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Adaptive Control of Bidirectional Platoons With
Actuator Saturation and Discontinuous

Trajectory Tracking
Shaohua Cui , Kun Gao , Yongjie Xue , and Bin Yu

Abstract— With the rapid development of V2V and V2I
communication technologies and autonomous control systems,
autonomous vehicles (AVs) are gaining increasing popularity.
Small-spacing AV platoons offer advantages such as enhanced
road capacity and energy efficiency. However, in non-ideal com-
munication environments, packet loss can cause partial loss of
trajectory information, resulting in discontinuous tracking. This
may induce significant transients and trigger actuator saturation,
aggravating traffic disturbances. In bidirectional platoons, where
control signals propagate in both directions, the impact of
such disruptions is further amplified due to mutual vehicle
interdependence. This paper addresses these challenges by con-
sidering asymmetric actuator saturation, discontinuous tracking
trajectories, and non-zero initial spacing errors in bidirectional
AV platoons. A continuous control law is designed based on
coupled sliding mode control, and Lyapunov stability theory
is employed to ensure both trajectory tracking stability and
string stability. Our contributions include the development of a
modified spacing policy that not only eliminates large transients
and string instability caused by non-zero initial spacing errors
but also ensures rapid convergence to the desired spacing within a
finite and adjustable time frame. Furthermore, a variant sigmoid
function is introduced to actively smooth the discontinuous
tracking trajectories, thereby reducing communication demands
and suppressing transients. An auxiliary system is also designed
to manage actuator saturation effectively, ensuring provable sta-
bility and fully leveraging actuator capabilities. Results demon-
strate that the control strategy achieves both trajectory tracking
stability and string stability, while also enabling rapid tracking
performance and maintaining small spacing errors by making
full use of actuator potential.

Index Terms— Adaptive control, input saturation, string sta-
bility, trajectory smoothing.

I. INTRODUCTION

WITH the rapid advancement of vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I) communica-
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tion technologies, as well as adaptive control technologies,
autonomous vehicles (AVs) are becoming increasingly popular
and widely deployed [1]. Due to their high-precision control
and fast response times, small-spacing AV platoons have
emerged as an effective operational strategy. This approach
not only enhances road capacity but also reduces aerodynamic
drag and energy consumption [2]. In platoon operations,
reference trajectories are often designed collaboratively using
V2V and V2I communications to reflect real-time traffic con-
ditions and coordination demands. Effective tracking of these
trajectories is crucial for maintaining safety, synchronization,
and overall platoon stability. In non-ideal communication
environments, information transmission still experiences issues
such as packet loss [3]. As a result, the reference trajec-
tories received by AV platoons may become discontinuous,
sometimes displaying step-wise jumps along the time axis.
In such closely spaced platoons, these discontinuous tracking
trajectories can lead to significant transients, which may trigger
actuator saturation and propagate traffic congestion waves [4].
Therefore, it is crucial to investigate active smoothing methods
for discontinuous reference trajectories to suppress transients
and to develop control strategies that account for actuator
saturation, ultimately preventing the emergence of traffic con-
gestion waves.

Current platoon control strategies can be categorized into
leader-predecessor strategies and bidirectional strategies, based
on the underlying communication topology [5]. In the former,
the control law for each AV in the platoon relies on the state
information of both the leader and all preceding vehicles.
In the latter, the control law for each AV in the platoon only
utilizes the state information of its immediate neighbors, both
in front and behind. Access to the leader’s state enables better
handling of model uncertainties and facilitates the design of
control laws that resist intra-platoon disturbances, such as
the propagation of spacing errors (i.e., the deviation between
the actual and desired inter-vehicle spacing) [6], [7], [8],
[9], [10], [11], [12], [13], [14]. Despite the advantages of
leader-predecessor structures, the bidirectional communication
topology has attracted increasing attention due to its superior
scalability and flexibility in practical deployment [12], [15].
Although it can ensure stable trajectory tracking with lim-
ited information, achieving string stability (i.e., the ability to
prevent the amplification of spacing errors as they propagate
through the platoon) remains a major challenge. This difficulty
arises from the fact that in bidirectional platoons, disturbances

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5885-3124
https://orcid.org/0000-0002-4175-850X
https://orcid.org/0000-0001-8937-1622
https://orcid.org/0000-0002-8332-1939


CUI et al.: ADAPTIVE CONTROL OF BIDIRECTIONAL PLATOONS WITH ACTUATOR SATURATION 16771

can propagate in both directions, leading to intricate interde-
pendencies among vehicles. If not properly controlled, local
errors may amplify throughout the platoon, making string
stability harder to maintain compared to leader-predecessor
configurations, where disturbances flow in a single direction.
To address this issue, a number of studies have proposed non-
linear control strategies based on sliding mode control (SMC),
including coupled SMC [12], integral-sliding-mode braking
control [16], adaptive SMC [17], and fixed-time SMC [18].
These approaches ensure string stability by constraining the
magnitude of the error propagation transfer function to be no
greater than one. A common limitation of these SMC-based
methods is that they require reference trajectories to be at least
second-order differentiable, as it is directly used in the control
input. In non-ideal communication environments, transmission
failures may lead to discontinuities in reference trajectories,
including step-like changes. As such, proactive compensation
and smoothing of the reference trajectory become essential
prerequisites for implementing SMC-based platoon control
strategies under bidirectional topology.

Additionally, many platoon control algorithms based on
SMC aim to ensure string stability by constraining the mag-
nitude of the error propagation transfer function to be less
than or equal to one, typically through analysis in the Laplace
frequency domain [12], [16], [17], [18]. Such analyses often
relay on the assumption of zero initial conditions (i.e., zero
initial spacing errors). However, this assumption is difficult
to satisfy in practice, as platoons rarely start with ideal inter-
vehicle spacing. When the initial spacing errors are significant,
they can induce large transients in AVs, potentially leading to
control input saturation and ultimately failing to ensure string
stability, which results in severe traffic waves. To address this
limitation, some studies have introduced alternative spacing
policies, such as the improved quadratic spacing policy [18],
the modified constant-time headway [19], and the exponential
spacing policy with fault factor [20]. These methods incorpo-
rate a negative exponential term (e.g., −B exp(−t)) related to
the initial spacing errors to mitigate its influence. However, the
impact of this term diminishes only asymptotically, meaning
that the effect of the initial spacing error is not fully eliminated
within finite time. As a result, during the finite interval of
trajectory tracking, the platoon may fail to maintain the desired
inter-vehicle spacing accurately, and the tracking error remains
dependent on the magnitude of initial spacing errors.

The aforementioned issues with discontinuous reference
trajectories and non-zero initial spacing errors potentially
lead to actuator saturation to prevent collisions, particularly
for vehicles operating with small inter-vehicle spacing. This
segmented and non-differentiable saturated input function
makes it challenging to apply conventional stability theo-
rems, such as Lyapunov stability theory and Routh-Hurwitz
criterion, to formally guarantee trajectory tracking stability
and string stability [21], [22], [23], [24], [25]. For nonlin-
ear systems with parameter uncertainties, various approaches
have been explored, including backstepping-based control
approaches [26], auxiliary system designs [27], [28], adap-
tive compensation strategies [29], and smooth approximations
using hyperbolic tangent functions [20], [30], [31], or Gaussian

error functions [32]. However, these studies focus on sym-
metric input saturation (i.e., saturation levels that are equal
in both positive and negative directions), which is often not
representative of real-world actuator constraints. To address
more realistic scenarios, recent studies have examined asym-
metric input saturation (i.e., when the upper and lower bounds
of actuator inputs differ due to mechanical limitations or
safety constraints). Du et al. [33] constructed piecewise smooth
estimation functions based on the hyperbolic tangent function,
while Li et al. [19] and Du et al. [34] restructured Gaus-
sian error functions to estimate nonlinear asymmetric input
saturation functions. Despite these efforts, the constructed
estimation functions still fail to accurately match the true
actuator saturation behavior, leaving approximation gaps that
hinder the full utilization and control performance of actuators.

Existing studies on platoon control under bidirectional
topology have primarily assumed ideal communication envi-
ronments and symmetric actuator constraints. However, these
assumptions are frequently violated in real-world scenarios.
Communication disruptions often lead to discontinuous refer-
ence trajectories, while actuator inputs are typically subject to
asymmetric saturation due to mechanical or safety limitations.
In addition, non-zero initial spacing errors are rarely addressed
in a manner that guarantees fast convergence without compro-
mising stability. These practical challenges significantly hinder
the implementation of advanced coupled SMC-based strategies
in AV platoons.

This paper addresses the control challenges of bidirectional
AV platoons in the presence of asymmetric input saturation,
discontinuous tracking trajectory, and non-zero initial spacing
errors. We develop a continuous control law based on cou-
pled SMC to ensure provable performance in both trajectory
tracking stability and string stability. The key contributions
include the following: (1) a novel modified spacing policy
that eliminates large transients and string instability caused
by non-zero initial spacing errors, ensuring convergence to
the desired spacing within a finite and adjustable time frame;
(2) the introduction of a variant sigmoid function to actively
smooth discontinuous reference trajectories, which reduces
dependence on ideal communication environments and miti-
gates large vehicle transients; and (3) the design of an auxiliary
system to effectively redistribute saturated control inputs,
enabling smooth integration into the coupled SMC framework,
and eliminating the adverse effects of input saturation on both
trajectory tracking stability and string stability, while fully
utilizing actuator capabilities.

The remaining sections are organized as follows: Section II
provides a detailed description of the research problem
and actively smooths the discontinuous reference trajectory.
Section III introduces the modified spacing policy and aux-
iliary system, along with the control law design and stability
proof. Section IV conducts comparative simulations to validate
the effectiveness of the proposed control law. Section V
concludes the paper and suggests directions for future research.

II. PROBLEM STATEMENT AND FORMULATION

Section II-A provides essential preliminaries to support the
discussion in this paper. Section II-B details the research
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problem. Section II-C models the AV cruise model with asym-
metric input saturation. Section II-D introduces the method for
smoothing the discontinuous reference trajectory.

A. Preliminaries

In this section, we provide essential definitions and prelimi-
nary results related to finite-time stability and string stability.

Definition 1 (Finite Time Stability [35]): Consider a non-
linear system described by ẏ(t) = f (y(t)), where the state
y(t) is defined for all t ∈ [0,+∞), and the function satisfies
f (0) = 0. Let the initial condition be y(0) = y0. The
equilibrium point y = 0 is said to be finite-time stable
if, for any initial state y0, there exists a finite setting time
T0(y0) > 0 such that y(t, y0) = 0 holds for all t ≥ T0(y0).

Definition 2 (String Stability [12]): Consider a networked
system composed of n subsystems, described by ẋi =

fi (x1, . . . , xn), where each fi satisfies fi (0, . . . , 0) = 0.
The system is said to exhibit string stability if the error
propagation transfer function Gi (s) = Ei+1(s)/Ei (s) satisfies
|Gi (s)| ≤ 1 for all i . Here, Ei (s) = L{ei (t)} denotes the
Laplace transform of spacing error ei (t) at the i-th subsystem.

Lemma 1: Let z1, z2, . . . , zn be any set of real numbers,
and let b be a given constant satisfying 0 < b < 1. Then the
inequality

(∑n
i=1 |zi |

)b
≤
∑n

i=1 |zi |
bholds [36].

Lemma 2 (Finite Time Stability [35]): Consider a nonlin-
ear systemẏ(t) = f (y(t))with initial conditiony(0) =

y0and satisfying f (0) = 0. Suppose there exists a

functionV ∈ C2such that

{
�1(∥y∥) ≤ V (y) ≤ �2(∥y∥)

V̇ (y) ≤ −ι1V (y)− ι2V c(y)
,

where�1, �2 ∈ K∞,ι1, ι2 > 0, and0 < c < 1. Then the
equilibrium pointy = 0of the system is finite-time stable.
Moreover, the system statey(t)converges to zero before the
settling timeT0 =

1
ι1(1−c) ln

(
ι1V 1−c(y0)+ι2

ι2

)
.

B. Problem Description

A bidirectional platoon of n AVs with asymmetric actuator
saturation is considered to track a discontinuous reference
trajectory yr (see Fig. 1). The set of all AVs is denoted by
N = {1, . . . , n}, where each AV is indexed by i ∈ N . The
numbering of AVs increases in the direction opposite to the
traffic flow (Fig. 1(a)). Under the bidirectional communication
topology (Fig. 1(b)), each AV can only communicate with
its immediate neighbors to obtain their position, speed, and
acceleration information. Only the first AV has access to the
reference trajectory yr , while each remaining AVi tracks it
by maintaining a desired inter-vehicle spacing xd

i from its
preceding vehicle. Without loss of generality, xd

i is assumed
to be constant, following a constant spacing policy, which
has been shown to yield high vehicle density and low energy
consumption [12]. The reference trajectory yr is composed
of κ individually second-order differentiable segments yr j ,
where j ∈ J = {1, . . . , κ}. Each segment is active during
the time interval [t s

j , te
j ], where t s

1 = 0 and te
κ marks the end

of the entire reference trajectory. Notably, the dashed portion

Fig. 1. Distributed bidirectional platoon controllers.

of yr1 in Fig. 1 indicates a potential absence of reference
trajectory due to communication failure or other disruptions.
Since this paper does not address long-term loss of reference
information, we assume that all segments yr j with j ∈ J \{κ}

are continuous in time (i.e., te
j = t s

j+1) for the purpose of
modeling and analysis.

The study proposes an active trajectory smoothing approach
to ensure that the discontinuous reference trajectory becomes
smooth and second-order differentiable over the entire tracking
horizon, thereby avoiding large transients. Actuator saturation
introduces non-smooth control inputs, which poses challenges
for achieving trajectory tracking stability and string stability
using existing theoretical frameworks. To address this issue,
an auxiliary system is introduced to redistribute oversaturated
control signals. When combined with the AV platoon dynam-
ics, this auxiliary system facilitates the design of smooth
control inputs. The proposed framework ensures, via Lyapunov
stability analysis, that the resulting control inputs simultane-
ously guarantee trajectory tracking stability and string stability.
Furthermore, a novel spacing policy is constructed to mitigate
string instability and large transients caused by initial spacing
errors.

Remark 1: In many adaptive control frameworks, the con-
troller is capable of generating implicit or self-defined tra-
jectories to guide system behavior. However, in real-world
cooperative vehicle platooning applications, the reference tra-
jectory is often externally specified rather than computed
by individual vehicles. This externally assigned trajectory
may come from upper-level planning modules, cloud-based
coordination platforms, or inter-vehicle negotiation protocols,
and is commonly subject to sudden changes or discontinuities
due to network interruptions, asynchronous decision updates,
or safety-critical re-routing events. Such conditions frequently
arise in scenarios like coordinated obstacle avoidance, merging
at intersections, or collaborative responses to dynamic traffic
changes. In these situations, each AV is expected to track a
predefined trajectory to ensure platoon-level coordination and
safety, rather than generating its own trajectory.

C. AV Cruising Model

According to [12] and [30], the following dynamics model
is adopted for each AVi ∈ N with actuator saturation:{

ẋi (t) = vi (t)
Mi v̇i (t) = Sat(ui (t))− giv

2
i (t)− hi + ki (t)

(1)
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where xi (t), vi (t), and ui (t) represent the position, speed, and
control input of AVi at time t , respectively. The parameters
Mi , gi , and hi are unknown but positive, representing the
effective inertia, aerodynamic drag coefficient, and rolling
resistance friction of AVi , respectively. The term ki (t) is
an unknown, time-varying function that represents bounded
uncertainties or external disturbances such as wind resistance
or unmodeled dynamics. It satisfies the inequality |ki (t)| ≤

Ki , where Ki is an unknown positive constant. The actuator
saturation is not embedded directly in (1), but is handled
externally through the saturation function defined below:

Sat(ui (t)) =


umax, ui (t) > umax

ui (t),−umin ≤ ui (t) ≤ umax

−umin, ui (t) < −umin

(2)

where umax and umin are known positive constants representing
the upper and lower bounds of the actuator, respectively.
When umax = umin, the saturation function degenerates into
a symmetric form. Let 1ui (t) denote the difference between
the original control input and the saturated actuator output,
i.e., 1ui (t) = ui (t)−Sat(ui (t)). Since each AV is assumed to
be controllable, the difference 1ui (t) is bounded and satisfies
|1ui (t)| ≤ ψi , where ψi is a known positive constant.

Remark 2: The assumption that the maximum deviation ψi
between the control input and the saturated actuator output is
a known constant is both practical and well-justified. Actu-
ator saturation limits, such as umax and umin, are typically
determined with high precision during the design and testing
stages by manufacturers, ensuring that these bounds are well-
documented. This allows for accurate estimation of ψi in
practice. Moreover, in control system design, particularly in
systems involving actuator saturation, it is common to consider
worst-case input deviations to ensure stability and robustness.
Treating ψi as a known constant aligns with standard robust
design principles and facilitates the development of reliable
controllers [37], [38].

D. Active Trajectory Smoothing

To ensure that all AVs in the bidirectional platoon can stably
track the reference trajectory yr , the first AV is designed to fol-
low yr directly, while each subsequent AV maintains a desired
inter-vehicle spacing xd

i from its immediate predecessor. Given
that control inputs are constructed using a coupled SMC
strategy, the first AV requires the reference trajectory and its
first-order derivative as direct inputs (see (13)). Furthermore,
in the Lyapunov-based stability analysis for trajectory tracking
and string stability, the second-order derivative of the reference
trajectory appears explicitly (see (18)). Therefore, to guarantee
that the control law is mathematically valid and that the stabil-
ity analysis holds, the reference trajectory yr must be at least
second-order continuously differentiable. Discontinuities or
abrupt changes in yr can result in large transient responses or
control chattering, thus hindering smooth and stable tracking.
To address this issue, we introduce a second-order differen-
tiable smoothing mechanism for yr , and define the smoothed

reference trajectory as follows:

yd(t)=


(

1−ϕ(t, ts j , te
j )
)

yr j +ϕ(t, ts j , te
j )(yr, j+1−yr j)

∀t s
j ≤ t < t s

j+1, j ∈ J \{κ}

yrκ ,∀t s
κ ≤ t ≤ te

κ

(3)

where ϕ(t, ts j , te
j ) is a second-order differentiable transition

function that governs the smooth connection between adjacent
trajectory segments yr j and yr, j+1. Specifically, smoothing
begins at a designated time ts j before the end of segment yr j
and extends to the start time t s

j+1 of the subsequent segment
yr, j+1. The smoothing start time ts j is flexibly chosen within
the interval (t s

j , te
j ). A larger interval between ts j and te

j results
in a smoother transition, while a smaller interval yields a
smoothed trajectory closer to the original reference. In cases
where part of yr j is missing, such as the dashed segment in
yr1 shown in Fig. 1, the smoothing is initiated earlier, prior to
the point where the reference trajectory becomes unavailable.
ϕ(t, ts j , te

j ) is defined as follows:

ϕ(t, ts j , te
j )=


0,∀t s

j ≤ t < ts j
H j (t)− α j (t − ts j )− H j (ts j )

H j (te
j )− α j (te

j − ts j )− H j (ts j )
,∀ts j ≤ t< te

j

(4)

This formulation ensures that yd(t) is second-order differ-
entiable and continuous across segment boundaries, while also
being capable of handling possible discontinuities in yr j . The
smoothing process is activated only within the interval [ts j , te

j ),
and its effectiveness depends on the choice of the parameter
α j and the smoothness of the shaping function H j (t). The
parameter α j and function H j (t) are defined as follows:

α j =Š

(
ts j , γ j ,

ts j +te
j

2

)
+
(te

j −ts j )

4
¨̌S

(
ts j , γ j ,

ts j +te
j

2

)
(5)

H j (t) =Š

(
t, β j ,

ts j +te
j

2

)
+

1
3(te

j −ts j )

¨̌S

(
ts j , β j ,

ts j +te
j

2

)

×

(
t−

ts j +te
j

2

)3

(6)

where γ j and β j are design parameters. Š(t, a, b) = exp
(
a(t−

b)
)

is the variant sigmoid function defined by [39], where
parameters a and b determine its slop and position, respec-
tively. Specifically, as a increases, the growth rate of Š
increases. The function Š(t, a, b) has the following properties:

1) It is a continuously differentiable real-valued function
with no singularities;

2) It is centrosymmetric about point (b, 0.5);
3) Its first derivative is symmetric about the vertical axis

t = b;
4) Its second derivative is centrosymmetric about point

(b, 0).
Theorem 1: Based on the properties of the variant sigmoid

function Š(t, a, b), the function ϕ(t, ts j , te
j ) defined in (4), for

j ∈ J \{κ}, possesses the following properties:
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1) The function ϕ(t, ts j , te
j ) is second-order continuously

differentiable over the interval t ∈ [ts j , te
j ), i.e., ϕ(t, ts j , te

j ),
ϕ̇(t, ts j , te

j ), and ϕ̈(t, ts j , te
j ) exist and are continuous;

2) The function ϕ(t, ts j , te
j ) is monotonically increasing

and satisfies the boundary conditions ϕ(ts j , ts j , te
j ) = 0 and

ϕ(te
j , ts j , te

j ) = 1.

Proof. Please see Appendix A. ■
Although the vehicle dynamics under consideration are

nonlinear and uncertain, their core structure is second-order.
Therefore, a second-order differentiable reference trajectory
is sufficient to ensure that the control inputs designed via
the coupled SMC framework remain bounded and continuous.
To achieve this, the proposed smoothing approach constructs a
second-order differentiable transition using the sigmoid-based
function ϕ(t), tailored to match the system order. This design
enables the application of Lyapunov-based stability analysis
and ensures robust tracking performance even in the presence
of actuator saturation and uncertainties.

III. CONTROL LAW DESIGN AND STABILITY PROOF

Before presenting the control law design, Section III-A
introduces a modified spacing policy. Section III-B proposes
an auxiliary system that redistributes the oversaturated portion
of the control input, thereby simplifying the design of the
actual control law. Section III-C formulates the final control
input using a coupled SMC approach and provides rigorous
proofs for both trajectory tracking stability and string stability
based on Lyapunov theory.

A. Modified Spacing Policy

According to [12], the spacing error for AVi ∈ N is defined
as ei (t) = xi−1(t) − xi (t) − (xd

i + L i−1) where L i−1 is the
length of AVi − 1. This definition ensures that the lead AV
stably tracks the reference trajectory while each following AV
maintains the desired spacing xd

i to its predecessor. Since the
leader AV1 tracks the smoothed reference trajectory yd(t),
we have x0(t) = yd(t) and L0 = 0. However, when the
initial spacing deviates significantly from the desired value xd

i ,
this can result in large control inputs at the beginning of the
maneuver, which in turn may cause severe transient behavior
and spacing fluctuations. Furthermore, non-zero initial spacing
errors may result in string instability, where spacing deviations
amplify toward the tail of the platoon. To mitigate these
adverse effects, we propose a modified spacing error that
incorporates initial spacing errors into a time-varying transition
process:

ēi (t) = xi−1(t)− xi (t)− (1 − δ(t))(xi−1(0)− xi (0))

− δ(t)(xd
i + L i−1),∀i ∈ N (7)

where the transition function δ(t) is defined as follows:

δ(t) =

 1 −

(
℘ − t
℘

)c

,∀0 ≤ t < ℘

1,∀t ≥ ℘

(8)

where ℘ and c ≥ 3 are parameters used to control the duration
and rate of the transition, respectively. As δ(t) gradually

increases from 0 to 1 over the interval [0, ℘], the modified
spacing error ēi (t) transitions smoothly from 0 to ei (t). Once
t ≥ ℘, δ(t) = 1, and thus ēi (t) becomes identical to the
original spacing error ei (t), indicating that the effect of initial
spacing errors has been fully eliminated.

Remark 3: To mitigate the impact of initial spacing errors
on string stability and transient responses, many previous
studies (e.g., [18], [19], [20]) have adopted modified spacing
errors of the form A − B exp(−t), where A represents the
desired inter-vehicle spacing, and B is a function related to
initial spacing errors. This exponential form helps reduce the
effect of initial spacing errors by ensuring zero spacing error
at t = 0, thereby promoting string stability. However, since
exp(−t) never reaches zero, the final inter-vehicle spacing
remains slightly influenced by initial spacing errors, meaning
that the desired steady-state spacing is not perfectly achieved.
In contrast, the time-varying function δ(t) proposed in (8)
guarantees complete elimination of initial spacing errors after
time ℘, i.e., ēi (t) = ei (t) for t ≥ ℘. This ensures that the
designed control law allows all AVs in the platoon to converge
exactly to the desired inter-vehicle spacing in steady state.

B. Auxiliary System Design

To mitigate the effect of the piecewise and
non-differentiable actuator saturation function in (2) on
platoon trajectory tracking, we introduce the following
auxiliary system. The system takes as input the difference
1ui (t) between the desired control input ui (t) and the
actuator output Sat(ui (t)), defined as follows:

q M̄i ϵ̇i (t)
q + 1

= −εiϵi (t)− χiϵ
r
p

i (t)− ψi sign(ϵi (t))+1ui (t),

∀i ∈ N \{n} (9)

q M̄i ϵ̇i (t) = −εiϵi (t)− χiϵ
r
p

i (t)− ψi sign(ϵi (t))+1ui (t),

∀i = n (10)

where q > 0, εi > 0, χi > 0, and ψi > 0 are design
parameters, and r and p are odd positive integers with r < p.
The term M̄i denotes a known upper bound of Mi , i.e.,
M̄i > Mi . The variable ϵi (t) represents the state of the
auxiliary system corresponding to AVi at time t . The sign

function is defined as sign(x) =


1, x > 0
0, x = 0
−1, x < 0

. To simplify

notation, we omit the explicit dependence on time (t) when
it does not cause ambiguity. Let ϵ = [ϵ1, . . . , ϵn]

T and 1u =

[1u1, . . . ,1un]
T denote the vectors of auxiliary system states

and input differences, respectively.
Theorem 2: After input saturation occurs at time t0, the

state variable ϵ of the auxiliary system described by (9)
and (10), with 1u as the input, converges to the origin in
finite time. Specifically, supt ∥ϵ(t)∥∞ → 0 as t → T0, where
the settling time T0 will be defined below.

Proof: We define the following Lyapunov function:

Va =

n∑
i=1

Vai (11)
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where for i ∈ N \{n}, Vai =
q M̄i

2(q+1)ϵ
2
i , and for i = n, Van =

1
2 q M̄nϵ

2
n . By applying Lemma 1, the time derivative of Va

satisfies the following inequality:

V̇a ≤ −4Va −�V
r+p
2p

a (12)

where 4 = min
{

2(q+1)ε1
q M̄1

,
2(q+1)ε2

q M̄2
, . . . ,

2(q+1)εn−1
q M̄n−1

, 2εn
q M̄n

}
and � = min

{
χ1

(
2(q+1)

q M̄1

) r+p
2p
, χ2

(
2(q+1)

q M̄2

) r+p
2p
, . . . , χn−1 ×(

2(q+1)
q M̄n−1

) r+p
2p
, χn

(
2

q M̄n

) r+p
2p
}

. The detailed derivation of this

inequality is provided in Appendix B. According to Defi-
nition 1 and Lemma 2, the stateϵ of the auxiliary system
converges to the origin in finite time. The settling time is

T0 =
2p

(p−r)4 ln 4V
p−r
2p (ϵ(t0))+�

�
. ■

C. Control Law Design and Stability Proof

According to [12], [16], [17], and [18], the following sliding
mode surface ensures that all AVs in the platoon can stably
track the reference trajectory and maintain the desired inter-
vehicle spacing:

si = ˙̄ei + λēi ,∀i ∈ N (13)

where λ > 0 is a parameter. However, this sliding mode
surface cannot accommodate actuator saturation, which lim-
its the ability to design smooth control inputs and makes
Lyapunov-based stability analysis inapplicable. To address
this, we introduce the following auxiliary sliding mode
surface:

ηi = si − ϵi ,∀i ∈ N (14)

Since the platoon is assumed to be controllable, Theorem 2
guarantees that ϵi → 0 within the finite settling time T0.
Therefore, the control input designed based on ηi ensures the
convergence of si , which in turn leads to effective trajectory
tracking and inter-vehicle spacing. To further ensure string
stability, we introduce the following coupling sliding mode
surface inspired by [14], [18], and [19]:

η̄i = qηi − ηi+1,∀i ∈ N (15)

For the last vehicle i = n, ηn+1 is set to zero, since
there is no following vehicle and thus no need to account
for downstream spacing error propagation.

When the coupled sliding mode surface η̄i converges to
zero for all i ∈ N , the auxiliary sliding mode surface ηi also
converges to zero for all i ∈ N . Readers are referred to [12]
and [16] for a detailed theoretical proof. Here, we briefly
outline the reasoning. Let η̄ = [η̄1, . . . , η̄n]

T and η =

[η1, . . . , ηn]
T denote the vectors of coupled and auxiliary

sliding mode surfaces, respectively. According to (15), the
relationship between them can be expressed as η̄ = Wη,

where W =


q −1 · · · 0 0
0 q −1 · · · 0

...

0 0 · · · q −1
0 0 · · · 0 q

. Since q > 0, the matrix

W is a lower triangular with positive diagonal entries, and
thus invertible. Therefore, η̄ = 0 implies η = 0.

The coupled sliding mode surface dynamics vary for the
last vehicle and the rest of the platoon due to the absence of
a following vehicle for AVn. Based on (7), (13), and (14), the
time derivatives of the coupled sliding mode surface η̄i are
derived as follows:

˙̄ηi =qη̇i − η̇i+1

=q( ¨̄ei + λ ˙̄ei − ϵ̇i )− ( ¨̄ei+1 + λ ˙̄ei+1 − ϵ̇i+1)

= − (q + 1)
(

ẍi +
q

q + 1
ϵ̇i

)
+ θi ,∀i ∈ N \{n} (16)

˙̄ηi =qη̇i

=q( ¨̄ei + λ ˙̄ei − ϵ̇i )

= − q(ẍi + ϵ̇i )+ θi ,∀i = n (17)

where the disturbance-like terms θi = q(ẍi−1 − ζ̈i + λ ˙̄ei ) −

(−ẍi+1 − ζ̈i+1 +λ ˙̄ei+1 − ϵ̇i+1) for i ∈ N \{n}, θn = q(ẍn−1 −

ζ̈n + λ ˙̄en), and ζi = (1 − δ)(xi−1(0)− xi (0))+ δ(xd
i + L i−1)

for i ∈ N .
Through (1), (9), and (10), the above expressions of ˙̄ηi can

be further rewritten as:

˙̄ηi =θi −
ℓi

Mi

(
Sat(ui )− giv

2
i − hi + ki +

Mi

M̄i

×

(
−εiϵi − χiϵ

r
p

i − ψi sign(ϵi )+1ui

))
=θi −

ℓi

Mi

(
ui − giv

2
i − hi − εiϵi − χiϵ

r
p

i − ψi sign(ϵi )

+ ki + ϑi

(
εiϵi + χiϵ

r
p

i + ψi sign(ϵi )−1ui

))
∀i ∈ N (18)

where ℓi = q +1 for i ∈ N \{n} and ℓn = q are introduced to
unify the expressions for all AVs. In the second equation, the
identity Mi/M̄i = 1 − ϑi is used to integrate the auxiliary
system dynamics into the main vehicle dynamics, thereby
eliminating the nonlinear effect of input saturation on smooth
control law design. Since M̄i is an upper bound of Mi , the
parameter ϑi is positive and satisfies 0 < ϑi < 1. Moreover,
given the known upper bound of 1ui , there exists a constant
σi satisfying σi > ϑiψi > ϑi |1ui |. This formulation allows
the nonlinear input constraints to be absorbed by the auxiliary
dynamics, enabling the design of a smooth and implementable
control law that maintains theoretical guarantees of stability
and string performance under actuator saturation.

We design the following smooth vehicle control law ui for
each AVi ∈ N :

ui =
ωi

ℓi
η̄i + ĝiv

2
i + ĥi + sign(η̄i )K̂i + εiϵi + χiϵ

r
p

i

+ ψi sign(ϵi )− ϑ̂i

(
εiϵi + χiϵ

r
p

i + ψi sign(ϵi )

)
+ sign(η̄i )σ̂i +

M̂iθi

ℓi
(19)

where ωi is a positive parameter, and ĝi , ĥi , K̂i , ϑ̂i , M̂i ,
and σ̂i denote the estimations of the corresponding unknown
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TABLE I
THE INITIAL SETTINGS OF AVS

TABLE II
VEHICLE PARAMETERS USED IN CARSIM SIMULATION

parameters gi , hi , Ki , ϑi , Mi and σi , respectively. The asso-
ciated parameter estimation errors are defined as g̃i = gi − ĝi ,
h̃i = hi − ĥi , K̃i = Ki − K̂i , ϑ̃i = ϑi − ϑ̂i , M̃i = Mi − M̂i ,
and σ̃i = σi − σ̂i , respectively. The parameter adaptation laws
are designed as follows:

˙̂gi =µ
g
i

[
ℓiv

2
i η̄i + ρ

g
i g̃i

]
(20)

˙̂hi =µh
i

[
ℓi η̄i + ρh

i h̃i

]
(21)

˙̂Ki =µK
i

[
ℓi |η̄i | + ρK

i K̃i

]
(22)

˙̂
ϑi =µϑi

[
−ℓi η̄i

(
εiϵi + χiϵ

r
p

i + ψi sign(ϵi )

)
+ ρϑi ϑ̃i

]
(23)

˙̂Mi =µM
i

[
η̄iθi + ρM

i M̃i

]
(24)

˙̂σi =µσi
[
ℓi |η̄i | + ρσi σ̃i

]
(25)

where µg
i , µh

i , µK
i , µϑi , µM

i , and µσi are positive adaptive
gains, and ρg

i , ρh
i , ρK

i , ρϑi , ρM
i , and ρσi are positive correction

gains.
Remark 4: The parameter adaptation laws presented above

are derived based on Lyapunov stability theory and are pri-
marily designed to guarantee closed-loop system stability and
satisfactory tracking performance, rather than achieving exact
parameter estimation [40]. In this context, the adaptive laws
prioritize robustness and convergence of trajectory tracking
errors, which is critical in safety-critical applications such as
platoon control under actuator saturation. To further enhance
the accuracy of parameter estimation, additional strategies
may be incorporated. These include introducing persistent
excitation conditions, utilizing auxiliary signals, or imple-
menting supplementary observers or estimators [41], [42].
Moreover, recent advances in machine learning provide alter-
native approaches to parameter learning under uncertainties
and complex constraints. For example, the bioinspired learning
algorithm in [43] is capable of handling unmodeled uncertain-
ties in faulty autonomous aerial vehicles, while the adaptive
PD-type iterative learning control method in [44] utilizes
machine learning to estimate model-based position-dependent

Fig. 2. The smoothed reference trajectory yd .

friction parameters in permanent magnet synchronous motor
servo systems. These methods demonstrate the potential of
machine learning to complement traditional adaptive control
by improving estimation accuracy in the presence of uncer-
tainties.

Theorem 3: Consider the AV platoon dynamics described
in (1), subject to the asymmetric actuator saturation in (2),
under the control law given in (19) and the parameter adapta-
tion laws in (20)–(25). Then, the platoon achieves: 1) trajectory
tracking stability, i.e., the leader tracks the smoothed reference
trajectory yd defined in (3) while all following vehicles main-
tain the desired inter-vehicle spacing xd

i ; and 2) string stability
as defined in Definition 2.
Proof: Define the following Lyapunov function:

Vb =

n∑
i=1

Vbi (26)

where Vbi =
Mi
2 η̄

2
i +

1
2µg

i
g̃2

i +
1

2µh
i

h̃2
i +

1
2µK

i
K̃ 2

i +
1

2µϑi
ϑ̃2

i +

1
2µM

i
M̃2

i +
1

2µσi
σ̃ 2

i .
Taking the time derivative of Vb and substituting the control

law and adaptation laws, we obtain:

V̇b ≤ −ϖVb (27)

whereϖ =min
i∈N

{
2ωi
M̄i
, 2ρg

iµ
g
i , 2ρh

iµ
h
i , 2ρK

i µ
K
i , 2ρϑi µ

ϑ
i , 2ρM

i µ
M
i ,

2ρσi µ
σ
i

}
(See Appendix C for the detailed derivation).

Therefore, 0 ≤ Vb(t) ≤ Vb(0) exp(−ϖ t). This implies that
η̄i → 0 asymptotically for all i ∈ N . By (15), it follows that
ηi → 0 as well. Then, from Theorem 2, the auxiliary state ϵ

converges to zero within a finite time T0. Hence, by (14), the
sliding surface si and modified spacing error ēi for all i ∈ N
also converge to zero. Furthermore, from (7) and (8), we have
ēi = ei after t ≥ ℘. This confirms that the leader AV tracks
the smoothed reference trajectory yd and the remaining AVs
in the platoon maintain a stable inter-vehicle spacing xd

i .
Since η̄i → 0 and ϵi → 0 for t ≥ T0, we obtain

q( ˙̄ei + λēi ) = ˙̄ei+1 + λēi+1 from (13)–(15). Applying the
Laplace transform (with ēi (0) = 0), we get (s + λ)Ei+1(s) =

q(s + λ)Ei (s) ⇒ Gi (s) = Ei+1(s)/Ei (s) = q .
According to Definition 2, the platoon achieves string
stability at the level of modified spacing errors if |Gi (s)| ≤ 1,
i.e., q ≤ 1. Since ēi = ei after t ≥ ℘, it follows that the real
spacing errors ei also satisfy string stability. ■
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Fig. 3. Basic simulation results.

IV. NUMERICAL SIMULATION

To demonstrate the effectiveness of the proposed control
law, this section conducts a series of comparative simulations.
Section IV-A describes the reference trajectory, the initial setup
of the AV platoon, and the controller parameters along with
their design rationale. Section IV-B presents the basic simula-
tion results. Section IV-C analyzes the sensitivity of the control
performance with respect to key parameters. Sections IV-D
provides comparative simulation.

A. Simulation Settings

In this section, numerical simulations are conducted on a
platoon consisting of five AVs. The initial positions, speeds,
and desired inter-vehicle spacing for the AVs are provided
in Table I. To illustrate that the proposed control law can
effectively mitigate input saturation, a discontinuous reference
trajectory yr is adopted, which consists of three motion

scenarios: constant speed, acceleration, and deceleration. The
complete trajectory is defined as follows:

yr =



10 t, t ≤ 30
300+10(t−30)+ 1.4(t−30)2, 30 < t ≤ 33
342.6+18.4(t−33), 33 < t ≤ 50
362.6+18.4(t−33), 50 < t ≤ 60
859.4+18.4(t−60)−2.35(t−60)2, 60< t ≤63
893.45+4.3(t−63), 63 < t ≤ 80
903.45+4.3(t−63), 80 < t ≤ 100

(28)

This trajectory is designed based on classical motion pat-
terns widely adopted in prior studies [12], [13], and [16],
and is slightly modified to introduce discontinuities between
segments. The goal is to evaluate the effectiveness of the
proposed trajectory smoothing and control design under real-
istic and challenging driving behaviors that often lead to
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Fig. 4. The estimators of parameter uncertainties and disturbances.

actuator saturation. The vehicle type is the default midsize
sedan model provided by CarSim. The complete parameter
settings are summarized in Table II. The unknown parameters
and disturbance terms in the vehicle dynamics model (1) are
adopted from [12], while the actuator saturation bounds used
in (2) are selected based on [30]. In the reference trajectory
smoothing in (3), parameters γ j and β j are set to 1.3. For
the modified spacing errors in (7), ℘ = 20 and c = 5. In the
auxiliary system in (9)–(10), M̄i = 1600, q = 0.95, εi = 150,
χi = 10, ψi = 10, r = 3, and p = 5. In the control law in (19),
parameters λ and ωi are set to 3.5 and 80, respectively. In the
parameter adaptation laws in (20)–(25), gains are µg

i = 0.01,
µh

i = 0.1, µK
i = 0.1, µϑi = 0.1, µM

i = 0.1, and µσi = 0.1, and
correction gains are ρg

i = 1000, ρh
i = 10, ρK

i = 10, ρϑi = 10,
ρM

i = 10, and ρσi = 10. The initial values of parameter
estimators are set as ĝi (0) = 0.05, ĥi (0) = 1.1, K̂i (0) = 1.1,
ϑ̂i (0) = 0.0625, M̂i (0) = 1505, and σ̂i (0) = 0.625.

Remark 5: In the modified spacing policy, parameters
℘ and c are designed to gradually eliminate the influence
of initial spacing errors. Specifically, ℘ determines the
duration, and c controls the rate of decay. Appropriate
tuning of these parameters is essential to suppress
transient oscillations in control inputs and to enable rapid
convergence to the desired inter-vehicle spacing. According
to Theorem 2, the auxiliary system satisfies the exponential
convergence bound (i.e., 0 ≤ Va(t) ≤ Va(0) exp(−4t),
where 4 = min

{
2(q+1)ε1

q M̄1
,

2(q+1)ε2
q M̄2

, . . . ,
2(q+1)εn−1

q M̄n−1
, 2εn

q M̄n

}
).

Here, M̄i is fixed, so 4 only depends on q and εi .
A larger 4 yields a faster convergence rate of ϵ. The

finite-time settling time T0 =
2p

(p−r)4 ln 4V
p−r
2p (ϵ(t0))+�

�
further decreases with increasing �, as defined in (12).
Parameters r and χi (within �) also influence this
convergence rate. As shown in Theorem 3, inequality
0 ≤ Vb(t) ≤ Vb(0) exp(−ϖ t) holds, where ϖ =

min
i∈N

{
2ωi
M̄i
, 2ρg

i µ
g
i , 2ρh

i µ
h
i , 2ρK

i µ
K
i , 2ρϑi µ

ϑ
i , 2ρM

i µ
M
i , 2ρσi µ

σ
i

}
.

Thus, the convergence rate of tracking errors can be enhanced
by tuning ϖ via ωi , µ·

i , and ρ·

i . This observation is further
validated through simulation in Section IV-C. According
to [45], small adaptation gains (i.e., µ·

i ) help improve
the stability of the adaptive laws under disturbances and
estimation errors. Since the product µ·

iρ
·

i determines the
effective convergence rate, these parameters are carefully
tuned via trial simulations following the methodology in [45].

B. Basic Simulation Results

To ensure stable tracking performance, the discontinuous
reference trajectory yr is smoothed using the second-order
differentiable transition function ϕ(t, ts j , te

j ) introduced in (3).
As shown in (28), yr exhibits abrupt changes at t = 60 s and
t = 80 s, dividing the trajectory into three smooth segments
corresponding to t < 60, 60 < t < 80, and t > 80. The
degree of smoothing depends on the selection of the transition
start time ts j for each segment j . We consider three values
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Fig. 5. Sensitivity analysis.

of ts1 = 40, 48, and 49 s to control the smoothing from
the first to the second segment, corresponding to smoothing
intervals of 20, 12, and 11 s before t = 60 s. Similarly, we set
ts2 = 70, 78, and 79 s to smooth the transition from the second
to the third segment. The resulting smoothed trajectories yd
are illustrated in Fig. 2. For clarity, identical time intervals
are marked with the same line type across the different
smoothing configurations. As observed from the figure, the
proposed smoothing function ϕ(t, ts j , te

j ) ensures second-order
differentiability in all cases. When ts j is selected further away
from the segment end time te

j , the transition function has
more time to operate, resulting in a smoother trajectory that
helps suppress transients in the vehicle responses. Conversely,
a smaller difference between ts j and te

j leads to a trajectory
that more closely follows the original reference yr (t) but
may introduce larger transient responses in the platoon. This
trade-off allows users to flexibly tailor the level of smoothing
according to application-specific requirements.

To avoid large transients and ensure that the platoon’s
tracking trajectory closely follows the desired reference trajec-
tory yr , we select the smoothed trajectory yd with transition
parameters ts1 = 48 s and ts2 = 78 s as the tracking target.
The corresponding simulation results are presented in Fig. 3.
The average simulation execution time is only 2.02 seconds.
Figs. 3(a) and 3(b) illustrate the position and speed tracking
performance. It can be observed that the proposed control law

enables all AVs to track the smoothed reference trajectory
stably while maintaining the desired inter-vehicle spacing and
consistent velocity across the platoon. Figs. 3(c) and 3(d)
present the evolution of the modified spacing errors ēi and
the real spacing errors ei , respectively. The modified errors
converge to the real ones within a short period, verifying
that the modified spacing error definition adopted in this
paper effectively mitigates the influence of non-zero initial
spacing errors. Moreover, Fig. 3(c) confirms that modified
spacing error-based string stability is maintained throughout
the entire tracking period. As shown in Fig. 3(d), real spacing
error-based string stability is also achieved after the impact
of initial trajectory tracking errors vanish. These results col-
lectively demonstrate that the proposed control law ensures
both trajectory tracking stability and string stability while
suppressing transient fluctuations caused by initial spacing
errors.

Figs. 3(e) shows that the control inputs ui remain smooth
for all AVs in the platoon. This further validates the theoretical
guarantees established by the Lyapunov-based stability anal-
ysis. Notably, Figs. 3(f) and 3(g) show that the acceleration
responses closely follow the actuator saturation bounds, indi-
cating that the designed control law effectively prevents input
saturation while preserving performance. Finally, Fig. 3(h)
illustrates that the auxiliary system states ϵi (t) converge
rapidly to zero after input saturation occurs. This demonstrates



16780 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 26, NO. 10, OCTOBER 2025

Fig. 6. The comparative simulation results of our algorithm.

that the proposed auxiliary system can efficiently compensate
for actuator saturation effects and contributes to smooth con-
trol input design.

Fig. 4 illustrates the parameter estimation results under the
proposed adaptation laws. As shown, the estimated parameters
converge rapidly to stable values close to the true values,
although they do not match them exactly. This outcome
is consistent with the core objective of adaptive control
strategy adopted in this study, which focuses on ensuring
system stability and tracking performance rather than precise
parameter identification [40]. These results confirm that the
designed adaptation laws are effective in supporting the stable
tracking of the smoothed reference trajectory. As discussed in
Remark 4, further improvements in estimation accuracy may
be achieved by incorporating continuous excitation, auxiliary
signals, or additional observers if required by specific appli-
cations [41], [42].

C. Sensitivity Analysis

According to Theorem 3, the trajectory tracking error sat-
isfies the exponential convergence bound (i.e., 0 ≤ Vb(t) ≤

Vb(0) exp(−ϖ t)). This implies that the convergence rate of
trajectory tracking errors is governed by ϖ and increases as ϖ
becomes larger. To validate this conclusion, we perform a sen-
sitivity analysis by varying the control gain ωi while keeping
other parameters fixed. Specifically, ωi is set to 200, 500, and
1000, which correspond to ϖ values of 0.25, 0.625, and 1.25,

respectively. The simulation results are shown in Fig. 5, which
includes the speed tracking trajectories and modified spacing
errors. As observed, all three settings achieve stable trajectory
tracking, and the convergence rate improves with increasing
ϖ . These results are consistent with the theoretical analysis
provided in Theorem 3, thereby confirming the influence of
ωi and ϖ on the platoon’s dynamic performance.

D. Comparative Simulation

To validate the effectiveness of the proposed auxiliary
system in mitigating actuator saturation by reallocating
over-saturated inputs, a comparative simulation is conducted
against the finite-time sliding mode controller proposed
in [30]. The reference trajectory is defined as yr =

10 t, t ≤ 20
200 + 10(t − 20)+ 1.4(t − 20)2, 20 < t ≤ 23
224.8 + 18.4(t − 23), 23 < t ≤ 30
347.6 + 18.4(t − 30)+ 1.4(t − 30)2, 30 < t ≤ 30
389.2 + 26.8(t − 33), 33 < t ≤ 60
1104.8 + 26.8(t − 60)− 2.35(t − 60)2, 60 < t ≤ 63
1152.1 + 17.7(t − 63), 63 < t ≤ 70
1290.0 + 17.7(t − 70)− 2.35(t − 70)2, 70 < t ≤ 71
1305.85 + 13.0(t − 71), 71 < t ≤ 100

.

The reference trajectory in this comparative simulation is
constructed by extending the basic pattern from [12], [13],
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Fig. 7. The comparative simulation results of algorithm in [30].

and [16] with more frequent and sharper acceleration
and deceleration phases. This design intentionally induces
actuator saturation, providing a more rigorous test to
demonstrate the advantages of the proposed control strategy
in handling saturation more efficiently. In the benchmark
method of [30], input saturation is addressed by replacing the
non-differentiable saturation function with a smooth Gaussian
error function.

Figs. 6 and 7 present the simulation results. As shown
in Figs. 6(a), 6(b), 7(a), and 7(b), both algorithms achieve
stable trajectory tracking in terms of position and speed. The
spacing error plots in Figs. 6(c) and 7(c) indicate that both
approaches achieve string stability. Control input and acceler-
ation results in Figs. 6(d)–6(f) and 7(d)–7(f) show that actuator
saturation constraints are respected in both methods, and the
accelerations remain bounded. However, the proposed method
exhibits several advantages. As seen from the comparative
plots, it achieves faster error convergence, lower maximum
spacing errors, and more responsive accelerations that reach
saturation earlier and more efficiently. This improvement stems
from the auxiliary system’s ability to directly redistribute
the excess control input caused by saturation, allowing the
actuators to be fully exploited. In contrast, the Gaussian error
function method requires a continuously designed control
input to asymptotically approach saturation, which can delay
the actuator’s full engagement. In conclusion, the proposed

auxiliary system enables more effective utilization of actua-
tor capacity, resulting in faster and more accurate trajectory
tracking performance under input saturation.

V. CONCLUSION

This study addresses the key challenges in trajectory track-
ing control of bidirectional AV platoons, with a particular
focus on actuator saturation, discontinuous reference trajec-
tories, and non-zero initial spacing errors. A comprehensive
control framework is proposed, incorporating several novel
components to enhance tracking performance and system
stability. First, a variant sigmoid function is introduced to
actively smooth the discontinuous reference trajectory. This
smoothing method reduces reliance on ideal communication
environments and effectively suppresses trajectory tracking
transients. Second, a modified spacing policy is developed to
eliminate the influence of initial spacing errors. By enabling
smooth convergence to the desired spacing, the policy sig-
nificantly enhances string stability and mitigates large input
transients. Third, an auxiliary system is designed to handle
actuator saturation by reallocating oversaturated control inputs.
This system ensures that all AV actuators operate within their
effective ranges, thereby maintaining both trajectory tracking
stability and string stability. Comparative simulations using
the CarSim vehicle platform validate the proposed method.
The results demonstrate that the control law achieves stable
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tracking, rapid error convergence, and improved actuator uti-
lization. In comparison with existing strategies, the proposed
approach offers superior performance in managing asymmetric
input saturation and eliminating initial spacing disturbances.

Overall, the contributions of this work provide a robust and
flexible solution for trajectory tracking in bidirectional AV
platoons. Future research could focus on improving param-
eter estimation accuracy, for example through the use of
machine learning methods, persistent excitation, auxiliary sig-
nals, or observer-based schemes. Incorporating event-triggered
control strategies may further reduce computational load by
updating control inputs only when necessary.

APPENDIX

A. The Proof of Theorem 1

Within ts j ≤ t < te
j , the first-order and second-order time

derivatives of ϕ(t, ts j , te
j ) in (4) are given by:

ϕ̇(t, ts j , te
j ) =

Ḣ j (t)− α j

H j (te
j )− α j (te

j − ts j )− H j (ts j )

=

(
H j (te

j )− α j (te
j − ts j )− H j (ts j )

)−1

×

(
˙̌S

(
t, β j ,

ts j +te
j

2

)
+

¨̌S

(
ts j , β j ,

ts j +te
j

2

)

×
1

(te
j − ts j )

(
t −

ts j + te
j

2

)2

− α j

 (A-1)

ϕ̈(t, ts j , te
j ) =

(
H j (te

j )− α j (te
j − ts j )− H j (ts j )

)−1

×

(
¨̌S

(
t, β j ,

ts j +te
j

2

)
+

¨̌S

(
ts j , β j ,

ts j +te
j

2

)

×
2

(te
j − ts j )

(
t −

ts j + te
j

2

))
(A-2)

Based on the fourth property of the variant sigmoid function,

we have ¨̌S
(

ts j , β j ,
ts j +te

j
2

)
= −

¨̌S
(

te
j , β j ,

ts j +te
j

2

)
. As a result,

it follows that ϕ̈(ts j , ts j , te
j ) = ϕ̈(te

j , ts j , te
j ) = 0. Moreover,

according to (4), within t s
j ≤ t < ts j , both the first- and

second-order time derivatives of ϕ(t, ts j , te
j ) are identically

zero. Therefore, ϕ̈(t, ts j , te
j ) is continuous throughout the

entire interval t s
j ≤ t < te

j . Furthermore, by the fourth

property of Š(t, a, b), its second derivative ¨̌S
(

t, β j ,
ts j +te

j
2

)
is centrosymmetric about point

(
ts j +te

j
2 , 0

)
. This implies

that ϕ̈
(

ts j +te
j

2 , ts j , te
j

)
= 0. It can thus be concluded that

ϕ̈(t, ts j , te
j ) > 0 for t ∈

(
ts j ,

ts j +te
j

2

)
and ϕ̈(t, ts j , te

j ) < 0 for

t ∈

(
ts j +te

j
2 , te

j

)
.

Using the third property of the variant sigmoid func-

tion, ˙̌S
(

t, β j ,
ts j +te

j
2

)
is symmetric about axis t =

ts j +te
j

2 .

This implies ˙̌S
(

ts j , β j ,
ts j +te

j
2

)
=

˙̌S
(

te
j , β j ,

ts j +te
j

2

)
. Conse-

quently, we obtain ϕ̇(ts j , ts j , te
j ) = ϕ̇(te

j , ts j , te
j ) = 0. Due to

ϕ̇(t, ts j , te
j ) = 0 for t ∈ (t s

j , ts j ), ϕ̇(t, ts j , te
j ) is continuous

over t ∈ (t s
j , te

j ). As previously shown, ϕ̈(t, ts j , te
j ) > 0 for

t ∈

(
ts j ,

ts j +te
j

2

)
, implying that ϕ̇(t, ts j , te

j ) is monotonically

increasing over this interval. Similarly, because ϕ̈(t, ts j , te
j ) <

0 for t ∈

(
ts j +te

j
2 , te

j

)
, ϕ̇(t, ts j , te

j ) is monotonically decreasing

during this time interval. Therefore, ϕ̇(t, ts j , te
j ) > 0 holds for

all t ∈ (ts j , te
j ), which confirms that ϕ(t, ts j , te

j ) is monotoni-
cally increasing over this interval. Moreover, from (4), it can be
directly obtained that ϕ(ts j , ts j , te

j ) = 0 and ϕ(te
j , ts j , te

j ) = 1.
The proof of Theorem 1 ends. ■

B. The Proof of Equation (12)

Through (9), the time derivative of Vai with i ∈ N \{n}

in (11) is derived as follows:

V̇ai =q M̄iϵi ϵ̇i/(q + 1)
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Using (10), the time derivative of Van in (11) is given by:
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Through Lemma 2, (B-1), and (B-2), the time derivative of
Va in (11) is given by:
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The proof of (12) ends. ■

C. The Proof of Equation (27)

The time derivative of Vbi with i ∈ N in (26) is given by:

V̇bi = Mi η̄i ˙̄ηi −
1
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g
i

g̃i ˙̃gi −
1
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i
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Through (18), the above formula is rewritten as follows:
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Through the control input in (19), the above satisfies the
following:

V̇bi ≤ − ωi η̄
2
i + ℓi g̃iv

2
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Using the parameter adaptation laws in (20)–(25), the above
is rewritten as follows:

V̇bi ≤ − ωi η̄
2
i − ρ

g
i g̃2

i − ρh
i h̃2

i − ρK
i K̃ 2

i − ρϑi ϑ̃
2
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2
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Therefore, the time derivative of Vb in (26) satisfies the
following:

V̇b ≤ −ϖVb (C-5)

The proof of (27) ends. ■
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