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Abstract

Federated learning with secure aggregation enables private and
collaborative learning from decentralized data without leaking sen-
sitive client information. However, secure aggregation also compli-
cates the detection of malicious client behavior and the evaluation
of individual client contributions to the learning. To address these
challenges, QI (Pejo et al.) and FedGT (Xhemrishi et al.) were pro-
posed for contribution evaluation (CE) and misbehavior detection
(MD), respectively. QI, however, lacks adequate MD accuracy due
to its reliance on the random selection of clients in each training
round, while FedGT lacks the CE ability.
In this work, we combine the strengths of QI and FedGT to achieve
both robust MD and accurate CE. Our experiments demonstrate
superior performance compared to using either method indepen-
dently.
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1 Introduction

Federated learning (FL) has emerged as a promising paradigm for
privacy-preserving decentralized learning. Unlike centralized learn-
ing, which requires aggregating data from all participants into a
central server, FL enables multiple clients to train a shared model
locally on their private data, exchanging only model updates rather
than raw data. However, despite this decentralized design, research
has exposed privacy vulnerabilities—revealing that sensitive infor-
mation about the underlying datasets can still be inferred from
the shared model updates. Notable attacks include model inver-
sion attacks [9], membership inference attacks [24], reconstruction
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attack [40], (hyper)parameter inference [28], and property infer-
ence [17].

To mitigate these risks, several privacy-preserving techniques
have been proposed, most notably differential privacy (DP) [5] and
secure aggregation (SA) [16]. DP offers formal privacy guarantees,
but this often comes at the cost of reduced model utility. In contrast,
SA obscures individual updates without degrading model perfor-
mance, making it an attractive solution for many applications. In
essence, SA hides the individual model updates by cryptograph-
ically aggregating them, ensuring that only the final aggregated
model is visible to the server.

While SA effectively protects privacy by concealing individual
client updates, it also introduces a significant limitation: the server
can no longer inspect individual contributions. This makes it con-
siderably more difficult to detect whether a client has performed
a poisoning [27] or backdoor[2] attack, or to evaluate the relative
importance of clients with respect to one other and the learning
task [12]. As a result, traditional misbehavior detection (MD) meth-
ods (e.g., KRUM [4]), contribution evaluation (CE) techniques (e.g.,
LOO [31]), and joint approaches (e.g., FedSV [18]) cannot be applied
under secure aggregation, as they rely on access to individual model
updates. Likewise advanced CE methods, such as Zeno [37] and
Shapley-value based approaches [23], are not compatible with SA.

To address this challenge, Xhemrishi et al. proposed FedGT [36],
a scheme for client MD under FL with SA tailored to the cross-
silo setting. In parallel, and Pejo et al. introduced QI [19], a CE
framework designed for the cross-device setting under SA.

Contribution. In this work, we extend the schemes in [36] and [19]
and integrate their core ideas to develop a novel approach that
supports both MD and CE in a cross-silo FL setting under SA. The
proposed scheme leverages spatial and temporal information to
enhance both tasks, and empirical results show that it outperforms
FedGT, QI, and other relevant baselines in terms of both MD and
CE performance.

2 Background & Related Works

2.1 Privacy-Preserving Misbehavior Detection

FL introduces unique challenges in handling malicious behavior due
to its distributed nature. Byzantine attackers can disrupt training
through two primary attack vectors: data poisoning and model poi-
soning. Data poisoning [8] involves modifying local training data
to mislead the global model, while model poisoning [32] directly
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manipulates local model parameters to corrupt it. Both attack types
can be targeted (affecting specific classes or features) or untargeted
(degrading model performance globally).

Broadly, defense mechanisms against adversarial clients in FL
fall into two main categories: mitigation and detection. Mitigation
techniques aim to reduce the impact of malicious clients by modi-
fying the aggregation process itself. Common approaches include
robust statistical methods such as metric-based comparisons using
the Euclidean distance [4] or cosine similarity [10]. These methods
assess local updates relative to each other or against a baseline (i.e.,
the global model). The works [22, 25] propose robust aggregation
techniques that mitigate the effect of poisoned models on the global
model utility [22, 25] without requiring access to individual local
updates.

While mitigation strategies seek to minimize the influence of
malicious clients, identifying which clients are malicious remains a
crucial real-world problem [14]. This is tackled by detection meth-
ods, which classify clients as honest or malicious, allowing the
server to selectively exclude suspicious participants from training.

Privacy preservation and MD impose a natural trade-off because
the former tries to hide the client’s attributes (data, model updates,
etc.), while the latter requires that the server learns more about
the clients, such that a comparison is performed in an informative
manner. However, both aspects of FL are important, and hence, it
is crucial to balance this trade-off.

FedGT. Identification of malicious clients in a privacy-preserving
manner was addressed in [36], where the authors proposed FedGT.
Inspired by group testing, FedGT [36] enables MD under SA. The
key idea is to group clients into overlapping groups, with each
group performing SA. The server only receives the aggregated
model updates from each group. By carefully designing the group
structure and leveraging a decoding algorithm, the server can iden-
tify malicious clients based on the aggregated group outputs. As
illustrated in Fig. 1c, FedGT was proposed for single-round testing
in a cross-silo FL setting (in the illustrated example, only in round
2). Clients are grouped into overlapping groups according to an
assignment matrix 𝑨. After the group aggregates are collected, the
server applies a testing algorithm followed by a decoding step to
determine which clients are likely to be malicious.

The primary goal of FedGT is not to identify malicious clients,
but to do so in order to achieve high good model utility even in the
presence of malicious clients. In extensive experiments, FedGT
outperformed state-of-the-art private robust aggregation meth-
ods [22, 25]—which do not support the ability to identify malicious
clients—in terms of global model utility and communication effi-
ciency. As noted in [36], FedGT’s MD performance could be further
improved by extending it to a multi-round testing scheme, which
we pursue in this work.

Baseline. As a baseline for MD, we use cosine similarity (COS). COS
is a versatile tool in machine learning, applied to both accelerate
convergence [35] and defend against adversarial attacks [41]. Here,
we assign scores to clients based on the similarity between their lo-
cal models and the global aggregated gradient. While this approach
is simplistic, it is highly efficient, requiring only the computation
of an inner (dot) product. However, in its standard form, COS is not

privacy-preserving since it depends on client-specific models. Nev-
ertheless, its computational simplicity allows it to be implemented
using homomorphic encryption (HE) [1].

2.2 Privacy-Preserving Contribution Evaluation

CE can be broadly categorized into three disciplines [23]: Explain-
ability [11], which assigns importance scores to individual data
features, data evaluation [30], which assesses the contribution of in-
dividual data points, and contribution scoring [29], which evaluates
the impact of entire datasets corresponding to FL clients. Within
this work, we will focus on the latter.

Another distinctive aspect of CE is the reliance on an external
test dataset. Some schemes, such as gradient similarity-based ap-
proaches [38], avoid test sets and instead compute distance metrics
between local and global models or gradients. The assumption is
that clients whose updates closely align with the global model con-
tribute more. In this paper, we assume the availability of an external
test dataset.

A flagship technique for CE is the Shapley value [34], derived
from cooperative game theory. It uniquely satisfies four key axioms,
making it the only theoretically fair method for distributing rewards
among players. The score of a client is computed by averaging its
marginal contributions across all possible subsets of other clients.
Yet, this computation is infeasible in real-world settings due to
its exponential complexity. Consequently, several model-agnostic
approximations have been developed, but most rely on individual-
level information (such as the gradients and model updates). This
exposes client data to potential privacy risks, an aspect largely
overlooked in existing literature.

There are only a handful of work dealingwith privacy-preserving
CE. In [39], the authors proposed a multi-server solution relying on
encryption, while in [33] they utilized DP, and [15] built a solution
on the blockchain technology. Regarding marginal contributions,
in [20, 21], the authors proposed new techniques where the clients
either conduct a self-evaluation or they evaluate everybody else,
respectively. This work improves on [19] where the authors pro-
posed Quality Inference (QI), a group comparison solution that takes
advantage of the client selection process in cross-device FL.

Quality Inference. QI operates within an honest-but-curious cross-
device setting, where both the aggregator server and participants
strictly adhere to the FL protocol. In an ideal world, during learning,
it is expected that 1) the model improves every round, but 2) the
rate of improvement decreases every round. QI captures deviations
from these patterns by scoring the participating clients. In its core,
as illustrated by Fig. 1a, QI relies on three scoring rules: The good,
the bad, and the ugly. The authors of [19] experimented with vari-
ous combinations of these rules as well as scaling the scores, but
these had a limited effect. Here, we will consider the basic setting
where equal weight is assigned to these unit scores. In more detail,
the clients are scored according to the good and the bad (if the
current round improved the model more than the previous round,
the selected clients for this and the previous round gain +1 and −1,
respectively) and the ugly (if the current round does not improves
the model, the selected clients gain −1) rules.

Baseline. Within this work we will use the well-known Leave-One-
Out (LOO) as our baseline. LOO is widely used in machine learning,26
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Figure 1: Illustration of the envisioned settings where the shapes represent clients and the grayness represents the rounds.

Table 1: Notations used in the paper for FedGT and QI.

Symbol Description

FL

𝑁 & T Number of clients & Number of epochs
𝑴𝑡

𝑛 Client 𝑛’s locally trained model in round 𝑡
𝑴𝑡 Aggregated model of clients in round 𝑡

D
ev
. 𝑺𝑁×𝑇 Binary client selection matrix for each round

𝐾 Number of clients participating in a round

Si
lo

𝜏 Training round where the FedGT tests are performed
𝐿 & 𝑘 Number of groups and their size for testing
𝑨𝑁×𝐿 Assignment matrix for in-round testing
𝑴̂𝑙 Aggregated model of clients in test group 𝑙

including stability [7] and fairness [3]. LOO measures the marginal
difference between the global model’s performance with and with-
out a single client’s update. Hence, similarly to COS, LOO is also not
inherently privacy-preserving, but its complexity is linear, which
makes its computation feasible with HE.

3 FedGT and QI for Misbehavior Detection and

Contribution Evaluation

In this section, we cross-validate FedGT and QI on MD and CE.
The solutions for MD (aka detecting malicious clients) and CE (aka
scoring participants) overlap and are somewhat interchangeable.
While the original goal for FedGT was the former, QI aimed at the
latter, so it is ambiguous in which domain they should be evaluated
or measured. We envision several comparisons and combinations,
and for brevity reasons, Fig. 1 illustrates a few of them.

Notations. In Table 1, we summarize the basic notations for FedGT
and QI, such as𝑴𝑡

𝑛 (model trained locally by client𝑛 in round 𝑡 ),𝑴𝑡

(aggregated model in round 𝑡 determined via selection matrix 𝑺 for
cross-device FL), and 𝑴̂𝑙 (aggregated model of group 𝑙 determined
via assignment matrix 𝑨). 𝐾 and 𝑘 corresponds to the number of
clients affiliated with 𝑴𝑡 and 𝑴̂𝑙 , and as usual, 𝑁 and 𝑇 stands
for the overall number of clients and iterations, respectively. 𝜏 is
the round in which the testing is utilized, and 𝐿 is the number of
groups for the testing (e.g., for FedGT).

3.1 Cross-Silo Federated Learning

3.1.1 Adopting QI for Cross-Silo FL. As illustrated in Fig. 1a, QI
performs comparisons between groups defined by the random selec-
tion matrix 𝑺 , where each group has size 𝐾 . However, in a cross-silo

setting, all clients participate in every round, making the original QI
approach inapplicable. FedGT resolves this by creating subgroups
of clients based on the assignment matrix 𝑨 (as shown in Fig. 1c),
which is designed based on error-correcting codes. Building on this
idea, QI can also be adapted to use these structured groups, and
perform pairwise comparisons between them, as shown in Fig. 1b.
Rather than comparing randomly-formed groups across different
rounds, comparisons are now made between carefully designed
groups within the same round. This adaptation shifts from perform-
ing 2· (𝑇 −1) temporal comparisons to 𝐿 · (𝐿−1) spatial comparisons,
leveraging the group structure for more effective evaluation in the
cross-silo setting.

3.1.2 Using FedGT for CE. FedGT is originally designed to flag
attackers using an optimal soft-decoding algorithm. This decoder
utilizes likelihood ratios, which are soft labels for a binary outcome
(malicious or not) and therefore, might be suitable for CE: the
smaller or bigger the likelihood, presumably the higher or lower
the corresponding client’s data quality.

3.1.3 Multi-Round. Compared to QI, FedGT relies on a single
round. Extending it to multiple rounds (as illustrated in Fig. 1d)
would allow for more information regarding clients behavior in
comparison with the single-round testing. Thus, it is expected that
the MD performance would increase when the likelihoods are ag-
gregated across test rounds. This extension implies that 𝜏 is a set
(rather than a number) where the group testing commences. We
envision three strategies for forming the assignment matrix across
rounds:

• Same: Use the same test groups across all rounds, i.e., 𝑨𝜏𝑖 =

𝑨𝜏 𝑗 for all 𝜏𝑖 , 𝜏 𝑗 ∈ 𝜏 .
• Prefixed: Use different but predetermined test groups for
each round, where 𝑨𝜏𝑖 depends only on the round index 𝑖
for all 𝜏𝑖 ∈ 𝜏 .

• Adaptive: Use adaptive test groups for each round, where
𝑨𝜏𝑖 depends on 𝑨𝜏 𝑗 and on G𝜏 𝑗 for all 𝜏 𝑗 < 𝜏𝑖 .

In this work, we focus on the Prefixed strategy, which we refer to
as multi-round FedGT (MR-FedGT). Experimental results showed
that the Same strategy provided no improvement, while exploration
of the Adaptive strategy is left for future work.

Alternatively, QI can also be extended to the multi-round set-
ting. In this case, a single group defined by the assignment matrix
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𝑨𝜏𝑖 is compared with the other 𝐿 − 1 groups from the same round
(within-round comparison, as shown in Fig. 1b) as well as with
the 2 · 𝐿 subgroups defined by 𝑨𝜏𝑖−1 and 𝑨𝜏𝑖+1 (across-round com-
parison, as illustrated in Fig. 1a). Since this scheme considers a
larger set of group comparisons—unlike FedGT, which operates
only within rounds—it is expected to achieve superior performance.
We refer to this extension as multi-round QI (MR-QI). Similarly to
MR-FedGT, MR-QI adopts the Prefixed strategy for constructing
multiple assignment matrices across rounds.

The assignment matrix 𝑨 is designed to ensure that no client’s
raw model 𝑴𝑡

𝑛 ,∀𝑛 ∈ [𝑁 ] can be inferred from any linear com-
bination of the tested groups within a single round. However, as
the learning process progresses toward convergence, models from
consecutive rounds become increasingly similar, i.e., models 𝑴𝑡

𝑛

and 𝑴𝑡+1
𝑛 are nearly identical when 𝑡 is large. Therefore, when

considering both 𝑨𝜏𝑖 and 𝑨𝜏𝑖+1 simultaneously, if 𝜏𝑖 is sufficiently
large and 𝜏𝑖+1 is close to it, the privacy guarantees may deteriorate.
Designing assignment matrices that account for such subtle corre-
lations—whether under Prefixed or Adaptive strategies—remains
an open problem and is left for future work.

3.2 Cross-Device Federated Learning

As illustrated on Fig. 1c, FedGT utilizes the groups defined by the
assignment matrix 𝑨, where the size of each set is 𝑘 . In contrast, in
a cross-device setting, 𝐾 clients participate in each round; hence,
the vanilla FedGT is not applicable. QI resolves this by comparing
the random groups created by the client selection mechanism (as
shown in Fig. 1a). Hence, FedGT can also use the groups defined by
the round: the clients are grouped as per the rows of the assignment
matrix in different rounds and only later are the groups tested, after
the last sampling round has been collected. This strategy requires
that the client sampling is performed not randomly, but in a struc-
tured manner following 𝑨, which may introduce bias in the model.
By chance, the random selection process might define the groups
as 𝑨, but they could correspond to very different iterations; thus,
comparing them carries little meaning. Thus, a trade-off between
the model’s performance and the accuracy of MD and CE exists.

4 Experiments

This section details our experimental setup and key findings, i.e.,
we verify our adaptation of QI for the cross silo setting, experiment
with FedGT for CE, and measure the performance improvement of
multi-round techniques.

Setup. We conduct experiments for a classification problem over
image datasets, namely the well-known CIFAR-10 and ISIC2019
datasets. The latter contains skin lesions and is tailored for cross-
silo FL [6, 36]. We train Resnet-18 (with 0.05 as learning rate, 0.9 as
momentum, and 0.001 as weight decay) and EfficientNet-B0 (pre-
trained on ImageNet dataset, with 0.0005 as learning rate, 0.9 as
momentum, and 0.0001 as weight decay) for CIFAR-10 and ISIC2019,
respectively. We simulate FL using 15 clients; ISIC2019 corresponds
to non-i.i.d. scenario (as it is inherited real-world heterogeneity)
while we utilize two distribution scenarios for CIFAR-10: i.i.d and
non-i.i.d using Dirichlet distribution with a parameter of 0.5. Mea-
suring ground-truth contribution scores is difficult (as the Shapley
value is computationally infeasible), so following [19], we introduce

Table 2: Detection performance (F1-score) of QI and FedGT

where 1, 3, 5, and 7 clients are attackers (out of 15). The testing

is performed in every round and the measurement per round

is aggregated. The tabulated results are measured at the last

training round. 1R denotes the single round approach (the

maximum throughout all the rounds), while MR refers to

multi-round approach.

Cross-Silo MR-QI MR-FedGT COS 1R-QI 1R-FedGT

CI
FA

R-
10

IID

1 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.70 ± 0.46 1.00 ± 0.00
3 0.97 ± 0.06 1.00 ± 0.00 1.00 ± 0.00 0.67 ± 0.26 0.77 ± 0.21
5 0.98 ± 0.04 0.96 ± 0.05 1.00 ± 0.00 0.74 ± 0.13 0.58 ± 0.14
7 0.98 ± 0.05 0.98 ± 0.05 1.00 ± 0.00 0.79 ± 0.07 0.74 ± 0.09

no
n-
IID

1 0.72 ± 0.36 0.42 ± 0.35 0.61 ± 0.34 0.50 ± 0.50 0.30 ± 0.46
3 0.87 ± 0.19 0.54 ± 0.21 0.74 ± 0.18 0.67 ± 0.26 0.37 ± 0.28
5 0.84 ± 0.22 0.50 ± 0.19 0.57 ± 0.25 0.70 ± 0.18 0.44 ± 0.17
7 0.88 ± 0.17 0.70 ± 0.20 0.38 ± 0.29 0.73 ± 0.08 0.59 ± 0.13

IS
IC
19

no
n-
IID

1 0.88 ± 0.26 0.90 ± 0.30 1.00 ± 0.00 0.60 ± 0.49 0.40 ± 0.49
3 0.80 ± 0.17 0.60 ± 0.19 0.96 ± 0.08 0.57 ± 0.21 0.27 ± 0.25
5 0.91 ± 0.07 0.61 ± 0.19 0.89 ± 0.05 0.66 ± 0.13 0.44 ± 0.25
7 0.91 ± 0.06 0.59 ± 0.11 0.68 ± 0.08 0.76 ± 0.07 0.56 ± 0.23

noise linearly to the labels to create variation: for client 𝑛 each label
is changed with probability 𝑛

𝑁+1 . To ensure statistically significant
results, we fix the data splits and the injected noise and repeat each
training process ten times.

The experiments consist of 20 federated rounds where the clients
perform 5 (for CIFAR-10) or 1 local epochs (for ISIC) using stochastic
gradient descent optimization with 128 (for CIFAR-10) and 64 (for
ISIC) as batch sizes. For experiments over CIFAR-10, we use the
cross entropy loss, while for ISIC, we use the focal loss since it
is shown to perform better over unbalanced datasets. Regarding
the attack scenarios, we employ an untargeted label-flipping data-
poisoning attack, offsetting the labels of the training data by shifting
them by one. The components (testing algorithm, validation dataset
size, decoder etc) of FedGT and the hyper-parameters are taken
from the original FedGT paper [36].

As a baseline for MD, we use COS. While more advanced MD
strategies exist, most are incompatible with privacy-preserving set-
tings. Based on the obtained detection scores, we utilized a cluster-
ing approach to separate the suspected attackers and the anticipated
benign clients based on agglomerative Clustering technique. For
CE, we use LOO as our baseline. Note, that the scores are expected
to be on different scales: FedGT scores are unbounded (as they
rely on likelihood ratios), QI is mostly negative (as the majority of
scoring rules are punishing the participants), and for LOO some
scores are above while some are below zero (similarly to the Shapley
Value). For fair comparison, we transform them via minimum offset
correction (shifts all scores by subtracting the minimum score from
each) and normalization (the scores are divided by the sum).

4.1 Adopting QI for Cross Silo

While the paper proposing QI [19] did consider MD, it only did so
in the cross-device setting for IID clients, while FedGT [36], only
considered the cross-silo setting. This paper investigates both the
IID and non-IID settings and compares the schemes with COS. Our
results are summarized on the right side of Table 2 for various
numbers of attacks. These values suggest a correlation between
the number of attackers and the detection performance, as more
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Figure 2: Detection performance (F1-score) of QI, FedGT and COS where 5 clients are malicious (out of 15) versus the communi-

cation rounds. The highlighted area represents the standard deviation obtained in our experiments.

Table 3: Scoring performance (the distance of the score vec-

tors 𝐿2 and their ordering differences 𝜙) of QI, FedGT, and

LOO. The testing is performed in every round and the tabu-

lated results are measured at the last training round.

Cross-Silo MR-QI MR-FedGT LOO

CI
FA

R IID 𝐿2 0.015 ± 0.002 0.029 ± 0.007 0.036 ± 0.012
𝜙 0.944 ± 0.027 0.761 ± 0.094 0.996 ± 0.004

non-IID 𝐿2 0.025 ± 0.009 0.041 ± 0.007 0.034 ± 0.007
𝜙 0.791 ± 0.146 0.429 ± 0.158 0.606 ± 0.246

IS
IC non-IID 𝐿2 0.036 ± 0.007 0.045 ± 0.009 0.037 ± 0.005

𝜙 0.675 ± 0.097 0.299 ± 0.299 0.582 ± 0.111

attackers correspond to better detection (except for FedGT with
IID). Comparing the last two columns, we can conclude that the sim-
plistic QI rules outperform the more involved FedGT scheme when
the data distribution is non-IID. At the same time, the comparison
regarding the IID setting is inconclusive.

4.2 Multi-round MD

In multi-round MD, the testing is performed at each training round
(except the first). We use QI with both across- and within-round
comparisons, while for FedGT, we restrict ourselves to in-round
comparisons as input for the testing algorithm. We tried to adopt
FedGT for the Cross-Device setting (to enable across round testing
too) by selecting one prefixed groups for each training round, but
even with a Taylor-based interpolation (to normalize the improve-
ment from different rounds to the same expected scale) FedGT is
failing to provide meaningful results, so we discarded this option.

We present our results in the left side of Table 2. It is clear that
performing the tests in multiple round significantly enhances both
schemes, as the values on the left (multi-round) are consistently
larger than on the right (single-round). However, the trend (more
attackers imply better detection) visible for 1R is not holding for
MR. Regarding the baseline COS mechanism (which we also applied
in multiple round by accumulating the computed scores), it does
slightly outperform the two privacy-preserving schemes in the
IID setting. On the other hand, the more diverse the client’s data

distributions (ISIC can be considered low imbalance, CIFAR with
Dirichlet(0.5) can be considered high imbalance), the worst COS
performs. In contrast, QI seems to be robust against such changes
and clearly outperforms both COS and FedGT in that setting (middle
lines of the table). These results suggests, that CE schemes (such as
QI) could be appropriate for MD as well; the fine-grained scoring
can be turned into [0,1] (as benign and malicious) accurately.

Fig. 2 showcases how the detection accuracy behaves in respect
to training rounds. Similar to the results in Table 2 the non-private
scheme COS achieves almost perfect detection and it achieves it
very fast (third round, see Figure 2a). However, the proposed multi-
round QI performs well and reaches F1-score at seventh round. For
experiments over CIFAR-10, where the client data is distributed
according to Dirichlet with parameter 0.5 (Figure 2b), the proposed
multi-round QI outperforms COS in almost every round. At the
eleventh round, QI reaches a F1-score above 0.7. Due to the het-
erogeneity, all schemes suffer from a relatively high standard de-
viation. A similar pattern is observed for experiments over ISIC19
datasets, as one can see from Figure 2c. Except for the first two mea-
sures (recall that the measurement starts at the second round), the
multi-round QI outperforms all the other schemes. However, it is
important to note that the proposed multi-round FedGT improved
compared to its original single-round form, but is outperformed by
both COS and the proposed multi-round QI.

4.3 Using MR-FedGT for CE

The paper proposing FedGT [36] only considered MD, so here we
are testing the hypothesis whether an MD mechanism is appropri-
ate for CE. This is less studied in the literature, while the opposite
direction is prevalent, see for instance [26]. Note we are injecting
noise to the client labels as described earlier. Our results are sum-
marized in Table 3 where the privacy-preserving CE methods are
compare to the utilized noise ratios, that are also transformed simi-
larly to the other scores described previously. The table presents the
𝐿2 errors where smaller is the better and the Spearman correlation
coefficient 𝜙 where larger is the better. The first shows the absolute
difference between the transformed scores, while the latter captures
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the ordering preservation of the clients: the metric ranges from
[−1, 1], where positive values indicate strong agreement and values
near zero imply little to no correlation. This is a standard technique
in CE [13] to determine the accuracy of inferring the top and bottom
performing clients. These results suggest that mechanisms tailored
for MD (such as FedGT) are not necessarily applicable to CE as
FedGT performs poorly in this task. It is indeed tricky to turn a clas-
sification (attacker vs non-attacker) into regression (client-scoring).
On the other hand, QI does outperforms LOO both in the score
ordering and in the score distances, showing that simple privacy-
preserving solutions could outperform naive scoring techniques
which rely on individual differences (hence, need to be combined
with encryption for any privacy guarantee).

5 Conclusion

We improved and combined two existing schemes, QI and FedGT,
into a scheme that we coin multi-round QI. The proposed scheme
outperforms their previous versions and baselines for both mis-
behavior detection and contribution evaluation for a cross-silo FL
scenario. The proposed scheme achieves very good performance,
especially when the data is non-i.i.d., while still preserving in-round
clients privacy, due to compatibility with secure aggregation.
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