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Abstract

Summary: Dynamic models represent a powerful tool for studying complex biological processes, ranging from cell signalling to cell differentia-
tion. Building such models often requires computationally demanding modelling workflows, such as model exploration and parameter
estimation. We developed two Julia-based tools: SBMLImporter.jl, an SBML importer, and PEtab.j1, an importer for parameter estimation
problems in the PEtab format, designed to streamline modelling processes. These tools leverage Julia’'s high-performance computing
capabilities, including symbolic pre-processing and advanced ODE solvers. PEtab.jl aims to be a Julia-accessible toolbox that supports the entire
modelling pipeline from parameter estimation to identifiability analysis.

Availability and implementation: SBMLImporter.jl and PEtab.jl are implemented in the Julia programming language. Both packages
are available on GitHub (github.com/sebapersson/SBMLImporter.jl and github.com/sebapersson/PEtab.jl) as officially registered Julia packages,

installable via the Julia package manager. Each package is continuously tested and supported on Linux, macOS, and Windows.

1 Introduction

Understanding the complex nature of dynamic processes such
as nutrient signalling, cell division, and apoptosis is one of the
central aims in systems biology (Kitano 2002). A powerful tool
to help achieve this goal is dynamic modelling, where chemical
reactions are modelled stochastically or deterministically
(Klipp et al. 2016). To date, dynamic models have been used
to study a range of processes, from small receptor networks
(Becker et al. 2010) over bursting gene expression (Zechner
et al. 2014) to cancer signalling (Frohlich et al. 2018).

Whether a model is based on stochastic rate probability den-
sity functions (which describe jump processes where reactions
trigger changes in species amount) or on deterministic rate
equations [described by Ordinary Differential Equations
(ODEs)] (Gillespie 2007), it typically contains unknown
parameters, such as reaction rate constants. Thereby, to under-
stand a model’s characteristics, it must be simulated for many
parameter sets to validate if it can capture experimental obser-
vations. Because most dynamical models in biology typically
lack closed-form analytical solutions, numerical simulation
methods are necessary. Consequently, efficient modelling
requires fast and flexible software.

The Julia programming language has emerged as a promis-
ing tool to address the computational challenges encountered
in biology (Bezanson et al. 2017, Roesch et al. 2023). With

support for symbolic model pre-processing, automatic differ-
entiation compatibility, adjoint sensitivity analysis, and state-
of-the-art ODE solvers (Rackauckas and Nie 2017), Julia’s
ecosystem appears ideal for handling tasks like parameter es-
timation for ODE-based models. To leverage this ecosystem,
we developed SBMLImporter.jl, a Julia SBML importer,
and PEtab.jl, an importer for parameter estimation prob-
lems in the PEtab format (Schmiester et al. 2021) (Fig. 1).
SBMLImporter enables users to import models with a wide
range of features, including events and multiple compart-
ments (e.g. cytosol and nucleus), that are built using SBML
exportable tools such as the Copasi graphical interface
(Hoops et al. 2006). PEtab.jl simplifies model fitting
workflows, enabling users to fit models to data across a wide
range of scenarios following the PEtab standard (Schmiester
et al. 2021). Lastly, we performed an extensive benchmarking
study to provide guidelines on when and how to use Julia for
dynamic modelling.

2 Features

SBMLImporter.jl imports SBML models into Catalyst re-
action networks (Loman et al. 2023) (Fig. 1a). This has sev-
eral benefits. First, a Catalyst reaction network can be
converted into a jump problem (simulated using, e.g.

Received: 30 April 2025; Revised: 20 August 2025; Accepted: 1 September 2025

© The Author(s) 2025. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https:/creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

GZ0z 1990100 L0 uo Jasn (ABojouyda ] Jo Alsianiun siewieyn) ejoysboy eysiuyal siawjey)d Aq 001L0SZ8/.671810/6/ 1 f7/9121Ue/SollewIoulolIq/uwod dnoolwapede//:sdily woly papeojumoq


https://orcid.org/0000-0001-9524-6633
https://orcid.org/0000-0002-4935-3312
https://orcid.org/0000-0002-5142-5100

Kq Simulate ReactionSystem
—— A with stochastic (bottom) or

Simulate Model

| MRNA deterministic (top) simulators
€
K 310
£
_ ©
<
\ Gene on Zs
y 1S
0
koff kon ’ 60
y 1=
> 3
Gene on £
— <
Z20
Import SBML model as a E
ReactionSystem With 05025 5975 160
SBMLImporter.jl Time [s]
X Simulation based
# ReactionSystem model exploration
rs = @reaction_network begin
Small Ky, Large ko,

Persson et al.

(c)
Compare model against data
Fit model to data with -
PEtab.jl 2 s
Import PEtab standard format 8 025
Bayesian y
inference e A 3 [

HMC
AdaptiveMCMC

Pamews
Experiments -
Obsenables (
Weasuements
+

Or code directly in Julia
using PEtab, Catalyst

mRNA amount
S

obs = Dict("mRNA" => mRNA _obs)
data = CSV.read("path", DataFrame)
model = PEtabModel(rs, obs, data, p)
prob = PEtabODEProblem(model) 00 2

rs = @reaction_network begin 00 25_50 75 10
» Time [s]
end 0
kon = PEtabParameter(:kon) € 40
. Parameter 3 0
p = [kon, ... kd] estimation €
MRNA_obs = PEtabObservable(:mRNA) —_— : 20,
z
4
£

5 50 75 10.
Time [s]
On PEtab.jl's roadmap
Model selection

l Identifiabillity analysis

Scientific

kon, G_off --> G_on
koff, G_on --> G_off
km, G_on --> mRNA + G_on
kd, mRNA --> 0
end

mRNA amount
N s @
8 & 8

°

25 50 75 10000 25 50
Time [s] Time [s]

of
S

75 100

Fit stochastic model
60!

Machine
Learning
du e
— = flu,t,pi=
3 = f(wt, i)

mRNA amount
PR
S 8

o
oy
9|

25 50 75 100
Time [s]

— = Simulation intenstive tasks — = Derivative + simulation intensive tasks

Figure 1. Modelling workflows with PEtab.jl and SBMLImporter.jl. The tools enable an efficient modelling pipeline consisting of three main components.
(a) Setting up the model in the SBML format. (b) Simulating the model with stochastic simulators or deterministic ODE solvers. (c) Model fitting with
PEtab.jl by linking measurement data to a model via building a likelihood or, given priors, a posterior function.

the Gillespie algorithm) or a Langevin SDE problem
(Gillespie 2007) for stochastic simulations. Alternatively, for
deterministic simulations, it can be converted to an ODE
problem (Fig. 1b). For each problem type, all the solvers in
the performant DifferentialEquations.jl suite are
supported (Rackauckas and Nie 2017). Additionally,
Catalyst integrates with other modelling packages, such as
Bifurcationkit.jl (Veltz 2020). SBMLImporter.jl
does not yet support any SBML extensions, but it provides
extensive support for core SBML functionality, comparable
to established tools like AMICI (Frohlich et al. 2021)
(Table 5, available as supplementary data at Bioinformatics
online). The most up-to-date list of supported features is
available in the online documentation of the package.

PEtab. j1 links ODE models to measurement data by cre-
ating a likelihood function or given priors, a posterior func-
tion (Fig. 1c). Built on the PEtab standard format for
parameter estimation (Schmiester et al. 2021), the package
supports a wide range of scenarios, such as different measure-
ment noise formulas for data collected with different assays,
steady-state simulations to model interventions like drug ad-
ministration in stationary systems, and data gathered under
multiple experimental conditions. PEtab problems defined in
the standard format can be directly imported. Alternatively,
problems can be coded directly in Julia, where the dynamic
model is specified as a Catalyst reaction network (Fig. 1c).
Extensive tutorials for specifying a problem directly in Julia
are available in the PEtab.j1 online documentation, while
tutorials for creating problems in the standard format are
provided in the official PEtab documentation (Schmiester
et al. 2021). For model likelihood evaluation, PEtab.j1
supports both forward and backward gradient computation

approaches, suitable for small and large models, respectively
(Frohlich et al. 2017). Additionally, the package wraps sev-
eral numerical optimization methods for parameter estima-
tion and provides Bayesian inference support with state-of-
the-art methods such as Hamiltonian Monte-Carlo (Hoffman
et al. 2014).

3 Benchmarking-based guidelines

To provide practitioners with clear guidance on when and
how to best utilize our packages, we conducted comprehen-
sive benchmarks (detailed results in Supplementary Text S1,
available as supplementary data at Bioinformatics online). As
many modelling workflows rely on model simulations
(Fig. 1), we first evaluated Julia’s stochastic simulators (e.g.
Gillespie methods) against PySB and RoadRunner and de-
terministic simulators (ODE solvers) against the CVODES
ODE suite (Hindmarsh et al. 2005), using the high-
performant Julia CVODE wrapper (Fig. 33, available as
supplementary data at Bioinformatics online). Next, since
ODE model workflows such as Bayesian inference and pa-
rameter estimation often benefit from model derivatives
(Fig. 1b and ¢), we evaluated differentiation methods. Lastly,
we evaluated parameter estimation performance for ODEs.
For these tasks, we compared our results against pyPESTO,
which utilizes the AMICT interface to SUNDIALS’ ODE suite
(Hindmarsh ef al. 2005, Frohlich et al. 2021). We considered
AMICI because it is more efficient than COPASI (Frohlich
et al. 2021), and comparable to the high-performance tool-
box RoadRunner with respect to model simulations (Fig. 33,
available as supplementary data at Bioinformatics online).
Further, it supports direct import of problems in the PEtab
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PEtab.jl

format, allowing us to perform all evaluations on ODE mod-
els using problems with real experimental data from the
PEtab benchmark collection (Hass et al. 2019, Schmiester
et al. 2021).

3.1 Optimal ODE solver for model simulations is
problem dependent

Most ODE models in systems biology are nonlinear and re-
quire numerical solvers for simulation. Previous studies have
benchmarked CVODES and LSODA (Stadter et al. 2021) solv-
ers but did not evaluate Julia’s DifferentialEquations.
j1 suite (Rackauckas and Nie 2017). Using PEtab.j1, we
tested 31 solvers from DifferentialEquations.jl and
two from CVODES suite (Tab. S3) across 29 published biolog-
ical models (Table 1, available as supplementary data at
Bioinformatics online), ranging from 3 to 500 states (ODEs),
and representing a broad spectrum of biological processes
such as cellular molecular models (e.g. signalling), SIR models
(e.g. Covid-19 spread), to phenomenological models (e.g. spik-
ing, cell differentiation).

We divided the ODE solvers into four categories: (i)
CVODES stiff solvers, (ii) non-stiff DifferentialEquations.jl
solvers, (iii) stiff DifferentialEquations.js solvers, and (iv)
DifferentialEquations.jl composite solvers that automatically
switch between stiff and non-stiff solvers. Informally, stiff-
ness in ODE models arises when interactions occur on vary-
ing time scales, with some being fast (e.g. phosphorylation)
and others slow (e.g. translation). Overall, non-stiff solvers
failed in 22%-31% of cases, particularly for molecular mod-
els, while composite solvers struggled with steady-state simu-
lations, making stiff solvers the most reliable option (Fig. 2,
available as supplementary data at Bioinformatics online).
Julia’s solvers were the fastest for models with up to 16 spe-
cies, while for medium-sized models (20-75 species), Julia
and CVODES were comparable. Stiff solvers performed best
in molecular models, while composite solvers worked well
for SIR and some phenomenological models. Considering
solver families, Rosenbrock methods were most efficient for
smaller molecular models, while BDF methods excelled in
medium-sized ones. For larger network models, there is no
clear best choice (Fig. 3, available as supplementary data at
Bioinformatics online).

In summary, stiff solvers perform well for molecular models,
and composite solvers scored well for SIR models and a subset
of phenomenological models (e.g. cell differentiation). The op-
timal solver choice depends on the size of the ODE model. To
aid in selecting an optimal solver, we provide a flowchart
(Fig. 12, available as supplementary data at Bioinformatics on-
line). For additional details, see Supplementary Text S1.2,
available as supplementary data at Bioinformatics online.

3.2 Automatic differentiation accelerates model
derivative computations

Common modelling workflows, such as parameter estimation
and sensitivity analysis, rely on accurate gradient computa-
tions (Raue et al. 2013). However, gradient evaluations can,
especially for larger models, dominate runtime. Traditionally,
gradients have been computed using forward sensitivities for
small ODE-models, whereas for large models, adjoint sensi-
tivity analysis has been used. Unlike these approaches,
PEtab.jl can leverage forward-mode automatic differentia-
tion (AD) for small models and reverse-mode AD to effi-
ciently compute vector Jacobian products (VJPs) in the
adjoint sensitivity analysis computations. To assess the

impact of AD-assisted gradients on performance, we com-
pared PEtab.j1 to AMICI, a CVODES-based solver.

Benchmarking 18 biological models, we found that
forward-mode AD outperformed traditional forward sensitiv-
ity analysis in AMICI across most models. Forward-mode AD
also exhibited better scalability, with gradient-to-loss runtime
ratios frequently lower than the number of parameters (Fig. 2,
available as supplementary data at Bioinformatics online).

For large ODE models (>100 states + parameters),
forward-mode AD becomes impractical, as its runtime scales
with the product of the number of parameters (p) and states
(m); O(p X m). Rather, in this regime, adjoint sensitivity analy-
sis scales better. For five larger benchmark models, AMICI
demonstrated the lowest failure rate (9.5% versus 64% for the
best PEtab.j1 setup), although PEtab.j1 achieved higher
speedups and greater accuracy using interpolation-based
adjoints and Enzyme AD for VJP computation (Fig. 3,
available as supplementary data at Bioinformatics online).

In summary, for smaller models (<75 ODEs and parame-
ters), whether molecular, SIR, or phenomenological,
forward-mode automatic differentiation is generally faster
than traditional forward sensitivity analysis. For larger mo-
lecular models, the adjoint algorithms in Julia are fast but
currently less reliable than the adjoint sensitivity analysis ap-
proach available via AMICI based on CVODES. To help
choose a gradient setup, we have compiled a flowchart
(Fig. 13, available as supplementary data at Bioinformatics
online). For additional details, see Supplementary Text S1.3,
available as supplementary data at Bioinformatics online.

3.3 PEtab.jl often facilitates training efficiency
of models

ODE-based models must often be fitted to data by estimating
unknown parameters, which corresponds to solving a contin-
uous optimization problem. To evaluate PEtab.j1 for pa-
rameter estimation, we benchmarked it against pyPESTO,
which uses AMICI for model simulations, across 19 models.
For pyPESTO, we tested the Newton-trust region Fides opti-
mization algorithm (Frohlich and Sorger 2022), with three
Hessian approximations: default, BFGS, and Gauss-Newton.
PEtab.j1 was tested with Fides (BFGS and Gauss-Newton)
and the Interior-point Newton (IPNewton) method from
Optim.jl. Additionally, full Hessians were used when the
computation time was <2 seconds. For each model, we per-
formed 1000 optimizations and used the runtime per con-
verged start to the global minimum as the evaluation
criterion. Highlighting the efficiency of PEtab.j1, it outper-
formed pyPESTO in 15 out of 19 models. pyPESTO primarily
performed better for models with pre-equilibrium (steady
state) simulations.

The superior efficiency of PEtab.j1 was primarily due to
being faster. Compared to pyPESTO’s Fides optimizer, PEtab.
j1 was faster in 16/18 models, with an average speedup of
3.38x. For additional details, see Supplementary Text S1.4,
available as supplementary data at Bioinformatics online.

4 Discussion

Dynamic modelling plays a pivotal role in understanding cel-
lular dynamics, which are essential for our understanding of
the functioning of living organisms. Accelerating this process
improves both its efficiency and practical utility. To support
this, we developed SBMLImporter.jl, and PEtab.jl.
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Both packages have already been extensively used in several
research projects and are continuously being developed. In
the future, we aim to include new methods for computation-
ally demanding tasks such as support for scientific machine
learning models (Rackauckas et al. 2020). However, to fully
harness the potential of Julia for modelling in biology, the
next step would be to develop tools like pyPESTO and D2D
that support the entire modelling pipeline (Raue et al. 2015,
Schilte er al. 2023). This presents an exciting opportunity for
the community to collaborate and build upon existing frame-
works, paving the way for more efficient and accessible com-
putational biology tools.
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