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Abstract
Summary: Dynamic models represent a powerful tool for studying complex biological processes, ranging from cell signalling to cell differentia
tion. Building such models often requires computationally demanding modelling workflows, such as model exploration and parameter 
estimation. We developed two Julia-based tools: SBMLImporter.jl, an SBML importer, and PEtab.jl, an importer for parameter estimation 
problems in the PEtab format, designed to streamline modelling processes. These tools leverage Julia’s high-performance computing 
capabilities, including symbolic pre-processing and advanced ODE solvers. PEtab.jl aims to be a Julia-accessible toolbox that supports the entire 
modelling pipeline from parameter estimation to identifiability analysis.
Availability and implementation: SBMLImporter.jl and PEtab.jl are implemented in the Julia programming language. Both packages 
are available on GitHub (github.com/sebapersson/SBMLImporter.jl and github.com/sebapersson/PEtab.jl) as officially registered Julia packages, 
installable via the Julia package manager. Each package is continuously tested and supported on Linux, macOS, and Windows.

1 Introduction
Understanding the complex nature of dynamic processes such 
as nutrient signalling, cell division, and apoptosis is one of the 
central aims in systems biology (Kitano 2002). A powerful tool 
to help achieve this goal is dynamic modelling, where chemical 
reactions are modelled stochastically or deterministically 
(Klipp et al. 2016). To date, dynamic models have been used 
to study a range of processes, from small receptor networks 
(Becker et al. 2010) over bursting gene expression (Zechner 
et al. 2014) to cancer signalling (Fr€ohlich et al. 2018).

Whether a model is based on stochastic rate probability den
sity functions (which describe jump processes where reactions 
trigger changes in species amount) or on deterministic rate 
equations [described by Ordinary Differential Equations 
(ODEs)] (Gillespie 2007), it typically contains unknown 
parameters, such as reaction rate constants. Thereby, to under
stand a model’s characteristics, it must be simulated for many 
parameter sets to validate if it can capture experimental obser
vations. Because most dynamical models in biology typically 
lack closed-form analytical solutions, numerical simulation 
methods are necessary. Consequently, efficient modelling 
requires fast and flexible software.

The Julia programming language has emerged as a promis
ing tool to address the computational challenges encountered 
in biology (Bezanson et al. 2017, Roesch et al. 2023). With 

support for symbolic model pre-processing, automatic differ
entiation compatibility, adjoint sensitivity analysis, and state- 
of-the-art ODE solvers (Rackauckas and Nie 2017), Julia’s 
ecosystem appears ideal for handling tasks like parameter es
timation for ODE-based models. To leverage this ecosystem, 
we developed SBMLImporter.jl, a Julia SBML importer, 
and PEtab.jl, an importer for parameter estimation prob
lems in the PEtab format (Schmiester et al. 2021) (Fig. 1). 
SBMLImporter enables users to import models with a wide 
range of features, including events and multiple compart
ments (e.g. cytosol and nucleus), that are built using SBML 
exportable tools such as the Copasi graphical interface 
(Hoops et al. 2006). PEtab.jl simplifies model fitting 
workflows, enabling users to fit models to data across a wide 
range of scenarios following the PEtab standard (Schmiester 
et al. 2021). Lastly, we performed an extensive benchmarking 
study to provide guidelines on when and how to use Julia for 
dynamic modelling.

2 Features
SBMLImporter.jl imports SBML models into Catalyst re
action networks (Loman et al. 2023) (Fig. 1a). This has sev
eral benefits. First, a Catalyst reaction network can be 
converted into a jump problem (simulated using, e.g. 
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the Gillespie algorithm) or a Langevin SDE problem 
(Gillespie 2007) for stochastic simulations. Alternatively, for 
deterministic simulations, it can be converted to an ODE 
problem (Fig. 1b). For each problem type, all the solvers in 
the performant DifferentialEquations.jl suite are 
supported (Rackauckas and Nie 2017). Additionally, 
Catalyst integrates with other modelling packages, such as 
Bifurcationkit.jl (Veltz 2020). SBMLImporter.jl 
does not yet support any SBML extensions, but it provides 
extensive support for core SBML functionality, comparable 
to established tools like AMICI (Fr€ohlich et al. 2021) 
(Table 5, available as supplementary data at Bioinformatics 
online). The most up-to-date list of supported features is 
available in the online documentation of the package.
PEtab.jl links ODE models to measurement data by cre

ating a likelihood function or given priors, a posterior func
tion (Fig. 1c). Built on the PEtab standard format for 
parameter estimation (Schmiester et al. 2021), the package 
supports a wide range of scenarios, such as different measure
ment noise formulas for data collected with different assays, 
steady-state simulations to model interventions like drug ad
ministration in stationary systems, and data gathered under 
multiple experimental conditions. PEtab problems defined in 
the standard format can be directly imported. Alternatively, 
problems can be coded directly in Julia, where the dynamic 
model is specified as a Catalyst reaction network (Fig. 1c). 
Extensive tutorials for specifying a problem directly in Julia 
are available in the PEtab.jl online documentation, while 
tutorials for creating problems in the standard format are 
provided in the official PEtab documentation (Schmiester 
et al. 2021). For model likelihood evaluation, PEtab.jl 
supports both forward and backward gradient computation 

approaches, suitable for small and large models, respectively 
(Fr€ohlich et al. 2017). Additionally, the package wraps sev
eral numerical optimization methods for parameter estima
tion and provides Bayesian inference support with state-of- 
the-art methods such as Hamiltonian Monte-Carlo (Hoffman 
et al. 2014).

3 Benchmarking-based guidelines
To provide practitioners with clear guidance on when and 
how to best utilize our packages, we conducted comprehen
sive benchmarks (detailed results in Supplementary Text S1, 
available as supplementary data at Bioinformatics online). As 
many modelling workflows rely on model simulations 
(Fig. 1), we first evaluated Julia’s stochastic simulators (e.g. 
Gillespie methods) against PySB and RoadRunner and de
terministic simulators (ODE solvers) against the CVODES 
ODE suite (Hindmarsh et al. 2005), using the high- 
performant Julia CVODE wrapper (Fig. 33, available as 
supplementary data at Bioinformatics online). Next, since 
ODE model workflows such as Bayesian inference and pa
rameter estimation often benefit from model derivatives 
(Fig. 1b and c), we evaluated differentiation methods. Lastly, 
we evaluated parameter estimation performance for ODEs. 
For these tasks, we compared our results against pyPESTO, 
which utilizes the AMICI interface to SUNDIALS’ ODE suite 
(Hindmarsh et al. 2005, Fr€ohlich et al. 2021). We considered 
AMICI because it is more efficient than COPASI (Fr€ohlich 
et al. 2021), and comparable to the high-performance tool
box RoadRunner with respect to model simulations (Fig. 33, 
available as supplementary data at Bioinformatics online). 
Further, it supports direct import of problems in the PEtab 

Figure 1. Modelling workflows with PEtab.jl and SBMLImporter.jl. The tools enable an efficient modelling pipeline consisting of three main components. 
(a) Setting up the model in the SBML format. (b) Simulating the model with stochastic simulators or deterministic ODE solvers. (c) Model fitting with 
PEtab.jl by linking measurement data to a model via building a likelihood or, given priors, a posterior function.
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format, allowing us to perform all evaluations on ODE mod
els using problems with real experimental data from the 
PEtab benchmark collection (Hass et al. 2019, Schmiester 
et al. 2021).

3.1 Optimal ODE solver for model simulations is 
problem dependent
Most ODE models in systems biology are nonlinear and re
quire numerical solvers for simulation. Previous studies have 
benchmarked CVODES and LSODA (St€adter et al. 2021) solv
ers but did not evaluate Julia’s DifferentialEquations. 
jl suite (Rackauckas and Nie 2017). Using PEtab.jl, we 
tested 31 solvers from DifferentialEquations.jl and 
two from CVODES suite (Tab. S3) across 29 published biolog
ical models (Table 1, available as supplementary data at 
Bioinformatics online), ranging from 3 to 500 states (ODEs), 
and representing a broad spectrum of biological processes 
such as cellular molecular models (e.g. signalling), SIR models 
(e.g. Covid-19 spread), to phenomenological models (e.g. spik
ing, cell differentiation).

We divided the ODE solvers into four categories: (i) 
CVODES stiff solvers, (ii) non-stiff DifferentialEquations.jl 
solvers, (iii) stiff DifferentialEquations.js solvers, and (iv) 
DifferentialEquations.jl composite solvers that automatically 
switch between stiff and non-stiff solvers. Informally, stiff
ness in ODE models arises when interactions occur on vary
ing time scales, with some being fast (e.g. phosphorylation) 
and others slow (e.g. translation). Overall, non-stiff solvers 
failed in 22%–31% of cases, particularly for molecular mod
els, while composite solvers struggled with steady-state simu
lations, making stiff solvers the most reliable option (Fig. 2, 
available as supplementary data at Bioinformatics online). 
Julia’s solvers were the fastest for models with up to 16 spe
cies, while for medium-sized models (20–75 species), Julia 
and CVODES were comparable. Stiff solvers performed best 
in molecular models, while composite solvers worked well 
for SIR and some phenomenological models. Considering 
solver families, Rosenbrock methods were most efficient for 
smaller molecular models, while BDF methods excelled in 
medium-sized ones. For larger network models, there is no 
clear best choice (Fig. 3, available as supplementary data at 
Bioinformatics online).

In summary, stiff solvers perform well for molecular models, 
and composite solvers scored well for SIR models and a subset 
of phenomenological models (e.g. cell differentiation). The op
timal solver choice depends on the size of the ODE model. To 
aid in selecting an optimal solver, we provide a flowchart 
(Fig. 12, available as supplementary data at Bioinformatics on
line). For additional details, see Supplementary Text S1.2, 
available as supplementary data at Bioinformatics online.

3.2 Automatic differentiation accelerates model 
derivative computations
Common modelling workflows, such as parameter estimation 
and sensitivity analysis, rely on accurate gradient computa
tions (Raue et al. 2013). However, gradient evaluations can, 
especially for larger models, dominate runtime. Traditionally, 
gradients have been computed using forward sensitivities for 
small ODE-models, whereas for large models, adjoint sensi
tivity analysis has been used. Unlike these approaches, 
PEtab.jl can leverage forward-mode automatic differentia
tion (AD) for small models and reverse-mode AD to effi
ciently compute vector Jacobian products (VJPs) in the 
adjoint sensitivity analysis computations. To assess the 

impact of AD-assisted gradients on performance, we com
pared PEtab.jl to AMICI, a CVODES-based solver.

Benchmarking 18 biological models, we found that 
forward-mode AD outperformed traditional forward sensitiv
ity analysis in AMICI across most models. Forward-mode AD 
also exhibited better scalability, with gradient-to-loss runtime 
ratios frequently lower than the number of parameters (Fig. 2, 
available as supplementary data at Bioinformatics online).

For large ODE models (>100 states þ parameters), 
forward-mode AD becomes impractical, as its runtime scales 
with the product of the number of parameters (p) and states 
(m); Oðp×mÞ. Rather, in this regime, adjoint sensitivity analy
sis scales better. For five larger benchmark models, AMICI 
demonstrated the lowest failure rate (9.5% versus 64% for the 
best PEtab.jl setup), although PEtab.jl achieved higher 
speedups and greater accuracy using interpolation-based 
adjoints and Enzyme AD for VJP computation (Fig. 5, 
available as supplementary data at Bioinformatics online).

In summary, for smaller models (≤75 ODEs and parame
ters), whether molecular, SIR, or phenomenological, 
forward-mode automatic differentiation is generally faster 
than traditional forward sensitivity analysis. For larger mo
lecular models, the adjoint algorithms in Julia are fast but 
currently less reliable than the adjoint sensitivity analysis ap
proach available via AMICI based on CVODES. To help 
choose a gradient setup, we have compiled a flowchart 
(Fig. 13, available as supplementary data at Bioinformatics 
online). For additional details, see Supplementary Text S1.3, 
available as supplementary data at Bioinformatics online.

3.3 PEtab.jl often facilitates training efficiency 
of models
ODE-based models must often be fitted to data by estimating 
unknown parameters, which corresponds to solving a contin
uous optimization problem. To evaluate PEtab.jl for pa
rameter estimation, we benchmarked it against pyPESTO, 
which uses AMICI for model simulations, across 19 models. 
For pyPESTO, we tested the Newton-trust region Fides opti
mization algorithm (Fr€ohlich and Sorger 2022), with three 
Hessian approximations: default, BFGS, and Gauss-Newton. 
PEtab.jl was tested with Fides (BFGS and Gauss-Newton) 
and the Interior-point Newton (IPNewton) method from 
Optim.jl. Additionally, full Hessians were used when the 
computation time was ≤2 seconds. For each model, we per
formed 1000 optimizations and used the runtime per con
verged start to the global minimum as the evaluation 
criterion. Highlighting the efficiency of PEtab.jl, it outper
formed pyPESTO in 15 out of 19 models. pyPESTO primarily 
performed better for models with pre-equilibrium (steady 
state) simulations.

The superior efficiency of PEtab.jl was primarily due to 
being faster. Compared to pyPESTO’s Fides optimizer, PEtab. 
jl was faster in 16/18 models, with an average speedup of 
3.38x. For additional details, see Supplementary Text S1.4, 
available as supplementary data at Bioinformatics online.

4 Discussion
Dynamic modelling plays a pivotal role in understanding cel
lular dynamics, which are essential for our understanding of 
the functioning of living organisms. Accelerating this process 
improves both its efficiency and practical utility. To support 
this, we developed SBMLImporter.jl, and PEtab.jl. 
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Both packages have already been extensively used in several 
research projects and are continuously being developed. In 
the future, we aim to include new methods for computation
ally demanding tasks such as support for scientific machine 
learning models (Rackauckas et al. 2020). However, to fully 
harness the potential of Julia for modelling in biology, the 
next step would be to develop tools like pyPESTO and D2D 
that support the entire modelling pipeline (Raue et al. 2015, 
Sch€alte et al. 2023). This presents an exciting opportunity for 
the community to collaborate and build upon existing frame
works, paving the way for more efficient and accessible com
putational biology tools.
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