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ABSTRACT: Machine Learning (ML) methods that relate Multiple Comparisons
molecular structure to properties are frequently proposed as in .

silico surrogates for expensive or time-consuming experiments. In - : I\Sﬂlztr:z:air:s ev:’((jr(;renpanson H H
small molecule drug discovery, such methods inform high-stakes 6 4 — Similar i i
decisions like compound synthesis and in vivo studies. This o 5 -
application lies at the intersection of multiple scientific disciplines. £ 4 - —o—i— E
When comparing new ML methods to baseline or state-of-the-art = 3 - — !
approaches, statistically rigorous method comparison protocols and 2 — i
domain-appropriate performance metrics are essential to ensure 1 - i i
replicability and ultimately the adoption of ML in small molecule 07 | : : : :
drug discovery. This paper proposes a set of guidelines to incentivize 00 04 0.2 03 04 05 06

rigorous and domain-appropriate techniques for method comparison
tailored to small molecule property modeling. These guidelines,
accompanied by annotated examples using open-source software tools, lay a foundation for robust ML benchmarking and thus the
development of more impactful methods.

Practically Significant Performance Measure

1. INTRODUCTION chosen performance metrics accurately represent performance
once deployed in real drug discovery programs. Similarly, in the
scientific literature, a new method’s contribution is contextual-
ized by comparing its performance against both simple baselines
and the current state-of-the-art to justify follow-up research.
Therefore, in both industry and academia, appropriate statistical
tests and performance metrics are critical tools needed to
identify robust improvements."

These circumstances highlight the need for statistically
rigorous method comparison protocols and domain-appropriate
techniques. Because there is inherent stochasticity in the data
used to train models and in the modeling methods themselves, it
is necessary to compare populations of models different
methods generate (e.g., through cross-validation). Furthermore,
appropriate statistical methods should be used to compare
performance distributions and determine whether the differ-
ences could be attributed to random chance. Similarly
performing methods can produce seemingly large differences,
especially with the classically smaller (i.e., <10* samples),

In drug discovery, expensive and time-consuming experiments
are used to profile molecules and gain insights into their
therapeutic potential. Such experimental assays are typically
organized in a cascade, where subsequent experiments test fewer
molecules at a higher cost per molecule. As in silico surrogates to
such experiments, both regression and classification Machine
Learning (ML) models can be trained to estimate molecular
properties (i.e., experimental results) from chemical structure.
Such models could inform drug design and prioritize experi-
ments by scoring a set of candidate molecules. These ML models
thus inform high-stakes decisions and help drug discovery
research progress more quickly and efficiently. Hence, it is
important that models provide reliable forecasting of exper-
imental results.

In this paper we will define a method as a procedure for
creating a predictive model given training data, and a model as
the output of said procedure. When deploying a new model in
industry or publishing a new method in the scientific literature,
rigorous method comparison is essential. In an industrial setting,
replacing established methods requires a significant investment
that must be justified by reliable results; this reliability is
demonstrated through rigorous statistical comparisons between
the proposed and existing models. Furthermore, since the
scientists using these models are often not their developers,
building trust within interdisciplinary teams requires that the
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imbalanced, and noisy data sets that are publicly available in drug
discovery. In these contexts, large observed performance
differences can show high sensitivity to small changes in the
data, such as the addition or removal of a few data points. To
account for this, tests to establish the statistical significance of
differences are common in many other fields, such as
engineering and clinical medicine. However, this practice has
been largely absent from ML-based cheminformatics liter-
ature.”~* For ML-based property modeling, most benchmark
studies simply report mean performance values over a series of
replicates, disregarding that distributions are being compared.

Furthermore, despite the importance of hypothesis testing,
establishing that there is a statistically significant difference does
not directly imply practical significance. In molecular property
modeling, statistically significant differences in performance
distributions might not translate to key decisional impact for
drug discovery, such as what compounds to synthesize. Method
comparison protocols should, therefore, also analyze the effect
size and use performance metrics that better translate to
decisional impact.

Proposing statistically rigorous and domain-appropriate
method comparison protocols for small molecule drug discovery
is an inherently difficult task due to its multidisciplinary nature.
Lacking such protocols or methodological guidelines risks a
disconnect between perceived progress and real-world impact,
slowing the adoption of ML methods in small molecule drug
discovery.

In this work, we first establish the importance of statistical
testing in Section 2. We then present a set of beginner-friendly
guidelines for method comparison in Section 3, tailored to small
molecule property modeling applications. In Section 4, we
present annotated code examples to accompany these guide-
lines. The code examples use open-source software to
demonstrate each step. We cover several key aspects, including
cross-validation techniques, post hoc tests, multiple compar-
isons, visualizations, and effect size. All of the code can be found
on Github. Finally, in Section 5, we summarize the method
comparison protocol and suggest future research directions.

2. MOTIVATION: REPLICABILITY CRISIS IN ML-BASED
SCIENCE

As in any other scientific discipline, in ML-based drug discovery
experiments are carried out to improve our understanding of the
system under study. These experiments add to a shared body of
knowledge that new research can then build upon. Therefore,
the adherence to good scientific principles to obtain reliable and
replicable insights from experiments is key.” Otherwise, research
directions might be pursued based on fragile assumptions.

In a recent survey, the majority of researchers in the broader
scientific community indicated that they have failed to replicate
others’ or even their own published results, which led 90% of
them to proclaim a replicability crisis.” While this is thus not
specific to ML-based science, researchers were also unable to
replicate a large fraction of investigations from the ML
community.” If a method is claimed to be superior to the
current state of the art on a benchmark, then we expect this
result to be replicable by other ML scientists or on similar
benchmarks, but this is frequently not the case.

It is important to differentiate the terms replicability and
reproducibility. Authors at times use the terms interchangeably,
but in many fields (e.g., statistics, computational biology) there
are distinct meanings. We follow the convention of the National
Academies of Sciences, Engineering, and Medicine.® We define
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replicability to mean the ability of an independent group to
recreate results on a new data set collected under the same
conditions. This is a stronger condition than reproducibility
which is the ability for an independent group to recreate results if
given access to the same code and data. While researchers often
focus on reproducibility in ML research, replicability is the
ultimate goal.9

McDermott et al.'® identify three main components of

replicability:

e Technical Replicability: Can results be replicated under
technically identical conditions?

e Statistical Replicability: Can results be replicated under
statistically identical conditions?

e Conceptual Replicability: Can results be replicated under
conceptually identical conditions?

Technical replicability refers to the ability to replicate results
using the code and data shared by authors. Conceptual
replicability refers to ability to replicate results under conditions
that match the conceptual description of the study. For example,
results should be able to be replicated when methods are applied
to a new data set generated under the same conditions.

In this work we focus on statistical replicability. Statistical
replicability is demonstrated when the same results are observed
across experiments performed under equivalent conditions. To
draw a parallel with wet lab experiments, statistical replicability is
often established by performing several replicates of the same
experiment (i.e., same day, instrument, conditions). In ML
research, statistical replicability can be assessed using a single
data set with approaches like data resampling. Considering
statistical replicability is important because it can eliminate
results that are confidently not reproducible, which has the
potential to substantially reduce the number of false positives
(i.e., overly optimistic results)."' "

While some researchers in ML recognize the importance of
statistical replicability,'® there is still substantial room for
improvement. In fields such as computer vision and natural
language processing, where fit-for-purpose data sets with
millions of observations are available, a statistical replicability
assessment is less critical because even small differences are
likely statistically significant. With such extremely large data sets,
an in-depth statistical analysis may also be computationally
infeasible. In contrast, data sets in small molecule property
modeling tend to be expensive to generate. They are
substantially smaller than in these other ML fields and tend to
be highly heterogeneous, imbalanced, and noisy. All of these
factors increase the expected variability in performance metrics
one will see when carrying out several random data splits,
making statistical replicability analysis essential.

There are many reasons that contribute to the gap between
the perceived importance of statistical replicability and the usage
of appropriate statistical methods in research papers. Few user-
friendly tools exist for these analyses, and the statistical
knowledge required to perform them is often a barrier. Beyond
these more technical reasons, researchers and research
institutions also play a role, e.g. replicability and robust statistical
analyses could be incentivized more."> We try to address this gap
by providing clear guidelines, annotated examples, and by
implementing the suggested techniques using open-source
software to simplify the adoption of best practices.

https://doi.org/10.1021/acs.jcim.5c01609
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3. METHOD COMPARISON GUIDELINES

In this section, we will review best practices for method
comparison and translate these to a set of guidelines specific to
small molecule property modeling for drug discovery. Figure 1
summarizes these guidelines and serves as a visual table of
contents to easily navigate this paper.

Method Comparison Guidelines

Performance Sampling Distribution
Section 3.1

Dataset size?

500 - 100,000 <500
___________ Vo ¥ )
Single split Repeated CV 5x5 ‘ Repeated CV 5x2
Agpendix A1 Se::tion 3.1.2 Se‘ction 3.1.2
Statistical significance
Section 3.2
(Parametric assumptions?)
Appendix B
1
Assumed valid Sufﬁcien*tly valid IanIid
Repeated Conover Friedman
Measures ANOVA + Holm-Bonferroni
+ Tukey HSD
.Section 3.21 IAppendi>< A2

Practical significance

Section 3.3
, H . Upper and lower
[ L
Cohen’s D | { Relevant metrics performance limit
___________________________ '
Section 3.3.2 Section 3.3.1 Section 3.3.3

Visualizations
Section 3.4

Section 3.4.2

Leaderboard <{

Simultaneous CI

Cl of differences }

plot
Appendix A.3 Section 3.4.1 Section 3.4.3
e Default Exceptional = = = = Optional

Figure 1. Method comparison guidelines presented in this work are
summarized by this decision tree. The path through the decision tree
shown in blue should apply to most use cases, but solutions for
exceptional cases are presented as well.

Throughout this section, we will recommend ways to examine
a model's performance and the assumptions behind each
proposed technique. Please keep in mind, however, that these
guidelines are not a recipe to blindly follow and, in practice, each
case scenario will likely require its own unique considerations.
Based on the characteristics of the data set or project’s goal,
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deviations from this workflow are reasonable. Transparency is
key in the absence of a perfect solution for every scenario.

We will discuss different techniques for sampling the
performance distribution in Section 3.1. Then, in Section 3.2,
we will discuss different statistical tests that can be used to
compare the performance sampling distributions. In Section 3.3,
we will explain the importance of domain-appropriate perform-
ance metrics in achieving practical significance. Finally, Section
3.4 will discuss how to present the results of these tests.

3.1. Performance Sampling Distribution. New methods
are often benchmarked against control baselines and state-of-
the-art methods to contextualize performance. This type of
comparison is typically done using retrospective benchmarks for
the sake of practicality, where a data set is split in training and
test sets. The more representative the test set is of the
downstream application, the better one can prospectively assess
the performance of a model.

To avoid biasing the results, a test set should ideally be used
only once. In practice, however, many modeling attempts (e.g.,
different methods or model architectures) are typically made.
While this goes against best practices, the scientific community
relies on static test sets because the cost of data generation limits
the availability and accessibility of newly generated data. When
all methods are repeatedly evaluated on a single test set, it is
common to find differences by chance that are dependent on the
particular split of the data. In these cases, different splits will
likely result in different conclusions. Method comparison should
therefore not be performed on a single split of the data.

Using only a single split of data is akin to running a bench
experiment with only a single replicate, something that is usually
not acceptable in science. To properly account for stochasticity,
a method comparison protocol should run replicates and
compare the performance distributions of the populations of
models the different methods produce. This allows the
identification of robust improvements that are expected to
generalize to similar data sets.

There are different mechanisms to accurately estimate a
method’s performance distribution based on a finite number of
random samples from this distribution, also known as
performance sampling distribution. We recommend the
following data resampling mechanism:

Guidelines 1 (performance sampling distribution) we
recommend using a S X S repeated cross-validation procedure
to sample the performance distribution. This procedure suits
typical data set sizes used in small molecule property modeling
(e.g, S00—100,000), and generates 25 sufficiently independent
samples, meeting the sample size requirements for statistical
testing. The training set can be further split into a training and a
validation set if needed. Care should be taken to consider how
the choice of data-splitting approach might systematically
overestimate or underestimate model performance.

In the exceptional case of a data set having fewer than 500 or
more than 100,000 molecules, we provide additional guidance in
Section A.1.

3.1.1. Sampling Mechanisms. We can use two different
mechanisms to sample the distribution: introducing variance in
the model’s parameters (e.g., different random seeds or
initializations in a neural network), or resampling the data set
(e.g., different data splits). It is good practice to use both
sampling mechanisms jointly. Since introducing variance in the
model’s parameters is trivial, this work focuses on data
resampling techniques. Our goal with these sampling mecha-
nisms is to reduce the dependence between samples collected

https://doi.org/10.1021/acs.jcim.5c01609
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Figure 2. Visualization of different cross-validation resampling techniques: (a) vanilla cross-validation, (b) repeated cross-validation, and (c) nested

cross-validation.

and obtain an accurate estimate of variance in performance, and
we will thus focus our guidelines on data splitting techniques.

Cross-validation (CV, see Figure 2) is a popular method for
resampling a data set. It is worth noting, however, that CV is not
a single approach. CV refers to a set of different techniques by
which one can resample (or split) a data set, and there exists no
perfect solution that will work in every case. What works best
depends on the specific data set and modeling objective. New
techniques to sarnlple performance distributions are also actively
being researched. o

As illustrated in Figure 2, we adopt the following naming
conventions: “fold” refers to a data partition (i.e., each square in
Figure 2); “split” refers to a type of data split (e.g., random,
scaffold-based, similarity-based, temporal, etc.); “CV iteration”
refers to an iteration of a CV evaluation procedure (i.e., each row
and subrow in Figure 2).

3.1.2. Different Cross-Validation Techniques. In vanilla CV,
the data is split into n disjoint sets (or folds), with one fold used
as the test set and the remaining folds used for training. When
comparing methods, the same data split (i.e., using the same
random seed) is typically performed, offering a more direct
head-to-head comparison that usually results in increased
precision. Figure 2a illustrates this with 10 folds. This raises
the question of how many folds to use. With many folds, the
different training sets overlap substantially, creating strong
dependence between the samples. This underestimates variance,
violates the assumptions of statistical tests, and results in
elevated false positive rates (see Section 3.3 for a review of
statistical testing). With few folds, the statistical tests will be
underpowered (i.e., have low statistical power) due to the small
sample size of the performance sampling distribution.
Commonly used alternatives to CV like bootstrapping and
repeated random splits of the data have also been shown in
simulation to result in strong dependency between samples and
are generally not recommended.'®'” Notably, Dietterich'’
performed simulations showing that statistical tests using
repeated random sampling or vanilla CV have an unacceptably
high type I error rate (i.e., false positive rate).

Dietterich proposed a 5 X 2 repeated CV to address these
concerns (see Figure 2b). Five X 2 CV splits the data set five
times, with two folds each time. Having only two folds reduces
the dependence across folds within a CV iteration because the
training sets do not overlap. Repeated splitting does introduce
dependence across CV iterations as training and test sets overlap
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between iterations. However, such overlap is less substantial
than what would be observed when getting the same number of
samples with vanilla 10-fold CV or other commonly used
procedures."”

Even though Deitterich found that 5 X 2 repeated CV struck
the right balance, his paper was based on simulations with data
sets of only 300 observations. For modern data set sizes, the 5 X
2 settings result in an underpowered test as well as poor
performance estimates because 2 fold CV is used. This was
addressed in a recent paper by Bates et al,,'® where the authors
derive a nested CV procedure (see Figure 2c) more accurate
than vanilla CV and other sampling methods. Unfortunately,
this procedure is too computationally expensive for most small
molecule property modeling applications and the procedure also
limits the performance metrics one can use.

Although the nested CV procedure by Bates et al. is
computationally expensive, other CV procedures can be
evaluated against their method. Through an experiment (see
Section B), we show that for representatively sized data sets, S X
S repeated CV (ie, S iterations of S fold CV) provides a
reasonable approximation and a more stable and accurate
variance estimate than the commonly recommended Deitter-
ich’s 5 X 2 and McNemar procedures. This experiment leads us
to suggest the use of 5 X 5 repeated CV in our guidelines for
improved statistical testing.

Note that in statistical testing procedure that we propose, no
aggregation across CV folds is performed when computing
performance metrics. This means 5 X 5 repeated CV generates
25 samples from the performance sampling distribution. The 25
samples are sufficiently independent to meet the minimum
sample size required by the statistical testing procedure (see
Section C).

While we provide specific CV recommendations for defined
data set sizes ranges (<500, S00—100,000, >100,000) as general
guidance, we acknowledge that data set sizes are a continuum.
For instance, at the higher end of the 500—100,000 range, more
folds will be tolerated with sufficient independence of samples.
This would result in more samples for more accurate
performance estimates and higher-powered statistical tests. If
different fold sizes are used, we recommend ensuring at least 25
samples are collected in total, as this is the minimum sample size
required for our recommended testing procedure.

3.1.3. Cross-Validation with Advanced Splits. When
evaluating a method, it is critical to avoid a model simply

https://doi.org/10.1021/acs.jcim.5c01609
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Figure 3. Visualization of a paired t-test for difference in performance between two methods. Intuitively, the t-test estimates the probability of
observing a test statistic as extreme or more extreme assuming both samples come from the same distribution. The test statistic measures how closely
the observed distribution matches the distribution assumed by the null hypothesis. The assumed distribution under the null is shown above along with
the observed test statistic and the estimated p-value (in yellow). In this specific example, since the p-value is higher than the chosen significance level (in
blue), this test would fail to reject the null hypothesis. Tukey HSD is an extension of the t-test to the scenario where there are more than two models

and all pairwise comparisons are performed.

“memorizing” the training data, known as overfitting. To assess
the ability of a model to generalize, the similarity between
training and test sets should accurately reflect the downstream
application. There are many ways to split a data set and which
split is best depends on the application.'®* ™' One can split a data
set randomly, based on temporal information (e.g., compound
synthesis or measurement dates), or to minimize the structural
overlap between training and test sets. In this last case, the
splitting procedure can be based on chemical scaffolds or
similarity clustering. An inappropriate choice of splitting method
can lead to systematically under-estimating or overestimating
model performance.””>> We aim to provide guidance on
measuring generalization and model validation in future work.

Within the context of this work, it is worth noting that CV is
compatible with these more advanced splitting methods as long
as the data set can be partitioned into nonoverlapping, roughly
equally sized groups. It is essential to check that folds do not
significantly overlap across CV iterations and that target
distributions stay reasonably similar. It is recommended to
visually inspect these constraints (see Section E).

3.1.4. Cross-Validation with Hyperparameter Optimiza-
tion. Besides assessing generalization with a hold-out test set
that is not used during method development and selection, there
are also cases where one might want to use a second evaluation
set during method development, such as with hyperparameter
optimization. In such cases, nested CV is commonly
recommended to split the data into three subsets: training,
validation, and test. However, this substantially increases the
total number of iterations (i.e., the number of models to train).
For each CV iteration within § X 5 repeated CV, we recommend
performing a split of the training set into training and validation
for hyperparameter optimization. This is comparable to
performing one iteration of the inner loop of nested CV (see
Figure 2c), and results in 25 distinct validation sets, one per CV
sample. Five X S repeated CV collects 25 samples from the
performance sampling distribution, which is already a sufficient
number of samples for statistical testing, so a full nested CV is
unnecessary.

3.2, Statistical Significance. After collecting the perform-
ance sampling distributions for each of our methods, an
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appropriate technique for comparing these distributions should
be selected.

Since finite samples of a distribution are being compared, we
cannot unequivocally state that the two sampled distributions
are different. However, we can hypothesize that the two
populations of samples come from distributions having the same
mean value and compute a p-value for testing that null
hypothesis (see Figure 3). The p-value estimates the probability
of observing the test statistic at least as extreme under the null
hypothesis. If that probability is lower than a chosen significance
level, we reject the hypothesis and conclude that there is a
statistically significant difference between the two distributions.

The false positive rate (or type I error rate) of a test is the
probability of falsely rejecting the null hypothesis, i.e. falsely
concluding that there is a difference between the performance
distributions of two methods while there is not. If the
assumptions of the test are met, then the false positive rate
will be less than the significance level. The significance level is set
by the researcher based on the amount of confidence that is
needed in the conclusion. A commonly used level is 0.05, which
should provide reasonable control of false positive rate for
methods comparisons after correction for multiple comparisons
(see Section 3.2.2).

The type II error rate of a test is the probability of failing to
detect a difference between performance distributions when one
exists. Statistical power is equal to 1—type II error rate, and is
the probability that a true difference in distributions will be
detected by the test.

An optimal statistical test will have (1) a false positive rate at
the level advertised and (2) high statistical power. Condition 1
should be met first for method comparison. When we claim
statistical significance this gives researchers confidence that a
real difference in performance exists between methods. We want
to be confident that we are not giving people an inflated sense of
certainty. If the assumptions of the statistical test are violated,
then the test may have false positive rate higher than advertised
or low statistical power. This is why it is important to understand
and examine the assumptions of a test, as explained in the next
section.

There are various tests for statistically significant differences,
which differ in the assumptions they make on the sampling
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distributions under comparison. We recommend the following
test:

Guidelines 2 (statistical testing) we recommend repeated
measures ANOVA (analysis of variance) with the post hoc
Tukey’s HSD (honestly significant difference) test for pairwise
comparisons between models. We recommend always checking
the parametric assumptions of the tests, but if you follow
Guidelines 1, these assumptions should be reasonably met in
most applications in small molecule property modeling (see
Section C.1 for details).

In the exceptional case in which the parametric assumptions
are not met, we provide additional guidance in Section A.2.

3.2.1. Statistical Tests. Statistical tests for differences
between distributions can be broadly separated into parametric
and nonparametric tests. Parametric tests make stronger
assumptions about the distributions under comparison (e.g.,
normality, see also Section C), compared to nonparametric
tests. One common misconception is that nonparametric tests
do not make assumptions. Even though nonparametric tests
have weaker distributional assumptions, they do still make
assumptions and these are often harder to understand and
examine than parametric tests. The most important assumption
made by both parametric and nonparametric tests is that
samples are independent, which means that an appropriate CV
protocol (see Section 3.1) that minimizes the dependence
between samples is necessary for both tests.

It is common for researchers to use a nonparametric test
because they make fewer assumptions. However, researchers are
often unaware of the disadvantages of these tests. For method
comparisons, the most important is that nonparametric tests
typically focus on hypothesis testing and less on estimation of an
interpretable effect size. While it is possible to estimate effect size
and confidence intervals with nonparametric methods it is
typically not straightforward. Because our method comparison
workflow focuses on estimating effect size in addition to
hypothesis testing, a parametric test with an interpretable
associated effect size (e.g., the difference in means) is preferred.
Nonparametric tests can also be substantially less powerful than
parametric tests if the distributional assumptions of the
parametric tests are met. See Section C.2 for more details on
the advantages and disadvantages of parametric and non-
parametric tests.

We recommend the following parametric testing workflow:
repeated measures ANOVA followed by the Tukey HSD test.
During the repeated CV procedure, competing methods are
being fit to the same splits of data. To appropriately account for
this dependency, we perform repeated measures ANOVA, and
then provide the sum of squared errors output to the Tukey
HSD procedure. This results in a test with higher statistical
power than Tukey HSD alone. Note that if only two
comparisons are performed, this procedure simplifies to a
paired (repeated measures) t-test.

The parametric workflow compares the means and is known
to be highly robust to moderate violations of the underlying
assumptions. This is particularly true in the context of a method
comparison protocol (see Section C.1 for details). If the
assumptions of the parametric test are strongly violated, then we
recommend a nonparametric test workflow that will also be
suitable for method comparisons (Section A.2). We provide an
example of examining the parametric testing assumptions in the
supplementary notebooks.

3.2.2. Pairwise Comparisons and Corrections for Multiple
Testing. We typically compare more than two methods in ML
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benchmarks and are interested in all pairwise comparisons. This
results in a large number of tests. When we perform many
comparisons simultaneously, the probability of falsely rejecting
the null hypothesis increases. For example, say we picked a
significance level of 0.05. In other words, in 5% of tests, we
expect to conclude that there is a statistically significant
difference between distributions while there, in reality, is no
such difference. If we run this test N times, the expected number
of falsely rejected null hypotheses linearly increases with N. For
N =100, we would thus expect to falsely reject 5 null hypotheses.
The process of finding false positives when many comparisons
are performed is referred to as “p-hacking” (or more specifically,
“data-dredging”**) and is a source of prevalent false positives
and publication bias across the sciences, see Ioannidis”” but also
Jager et al.”® and the surrounding debate.”” See also Head et al.**
for importance of attention to effect size to avoid p-hacking,
which is a focus of this paper.

The number of pairwise comparisons N in turn grows
combinatorially with the number of methods under comparison,
because of which multiple testing can quickly become
problematic. There are several techniques to correct for this,
see Chen et al.”” for a review. The Bonferroni correction™ is a
simple approach that is commonly used. However, this
correction is known to be overly conservative, meaning that it
has low statistical power, when the number of comparisons is
large.

We recommend the Tukey HSD test, which is specifically
designed for pairwise comparisons and incorporates a correction
for multiple testing. Compared to other multiple testing
correction procedures like Bonferroni, it has good statistical
power for all pairwise comparisons. It ensures that the family
wise error rate (FWER), which is the probability that at least one
false positive occurs in a set of tests, is less than a given
significance level (e.g., 0.05), regardless of the number of tests
performed. See Section A.2 for guidance on multiple testing for a
large number of method comparisons (>10).

When multiple metrics are being considered in an evaluation,
the following procedure will appropriately correct for multiple
testing across metrics.

(1) Perform repeated measures ANOVA for each metric.

(2) Perform Bonferroni correction on the ANOVA signifi-
cance level. Divide the significance level by the number of
metrics to obtain an adjusted significance level.

(3) For all metrics with a significant ANOVA test, perform a
Tukey HSD posthoc test.

A simple Bonferroni correction for the ANOVA tests is
appropriate because the number of metrics evaluated is often
small.

In the cases where only the comparisons of one method
against all others are of interest, then less tests need to be
corrected for than all pairwise comparisons as in Tukey HSD.
However, since Tukey HSD has good statistical power
compared to other procedures, we recommend this for general
use. This gives researchers a “license to fish”, providing
protection against any pairwise comparison that might be
performed.

3.3. Practical Significance. With statistical significance, we
establish that there is a difference between means, but we can not
yet conclude the magnitude of that difference. The Tukey HSD
procedures, however, not only provide us with statistical
significance (i.e., an assessment that the means of the
distributions under comparisons are the same) but also with
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Figure 4. An example using post hoc classification for a regression model to investigate practical significance with precision and recall. Measured vs
Predicted logS (solubility from Fang et al.). Reported are mean absolute error (MAE), mean squared error (MSE), coefficient of determination (R?),
Spearman's rank correlation coefficient (rho), precision (Prec) and recall. From left to right, we show the results for ChemProp Single Task
(chemprop_st), ChemProp Multitask®* (chemprop mt), and Light Gradient Boosting Machines (1gbm_morgan).

effect size (i.e., the magnitude of the difference in mean between
two distributions).

However, this raises the question whether any given effect size
is also practically significant. Practical significance is established
when there is a large enough difference between methods to be
meaningful in practice. In small molecule property modeling,
this boils down to whether a new method impacts a drug
discovery scientist’s decision-making regarding which experi-
ments to prioritize. To measure practical significance, we need to
use relevant, contextualized performance metrics that are
informed by our downstream application. We recommend the
following:

Guidelines 3 (practical significance) when reporting a
significant difference between methods, also provide an
explanation of how the result is practically significant. Use
metrics that are motivated by the downstream application and
contextualize results by estimating the lower and upper
performance limits.

Over the past century, statisticians have developed many
valuable metrics for evaluating the performance of regression
and classification models. Section D reviews several of these
metrics and provides recommendations to ensure accurate and
meaningful model evaluations from a statistical point of view.
The rest of this section specifically describes different ways to
measure impact in small molecule drug discovery.

3.3.1. Relevant Performance Metrics. 3.3.1.1. Decisional
Impact. A typical application of a property model is to inform
two key decisions: (1) deciding what compounds to make and
(2) deciding what compounds not to make. When prioritizing a
set of molecules, drug discovery scientists typically classify each
of the properties of interest in two or three bins (or categories),
e.g. “soluble” and “insoluble”, to inform their decision-making.
To measure the real-world utility of small molecule property
models, one can thus investigate whether a model can help
decide which molecules to make or not to make by using these
bins.

When deciding what compounds to make, a filter is often
applied to a large set of compounds by applying a threshold to a
property estimation. We would like to be confident that
everything left after filtering will have a good property value
when measured. We would also like the set to be as large as
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possible because this provides chemists with more diversity for
design. One approach to achieve this task is to select a minimum
acceptable precision (e.g, 75%), and then select the threshold
with the maximum recall subject to this constraint. The model
with the best performance will have the largest recall. This
typically referred to as recall@precision in the ML literature.*>**

Another decision is what compounds to not make. In this
context we would like to eliminate a large number of bad
compounds while eliminating as few positives as possible. One
approach is to select a minimum acceptable recall for the positive
class. For example, we may require 90% recall, so that no more
than 10% of true positives are thrown out. We then select the
threshold with the maximum true negative rate (TNR) subject
to this constraint. The model with the best performance will thus
have the largest TNR@recall.

This can also be done in a regression setting by using post hoc
classification (see section Section D.2 for details).

Figure 4 shows a comparison of three machine learning
models, ChemProp Multitask®' (chemprop mt), ChemProp
Single Task (chemprop_st), and Light Gradient Boosting
Machines (Lgbm_morgan) on the same data set. The data set,
provided by Fang et al,** contains 2173 compounds with
aqueous solubility determined using an assay routinely
employed in drug discovery. In drug discovery, we typically
screen early for compounds with good aqueous solubility, as that
property often translates to solubility in intestinal fluid for oral
drugs, as well as solubility in intravenous formulations for when
not orally administered. A typical threshold for good solubility
for oral drugs is >100 M.

After training three regression models for solubility, statisti-
cally significant differences in mean absolute error (MAE), mean
squared error (MSE), and coefficient of determination (R*) are
found between 1ightGBM and the two ChemProp models. To
assess whether such difference was large enough to be
meaningful, post hoc classification with a 100 yM threshold
was carried out. Precision is essentially equivalent across
methods but recall is substantially lower for 11ghtGBM. If
one used these models as a compound filter at 100 uM,
1ightGBM would reject more compounds with good
solubility. To see this, note that there are substantially more
compounds in the bottom right quadrant for 1ightGBM than
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Table 1. Confidence Intervals (CI) of the Difference in Mean Performance Between Methods, Presented as a Table

MAE MSE R? Rho precision recall
chemprop _mt—chemprop_st 0.02 0.00 0.00 0.00 0.02 —0.08
(0.01, 0.02) (-0.01, 0.01) (-0.02,0.02) (-0.01, 0.01) (0.00, 0.03) (—0.10, —0.06)
chemprop mt—1ightGBM —0.06 —0.07 0.15 0.08 0.01 0.09
(—0.06, —0.05) (—0.08, —0.06) (0.13,0.17) (0.07, 0.09) (-0.01, 0.02) (0.07,0.11)
chemprop st—1ightGBM —0.07 —0.07 0.15 0.08 —0.01 0.17
(—0.08, —0.06) (—0.08, —0.07) (0.13,0.17) (0.07, 0.09) (-0.02, 0.01) (0.15,0.19)
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Figure 5. Examining the impact of dynamic range on correlation. If the entirety of this data set, which spans 13 log units of dynamic range, is
considered, there is a high correlation between measured and estimated values. However, the correlation is much lower if the more realistic 3-log range
between the red lines is considered.
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Figure 6. An illustration of effect size. In all of the subplots, the two distributions show a statistically significant difference. For each column, the mean
of the same-colored distributions is equal. However, because the distributions in the top row have a lower variance, the effect size of these comparisons
is higher than for the distributions in the bottom row.

there are for other methods. As we will later show in Figure 9 and 3.3.1.2. Interpretability. Domain experts who use an ML
Table 1, the estimated improvement in recall of chem- model in a real drug discovery program need context on which
prop st over 1ightGBM is 0.17 (0.15, 0.19), meaning differences are impactful. For those with a limited statistical

background, statistical measures can be hard to interpret. To
facilitate interdisciplinary communication, it can therefore be
solubility. This would likely have a real practical impact on drug helpful to report the MAE. Although this metric is not the only
discovery programs. metric that should be used for method development (see

chemprop st would identify 17% more molecules with good
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Figure 7. An example of the simultaneous confidence interval plot.

Section D), it is important to report because the unit of MAE is
the same as the property being modeled. MAE is often used in
log scale by medicinal chemists or pharmacologists to indicate
fold differences between observed and measured values (where a
MAE of 0.3 log units would correspond to 2-fold error). Thus,
average fold errors or percentage of errors within 2- or 3-fold are
often reported to facilitate discussions within drug discovery
teams.

3.3.1.3. Dynamic Range. Both correlation and error metrics
are influenced by the dynamic range of the data being modeled.
Achieving a high correlation on data sets with a broader range of
experimental values is generally easier, whereas data sets with a
smaller dynamic range can produce unrealistically small values
for error metrics. This can lead to deceptive conclusions.

For instance, consider the Delaney solubility data set®” in the
MoleculeNet*® benchmark. This data set reports the log of the
aqueous solubility (LogS) for 2173 compounds. The Log$
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values span more than 13 logs, significantly larger than the 3—4
log dynamic range typically encountered in drug discovery.
Consider a simple model that uses a calculated octanol—water
partition coefficient (LogP) to estimate LogS. If we calculate the
coefficient of determination (r*) for LogP vs LogS for the full 13-
log range of the Delaney solubility data set, we achieve a
respectable r* of 0.68. However, if we only consider values in the
1 uM to 1 mM (log solubility —6 to —3) range typically observed
in drug discovery projects, the r* value drops to a less impressive
0.33. Figure § illustrates this issue by showing the full range of
the Delaney data set, with a more realistic dynamic range
between the red lines.

3.3.1.4. Class Imbalance. Classification metrics can be
misleading in cases where classification data sets are highly
imbalanced, as is common in small molecule drug discovery. In
this case, using metrics that account for this imbalance is
important (see Section D.2).
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Figure 8. An example of the multiple comparisons similarity (MCSim) plot. Color is used to convey the effect size, whereas star annotations are used to
convey statistical significance. The effect size reported is the difference in average performance between methods. A numeric difference is shown in the
cells, but this can be suppressed if a large number of comparisons is performed.

3.3.2. Cohen’s D. In Section 3.3.1, we covered some ways of
measuring performance of a ML model in the context of small
molecule drug discovery. Often researchers understand whether
a performance difference is large enough to be practically
significant, and in these contexts a simple difference in means is
recommended as an interpretable effect size. However,
providing meaningful context to a difference is sometimes
problematic, and in these cases Cohen’s D can be a useful
measure of effect size. Cohen’s D standardizes the difference in
means by the pooled standard deviation. This results in a unitless
measure of difference in distribution which considers the
variance of both distributions (Figure 6).

H—H
1712+ 1722
V 2

Commonly used cutoffs for interpreting Cohen’s d are d > 0.2,
d > 0.5, and d > 0.8, implying a small, medium, or large effect
size, respectively.”” Statisticians often advise using these cutoffs
as a last resort when there is insufficient understanding of
whether a difference is meaningful from domain knowledge.*®

3.3.3. Lower and Upper Performance Limits. As discussed in
Section 3.3.1, performance metrics can be misleading depending
on the underlying distribution being modeled. Furthermore, the
endpoints we are estimating are subject to experimental noise,
which implies a maximum expected model performance. To
address these concerns and help improve the interpretability of
the performance metrics, it is important to contextualize results
with both a lower and upper limit for the performance.

3.3.3.1. Lower Limit: Null Models. Null models consistently
assign the majority class for a classification task, or the mean (or
median) of the training set for a regression task. If the

d=
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performance metrics for a model are close to those of the null
model, one should question the results.

3.3.3.2. Upper Limit: Experimental Variability. If the
experimental variability of the underlying assay is known, it
can be used to estimate the maximum expected performance.’”
Experimental variability is often referred to as aleatoric
uncertainty, or data uncertainty. For example, the noise in
activity biochemical assays measuring half-maximal inhibitory
concentration (ICg) is commonly estimated to be 0.3 log units
(ie., 2-fold).* If the MAE of an ICy, model is less than 0.3, one
should question the results. In a case where the experimental
variability is not known, it is common to assume experimental
variability of 2- or 3-fold, depending on the dynamic range and
nature of the data.*!

In the special case of correlation metrics for regression
models, Brown et al.** outlined a procedure for a data set X with
N values and an experimental fold error A.

For 1000 trials:

(1) Generate N normally distributed random variables R with
a mean of 0 and a standard deviation of log;o(A).

(2) Add R and X to create a new vector RX
(3) Calculate the correlation between X and RX

The mean of the correlations over the 1000 trials calculated
above typically provides a reasonable estimate of the upper limit
of achievable correlation. If the observed correlation exceeds this
value, the benchmark result should be questioned.

3.3.4. Holistic Evaluation. A single performance measure is
unlikely to capture real-world utility. Instead, practitioners
typically rely on a holistic view that evaluates performance along
multiple dimensions to inform the usage of a ML model in a real-
world context, which can span various applications. We
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Figure 9. Confidence Intervals (CI) of the difference in mean performance between methods, presented as a plot. Intervals that do not cross the zero

line imply statistical significance.

therefore recommend at least reporting multiple performance
measures. Furthermore, a thorough investigation of the
capabilities and limitations of a ML method (e.g., performance
on activity cliffs,"’ performance per chemical series,**
uncertainty estimation®’) significantly increases its scientific
and real-world utility.

3.4. Presenting the Results. Using statistical tests
produces information beyond a performance metric table.
Typical methods for presenting the results, such as leaderboards,
are unsuitable for presenting this information. We therefore
provide guidance on appropriate visualizations:

Guidelines 4 (presenting the results) we recommend a plot to
visualize the results of the pairwise comparisons, such as the
simultaneous confidence interval plot or the multiple compar-
isons similarity plot. For regression models, we recommend
including additional scatter plots in the Supporting Information

or
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that shows the models’ predictions versus the ground-truth
labels. For classification models, we similarly recommend
including the confusion matrices.

In the exceptional case where the reader requires a
leaderboard, we provide additional guidance in Section A.3.

3.4.1. The Simultaneous Confidence Interval Plot. The first
plot we recommend is the simultaneous confidence intervals
plot provided by the statsmodels Python package* (see Figure
7). In these plots, the method with the best performance metric
is displayed in blue. Dashed vertical lines surround the
confidence intervals for the best method. Methods equivalent
to the best model are represented in gray. Methods that show
statistically significant differences from the best model are
indicated in red. All confidence intervals have been adjusted for
multiple comparisons such that any pair of intervals that are
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nonoverlapping implies a statistically significant difference
according to the Tukey HSD testing procedure.

For this visualization, advantages are that it is easy to
construct, it concisely represents comparisons to the best
performing method, and it provides a confidence interval of the
mean performance of each method. A disadvantage is that the
effect size that is considered practically significant is not shown
explicitly on the plot, though context on what differences are
considered practically significant can be provided in the text of
the paper.

3.4.2. The Multiple Comparisons Similarity Plot. Another
option for visualizing results is an extension to the sign plot
provided by the scikit-posthocs Python package®” (see Figure
8). The original sign plot showed a heatmap of all pairwise p-
values. Our extension, which we call the multiple comparisons
similarity (MCSim) plot, uses color to convey effect size instead
of p-values since practical significance is more important than
statistical significance in the context of a method comparison
protocol.

To simplify the interpretation of the plot, the MCSim plot
sorts the methods in the rows and columns by their average
performance, which are also annotated in the margins. The top
left block of methods without statistically significant differences
are thus the plausible top performers. Cells are colored by the
difference in average performance between methods. Each cell
in the heatmap also has a star annotation to indicate the level of
significance (*p < 0.0, **p < 0.01, ***p < 0.001). The color
range is determined by the user and should be set to be large
enough to cover a range of practically significant differences. The
ranges will differ by metric, so different color scales are necessary
for each plot.

An advantage of this visualization is that it explicitly represents
the effect sizes that are considered practically significant. A
disadvantage is that the simultaneous presentation of effect size
and statistical significance makes these plots more complex to
construct and interpret.

3.4.3. Confidence Intervals of the Difference in Mean
Performance. Another option is a plot or table showing
confidence intervals of the difference in mean performance. The
results of the Tukey HSD test can be used to construct
confidence intervals for the differences between methods. These
confidence intervals allow us to understand the uncertainty
associated with the differences reported. A point estimate for the
difference between methods may appear substantial, but if the
associated confidence interval is large, then the result is less
convincing. While confidence intervals can be easily calculated
for parametric methods, they are not straightforward to obtain
with the nonparametric workflow, though a range measure such
as the interquartile range may be reported.

As the number of pairwise comparisons is often large (i.e., the
number of comparisons grows combinatorially with the number
of methods under comparison), the relationships between
methods will be difficult to visualize in a single plot, especially if
multiple metrics are used. We therefore recommend providing
these results in the Supporting Information as either a plot (see
Figure 9) or tabular form (see Table 1). Alternatively,
practitioners may find it optimal only to show a few differences
of interest, such as comparing a new method to a set of baselines.
However, it is important to apply the Tukey HSD to all
comparisons that were examined originally to properly correct
for multiple comparisons and avoid p-hacking (see Section
32.2).
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4. ANNOTATED EXAMPLES

To simplify the adoption of the guidelines we presented in this
work, all guidelines presented throughout this paper are
accompanied by a set of annotated examples that use open-
source software to implement the proposed method comparison
protocol. These annotated examples provide an easy to use
template to incorporate these guidelines in your own research.
These annotated examples can be found at https://github.com/
polaris-hub/polaris-method-comparison. An overview of Open-
Source Software that can be used to implement these guidelines
can be found in Table 2.

Table 2. An Overview of Useful Open-Source Software

package language description
scikit- Python  implements multiple pairwise comparisons
posthocs™® tests in python

scikit-learn® Python  this well-known machine learning library
for Python has a mature cross-validation
API

pingouin® Python  implements various statistical methods in
Python

statsmodels™ Python  implements various statistical methods in
Python

chemmodlab™ R a cheminformatics modeling laboratory for

fitting and assessing machine learning
models

5. CONCLUSION

ML-based research is facing a replicability crisis. These issues are
further amplified in small molecule property modeling due to the
high-stakes applications, the heterogeneous, imbalanced, and
noisy data sets, and the interdisciplinary teams. It is essential that
statistically robust and domain-appropriate method comparison
protocols are employed to close the gap between perceived
progress and real-world impact.

In this work, we proposed beginner-friendly guidelines for
method comparison protocols in small molecule property
modeling. We simplified the adoption of these guidelines with
annotated examples that use open-source software. These
guidelines are

(1) We recommend using a 5 X S repeated cross-validation
procedure to sample the performance distribution. This
procedure suits typical data set sizes used in small
molecule property modeling (e.g., 500—100,000), and
generates 25 sufficiently independent samples, meeting
the sample size requireements for statistical testing. The
training set can be further split into a training and
validation set if needed. Care should be taken to consider
how the choice of data-splitting approach might system-
atically overestimate or underestimate model perform-
ance.

(2) We recommend the Tukey HSD test for pairwise
comparisons between models. We recommend always
checking the parametric assumptions of the Tukey HSD
test, but if you follow Guidelines 1, these assumptions
should be reasonably met in most applications in small
molecule property modeling.

(3) When reporting a significant difference between methods,
also provide an explanation of how the result is practically
significant. Use metrics that are motivated by the
downstream application and contextualize results by
estimating the lower and upper performance limits.
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(4) We recommend a plot to visualize the results of the
pairwise comparisons, such as the simultaneous con-
fidence interval plot or the multiple comparisons
similarity plot. For regression models, we recommend
including additional scatter plots in the Supporting
Information that shows the models’ predictions versus
the ground-truth labels. For classification models, we
similarly recommend including the confusion matrices.
Statistical testing is not a recipe to blindly follow and there
are valid reasons to deviate from the above guidelines.
Transparency is key in the absence of a perfect solution for
every scenario.

(8)

In future work, we aim to tackle other important aspects of
benchmarking ML models in small molecule property modeling,
such as data set curation and measuring generalization (e.g.,
through data splitting methods).
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