(k)
�

eψ1(k
′ − q) +∇k
eψ1(k− q)|k=k′ · (k− k′) + . . .

�

. (14)

When the final state electron is described by a plane wave and thus eψ2(k) = δ(k− k′)/
p

V ,
only the first term contributes to the expansion in Eq. (14). Consequently, the gradient terms in
Eq. (14) are associated with deviations from the plane-wave approximation for the final-state
electron wave function eψ2(k).

As long as the expansion in Eq. (14) holds, the squared modulus of f1→2, and thus the total
ionisation rate, can be related to the initial density of electrons in the target and its gradients.
To show this, let us decompose ∆(q,v) as

∆(q,v) =
∑

nℓ

∆nℓ(q,v) , (15)

where

∆nℓ(q,v)≡
∫

dEe

2π

∑

{1→nℓ}

∑

{2→nℓ}

| f1→2(q)|2 , (16)

with
∑

{1→nℓ}

=
∑

{1}

(2π)δ(Ee − E1 −Φ)θ (Ee − Enℓ
min)θ (E

nℓ
max − Ee) , (17)

and
∑

{2→nℓ}

=
∑

{2}

(2π)δ(E2 − Ee +Φ+∆Eχ) . (18)
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These equations apply both to the case of isolated atoms, where ψ1 = ψnℓm is an atomic
orbital, and to the cases of solid or liquid xenon, where ψ1 =ψiK is a Bloch state. In the case
of isolated atoms, the energy spectrum is discrete, and Enℓ

min = Enℓ
max = Enℓ, where Enℓ is the

energy eigenvalue of the atomic orbital ψnℓm. In the cases of solid or liquid xenon, the energy
levels broaden into continuous bands, with lower and upper bounds Enℓ

min and Enℓ
max. In the

above equations, the integration variable Ee is the frequency conjugate to the time coordinate
(see footnote 4). In practice, it is an auxiliary variable that we integrate over to guarantee that
only energy levels within ∆Enℓ

e ≡ Enℓ
max − Enℓ

min contribute to ∆nℓ(q,v).
By setting Ee=Enℓ in Eq. (18),2 and inserting Eq. (14) into Eq. (16), we obtain3

∆nℓ(q,v) = αnℓρnℓ
e (k
′ − q)

+βnℓ · ∇k′ρ
nℓ
e (k
′ − q)

+
1
2
γnℓ

i j ∇k′i
∇k′j
ρnℓ

e (k
′ − q)

+ . . . higher order gradient terms,

(19)

where4

ρnℓ
e (k
′ − q) = 2

∫

dEe

2π

∑

{1→nℓ}

| eψ1(k
′ − q)|2 , (23)

is the Fourier transform of the density of electrons with quantum numbers nℓ, in the atomic
case, and with energies Ei(K) in ∆Enℓ

e , in the case of solid or liquid xenon. Finally,

αnℓ =
1
2

∑

{2→nℓ}

|ψ2(0)|2 ,

βnℓ =
1
2

∑

{2→nℓ}

�

ψ∗2(0)P̂ψ2(0)− k′|ψ2(0)|2
�

,

γnℓ
i j =

1
2

∑

{2→nℓ}

�

(P̂iψ2(0))
∗ P̂jψ2(0) + k′ik

′
j|ψ2(0)|2

− k′iψ
∗
2(0)P̂jψ2(0) + k′jψ2(0)(P̂iψ2(0))

∗
�

,

(24)

with
P̂ = −i∇ . (25)

2This is an exact replacement in the case of isolated atoms, and a good approximation when the broadening
of atomic energy levels in the solid/liquid phase is small. While we will not use this approximation in our nu-
merical implementations (for these, we will use another approximation explained in Sec. 3.6), here it allows us to
disentangle the two sums in the definition of ∆nℓ(q,v) for all values of n and ℓ.

3Consistent with Eq. (14), in the derivation of Eq. (19) we neglect second derivatives of the initial state electron
wave function.

4 Notice that

ρnℓ
e (k

′ − q)≡ ρnℓ
e (k

′ − q, t = 0)

= 2
∑

{1}

∫

∆Enℓ
e

dEe

2π

∫

∆Enℓ
e

dE′e
2π
eψ1(k

′ − q, Ee) eψ
∗
1(k
′ − q, E′e) . (20)

By using for the initial state electron wave function at time t,

eψ1(k
′ − q, t) = e−i(E1+Φ)t eψ1(k

′ − q) , (21)

and for its time Fourier transform at Ee,

eψ1(k
′ − q, Ee) = (2π)δ(E1 − Ee +Φ) eψ1(k

′ − q) , (22)

we can rewrite the electron density in a xenon detector as in Eq. (23).
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Here, ψ2 (without a tilde) is the final-state electron wave function in real space. For a given
ψ2, the factors αnℓ, βnℓ and γnℓ

i j can be evaluated explicitly. For example, in the case of a plane

wave, one has |ψ2(0)|2 = 1/V , where V is the normalisation volume. In the case of a positive
energy solution of the hydrogen atom Schrödinger equation with effective nuclear charge Zeff,
ψ2(x) is given by

ψ2(x) =ψk′ℓ′m′(x) = Rk′ℓ′(r)Yℓ′m′(θ ,φ) , (26)

with

Rk′ℓ′(r) =
(2π)3/2
p

V
(2k′r)ℓ

′

q

2
π

�

�Γ
�

ℓ′ + 1− iη
��

� e
πη
2

(2ℓ′ + 1)!
e−ik′r

1F1

�

ℓ′ + 1+ iη, 2ℓ′ + 2,2ik′r
�

. (27)

Here r = |x|, the angles θ and φ identify the direction of x, η= Zeff/(k′a0), and a0 = 1/(αme)
is the Bohr radius. In this case, we find

|ψ2(0)|2 =
4π
V

Fc(η)δ0ℓ′δ0m′ , (28)

where we used 1F1 (a, b, 0) = 1 for arbitrary a and b, as well as,

|Γ (1− iη)|2 = πη/ sinh(πη) . (29)

The factor

Fc(η) =
2πη

1− e−2πη
, (30)

in Eq. (28) is the so-called Fermi correction function. By inserting Eq. (19) into Eq. (15), and
then the latter into Eq. (6), we obtain an expression for the total ionisation rate as a function
of the density ρnℓ

e and its gradients.
We find this formalism to be convenient in two aspects. In Part A, we wrote a general

expression for the rate (Eq. (6)) that is valid independently of the specific form of initial and
final states. In Part B, we outlined how to relate the ionisation rate to the initial-state electron
density and its gradients in momentum space, which can be used to assess the influence of the
different target phases (atomic or liquid) on the ionisation rate.

3 Density functional theory description of xenon

For our study, we choose the DFT implementation provided by the plane-wave pseudopotential
open-source code Quantum Espresso v.6.4 [29–31]. This software package and method-
ology offer a number of practical advantages: Well-tested pseudopotentials, several choices
for the exchange-correlation (XC) functional, a number of flavors of van der Waals correc-
tions, and the spin-orbit coupling interaction as well as Hubbard-U corrections for localized
states are all implemented. In addition, the use of a plane-wave basis set for the expansion of
the Kohn-Sham states is particularly convenient, since convergence of the total energy can be
straightforwardly assessed by increasing the number of plane waves. Importantly, Quantum
Espresso interfaces directly with two leading packages for calculating DM-electron scatter-
ing, QEdark [15] and its extension QEdark-EFT [18, 32]. The specific choice of the pseu-
dopotentials and further computational details are described in Appendix A.

3.1 Measured properties of xenon

Xenon is a noble gas with atomic number Z = 54, mass number A ∼ 131 and electronic
configuration [Kr] 4d10 5s2 5p6. The filled electron shells allow only weak van der Waals
interatomic interactions between atoms, so that xenon is gaseous at room temperature and
atmospheric pressure, with boiling point at 165 K and a narrow window (3.9 K) of liquid phase.
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Table 1: Energy levels of atomic orbitals for isolated atoms of xenon measured via
photoelectron spectroscopy [28]. The vacuum energy level is set to 0 eV.

Energy [eV]

5p 3
2

-12.1
5p 1

2
-13.4

5s -23.3
4d 5

2
-67.5

4d 3
2

-69.5

11
.5

9 
a.

u.
 

2
4

.8
8

 a
.u

.

1
1

.5
9

 a
.u

. 

Figure 1: Left: The face-centered-cubic crystal structure of solid xenon, with the
primitive rhombohedral unit cell shaded in gold. The arrows indicate the primitive
lattice vectors. The experimentally measured value of the cubic lattice parameter ex-
trapolated to 0 K is 11.59 a.u. [33]. Right: Representative supercell of liquid xenon
extracted from our Monte Carlo simulation (see details in Sec. 3.4) and used as in-
put for liquid-phase DFT calculations. This region was randomly sampled from the
generated atomic distribution and contains 30 atoms within a cubic cell with a lat-
tice parameter of 24.88 a.u, yielding the measured atomic density inside the detector
ρdet = 1.949 × 10−3 atoms/a.u.3 [34,35].

3.1.1 Atom

The energy levels of the outer shell electrons in isolated atomic xenon have been measured
using photoelectron spectroscopy [28] and are reported relative to the vacuum level in Tab. 1.
Note the splitting of the 5p and 4d levels due to spin-orbit coupling.

3.1.2 Liquid

The measured density in the liquid phase at 183.18 K with an overpressure of 2.53 bar is
2.02×10−3 atoms/a.u.3, with peaks in the atomic radial distribution function (Fig. 5) at ∼ 8.5
a.u. and ∼14.7 a.u., corresponding to the first and second nearest neighbouring atoms, re-
spectively [36]. In addition, the refractive index of liquid xenon has been measured at various
wavelengths (Fig. 6) [37, 38] in Sec. 3.4. We will benchmark our calculations to these prop-
erties in Sec. 3.4.

9

https://scipost.org
https://scipost.org/SciPostPhys.19.3.064


SciPost Phys. 19, 064 (2025)

-10

-20

-30

-40

-50

-60

-70

E
n
e
rg

y
 [

e
V

]

38.61 eV

2.0 eV

44.17 eV

10.69 eV10.69 eV

2.46 eV

44.2 eV

9.9 eV

4d

5s

5p

j=5/2

j=3/2

j=3/2

j=1/2

2.0 eV

1.3 eV1.27 eV 1.27 eV

39.0 eV

12.0 eV

PZ SOC HU (11.5 eV) Exp.
a)

-10

-20

-30

-40

-50

-60

-70

E
n
e
rg

y
 [

e
V

]

38.79 eV

1.99 eV

44.34 eV

10.63 eV10.63 eV

1.99 eV

44.2 eV

9.9 eV

4d

5s

5p

j=5/2

j=3/2

j=3/2

j=1/2

2.0 eV

1.3 eV1.23 eV 1.23 eV

40.0 eV

12.0 eV

PBE SOC HU (11.1 eV) Exp.
b)

Figure 2: Valence electron energy levels of atomic xenon calculated using DFT, with
the LDA PZ (a) and GGA PBE (b) XC functionals. Spin-orbit coupling is included in
the second columns (labelled SOC), and both spin-orbit coupling and a Hubbard-U
on the Xe 4d states in the third (labelled HU). The last column of each panel shows
the experimentally measured values [28]. The calculated levels are aligned so that
their 5s orbitals have the same energy as the experimental value of -23.3 eV (see
Tab. 1).

3.1.3 Solid

Xenon crystallizes at 161.1 K in the face-centered-cubic (fcc) structure (Fig. 1, left panel) with a
zero-kelvin extrapolated value of the cubic lattice parameter of 11.59 a.u. [33], corresponding
to a density of 2.57×10−3 atoms/a.u.3 and a nearest neighbour distance of 8.20 a.u. Solid Xe
is an insulator with reflection spectra and photoemission measurements indicating a band gap
of about 9.3 eV at the Γ point [39,40] that decreases by ∼ 0.2 eV with increasing temperature
up to the melting point due to lattice expansion [39]. Photoemission experiments indicate
that the width of the highest occupied valence band, derived from the 5p atomic orbitals, is
approximately 3 eV [40].

3.2 Density-functional calculations for atomic xenon

We begin by calculating the properties of isolated xenon atoms, with the goal of identifying a
DFT setup that correctly reproduces the experimentally measured electronic energy levels of
the valence electrons. Since Quantum Espresso employs periodic boundary conditions, we
place a single Xe atom in an otherwise empty cubic box, and increase the size of the box until
further change in the calculated total energy is less than 1µeV; this was achieved at a cubic
unit cell length of ∼ 27 a.u. For more detailed information about our computational scheme
and parameters, see Appendix A.

We test two different approaches for modeling the XC functional: the local density approx-
imation (LDA) and the generalized-gradient approximation (GGA), in their Perdew-Zunger
(PZ) [24] and Perdew-Burke-Ehrenhof (PBE) [41] implementations, respectively. In Fig. 2, we
show our valence electron energy levels calculated using PZ LDA (left) and PBE GGA (right),
together with the experimentally measured values in the last column of each panel, with the
energies of the 5s states aligned for comparison.5 We see that the two functionals in their basic

5Note that our ground-state DFT calculations do not yield information about the ionisation energy, which is the
energy difference between the highest occupied 5p level and the vacuum level.
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form (first two columns) yield similar values, with the correct ordering of the energy levels
in both cases although with quantitative differences from the measured values. In both cases,
however, the observed splittings of the 5p and 4d states are lacking and the position of the
4d levels is ∼ 5 eV too high, so that the energy difference between the 5s and 4d levels is too
small compared to experiment. The introduction of spin-orbit coupling (SOC, second columns
from left) corrects the first problem, with the 5p and 4d levels splitting according to their
different j values and with splitting values in excellent agreement with experiment for both
functionals. The underestimated binding energy of the 4d orbitals is largely a result of the fact
that, in standard DFT calculations, each electron incorrectly interacts with the Coulomb and
exchange-correlation potential generated by its own charge, artificially increasing its energy,
particularly in localized orbitals. We correct for this self-interaction error by introducing a
Hubbard-U correction on the 4d states following the rotationally invariant approach of Du-
darev et al. [42] and varying the value of the effective Hubbard parameter, Ueff, until the
experimental 5s-4d energy difference is correctly reproduced.6 We find that Ueff values of
11.5 eV (LDA) and 11.1 eV (GGA) bring the 5s-4d energy difference into good agreement with
experiment (HU, third columns from left), although at the expense of increasing the spin-orbit
splitting of the 4d states to slightly more than the experimental value.

In summary, our analysis indicates that both LDA and GGA functionals, with inclusion of
SOC and appropriate adjustments to correct for self-interaction, are able to reproduce the
measured energy levels of atomic Xe. In the next section, we assess which of these functionals
provides the best description of the crystalline solid phase.

3.3 Density-functional calculations for solid xenon

3.3.1 Van der Waals correction

As mentioned above, since xenon is a noble gas with filled electron shells, the van der Waals
interaction is key to the formation of the condensed phase. However, because of its intrinsic
non-local character, the van der Waals interaction is not captured in either local or semi-local
functionals, such as the PZ and the PBE functionals we used above. Fortunately, a number of
corrections to standard XC functionals have been developed to specifically treat van der Waals
interactions and several are implemented within the Quantum Espresso package. We tested
six different forms of van der Waals correction – vdw-DF, vdw-DF2, rVV10, DFT-D, DFT-D3
and mbd_vdw – the physics of which are described in Appendix B, by calculating the lattice
parameters that they yield for solid crystalline xenon. Our calculated lattice parameters are
shown in Fig. 3, obtained as corrections to the LDA PZ (left panel) and GGA PBE (right panel)
XC functionals. Computational details are provided in Appendix A. The colours denote the
progressive inclusion of the Hubbard-U correction (central purple bars) and of SOC (right pink
bars) in our calculations. We find that the values of the lattice parameter are approximately
independent of both SOC and the Hubbard-U correction. We also see that the PZ functional
yields lattice parameters which are too small, a typical problem of the LDA approximation.
PBE performs better for this property, especially when van der Waals corrections introduce the
missing attractive contribution. We note that the three non-local functionals vdw-DF, vdw-DF2
and rVV10 are not implemented in combination with PZ in the Quantum Espresso code.

Based on this analysis, we find two functionals, the rVV10 and DFT-D corrections to PBE,
that closely reproduce the experimental value of the zero-kelvin-extrapolated lattice parameter
of 11.59 a.u. [33]. Since rVV10 cannot be used together with spin-orbit coupling in Quantum

6While the DFT + Hubbard-U method was developed to incorporate an explicit Coulomb repulsion between
electrons in a partially filled orbital manifold on the same atom, since the effect of the Ueff parameter is to lower
the energy of occupied states it can also be used to correct for self-interaction in filled orbitals. In this case, the
value of the parameter Ueff has the effect of shifting the selected filled orbital down in energy by ∼ Ueff

2 .
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Figure 3: Calculated values of the lattice parameter for crystalline xenon using sev-
eral van der Waals corrections to the PZ (a) and PBE (b) XC functionals. Yellow bars
denote calculations without Hubbard-U and SOC correction, purple bars include the
Hubbard-U and do not include SOC correction, while calculations marked in pink
include both corrections. vdw-DF, vdw-DF2, rVV10 and DFT-D3 corrections are not
implemented with the PZ XC functional, while the vdw-DF, vdw-DF2 and rVV10 im-
plementations do not allow inclusion of SOC. The horizontal dashed lines indicate
the experimental value of the lattice parameter [33].

Espresso, we select the DFT-D correction to the PBE XC functional (with calculated lattice
parameter of 11.42 a.u.) as our choice to treat van der Waals interactions and use it in the
subsequent calculations.

3.3.2 Calculated electronic properties

Fig. 4 shows our calculated band structure and density of states (DOS) for solid crys-
talline xenon, calculated with (pink) and without (blue) spin-orbit coupling, with an 11.1 eV
Hubbard-U correction on the 4d states and using the DFT-D van der Waals correction to the
PBE XC functional. The top of the valence band is set to 0 eV.

The highest occupied valence bands are dominated by the three 5p atomic orbitals. We see
that the spin-orbit coupling lifts degeneracies in the 5p bands, causing, for example, a 1.42 eV
splitting at the Γ point (K= 0) of the band originating from the atomic j = 1

2 manifold, which
is slightly larger than the 1.23 eV splitting in the atom. The weak van der Waals bonding
causes each sub-band to broaden by ∼ 1 eV, leading to a total bandwidth for the 5p manifold
of ∼ 2.5 eV, consistent with photoemission data [40]. The calculated band gap of 5.81 eV
shows the usual DFT underestimation compared to the experimental value (9.3 eV [39, 40]).
We note that this does not affect our calculations of DM-induced ionisation rates, where we
position the occupied levels with respect to the vacuum level by using the measured ionisation
potential. The 5s and 4d bands (not shown) are largely unaffected by the crystal environment;
they remain narrow and occur at roughly the same energies as in the isolated atom. We also
notice that the first empty conduction bands show a broad dispersion with parabolic shape at
gamma, indicating that a plane-wave state of a free electron might already approximate well
these states.
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Figure 4: Calculated band structure (left) and density of states (right) for solid xenon
with (pink) and without (blue) SOC effects. The pink arrow indicates the band gap
with SOC. The introduction of SOC lifts the degeneracy in the 5p-valence bands.

3.4 Density-functional calculations for liquid xenon

In order to use DFT (which is by construction a 0 K technique) to simulate the liquid phase of
xenon, which occurs only at finite temperature, we adopt a hybrid approach, combining a clas-
sical Monte Carlo (MC) simulation of the atomic distribution at the experimental temperature
followed by a 0 K calculation of the electronic structure for this atomic distribution performed
with DFT.

For our MC simulation, we use a Lennard-Jones potential with parameters ϵ = 0.02 eV and
σ = 7.45 a.u. [43] and the usual analytical form:

V (r) = 4ϵ
�

�σ

r

�12
−
�σ

r

�6�

. (31)

Following the usual MC scheme, atoms are randomly selected and then displaced by a random
distance up to a maximum value of ∼ 1.89 a.u. (1Å) in any direction, with the steps accepted
or rejected according to the Metropolis-Hastings algorithm [44, 45], until the system’s free
energy is minimized. We set the number of trial steps per atom to 500 (with consistency
checks at 1000 and 1500). The algorithm also requires a distance cutoff for the interatomic
potential, above which the potential is set to zero: this was set to be half the length of the
simulation box.

Our cubic simulation box contains 13500 atoms and we set the edge lengths to ∼ 189
a.u (100 Å) to impose the experimental density of liquid xenon used in the detectors, ρdet =
1.949 × 10−3 atoms/a.u.3 [34,35]. We simulate the detector temperature of 177 K; note that
this temperature is higher than the boiling point of xenon at standard conditions due to an
overpressure of 1.94 bar adopted in liquid xenon detectors [46]).

Fig. 5 shows the calculated radial distribution function (RDF) g(r) with these parameters
(solid pink line). We find satisfactory agreement with experimental RDF values (yellow dots)
measured at 183.18 K and a density of ρex p = 2.02 × 10−3 atoms/a.u.3 (∼ 3% higher than
our simulation) [47]. (We note that more modern diffraction studies [48, 49] do not show
the small peak at ∼11.5 a.u.; we chose to include these data since the reported pressure
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and temperature are closest to our values.) As further validation, we run an additional MC
simulation at temperature near absolute zero and at the experimental density of solid xenon
of ρsol id = 2.586 × 10−3 atoms/a.u.3 [33]. We obtain an fcc structure and sharp Dirac-delta-
like peaks in the RDF as shown in solid blue lines in Fig. 5. The MC-simulated inter-atomic
spacings are slightly larger than the calculated DFT values (blue dashed lines) due to the larger
experimental lattice parameter used here.

Next, we extract multiple computationally tractable 30-atom cubic “supercells” from the
results of the MC simulation for liquid xenon. These are then used, with periodic boundary
conditions, as input to our DFT and DM-electron scattering rate calculations. The supercells are
obtained by randomly sampling cubic blocks of edge length 24.88 a.u. from the MC-calculated
atomic distribution; this density matches the experimental value of the DM detector ρdet . We
exclude supercells that result in atomic spacings less than 6.6 a.u. when periodic boundary
conditions are applied. An example of a representative supercell is shown in the right panel
of Fig. 1, and the average RDF calculated for the supercells generated using this procedure is
shown as the dashed pink line in Fig. 5. More details on the supercell construction procedure
are given in Appendix A.

Finally, we use DFT to compute the electronic properties of our liquid xenon supercells (see
again Appendix A for computational details). As a first test of the validity of the method, we
compute the refractive index (for more details, see Appendix C), which is shown in Fig. 6 along
with the available experimental data points [37, 38]. Importantly, our DFT results reproduce
the refractive index at λ= 178 nm, which is the wavelength of liquid xenon’s own scintillation
light (transparency of liquid xenon to its own scintillation light is one of the advantages of
using this material as a detector medium [46]). Our setup also gives reasonable agreement
for the long-wavelength limit.
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MC 1.2 K, solid (a = 11.59 a.u.)
DFT solid (a = 11.42 a.u.)

Figure 5: Radial distribution function for MC-simulated liquid xenon at 177 K with
Lennard-Jones potential (pink solid line) compared to the experimentally measured
distribution at 183 K (yellow dots) [47]. The pink dashed line shows the recon-
structed distribution averaged over the supercells that we selected for the calculation
of DM-electron scattering rates. The blue peaks are the results of the MC simulation
of solid xenon near absolute zero with lattice parameter a = 11.59 a.u. and the blue
dashed lines show the interatomic distances at the calculated DFT lattice parameter
a = 11.42 a.u.
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Figure 6: Calculated (pink dashed line) and measured (yellow dots) [37,38] refrac-
tive index of liquid xenon. The data point at wavelength λ = 178 nm (the scin-
tillations light wavelength) was measured at 170 K [37] and the points at higher
wavelengths were measured at 178 K [38].

Next, we compare the calculated DOS of the liquid phase with those of the crystalline solid
and the atom. Fig. 7 shows the calculated DOS for liquid xenon averaged over five representa-
tive supercells constructed as described above (pink), with those of the atom (orange vertical
lines) and the solid (blue) for comparison. The levels are positioned so that the low-lying
narrow 4d states (panel a)) have the same energy in all phases and the vacuum level is set
from the ionization potential of the isolated atom. In the zoom of panel b) we can see that,
similarly to the solid case, the only orbitals that broaden appreciably into a band are the 5p,
with a bandwidth very close to that of the solid (∼ 3 eV). As a result, the highest occupied
level is now closer (−11.05 eV, so that Φ= +11.05 eV) to the vacuum level than in the isolated
atom (where Φ = 12.1 eV). We reiterate that the ionisation potential, Φ, which is the energy
difference between the highest occupied level and the vacuum, is smaller in the condensed
phase than the work function W , since the latter includes the energy cost for the electron to
escape the surface. This will be important later in our analysis of exclusion limits.

To further understand the role of bond formation in the condensed phase, we plot in Fig. 8
representations of the real-space charge density for the solid (left) and liquid (right). For the
solid, we show a contour plot of the calculated valence charge density in the (111) plane
in the front panel. It is clear that the charge density is highly spherical around the atomic
sites, with small deviations from spherical symmetry visible only at small electron densities
below ∼ 0.002 e/a.u.3 The yellow blobs within the crystal structures indicate the isosurfaces
of charge density at 0.015 e/ a.u.3 (panel a)) and 0.001 e/a.u.3 (panel b)). The first value is
chosen because it is the value of the charge density at the core radius of the pseudopotential
for the 5p electrons, r5p

c = 2.99 a.u., below which the wave functions are smoothened due to
the pseudopotential approximation. This point will be discussed further in Sec. 3.5. We see
that at this value of charge density, the charge distribution is effectively spherical and centered
around the atoms. Panel b) emphasizes the non-spherical bonding charge between the atoms,
which is only apparent at low density (isosurface 0.001 e/a.u.3).
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Figure 7: a) Computed valence band density of states of liquid xenon averaged over
supercells (pink), solid crystalline xenon (blue) and isolated Xe atom (orange). The
5p levels of the isolated atom are positioned according to the experimental ionisation
energy of −12.1 eV, with zero (gray dashed line) indicating the vacuum energy [28].
The solid and liquid curves are positioned so that the 4d levels match those of the
isolated atom. b) Computed 5p atomic, liquid and solid densities of states (gray box
in panel a)) with the ionisation potentials for the atomic (orange) and liquid (pink)
phases indicated. The pink dashed line is the best fit of Eq. (32) to our calculated
liquid density of states.

The right-hand side of Fig. 8 shows a contour plot of the charge density averaged per-
pendicular to the plane of a selected supercell of liquid xenon and compares the total charge
density (panel c), top) with its deviation from that of non-interacting atoms at the atomic sites
(panel d), bottom). Note that the scale in panel d) is three orders of magnitude smaller than
that of panel c), indicating that the charge participating in the chemical bonding is correspond-
ingly smaller than the overall charge, consistent with the weak van der Waals interactions.

3.5 Pseudopotentials

Before concluding our discussion on the DFT treatment of xenon, we make some remarks about
the pseudopotential approximation in the context of calculations of DM-electron scattering
rates. The pseudopotential method replaces the central Coulomb attraction of the valence
electrons to the positive ion composed of the nucleus and the tightly bound core electrons with
a smoother effective potential, the pseudopotential. The pseudopotential is constructed so that
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Figure 8: Computed electron density in real space for solid and liquid xenon with
PBE functional, DFT-D vdW correction and Ueff = 11.1 eV. Panels a) and b) show
contour plots of the charge density of solid xenon in the (111) plane (front surfaces)
combined with charge density isosurfaces (gold blobs) at the values of 0.015 e/a.u.3

(a) and 0.001 e/a.u.3 (b). The value of 0.015 e/a.u.3 corresponds to the charge
density value at the pseudopotential core radius r5p

c = 2.99 a.u. for 5p electrons.
Panels c) and d) show the in-plane average of the charge density of liquid xenon for
one of our selected supercells. In panel c), the total valence charge density is shown;
in panel d), the charge density of isolated xenon atoms placed at the atomic sites was
subtracted and the absolute value of the charge density difference is shown.

it and the pseudowavefunction obtained from solving the corresponding Schrödinger equation
are identical to the true potential and wave function outside of some core radius rc , with the
requirement that the true and pseudo eigenenergies are identical. The pseudowavefunctions
obtained from this construction have fewer nodes than the true wave functions, and as a result,
their expansion in a plane-wave basis is computationally tractable. In Fig. 9 we plot the radial
distribution of the charge from the Xe 5p electrons calculated in the Roothan-Hartree-Fock
(RHF) approximation, which is the standard literature choice for modeling atomic Xe for DM-
electron scattering calculations [10,16,21], and indicate the core radius of the pseudopotential
used in this work, r5p

c , with the vertical dashed line. We see the strongly oscillating behaviour
of the RHF radial charge density in the region within the core radius of the pseudopotential,
and that most of the 5p electron charge lies within the core region.

The pseudopotential approximation is widely used in the Materials Physics community and
is well established to yield results comparable to calculations that treat the potentials of all the
electrons explicitly (so-called all-electron methods) for standard condensed matter properties.
The excitation of electrons by light DM can, however, involve a large momentum transfer q,
up to the order of ∼ 100 keV. As previous work has pointed out [21, 51, 52], this amount of
momentum is sufficient to probe short length scales comparable to the wavelengths of the fast
oscillations of the wave function in the core region. This means that high momentum transfer
scattering rates are artificially suppressed when a smoothened pseudowavefunction is used for
the valence electrons.
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Figure 9: Radial distribution of the charge in the 5p RHF atomic orbital of xenon,
calculated using the coefficients tabulated in ref. [50]. The core radius of the pseu-
dopotential, r5p

c = 2.99 a.u., used in this work is shown with the vertical dashed line.

One solution to this problem was shown in the work of Griffin et al. [21], where a so-called
all-electron reconstruction of the DFT-obtained pseudowavefunctions was performed within
the projected-augmented-wave (PAW) method [53] to compute scattering rates in crystalline
Si and Ge targets. This method reconstructs the all-electron wave functions by means of a
linear transformation connecting pseudo and all-electron atomic basis functions and the use
of specific projector functions [21, 53]. Such a reconstruction is also used for example in the
calculation of chemical shifts in nuclear magnetic resonance spectra, where the details of the
valence electron wave functions in the region of the atomic nuclei are important. Another
possibility is to avoid the use of pseudopotentials completely by using an all-electron code,
although this would be prohibitively computationally expensive for the large numbers of atoms
and electrons per atom considered here. We will show in the next section that the weak nature
of the van der Waals interactions in condensed xenon allows for an even simpler work-around
to this problem in this case.

3.6 Analytical fitting of the density of states

Finally, we perform an analytical fitting of the DOS of the liquid phase that we will use later
to compute DM-induced ionisation rates (see the next Sec. 4). We find that the DOS of the 5p
electrons of the liquid phase can be approximated as follows

DOS(Ee) =
Θ(Ee − t1)Θ(t2 − Ee)

N2 − N1

3
∑

i=1

aie
− (Ee−µi )

2

σ2
i , (32)

where the energy Ee was defined below Eq. (18) such that Ee = 0 corresponds to an energy of
−Φ relative to the vacuum, and

N j =
p
π

2

3
∑

i=1

aiσierf
� t j −µi

σi

�

, (33)

ensures that the DOS of the 5p electrons is normalized to six. The best-fit energy cutoffs are
t1 = −2.82000 eV and t2 = −0.18633 eV, and the Gaussians are characterised by the param-
eters in Tab. 2. The resulting best-fit DOS(Ee) is plotted as the pink dashed line in Fig. 7 b).
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Table 2: Best-fit parameters for the three Gaussian terms in Eq. (32) approximating
the DOS of the 5p electrons in the liquid phase.

ai µi [eV] σi [eV]

1 −1.27468 0.33845
0.81422 −0.73646 0.34622
1.19924 −2.46349 0.25364

We find that the DOSs of the remaining electron shells (5s and 4d) are well approximated by
delta functions centered at the DFT-predicted orbital energies.

4 Calculation of the dark matter-induced ionisation rate in liquid
xenon

4.1 Overture: General observations

By combining the DFT results from Sec. 3 with the gradient expansion of the ionisation rate
in Eq. (19), we now develop a computational framework to calculate the expected rate of
DM-induced ionisation events in liquid xenon detectors. Our framework builds on three ob-
servations. We list them here, and elaborate on them in the next subsections 4.2 and 4.3:

1. The electron binding energies / densities of states of the highest occupied 5p levels
are strongly dependent on the xenon phase, as shown in Fig. 7. In our calculation of
the scattering rate and exclusion limit plots, therefore, we will explicitly determine the
influence of the DOS of the liquid phase, in comparison to the isolated energy levels of
the atom.

2. As shown in Eq. (14), when the Fourier transform of the final-state electron wave func-
tion peaks at a definite value of the linear momentum (as should be the case in ionisation
processes), the ionisation rate can be explicitly expressed in terms of the initial-state elec-
tron density ρnℓ

e (k
′ − q) and the derivatives ∇k′ρ

nℓ
e (k
′ − q) and ∇k′i

∇k′i
ρnℓ

e (k
′ − q). We

will see in section 4.2 that the density and its derivatives are approximately independent
of the xenon phase. In particular, we note that the deviations in the 5p densities between
the atom and the condensed phases are several orders of magnitude smaller than those
introduced by use of the pseudopotential. Therefore, to facilitate comparison with ear-
lier calculations for atomic xenon, we will model the initial-state electron densities of
the liquid using the isolated atom RHF wave functions, which in addition do not suffer
from the pseudopotential approximation.

3. Concerning the final state, we showed in Sec. 2 that the gradient terms in the expansion
of Eq. (14) are associated with deviations from a plane wave. We find these terms to be
non-zero and approximately independent of the xenon phase. Therefore we proceed by
using the standard literature choice of positive energy solutions of the hydrogen atom
Schrödinger equation for the final state (see Sec. 2) enabling direct comparison of our
results with previous work [12,17,54].
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Figure 10: Orbital-resolved electron density ρnℓ
e (|k

′ − q|) (angular average) and its
first and second derivatives (absolute values) for atomic and liquid xenon, calculated
with DFT with PBE functional, DFT-D vdW correction and Ueff = 11.1 eV. The columns
show (left to right) the 5p (orange), 5s (blue) and 4d (pink) orbitals, while the rows
show (top to bottom) the density and its first and second derivatives, respectively.
Notice the different y-axis scales and units for the three rows.

4.2 Intermezzo: On the role of the initial-state electron density

Fig. 10 shows ρnℓ
e (k
′−q) and its first and second derivative for atomic and liquid-phase xenon

computed with DFT, using a modified version of our QEdark-EFT [32] code with PBE func-
tional, DFT-D vdW correction and Ueff = 11.1 eV. We defined ρnℓ

e (k
′ − q) in Sec. 2.2 Eq. (23)

to be the electron density in momentum space for the nℓ-th energy level and showed that it is
an important quantity for computing the scattering rate.

Within our region of interest of momentum (up to 25 keV), the 4d orbitals (third column,
pink lines) of the two phases have indistinguishable densities and density gradients, and the 5s
orbitals (second column, blue lines) show only minimal differences, consistent with the atomic-
like behavior of the 4d and 5s orbitals in the liquid phase. On the other hand, the liquid and
atomic values for the 5p orbitals (first column, orange lines) start to differ at around 16 keV,
with the liquid phase having up to approximately two orders of magnitude higher density and
density gradients in this range. This is consistent with the change in real-space charge density
associated with the bond formation.
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Figure 11: Orbital-resolved electron density ρnℓ
e (|k

′ − q|) (angular average) of iso-
lated xenon atoms calculated with DFT with PBE functional, DFT-D vdW correction
and Ueff = 11.1 eV, and RHF wave functions. The columns show (left to right) the 5p
(orange), 5s (blue), and 4d (pink) orbitals.

In Fig. 11, we show again the orbital charge densities calculated for the isolated atom
using DFT and compare them with those calculated using the RHF states. In Sec. 3.5, we
discussed the pseudopotential approximation and mentioned its inability to reproduce high
momentum components of the wave function in the core region. The comparison with the
RHF density confirms this point, with all RHF orbitals having significantly higher density than
the pseudopotential DFT orbitals in the high momentum regions. In particular, we notice that
above 16 keV, where the phase of xenon plays a role in the DFT results, the RHF densities of all
orbitals are orders of magnitude higher than the DFT. This leads us to the second observation
that we made in the previous section: In the region of momentum space for which the atomic
and the liquid phase yield different density and density gradients, the errors introduced by the
pseudopotential approximation dominate over the difference between the atomic and liquid
charge densities. We conclude therefore that we can best model the electron densityρnℓ

e (k
′−q)

and its gradients by using semi-analytical RHF states for isolated atoms. In addition, since the
density of the 4d electrons is completely phase independent at all momenta, we extrapolate
that this phase independence also holds for the more tightly bound 4p and 4s orbitals. We
therefore include these states in the calculation of the scattering rate via their RHF expressions.

Next, we address the question of how to best model the final state of the electron. In
Sec. 2, examples of a positive-energy solution of the hydrogen problem and a plane wave
were presented. Previous work has made use of both of these options [10, 16, 20], as well as
of conduction band states [15, 18], or even a mixture of them [21], taking into account the
broad range of energy transfer in the DM-electron scattering process. For liquid Xe the choice is
unclear: While the final measured signal inside the xenon chamber is ionized electrons, which
(neglecting the ions’ electrostatic potential) would be associated with plane-wave states of
free electrons, the electrons are first drifted through the medium by the applied electric field,
which is likely associated with conduction band occupancy, suggesting the mixed approach of
Ref. [21] could be the best choice. Here, we choose to proceed by using positive-energy solu-
tions of the hydrogen problem, which allows us to directly compare our results with previous
literature [16], leaving a more realistic description of the final state for future work. We note,
in particular, that the density gradient terms - associated with deviations from a plane-wave
final state (Eq. (14)) - are approximately the same for atomic and liquid phase (second and
third row in Fig. 10), with the difference in the region above 16 keV due to the bonding charge
being small compared to the core contribution. Therefore, the error coming from the choice
of a specific final state should not depend on whether the xenon target is modelled as a liquid
or as isolated atoms.
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4.3 Finale: Our best estimate for the ionisation rate in liquid xenon

Building on the observations made in Sec. 4.1, we now introduce a framework to calculate
the rate of DM-induced ionisation events in liquid xenon detectors. We recall Eq. (8), which
is the function ∆(q,v) that determines the ionisation rate R for the case where ψ1 is a RHF
wave function and ψ2 is a positive-energy solution of the hydrogen problem, and replace the
individual energy levels Enl by the DOS for electrons with quantum numbers n and l,

ϱnℓ(Ee)≡
∑

n̂ℓ̂

δ(Ee − En̂ℓ̂)δn̂nδℓ̂ℓ . (34)

This yields

∆(q,v) =
π

2

∑

nℓ

∫

dEe ϱ
nℓ(Ee)

∫

dk′

k′
W nℓ(k′, q)δ

�

k′2

2me
+Φ− Ee +∆Eχ

�

. (35)

This equation coincides with Eq. (8), but explicitly includes the DOS ϱnℓ(Ee).
Eq. (35) shows that the atomic to liquid xenon transition can affect the ionisation rate R

in two ways: 1) by modifying W nℓ(k′, q); 2) by changing the DOS ϱnℓ(Ee) and the ionisation
potential Φ. Since W nℓ(k′, q) can be expanded in gradients of the initial electron density, our
results in Sec. 4.2 show that we can calculate W nℓ(k′, q) using RHF atomic wave functions and
the methods we developed in [16] and implemented in [55] with the DarkART package. In
contrast, Fig. 7 shows that both the DOS ϱnℓ(Ee) of the 5p levels and the ionisation potential
Φ are significantly affected by the atomic to liquid xenon transition. We also notice that,
although the 4d and 5s states do not present any substantial broadening and have the same
binding energy for the atom and the liquid phase, our DFT energies for these states were tuned
to reproduce the experimental values and are different from the RHF values. Specifically,
neglecting the splittings due to spin-orbit coupling, the DFT 4d (5s) levels are 6.3 eV (1.74
eV) higher in energy than the RHF states.

Our best estimate for the ionisation rate R in liquid xenon thus relies on computing
W nℓ(k′, q) as in the standard treatment of DM-electron scattering in liquid xenon detectors,
while replacing ϱnℓ(Ee) and Φ with our DFT predictions. Specifically, for the 5p electrons, we
identify ϱnℓ(Ee) with the fitting function in Eq. (32), for the 4d and 5s electrons we use delta
functions at EDFT

4d = −69.3 eV and EDFT
5s = −23.96 eV and the ionisation potential Φ = 11.05

eV.
Before applying the formalism described above to reassess the sensitivity of existing liquid

xenon detectors, let us first briefly review the simplified detector response model often used
in the literature to convert the theoretical ionisation rate R , Eq. (4), into an observable rate
of secondary scintillation events (the so-called S2 signal). Following [17], we assume that an
ejected electron with kinetic energy E2 = k′2/(2me) has 0 probability of being reabsorbed in the
surrounding medium, while it generates a total number of charges ne (including the primary
electron itself) with probability P(ne|E2) = B(ne − 1|n0

1 + n0
2, fe). Here n0

1 = floor(E2/W )
is the number of additional charges produced via direct ionisation, while n0

2 is the number of
additional charges produced via photoionisation associated with the de-excitation of individual
atomic orbitals and is given in Tab. II of [10]. W is the xenon work function which, as we
mentioned above, is related to the ionisation potential Φ, but contains the additional energy
cost associated with the escape of the electron from the medium through its surface. Since we
do not have access to this quantity within DFT, we allow it to vary from 12.1 eV to 16 eV, around
the “central” value of 13.5 eV, which is compatible with [10,56]. Above, the function B(a|b, c)
denotes a binomial distribution with a successes, b trials and success rate c. For the success
rate we assume fe = 0.83 [57]. Finally, the ne charges produced in a DM-electron scattering
event are assumed to be drifted to the detector surface, where they produce an observable
number of photolectrons S2 with Gaussian probability of mean g2ne and variance neσ

2
S2.
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b)a)

Figure 12: Orbital-resolved contribution to the expected differential ionisation rate
as a function of the number of generated charges ne per interaction for a DM particle
mass mχ = 100 MeV and for heavy (a) and light (b) mediator particles. Notice
the different scale of the y-axis for the two panels. For the 4d, 5s and 5p energy
levels, dashed lines refer to the case of isolated RHF xenon atoms, whereas solid lines
refer to our calculation scheme which uses DFT and includes the effect of the liquid
phase. The sub-leading contributions from the 4s and 4p energy levels are calculated
only for the RHF isolated atom. The vertical line shows the number of charges ne
corresponding to a mean of 150 photoelectrons, which is the experimental threshold
of XENON1T based on 〈S2〉= ne g2. For illustrative purposes, in the figure we set the
coupling constant c1 = 1.

Within the detector response model above, the rate dΓ nℓ at which a number of photoelec-
trons between S2 and S2 + dS2 is produced in DM interactions with liquid xenon electrons
corresponding to a nℓ atomic orbital is given by

dΓ nℓ

dS2
= ϵ(S2)

∞
∑

ne=1

G (S2|ne g2, neσ
2
S2)

∫

dEe P(ne|E2)
dRnℓ(E2)

dE2
, (36)

whereRnℓ is the contribution from the nℓ orbital to the rateR ,7 G (S2|ne g2, neσ
2
S2) is a Gaus-

sian distribution of mean ne g2 and variance neσ
2
S2, and ϵ(S2) is the detector efficiency.

By employing Eq. (36), we calculate the expected number of events in a sample of S2
bins, modeling the xenon target as a liquid. Here, we focus on two experiments for which it
is straightforward to compare our predictions based on Eq. (36) with those obtained in the
literature for the case of isolated xenon atoms: XENON10 [17, 54] and XENON1T [12]. For
XENON10 (XENON1T), we use g2 = 27 (33) and σS2 = 6.7 (7) and model the correspond-
ing detector efficiency and experimental exposure as summarised in [16]. In particular, we
compare our theoretical predictions with the number of recorded S2 events reported in Tab. II
of [16], assuming Poisson statistics for the number of events in each bin. Through this com-
parison, we obtain the 90% confidence level (C.L.) exclusion limits on the reference cross
section

σe =
c2
1µ

2
eχ

16πm2
e m2

χ

, (37)

as a function of the DM mass. Here, µeχ is the reduced DM-electron mass.

7It is obtained by replacing ∆(q,v) with ∆nℓ(q,v) in Eq. (6).
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Figure 13: The integrand of the DM-electron ionisation rate (Eq. (38)) for the 5p
states as a function of the electron final-state momentum k′, for DM masses between
4 and 8 MeV. Dashed lines are for atomic RHF xenon, solid lines for the liquid. For
each value of k′, q∗ is set to the value of the momentum transfer q that maximizes
the integral.

We start the discussion of our results by first showing, in panel a) of Fig. 12, the contribu-
tion of the different atomic orbitals to the differential ionisation rate as a function of the total
number of charges produced in an ionisation event for mχ = 100 MeV and a heavy mediator
particle. Solid lines are calculated using our modeling of liquid xenon and the dashed lines
using isolated RHF atoms. For the 4d states, there is a noticeable difference between the cal-
culation for the RHF atom and our scheme, which is caused by the 6.3 eV energy difference
between the 4d levels in the two calculation methods. The 5s states, which have a smaller
energy difference of 1.74 eV, also show a smaller difference in the differential rate. Note that
the 4s and 4p curves are shown only for the RHF case.

From Fig. 12, we can also see that the broadening of the 5p states and the resulting lower
ionisation potential Φ associated with the liquid phase have no observable effect on the ioni-
sation rate.

To better understand this unintuitive finding, we adopt an alternative form to express the
contribution of the individual atomic orbitals to the differential ionisation rate, dRnℓ (up to a
multiplicative factor):

dRnℓ∝ q dq

∫

dk′ fA/L(k
′, q)

Wnℓ(k′, q)
k′

, (38)

where Wnℓ is the atomic response function for the specific nℓ-th orbital and the functions fA,
for isolated RHF atoms, and fL , for the liquid phase, are defined as:

fA = η
�

vmin(Enℓ, k′, q)
�

θ
�

vesc − vmin(Enℓ, k′, q)
�

,

fL =

∫

dEe ϱ
nℓ(Ee)η
�

vmin(Ee, k′, q)
�

θ
�

vesc − vmin(Ee, k′, q)
�

,
(39)

where ϱnℓ(Ee) is the unit-normalized density of states of the considered orbital. The velocity
integral η [18] and the minimum DM velocity vmin are defined as
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η
�

vmin

�

=

∫

d3v
v

fχ(v)θ (v − vmin) , (40)

and

vmin =
q

2mχ
+

k′2
2me
+Φ− Enℓ

q
, (41)

where fχ(v) is the local DM velocity distribution in the detector rest frame and θ is a step
function.8

In Fig. 13, we plot the the maximal contribution to the integrand of the ionization rate
(Eq. (38)) for the 5p states as a function of the electron final-state momentum k′ by fixing the
transferred momentum to the value q∗ that maximizes the contribution to the final integral.
The colours indicate DM masses in the range [4, 8] MeV, whereas dashed and solid lines refer
to isolated RHF atoms (calculated with the function fA) and our liquid modeling (calculated
with the function fL), respectively. Since q∗ has been chosen as the value of q that maximizes
fA or fL for the given k′, the area beneath each line (which is proportional to the integral over
k′) represents the largest contribution to the ionisation rate. While the results for the atom
and liquid differ by roughly a factor of two for DM masses of 4 MeV, the difference reduces
rapidly with increasing DM mass, and the two phases are indistinguishable for DM masses of
8 MeV. We conclude that the ionisation rate starts to be sensitive to the broadening of the 5p
energy levels only for very low DM masses of ∼ 4 meV.

a) b)

Figure 14: 90% C.L. exclusion limits on the reference cross section σe as a function
of the DM particle mass for XENON10 (blue) and XENON1T (red) and for heavy (a)
and light (b) mediator particles. Notice the different scale of the y-axis for the two
panels. Solid lines refer to our calculation framework which includes the effect of the
liquid phase with W = 13.5 eV and the associated colored bands enclosing the 90%
C.L. exclusion limits for W in the range 12.1 eV – 16 eV. Dashed lines correspond to
the case of isolated RHF xenon atoms with W = 13.5 eV [16]. The change of slope of
exclusion limits for heavy mediator in XENON10 is due to a division of the recorded
events into two intervals depending on the recorded number of photoelectrons, which
are kinematically accessible at different mass scales.

8The step function θ represents the kinematic requirements vχ > vmin and vχ < vesc .
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Next, we show in panel a) of Fig. 14 our 90% C.L. exclusion limits on the reference cross
section σe as a function of the DM particle mass for XENON10 (blue) and XENON1T (red),
assuming DM interactions mediated by a heavy mediator particle. Dashed lines correspond
to isolated RHF xenon atoms [16], and solid lines to our computational framework for the
liquid phase. In both cases W = 13.5 eV. The colored bands enclose the 90% C.L. exclusion
limits when W is varied from 12.1−16 eV; this only affects the 90% C.L. exclusion limit when
the number of additional charges produced via direct ionisation in an ionisation event, n0

1,
dominates over the number of additional charges produced via photoionisation associated
with the de-excitation of individual atomic orbitals, n0

2. We see that XENON1T is not sensitive
to DM masses below ∼ 20 MeV, which is a consequence of its signal threshold on the number
of detectable photoelectrons (vertical line in Fig. 12). Its 90% C.L. exclusion limit is therefore
insensitive to the broadening of the 5p states in the liquid phase, In contrast, the liquid-induced
broadening of the 5p states starts to affect the exclusion limits of XENON10 in the region of
DM masses close to 4 MeV, where we start to see a small reduction in the exclusion limit for
the liquid compared to the atom. For both experiments, the differences at higher masses are a
consequence of the different energies of the 5s and 4d states, with the empirical values used
in our scheme leading to exclusion limits lower by a factor of up to ∼ 2 than for the RHF atom.

Finally, we discuss the case of light mediator particles, shown in the b) panels of Figs. 12
and 14. We recall that this scenario has a factor proportional to 1

q2 in the formula for the
ionisation rate, which increases the ionisation rate for lower momentum transfers and lower
DM masses compared to the heavy mediator case, shown in the a) panels. In particular, the
lower threshold on the number of detectable photoelectrons of XENON10 allows it to set more
stringent limits in the light mediator scenario, where low-momentum-transfer events associ-
ated with a smaller number of photoelectrons have a higher weight. The differences between
the RHF atom and our DFT liquid model are similar to those of the heavy mediator case, as
expected.

5 Summary and outlook

In this work, we determined DFT parameters that provide a good description of xenon as an
isolated atom and in its solid and liquid phases. We then used this set up to calculate the
densities of states and the momentum-space electron density and its gradients for atomic and
liquid xenon. Based on these quantities, we developed a computational scheme for comput-
ing DM-electron scattering rates, with the goal of critically analyzing the usual isolated-atom
approximation.

Our DFT study highlighted several factors that are important for achieving an accurate
description of liquid xenon. The spin-orbit coupling interaction must be included, particularly
to obtain the correct energy broadening of the highest occupied 5p bands as well as the splitting
of the more tightly bound 4d energy levels. The spurious self-interaction in the localized 4d
states can be corrected by applying a Hubbard-U correction, with a Ueff parameter of 11.1 eV
aligning the 4d energies with the measured photoemission values. For the condensed phases,
van der Waals interactions must be included in the exchange-correlation functional, with the
semi-empirical DFT-D correction to the PBE functional providing a good lattice parameter for
the crystalline solid. Finally, a hybrid approach combining a classical Monte Carlo simulation
of the atomic distribution and a subsequent DFT calculation of supercells sampled from the
generated distribution is effective for modeling liquid xenon at low computational cost.

Comparing the electronic structures of the atom and the liquid phase, we found that, while
the density of states of the 5p electrons for the liquid phase differs substantially from the dis-
crete energy levels of the atom, the effect of condensation on the electron density is minimal
compared to the error introduced by the pseudopotential approximation of our DFT calcula-
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tions.
The calculation of DM-electron scattering rates concluded our work. We treated the lead-

ing spin-independent operator in the non-relativistic effective theory of DM-electron interac-
tions [16], relevant for models such as the dark photon model where DM couples to the elec-
tron density [58], and considered interactions arising from the exchange of both a heavy and
a light mediator particle. We developed a hybrid approach for calculating the DM-induced
ionisation rate, in which the electron density is modeled by RHF wave functions while the
DFT-calculated 5p density of states of the liquid phase and the DFT energies tuned to the pho-
toemission values for the 4d and 5s states are used for the energy eigenvalues. Within this
scheme, we computed differential ionisation rates and 90% C.L. exclusion limit curves for the
XENON10 and XENON1T experiments and compared them with previous calculations for iso-
lated RHF atoms [16]. We found an impact of up to a factor of ∼ 2 on the exclusion limit
curves in our calculations for the liquid phase compared to isolated atoms, depending on the
DM mass, the experiment and the mediator scenario. Two distinct factors are important: The
difference in calculated energy of the 4d and 5s states between the RHF atom and DFT, and
the lower ionisation potential in the liquid phase, caused by the broadening of the 5p states.
The latter reduces the cross section at low masses in the XENON10 experiment, due to its low
signal threshold.

Our work provides a foundation for a more sophisticated treatment of sub-GeV DM-
electron interactions in detectors based on liquefied noble gases, and we conclude by dis-
cussing the limitations of the approximations that have been taken. The choice of a positive-
energy solution of the hydrogen problem as the final state, while widely used, might not be
ideal because it omits the physics of the electron extraction to the detector’s surface via the
applied electric field. Here, recent developments in the angle-resolved photoemission spec-
troscopy (ARPES) community, where treatment of the electron final states as Bloch functions
of Coulomb waves has recently been explored [59] is a promising starting point. The error
introduced by the pseudopotential approximation could be addressed more rigorously via an
all-electron reconstruction [21], allowing the use of DFT-obtained, rather than RHF, wave-
functions and preserving the effects of the liquid phase also at the level of the electron density.
Finally, we expect different results for other DM-electron scattering models outside of the dark
photon paradigm, which have been shown to give rise to additional material response func-
tions [16,18].
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A DFT computational details

For atomic xenon, calculations were performed using only the Γ point of the Brillouin zone.
For testing the different functionals, the energy cutoff for the plane-wave expansion Ecutoff was
set to 120 Ry. In the calculation of the electron density and its gradients (Fig. 10), we increased
the cutoff up to 960 Ry to capture high-momentum-transfer DM-electron scattering processes
to the extent possible within the pseudopotential approximation.

We tested two types of pseudopotentials: for the PZ XC functional, we used the ul-
trasoft (US) pseudopotential Xe.pz-dn-rrkjus-psl.1.0.0.UPF [67], whereas for PBE
we chose the norm-conserving (NC) pseudopotential Xe-ONCV-PBE-sr.upf [68]. When
spin-orbit coupling was introduced, their fully relativistic counterparts were used, namely
Xe.rel-pz-dn-rrkjus-psl.1.0.0.UPF [67] and Xe-ONCV-PBE-fr.upf [68]. All these
pseudopotentials treat the 4d, 5s and 5p shells as valence electrons. The core radii for the
pseudopotential that we selected, Xe-ONCV-PBE-fr.upf [68], and used for all calculations
from Sec. 3.4 onward are r4d

c = 2.68 a.u., r5s
c = 2.98 a.u. and r5p

c = 2.99 a.u. We also
computed the properties of the isolated atom using a projected-augmented-wave (PAW) pseu-
dopotential with the PBE XC functional and obtained the same energy levels as for the NC PBE
pseudopotential.

For the crystal, our unit cell was the primitive rhombohedral cell containing one Xe atom,
as shown in Fig. 1, left panel. We sampled the Brillouin zone using a uniform 10x10x10
Monkhorst-Pack Γ -centered grid; a 14x14x14 grid gave a difference of less than 3 µeV in the
total energy. Densities of states were calculated on a 12x12x12 grid. We used an energy cutoff
Ecutoff = 120 Ry and set the cutoff energy for the augmentation charge density to eight (four)
times this value (960 Ry (480 Ry)) for the US (NC) pseudopotentials. To compute the value of
the lattice parameter for each of the functionals and van der Waals corrections, we computed
the total energy for a series of fixed lattice parameters, then performed a parabolic fitting of
the total energy as a function of the lattice parameter and took the minimum.

Following the liquid xenon MC calculations, we extracted representative supercells for the
subsequent DFT calculations as follows: the number of Xe atoms in a cubic supercell of edge
24.88 a.u. was set to 30 to match the density of the liquid and cells containing Xe atoms closer
than 6.6 a.u. on application of periodic boundary conditions were discarded.

For calculations of the electronic properties of liquid xenon, including the electron density
in momentum space and its gradients, we used an energy cutoff value of Ecutoff = 120 Ry.
Because of the absence of a crystal structure, we performed Γ -point calculations as for the
atomic case.

B Physics of the various van der Waals corrections

Two main classes of corrections exist to include van der Waals interactions in DFT.
A first type of correction adds a fully non-local part to the XC functional. The vdW-DF XC

functional belongs to this family [69, 70]. Starting from the GGA functional revPBE [71], it
modifies the correlation energy by incorporating an additional geometry-dependent density-
density interaction [70], and has been shown to reduce the GGA overestimation of lattice
parameters [69,70].
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vdW-DF2 [72] further improves the accuracy of this method by building on the PW86
XC functional [73], which describes the region near equilibrium separations more accurately
than the too repulsive revPBE. In addition, the non-local kernel of the functional is obtained
via a large-N asymptote expansion of the exchange, which describes intra-molecular charge
correlations better than the expansion for the slowly varying electron gas used in revPBE [72].
When tested on several molecular duplexes from the quantum chemistry S22 set [74, 75], it
yielded binding energies, equilibrium distances and potential energy curves in good agreement
with precise quantum-chemistry calculations [72], solving typical problems of vdw-DF such
as the underestimation of hydrogen bond strengths and the overestimation of equilibrium
distances [72].

Also in this class, the VV10 non-local functional [76], and its revised form for plane waves
rVV10 [77], use a simple analytical form for the non-local correlation energy term with only
the electron density as input. Thanks to a convenient form of the non-local correlation kernel,
written in terms of the plasma frequency and the local band gap, important and well-justified
spatial asymptotes for R −→ 0, R −→∞ as well as the uniform density limit are satisfied [76].
The obtained functional can be computed with simpler mathematical operations than its pre-
decessors and does not present any explicit dependence on Kohn-Sham orbitals [76]. rVV10
excellently describes the binding energy of the Ar dimer, as well as the lattice parameters and
bulk moduli of various solids with different bonding nature, from ionic to metallic. When
tested against the quantum chemistry S22 set, it gave errors in binding energies typically
smaller than 1 kcal/mol [77]. Compared to vdW-DF2, rVV10 further reduces the overestima-
tion of the lattice parameters [77].

An alternative approach to accounting for dispersion forces is to add a correction to the
DFT energy without explicitly modifying the underlying XC functional. This makes these cor-
rections, generally, less complex than the non-local functionals previously mentioned. One
example of this second class is the DFT-D functional [78], which adds two-body interatomic
potentials of the form C6R−6, with the coefficients obtained empirically. It has been widely
applied to a variety of materials and properties, and has shown good results, outperforming
GGA, as well as meta-GGA and hybrid functionals [78, 79], in particular yielding an error in
the equilibrium bond length of the xenon dimer of the order of 0.1% [80]. Its revised version
DFT-D3 [81] includes three-body dispersion terms, with the cutoff distances and coefficients
of the correction calculated ab-initio. This revision improves the accuracy of DFT-D in describ-
ing extended van der Waals-dominated systems, such as graphite, where DFT-D is generally
overbinding [81].

Finally, the Tkatchenko-Scheffler (TS) method [82] computes the molecular C6 van der
Waals coefficients from the atomic polarizabilities and ground-state charge density determined
via DFT and time-dependent DFT. The many-body dispersion method [83] (mbd-vdw) then
builds on the TS method by including n-body terms with n > 2 and incorporating electro-
static screening at large distances, which affects the polarizabilities of the individual atoms
in molecules and solids. It gives good accuracy for the binding energies of van der Waals-
dominated molecules in the usual S22 database, as well as for cohesive energies of molecular
crystals [83].

C Calculation of the refractive index

We extracted the refractive index from the dielectric tensor computed using density functional
perturbation theory within Quantum Espresso. We varied the frequency of the electric field
perturbation (corresponding to the interband transition energy) between 0 and 80 eV and
computed the dielectric function at 1000 evenly spaced frequencies over this range. Note that
this treatment considers only vertical (q = 0) transitions.
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