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Reliability analysis of timber structures considering variability in
nonlinear joint behaviour
Dorotea Caprio
Department of Architecture and Civil Engineering
Chalmers University of Technology

Abstract
In contemporary timber structures, joint behaviour is critical to overall per-
formance and reliability. Yet joints are often idealised as pinned or rigid,
despite their inherently nonlinear response. Current design rules prescribe a
stiffness reduction ratio to account for the nonlinear behaviour. This simplifi-
cation, coupled with the current component-based design checks, can misjudge
structural reliability, leading to either unconservative or overly conservative
design. This study aims to quantify the impact of the nonlinear behaviour
of joints and related variability, specifically of steel-to-timber joints with self-
tapping screws, on the reliability of statically indeterminate timber struc-
tures. A multi-level probabilistic framework was implemented, taking into
account three levels: single-fastener, multi-screw, and structural level. First,
an empirical probabilistic model of single-screw joints was developed based on
experiments conducted with different load-to-screw axis angles. This model
was then used as input for a semi-analytical multi-fastener model based on
a displacement-controlled equilibrium, which captured the moment-rotation
curve and related variability of the multi-fastener joints. Finally, employing
the Monte Carlo simulation method, a reliability analysis was conducted on
a statically indeterminate timber beam. Uncertainties in loads, material and
joints nonlinear behaviour were considered. Results indicated that applying
the currently prescribed stiffness ratio in the design of beams with joints with
laterally loaded screws led to a probability of failure nearly twice the target
value, whereas beams with joints with inclined screws required no stiffness
reduction to meet the target probability of failure. An optimisation algorithm
was used to calibrate the stiffness reduction ratio, restoring the target proba-
bility of failure. The probabilistic framework presented herein can be applied
to other structural systems and joint typologies for a safer and more rational
design of modern timber structures.

Keywords: Reliability, indeterminate, timber, nonlinear, stiffness, ductil-
ity, system effects
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CHAPTER 1

Introduction

1.1 Background
“A structure is a constructed assembly of joints separated by members” (McLain
[1]). This statement perfectly applies to timber structures, since joints1 rep-
resent the most challenging and costly element of timber construction, re-
quiring a lot of material and production resources [3]. During the last years,
large-span, tall timber structures have been built around the world as never
before. In these new applications, joints have become the key elements in de-
sign: they must permit disassembly for reuse, provide acoustic isolation, and
supply the ductility needed for energy dissipation under seismic or dynamic
loading. Nevertheless, according to the current design rules, joints are mod-
elled as linearly elastic, while reliable information on ultimate rotations and
displacements is lacking. Misjudging these properties can lead (and has led)
to structural failures in modern timber structures [4]. Moreover, the design

1The terms ‘joint’ and ‘connection’ are often used as synonyms in the literature. In [2]
the connection is defined as the union of two or more joints, and the joint is defined as
an ensemble of fasteners with two or more members. In this paper, the joint is used for
both cases for simplicity’s sake.
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Chapter 1 Introduction

of the overall structures is based on a component-by-component approach:
the capacity of each component of the structure is checked against the load
effects, applying the so-called partial safety factors [5]. System effects at the
component level (at the joint level) and structural level (between the members
and the joints) are therefore almost totally dismissed. Previous reliability and
numerical analyses showed how incorporating nonlinearities that characterise
the load-displacement curve of joints affected the load distribution of forces
in timber structures [5]–[7].

Various issues are to be analysed in more detail so as to better predict the
reliability of modern timber structures. The following points were concluded
to be of particular interest:

• Representation of the nonlinear behaviour of joints and the related vari-
ability.
Currently, Eurocode 5 (EC5) considers the nonlinear behaviour of joints
in a simplistic way, by reducing the stiffness at the ultimate limit state
KULS to 2/3 of the stiffness at the serviceability limit state KSLS . How-
ever, this ratio is based on experimental data on nailed joints in the 1960s
[8]–[10], and it can be inadequate to cover all the joint typologies and
design situations.

• Consideration of system effects in the structure.
The common approach, component-by-component check, can be ade-
quate for traditional light wood structures, but is unsuitable for more
complex ones. A structure must be analysed as a system of intercon-
nected elements that interact with each other [5].

Neglecting the actual nonlinear behaviour of joints and, at the same time,
adopting a component-by-component approach might lead to an underdesign
or overdesign of the complex timber structure at the ultimate limit state
(ULS).

1.2 Aim of research
This thesis aims to quantify the impact of nonlinear behaviour of joints and
their variability on the reliability of modern timber structures. For this aim,
a relevant structural system and joints were selected.

4



1.2 Aim of research

Choice of structure.
This thesis adopts a statically indeterminate timber beam as its case study

because, in statically indeterminate structures, the internal force distribu-
tion is dictated by both equilibrium and compatibility, making joint nonlinear
load-displacement behaviour critical. A statically indeterminate beam rep-
resents the simplest member of more complex statically indeterminate struc-
tures and it is common in practice, particularly in glulam (GL) portal halls.
Its prevalence and structural simplicity make it a representative structure for
the present thesis.

Choice of joint type.
Joints with self-tapping screws (STS) can present a variety of load-displacement

shapes. Therefore, choosing this type of joint allowed a systematic exploration
of how different curve “shapes” affect the reliability of the structure.

Examples of statically indeterminate structures with joints with self-tapping
screws are present in reality in multiple applications [11]–[13].

Consequently, the study of a statically indeterminate timber beam with
steel-to-timber joints with self-tapping screws offers a representative example
to get insights into how joint nonlinearity influences internal force redistribu-
tion and overall reliability. Based on these motivations and choices, this thesis
addresses the following research questions:

(i) RQ1 (Single-screw joint level): How to model the nonlinear be-
haviour and the variability of a single-screw joint as a function of the
selected influencing parameters?

(ii) RQ2 (Multi-screw joint level): How can the nonlinear behaviour
and the variability of a multi-screw joint be modelled using the empirical
probabilistic model of a single-screw as input? How should the moment-
rotation curve be derived?

(iii) RQ3 (Structure level): How does the probabilistic nonlinear be-
haviour and variability of joints affect the reliability of a statically inde-
terminate beam, and are existing design rules sufficiently reliable?
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1.3 Methodology
The methodology follows a bottom-up multi-level approach according to which
the structure is analysed at three levels: the single-screw joint, the multi-screw
joint and the structural level.

At the single-screw joint level, the output was a probabilistic model to
describe the nonlinear displacement curve of single-screw joints. To achieve
this, two inputs were required: an analytical model and experimental data. A
review of existing mathematical models was conducted, and the model with
the best accuracy and description of the load-displacement curve variability
was selected. Then, the experiments provided the load-displacement data of
single-screw steel-to-timber joints. Each coefficient of that model was then
treated as a random variable, and their correlations were estimated, giving a
fully probabilistic description of the load-displacement curve of a single-screw
joint.

Because joints in real structures employ groups of screws, the next level
is represented by the multi-screw joint. The empirical-probabilistic model
of the single-screw joint was used as input in the multi-screw joint model.
An incremental displacement-controlled semi-analytical approach was used to
obtain the overall load-displacement curve for a multi-screw joint.

Finally, the last level is the structural one. A statically indeterminate timber
beam was designed in accordance with EC5, and each joint was modelled with
nonlinear moment-rotation curve. A reliability analysis of the structure gave
information on how the joints nonlinear behaviour affected the probability of
failure. Design recommendations for the ratio for the design of joints with
screws at ULS were given in order to meet the target probability in design.

The multi-level methodology is illustrated in Figure 1.1 and in Figure 1.2.
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1.4 Limitations

1.4 Limitations
The present thesis has the following relevant limitations:

(i) The number of test repetitions per configuration used to characterise
the load-displacement behaviour of single-screw joints was limited; ad-
ditional data are required to validate the observed trends. The validity
of the model cannot be demonstrated for other joint configurations with
material and geometrical properties outside the range of those that have
been adopted and tested.

(ii) The multi-screw model assumes the adopted spacings were sufficient to
avoid interaction effects. The assumption might be inadequate if spacing
is reduced and a small spacing is adopted between the screws.

(iii) The calibrated ratioKULS/KSLS was established under specific assump-
tions about the multi-screw joint and its moment-rotation behaviour.
Consequently, the ratio is only valid within the framework of those
assumptions, and its applicability beyond them has not been demon-
strated.

(iv) In the reliability analysis, only the bending failure of the beam was
considered; other potential failure modes (e.g., shear, local buckling)
and their interactions were not addressed.

(v) Potential brittle failure modes (such as net-tension failure, block-shear,
and plug-shear, etc) and their impact on the reliability of the examined
structure were also not studied.

(vi) The analysed structural system (statically indeterminate timber beam)
provides an insight into the reliability of the more complex structural
system. However, it represents only a part of the real, more complex
structure composed of many members and joints.

1.5 Outline of the thesis
This thesis consists of an introductory part and four appended papers. The
former is divided into five chapters:
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Chapter 1 Introduction

Chapter 1 provides the background of the work, and it explains the aim,
the methodology, and the limitations of the thesis. This section positions
RQ1–RQ3 within a broader thesis aim and outlines the overall methodology
along with its limitations.

Chapter 2 provides a comprehensive overview and expands on the back-
ground underlying RQ1– RQ3. In particular, it examines current design
approaches, design rules for joints, experimental studies on timber joints,
examples of applications of statically indeterminate timber structures, and
techniques for estimating the reliability of structures.

Chapter 3 provides the methods used for each level of the three-level frame-
work. First, it illustrates how the design of the case study structure was
conducted, then it describes the development of the empirical-probabilistic
model of the single-screw joint (RQ1); second, of the multi-screw joint model
(RQ2); and third, of the probabilistic model of the structure (RQ3).

Chapter 4 provides the key findings of the multi-level framework. It first
illustrates the results from the design of the case study structure, then the
empirical-probabilistic model for single and multi-screw systems (RQ1 and
RQ2), followed by the methodology and reliability analysis outputs (RQ3).

Chapter 5 summarises the main conclusions of the present thesis and gives
suggestions for future research.
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CHAPTER 2

State of the art

This chapter presents the theoretical background and aligns with the multi-
level framework. It opens with a brief overview of the current design method-
ology in Section 2.1. The discussion then moves from joint level to struc-
tural level. Sections 2.1–2.4 review both single- and multi-fastener design and
modelling approaches, providing essential background for RQ1 and RQ2 and
supporting Paper I and Paper II. Following this, Sections 2.5 and 2.6 address
the structural level by examining statically indeterminate applications and
reliability methods respectively, thereby expanding the background for RQ3
and supporting Paper III and Paper IV.

2.1 Background of current design methodology
Structural design is a decision-making process carried out under uncertainty
[14]. Sources of uncertainty include, among others, material resistance, ap-
plied loads, joint behaviour or mathematical models. These uncertainties are
typically classified as either aleatory or epistemic [15], [16]. Aleatory uncer-
tainty stems from inherent natural variability, whereas epistemic uncertainty
arises from the simplifications and incomplete knowledge embedded in the
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Chapter 2 State of the art

mathematical models used to represent the physical system. Guidance on the
design and the verification of structures under these uncertainties is provided
in ISO 2394 [17]. In ISO 2394 [17], three different decision methods are de-
scribed, which differ according to the level of detail with which the design or
verification is performed.

The risk-informed decision has the highest level of detail (Level 4). In
this case, the decision-making process considers both the safety and economic
consequences, as well as explicitly models the associated uncertainties. Due
to its complexity and time requirements, this approach is rarely implemented
in routine practice and only reserved for exceptional cases. A less complex
alternative is represented by a reliability-based decision (Level 3). At this
level, the consequences are not explicitly taken into consideration; however,
the design of the structure is conducted to achieve a certain target reliability.
The chosen target reliability (βrel) depends on the consequences and the type
of structure. For example, according to the Joint Committee of Structural
Safety (JCSS) [18], the probability of failure (Pf ) and the related βrel is
associated with certain consequences and the cost of safety measures for a
reference period of one year (Table 2.1).

Table 2.1: Target reliability index (and associated target failure probabili-
ties) related to a one-year reference period ULS [18]

Cost Minor consequences Moderate consequences Large consequences
High βrel = 3.1 (≈ Pf = 10−3) βrel = 3.3 (≈ Pf = 10−4) βrel = 3.7 (≈ Pf = 10−4)

Normal βrel = 3.7 (≈ Pf = 10−4) βrel = 4.2 (≈ Pf = 10−5) βrel = 4.4 (≈ Pf = 10−5)
Low βrel = 4.2 (≈ Pf = 10−5) βrel = 4.4 (≈ Pf = 10−5) βrel = 4.7 (≈ Pf = 10−6)

Finally, the semi-probabilistic approach corresponds to the lowest level of
detail (Level 1). The semi-probabilistic approach relies on the fulfilment of the
safety deterministic criteria, for which the effects of loads must be less than
the resistance of the structural system. This translates into the use of partial
safety factors, which are usually applied to resistance and loads, which have
been previously calibrated in order to meet the prescribed reliability require-
ments. This approach is proposed by several national and international design
standards, such as the Eurocodes (CEN EN1990 2002 [19]), when dealing with
common situations in terms of uncertainties and consequences. An overview
of the discussed approaches and levels of decision-making is illustrated in Ta-
ble 2.2.

12
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Table 2.2: Different levels of decision making according to ISO 2394 [17]
Approach Application Goal References

Risk-informed Exceptional
design situations

Minimisation of
consequences ISO 2394

Reliability-based design Unusual
design situations

Reliability
requirements JCSS

Semi-probabilistic Usual
design situations

Deterministic design
criteria

Semi-probabilistic
design codes

2.2 Design of the joint according to the standards

Stiffness

EC5 [20] provides equations to determine the stiffness at SLS KSLS,v for
joints with laterally loaded dowel-type fasteners (DTF), in dependency of the
mean value of the density and of the (nominal) diameter d of the fastener.
The stiffness formula differs for the type of fastener considered, and they are
empirically derived [10].

KSLS,v = ρ1.5
m · d
23 pre-drilled dowels, bolts, screws, nails, (2.1a)

KSLS,v = ρ1.5
m · d
30 nails without pre-drilling. (2.1b)

The German standard DIN 1052 [21] has the same equation but written in
terms of characteristic densities instead of mean densities. The Swiss standard
SIA 265 [22] also writes KSLS,v in function of characteristic density and the
diameter of the fastener in general and only in function of the diameter in the
case of nails without predrilling:

KSLS,v = 3 · ρ0.5
k · d1.7 general case, (2.2a)

KSLS,v = 60 · d1.7 nails without pre-drilling. (2.2b)

The load-to-grain angle is taken into account in SIA 265 by reducing the
values by 50% when the load is applied perpendicular to the grain. The current
edition of EC5 contains no formula for KSLS,ax of single GiR subjected to
tension [20]. Indications on how to compute it in case of GiR inserted parallel
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(Equation 2.3) or perpendicular to the grain (Equation 2.4), both expressed
as functions of the timber mean density and the rod diameter, were contained
in the 2003 draft of EC5 (Annex C of EN 1995-2) [23]. This annexe, however,
was omitted from the final published version of the standard [20].

KSLS,ax∥ = 0.04 · d · ρm
1.5 (2.3)

KSLS,ax⊥ = 0.08 · d · ρm
1.5 (2.4)

Regarding joints that employ laterally-loaded self-tapping screws, the stiff-
ness at SLS KSLS,v is evaluated with the same expressions used for laterally-
loaded DTF, i.e. Equation 2.1a. The current edition of EC5 does not specify
how to determine the withdrawal stiffness of STS [20].

In the draft for the next generation of EC5 [24], equations are proposed
for the axial SLS stiffness KSLS,ax of threaded rods, STS, and glued-in rods
(GiR). For threaded rods and STS:

KSLS,ax = 160 ·
( ρm

420

)0.85
· d0.9 · l0.6

w , Threaded rods, STS (2.5a)

KSLS,v = 60 · d1.7 GiR. (2.5b)

with lw [mm] denoting the withdrawal length. For laterally-loaded joints
realised with GiR or STS, both the current EC5 and SIA 265 apply the same
rules of DTF joints (Equation 2.1,Equation 2.2). For joints with inclined STS,
the EC5 draft expresses KSLS as a combination of lateral (KSLS,v) and axial
(KSLS,ax) contributions:

KSLS = KSLS,v ·sin γ ·(sin γ−µ cos γ)+KSLS,ax ·cos γ ·(cos γ+µ sin γ) (2.6)

γ is the fastener inclination and µ is the coefficient of friction. The stiffness
at ULS is taken as 2/3 of KSLS . This is due to the nonlinear behaviour of
timber joints, as the tangential stiffness decreases with increasing load level.
However, this is based on old experiments on nailed joints [8]–[10]. The va-
lidity of this formula can be questioned for other types of joints or modern
applications. According to the current EC5, KULS should be interpreted as
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the secant stiffness between the origin and the design value of the load-carrying
capacity.

Ductility

Numerous definitions of ductility exist in the literature. An overview of the
different definitions of ductility for joints can be found in [25]–[27].

These definitions are based on displacement or energy, relative or absolute.
Displacement-based definitions are written in function of the displacement
at the yielding point vy and also in function of the displacement vmax (dis-
placement in correspondence of Fmax) or the displacement at failure vu (after
Fmax has been reached). The most common displacement-based definitions
of relative ductility are:

Dr,u = vu

vy
(2.7)

Dr,max = vmax

vy
(2.8)

The corresponding absolute definitions are:

Dab,u = vu − vy (2.9)

Dab,max = vmax − vy (2.10)

Smiths [28] proposed a method for categorising fasteners in timber struc-
tures by their ductility ratios. This approach allows joints with comparable
load-displacement curves to be grouped. The ductility ratio is computed using
both relative and absolute definitions, in line with EC8 guidance [29]. More
details about the definitions and the classifications are contained in Paper I
and in [27].

EC5 states that the load distribution in a structure due to joints of ade-
quate ductility can be considered; however, it does not provide any further
explanation or ductility requirements for joints [27]. In the new generation of
EC5 [24], an instruction on how to achieve ductile axially loaded GiR joints
is given: the yielding of the rods must occur before any brittle failure in the
bondline. The following must be satisfied:
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Ft,0.95 < Fw,k (2.11)

where Ft,0.95 is the 95th-percentile of the resistance of the rod, defined as
follows:

Ft,0.95 = As · fy,0.95 (2.12)

As is the nominal stress area for threaded rods or nominal cross-sectional
area for ribbed rods, and fy,0.95 is the 95th percentile of the capacity of the
rod. Another indication is given for joints with laterally-loaded DTF: the
joints can be considered "ductile" if two plastic hinges are developed per shear
plane. More indications about the term "adequate ductility" can be found in
EC8 [29]. Timber structures are classified according to ductility classes.

According to SIA 265 [22], joints with Dr,u = 1 or 2 (DTF producing < 2
hinges per shear plane) are classified as brittle, whereas those that form at
least two plastic hinges per shear plane are classified as ductile (Dr,u ≥ 2).

2.3 Load-displacement curve shapes in timber
joint

Analytical expressions for determining the stiffness and load-carrying capacity
of joints with DTF utilise key geometrical, mechanical, and loading parameters
as input. However, joint behaviour in general is affected by many more fac-
tors, not included in the analytical expressions. Moreover, by focusing solely
on stiffness, load-carrying capacity, and ductility, one implicitly assumes an
elastic-perfectly plastic joint model, even though the actual behaviour might
be more complex and nonlinear.

Joints with bolts and dowels
Figure 2.1 shows typical responses for joints with dowels and bolts. Some
joints just show the elastic region (curve D1). The joint also shows a plastic
region, characterised by a distinct plateau (curve D2), a hardening branch
without a clearly defined load-carrying capacity, or a softening branch (curve
D4). Some curves can show large plastic displacement and hardening (curve
D5). The main geometrical material characteristics of the joints represented
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in Figure 2.1 are reported in Table 2.3.

Table 2.3: Characteristics of joint represented in Figure 2.1
Name Type Timber Diameter [mm]
D1 [25] Multi dowel timber–timber ST 11.75
D2 [25] Multi dowel timber–timber ST 11.75
D3 [30] Single bolt timber–timber ST 12
D4 [31] Single dowel slotted-in plate GL 16
D5 [31] Single dowel slotted-in plate and reinforcement GL 16

Figure 2.1: Typical load-displacement curves of joints with dowels. Repro-
duced from the author’s own publication: [32] - CC BY 4.0.

Glued-in rods
For joints with GiR whose adhesive bondline fails, the load-displacement curve
can be brittle (curve G1 in Figure 2.2) or show a peak followed by softening
(curve G2). When the joints are designed to fail in a ductile way, i.e. with the
rod yielding, a hardening and ductile response develops (curve G3). Joints
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with laterally loaded GiR exhibit a soft and ductile behaviour, similar to that
of DTF loaded laterally (curve G4).

Figure 2.2: Typical load-displacement curves for glued-in-rod joints. Repro-
duced from the author’s own publication: [32] - CC BY 4.0.

Table 2.4: Characteristics of GiR joint represented in Figure 2.2.
Name GiR Loading and direction of the load Timber Diameter [mm] Length [mm]
G1 [33] 1 Axial, parallel to grain LVL 12 150
G2 [33] 1 Axial, perpendicular to grain ST 12 150
G3 [34] 4 Axial, parallel to grain ST 20 300
G4 [35] 1 Lateral, parallel to grain ST 16 320

Self-tapping screws
Axial loading

Several studies investigated the axial (tensile) withdrawal capacity and stiff-
ness of STS in timber. Ringhofer [36] investigated STS in GL and cross-
laminated timber (CLT), finding that the wood layup influences withdrawal
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performance. STS in CLT (with alternating lamellae) exhibited different with-
drawal capacities compared to those in GL. Higher moisture content signif-
icantly reduced the withdrawal strength and stiffness, whereas faster load-
ing rates increased the axial capacity. These trends were later confirmed by
Toumpanaki [37]. High moisture levels were linked to the screw pull-out fail-
ure (withdrawal of the threaded portion) rather than timber splitting, while
lower moisture content often led to timber splitting. Brandner [38] inves-
tigated the impact of timber species, thread-grain angle, and predrilling on
the withdrawal properties of STS. STS in higher-density wood have superior
withdrawal strength, e.g. STS in hardwood exhibited greater pull-out capac-
ity than in softwood. This underlined that timber density and layout, e.g.
LVL vs solid timber (ST), play a role in the strength of axially loaded STS.

Other researchers focused on the behaviour of a group of STS: Mahlknecht
[39] developed a model to predict the block shear failure mechanism for groups
of screws in withdrawal. Joyce [40] investigated group effects in axially loaded
screws, i.e. how the strength of multiple screws compares to the sum of
singles. They found that the number of STS in a joint is did not produce a
fully linear capacity increase due to wood failure interactions; however, group
action tended to reduce capacity variability (due to homogenization effects
and sharing of the loads among the fasteners) and thus to an increase of the
5th-percentile capacity. Moreover, single fastener capacity converged towards
the mean value as the size of the STS group increased, so no effective group
effect factor at the mean level was found.

Mirdad et al. [41] proposed empirical equations for both the embedment
stiffness and withdrawal stiffness of inclined STS, noting that inserting screws
at angles (rather than 90◦) can markedly increase both capacity and stiffness
in joints.

Combined lateral and axial loading

Several studies investigated the behaviour of joints with STS under combined
lateral-axial loading [42]–[46]. Blass & Uibel [42] extended Johansen theory to
inclined screws by adding the axial component. They also calibrated design
parameters by testing by performing embedment and withdrawal tests, and
studying spacing/edge-distance limits. Tomasi [43] conducted one of the early
comprehensive studies on timber-to-timber joints with laterally and axially
loaded inclined screws. The load-to-screw axis, the spacing, and the type
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of axial loading (lateral-axial tension and lateral-axial compression loading)
were varied. A clear outcome was that the angle of inclination has a large
impact on the joint load-displacement curve: smaller angles (more inclined
STS) led to significantly higher initial stiffness and higher capacity, but also
led to a reduction in ductility. This was also confirmed by an experimental
campaign conducted by Jockwer [44], who studied the effects of the load-to-
screw axis (angle 45◦, 60◦, and 90◦) under combined shear-tension loading
and pulling of the screws. In the test campaign, the behaviour of joints with
high-density wood was compared with joints with lower-density wood. The
joints characterised by high density exhibited larger stiffness, capacity, and
ductility.

Krenn [45] investigated steel-to-timber joints with STS, varying the number
of STS in a row, the number of parallel rows, the friction coefficient between
steel plate and timber, the friction and the STS angle and performing at least
10 repetitions per configuration. They observed an effective factor on stiffness
and capacity of roughly 0.8-0.9 per additional STS, due to wood interactions
and system effects. The effect of friction was studied employing a Teflon
sheet as an interlayer in one of their series. It was shown how the friction
impacted stiffness and capacity. In particular, the lower the friction, the
lower the stiffness and the capacity. De Santis [46] investigated the presence
of a polyurethane soundproofing layer on the lateral performance of timber-
to-timber and steel-to-timber joints. Joints with a soundproofing layer showed
a large drop in initial stiffness compared to an equivalent joint without the
layer, whereas the load-carrying capacity was only moderately decreased (on
the order of 10-20%). This effect was more pronounced for configurations with
STS at 45◦ than for those with STS at 90◦. Typical curves of joints with STS
are illustrated in Figure 2.3. The corresponding characteristics of the joints
are reported in Table 2.5.

Table 2.5: Characteristics of STS joint represented in Figure 2.3
Name Type Timber Diameter [mm] γ
S1 [44] Timber-to-timber joints GL 13 90
S2 [44] Timber-to-timber joints GL 13 45
S3 [44] Timber-to-timber joints GL 13 60
S4 [43] Timber-to-timber joints GL 8.2 -45
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Figure 2.3: Typical load-displacement curves for joints with self-tapping
screws. Reproduced from the author’s own publication: [32]
- CC BY 4.0.

2.4 Modelling of timber joints
To model the load-displacement curve, different approaches can be used. The
models can be divided into mathematical, analytical, semi-analytical, and
numerical models.

Mathematical models
Mathematical models include rational, exponential, and polynomial functions
that were used to model the nonlinear behaviour of timber joints. Some of the
models, like the Foschi and Richard-Abbott ones [47], [48], have parameters
with a physical interpretation.

In the Foschi model [47](Equation 2.13), the parameters are the initial stiff-
ness Kin, the plastic stiffness Kp and the intercept of the plastic tangent with
the vertical axis Ft:

F (v) = (Ft +Kp · v)(1 − e( −Kin·v

Ft
)) (2.13)

The Richard-Abbott model [48] (Equation 2.14) has an extra parameter:
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a1, that shapes the transition between the elastic and plastic ranges. These
added parameters make the model less rigid compared to the Foschi one.

F (v) = (Kin −Kp) · v
(1 + ( (Kin−Kp)

Ft
· v)a1)

1
a1 )

+Kp · v (2.14)

Polynomials (Equation 2.15) are continuous and flexible functions. A more
complex load-displacement curve can be approximated if a sufficiently high
degree of polynomials is selected.

F (v) =
k∑

n=1
pi · vi (2.15)

Glos and Brandner models describe load-displacement behaviour with ra-
tional functions whose coefficients are fixed by boundary conditions [49], [50].
Although these functions offer considerable flexibility, they can become dis-
continuous where the denominator is zero.

F (v) = v + c1 · vc5

c2 + c3 · v + c4 · vc5 (2.16)

c1, c2, c3, c4 are obtained from the curve characteristics by enforcing the
following conditions (Equation 2.17-2.20) while c5 is a shape parameter. Two
conditions are imposed on the derivative:

• The initial stiffness is equal to Kin (Equation 2.17):

dF
dx (v = 0) = Kin (2.17)

• The inclination of the curve at the point of the maximum load has to
be equal to Kmax:

dF
dx (v = vmax) = Kmax (2.18)

• The passage of the curve through the point at maximum load Fmax:

dF
dx (v = vmax) = Kmax (2.19)

• The asymptotic load level Fa that the curve has to approach for large
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displacements:
F (v ≫ vmax) = Fa (2.20)

Brandner [50] adapts the Glos model by (i) inserting an initial displacement
shift vin to capture the initial slip, (ii) adding a linear segment between vin

and vlin, and (iii) setting the asymptotic load drop to zero. The expression of
the Brander model is:

F = v

k1 + k2 · (v − vin) + k3 · (v − vin)k4
(2.21)

with coefficients:

k1 = 1
Kin

(2.22)

k2 = 1
Fmax −Kin · (vlin − vin)−

k4

Kin · (vmax − vlin) · (k4 − 1)

(2.23)

k3 = 1
(k4 − 1) ·Kin · (vu − vlin)k4

(2.24)

k4 governs the curve shape. A comprehensive state-of-art review of other
models are available in [32], [51].

Analytical and semi-analytical models
An analytical model refers to a model that provides a closed-form or algebraic
solution. In contrast, a semi-analytical model is formulated in closed form
but requires an incremental-iterative solution procedure due to the presence
of a nonlinear or piecewise constitutive curve for a single-fastener joint, initial
slips, or similar complexities. Both analytical and semi-analytical models are
developed based on kinematic, equilibrium, and constitutive relationships.
These models may also be solved using numerical methods.

Based on some experiments [52], it was observed that in a joint with multi-
fastener (for example, bolts), the load is not shared equally, but typically,
the outermost fasteners attract higher forces than those in the middle. This
unequal load distribution can lead to premature failures. The concept of a
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“group action factor” (or effective fastener number) was introduced to account
for these effects. In the following years, several studies tried to analytically
predict the capacity of a multi-fastener joint to improve design safety ([53]–
[56]). Subsequent research advanced the models by incorporating nonlinear
curves for fasteners [25], [56], [57]. A more in-depth review of these models
can be found in [58].

Analytical models

Lantos model [53], [54]: The goal of the model was to predict the actual
force in each of the fasteners of a single-row joint. The model is based on
several simplifying assumptions, such as uniform stress in members and a
linear load-displacement law for the fasteners.

The joints are a symmetric wood-to-wood splice, composed of two outer
members (index O) and an inner middle member (index I). A tensile load
Pmax acts parallel to the grain on a joint of a row of nf equally-spaced fasteners
(spacing equal to S). The model takes the following assumptions:

• Linear-elastic behaviour of the wood and the fastener.

• Constant axial stress across each wood cross-section.

• Identical spacing (S) between fasteners; single fastener row.

• Stiffness of a fastener loaded in shear γf (ratio of fastener force to fas-
tener displacement).

• PO,0 = Pmax at one end, PO,nf
= 0 at the other.

The interpretation of these parameters is illustrated in Figure 2.4.
PO,i and (PI,i) are the axial force in the outer (inner) member just after

fastener i, and ∆i is the displacement of fastener i.
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In-1 In+1In

S
ε0Δ2

S

O1 O0O2

ε1 Δ1

1st fastener2nd fastener

Figure 2.4: Definitions for Lantos model. Redrawn from [53].

Fastener equilibrium: PF,i = PO,i−1 − PO,i = γf · ∆i,

(2.25)

Axial strain compatibility: ∆i − ∆i+1 = εI S − εO S (2.26)

εO = PO,i

EO ·AO
, εI = PI,i−1

EI ·AI
,

(2.27)

Cut equilibrium: PO,i + PI,i = Pmax, i = 0, . . . , nf . (2.28)

Dimensionless parameters:

ω = 2 + γf · S ·
(

1
EO ·AO

+ 1
EI ·AI

)
, Φ = γf · S

EI ·AI
. (2.29)

Eliminating ∆i and PI,i from Equation 2.25–Equation 2.28 yields

PO,i+1 − ω · PO,i + PO,i−1 = Φ · Pmax, i = 1, . . . , nf − 1. (2.30)

The characteristic equation of the homogeneous part of Equation 2.30 gives
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the roots

m1,2 = ω ±
√
ω2 − 4
2 , and define µ = Φ

2 − ω
.

The general solution is

PO,i = A1 ·mx
1 +A2 ·mx

2 − µ · Pmax

where constants A1 and A2 follow from the two boundary conditions PO,0 =
Pmax and PO,nf

= 0. After substitution, one obtains the closed form

PO,i = Pmax

[
−µ+mx

1 · (1 + µ) − (mx
1 +mx

2) · m
x
1 · (1 + µ) − µ)
(mnf

2 −m
nf

1 )

]
. (2.31)

The dimensionless factor of “group efficiency” αgroup can be defined as:

αgroup = 1
nf ·max(C1, C2) (2.32)

Where C1, C2 are modification factors. αgroup = 1 would mean perfect,
uniform load sharing; typical values are well below 1. The load distribution on
the individual fasteners is more uneven when the joined parts are more flexible
rather than stiffer, when all other parameters are kept constant. Beyond a
certain value of fasteners (nmax), given that the other parameters are fixed,
adding more fasteners doesn’t increase the total capacity of the connection
because the load concentrates near the loaded end.

Equation 2.30-Equation 2.32 therefore provide a complete, force-based pre-
diction of load distribution for any straight row of DTF. The American wood
design standards eventually adopted Lantos solution (in a form consolidated
by Zahn [59]) to calculate the required group action factor Cg.

Cramer model Cramer [55]: Publishing almost simultaneously with Lantos,
[55] presented a combined theoretical and experimental study on the load
distribution in steel-to-timber joints with a single row of bolts. All derivations
apply only to forces below the proportional limit of wood and steel.

• nf bolts are arranged consecutively with a constant spacing r.

• Each bolt deforms by a combined slip y = ye + yb, where
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2.4 Modelling of timber joints

– ye is the elastic embedding slip in the wood.
– yb is the local bearing-compression of the bolt against the steel

plate.

• Axial elongations of the wood core and of the two outer steel plates
between two bolts are treated as additional springs in series.

• Stress concentrations around the holes are included with Schulz magni-
fication factor β(p),w.

The elastic slip in the wood of the bols is:

ye = λ

k

cosh(λ · tw) + cos(λ · tw)
sinh(λ · tw) + sin(λ · tw) , λ =

√
4Eb · Ib

kf
(2.33)

With Eb and Ib, the bolt Elastic modulus and second moment of area, tw is
the thickness of the wooden member, and kf is the foundation modulus of the
wood.

The local bearing-compression in the steel plates is:

yb = 1
2tb · Eb

+ 1
2tp · Ep

, (2.34)

where tp and Ep are the thickness and elastic modulus of the steel plate.
Taking the reciprocal of Cramer’s compliance coefficients gives two dimen-

sionless axial stiffness factors:

Sp = 1
Kp

= 2bp · tp · Ep · y
βp · r

, Sw = 1
Kw

= bw · tw · Ew · y
βw · r

, (2.35)

for the steel plates (p) and the wood core (w), respectively. Their ratio

ψ = Sp

Sw

controls how the external load is shared among the bolts.
The determining equation for the force in fastener i is the following:

Pi = Pi−1 + (Kp +Kw)
i−1∑
j=1

Pj − Kw F, i = 2, . . . , n, (3-73)
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with
Kp = βp r

2 bp tp Ep y
, Kw = βw r

bw tw Ew y
. (3-73.a,b)

Where:

Pi force in fastener i

F external (total) load on the joint

βp(w) Schulz magnification factor for the connected members

bp(w) width of the connected members

tp(w) thickness of the connected members

Ep(w) Elastic modulus of the connected members

r fastener spacing

y effective lever arm of the load path

With (p. . . plate, w. . . wood). Cramer graphed the percentage load Pi/F

for a range of ψ and nf . For a four-bolt row with identical geometry and the
extreme case ψ = 0.5, the two outer bolts each carry P1 = P4 ≈ 0.33F , in
agreement with Lantos calculation. Once the factor ψ is known, the load of
the outer and inner bolt can be determined for any value of nf .

According to the Cramer model, the load sharing among the bolts depends
on the relative stiffness of the steel plate and the wood. The more the timber
member and steel plate(s) have comparable stiffness, the more evenly the load
is distributed. The opposite happens if one of the two is much stiffer than the
other.

Semi-analytical models

Wilkinson [57]: Wilkinson found that Lantos and Cramer ideal elastic mod-
els both slightly over-predict the load-carrying capacity of multi-bolt joints due
to the nonlinear behaviour of the fasteners. By incorporating piecewise-linear
load-displacement curves into the analysis, Wilkinson was able to predict the
capacity of multi-fastener joints more accurately.

Wilkinson [57] generalised the analytic approaches of Lantos [53] and Cramer
[55] by (i) allowing arbitrary bolt spacing, (ii) incorporating initial slip, and
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(iii) assigning an individual, piece-wise linear load-displacement curve to ev-
ery fastener. The description of the joints is illustrated in Figure 2.5 For bolt

r1 r2 ri rn-1

BOLT N.

F

1 2 i i+1 n-1 n

r3

3 4

F

F

F/2

F/2

Figure 2.5: Joints analyzed by Wilkinson. Redrawn and adapted from [57].

i on branch j of its experimental load-displacement curve the instantaneous
relation is idealised as:

δi = δ∗
ji + (Pi − P ∗

ji) · Yji, (2.36)

where (δ∗, P ∗) denote the end-points of branch j and Yji is the compliance:

Yji =
δ∗

j(i+1) − δ∗
ji

P ∗
j(i+1) − P ∗

ji

(2.37)

The deformations of the joint components are:

ri + ∆rwi + δi+1 = ri + ∆rpi + δi (2.38)

Where ∆rpi and ∆rpi are defined as:

∆rwi = ri

Aw · Ew
· (F −

i∑
k=1

Pk) (2.39)

∆rpi = ri

2Ap · Ep
·

i∑
k=1

Pk (2.40)

with spacing ri, wood area Aw , elastic wood modulus Ew and steel plate
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area Ap and elastic steel modulus Ep. Substituting Equation 2.36, Equa-
tion 2.39 and Equation 2.40 in Equation 2.38 for the two adjacent segments,
i− 1→ i and i→ i+1, the following Equation can be obtained:

−ri−1

ri
·Yj(i+1)·Pi+1+

[
Yji·
(

1+ri−1

ri

)
+ ri−1

2Ap · Ep
+ ri−1

Aw · Ew

]
·Pi − Yj(i−1)·Pi−1+

δ∗
ji ·
(

1 + ri−1

ri

)
− δ∗

j(i−1) − ri−1

ri
· δ∗

(j+1)i − P ∗
ji · Yji ·

(
1 + ri−1

ri

)
+

P ∗
j(i−1) · Yj(i−1) + ri−1

ri
· P ∗

j(i+1) · Yj(i+1) = 0. (2.41)

The Equation 2.41 can be written for every bolt of the joint, forming an
n × n linear system that is re-solved at each load increment and the δ∗, P ∗

terms update whenever a bolt changes branch.

Jorissen: Jorissen [25] improves the Wilkinson and Cramer models by as-
signing each bolt a nonlinear load-displacement curve, with an initial slip.
He also represents the timber between bolts as two parallel springs. The re-
sulting equilibrium-compatibility equations are then solved numerically via
an iterative algorithm to calculate the load carried by each bolt. The model
assumptions are the following:

• Timber members are symmetric and loaded in pure tension parallel to the
grain.

• The wood between adjacent fasteners is linear-elastic; its axial stiffness is
represented as follows:

ks,i = Es,i ·As

a1,i
, km,i = Em,i ·Am

a1,i

where a1,i is the bolt spacing, Em and Es are the Elastic Modulus of the
timber of the central and side wood pieces, Am and As are their loaded
areas.

• Each dowel is a nonlinear spring with initial slip δ0,i, modelled with the
Foschi model:

Fi(δi) =
[
Ft+Kin ·(δi−δ0,i)

]
·
[
1−exp

(
− Kp(δi−δ0,i)

Ft

)]
, 0 ≤ Fi ≤ Fsingle .

30



2.4 Modelling of timber joints

• Geometric nonlinearities are neglected.

The governing equations are the following:

∆i = ∆i−1 +
i−1∑
k=1

Fk

km,i−1

= δi +
i∑

j=2

( nf∑
k=j

Fk

ks,j−1

) (2.42)

δi = Fi

kb,i
(2.42)

ks,i = Es,i As

a1,i
(2.42a)

km,i = Em,i Am

a1,i
(2.42b)

Iterative solution of Equation 2.42 yields the full load-sharing history Fi for
nf fasteners, accounting for progressive engagements of fasteners due to δ0,i.

Adopted semi-analytical joint model: In [56], [60], [61] a semi-analytical
joint model based on kinematic and equilibrium considerations was applied
to derive the load-displacement and the moment-rotation behaviour of timber
joints. The model is based on the following assumptions:

• The deformation of the timber matrix between dowels was neglected.

• Nonlinear springs representing the dowels.

• The fasteners are subjected to the same displacement.

For each displacement increment ∆v,i, the force in the multi-fastener Fmulti
is determined based on the stiffness matrix at that displacement value:

Fmulti = K · ∆v,i =

Fmulti,x

Fmulti,z

Mmulti,y

 = K ·

∆vx

∆vz

∆φy

, (2.43)
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With

K =

Kxx Kxz Kxy

Kzx Kzz Kzy

Kyx Kyz Kyy

 , (2.44)

which contains the axial, the shear and the bending stiffness.

3D and 2D FEM models
An overview of the possible 3D and 2D finite element models is given in [62].
The 3D models can be solid or based on a beam-on-foundation model. The 3D
solid FEM models the contact between the fastener and the wood through a
surface-to-surface contact with a penalty. Large deformations and convergence
problems limit the model applicability. In beam-on-foundations models, the
fastener is modelled by a solid element and nonlinear springs are used to
model the contact with the surrounding wood [63]. In case of inclined STS,
the springs can be placed parallel and perpendicular to the grain direction or
placed parallel and perpendicular to the fastener axis. In the first case, they
represent the embedment properties parallel or perpendicular to the grain; in
the second case, they represent the withdrawal and the embedment properties
at an angle to the grain.

2.5 Statically indeterminate structures
This section provides an overview of indeterminate timber structures. Some of
the common joint types are described and illustrated through relevant example
cases. Structural indeterminacy in timber offers significant potential due to
the economy and improved safety through redundancy and load redistribution.
It also introduces challenges in analysis, detailing, and construction. Despite
these challenges, engineers are drawn to this design approach because it can
deliver cost-effective solutions while enhancing structural reliability [64].

Portal frames
Portal frames are usually used in large-span industrial buildings due to their
structural efficiency [65]. The joints between the rafters and columns, as well
as at the rafter apex, are typically designed as moment-resisting joints (MRJs)
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to ensure frame rigidity and lateral stability. The joints can be realised in
different ways. Examples of employed joints include joints with dowels and
slotted-in plates, which are considered semi-rigid, and GiR or finger joints,
which is regarded as clamped [66]. In the case of joints with dowels, different
load orientations can be present in multi-dowel joints, which consequently
leads to an unequal distribution of the load to the individual dowels. The
frame corner can also be realised using GiR or together with steel profiles
[67]. Alternatively, also with finger joints can be realized, which are not
ductile and are challenging to manufacture onsite. STS are also employed,
either to reinforce bolted joints as reinforcement or as the primary fastener
in moment joints. An example is the project designed by Woodplan GmbH,
which was realised in Risskov, Denmark. The project was an extension to an
already existing nursing home, which was built in 2013. The project extends
over one plan and will be used as a meeting room for the nursing home’s
residents. The main structure of the extension is statically independent of the
existing building. The project involved steel-to-timber joints with STS. The
screws had a nominal diameter of 9 mm and a total length of 380 mm with a
load-to-screw axis angle of 45◦. This type of joint is illustrated in Figure 2.6.

(a) (b)

Figure 2.6: Joint in a portal frame with inclined self-tapping screws, Ris-
skov, Denmark. (a) Photo: Woodconstruction A/S, (b) Draw-
ing: Woodplan GmbH.
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Continuous floors
Timber concrete composite (TCC) floors are often designed as simply sup-
ported. Concrete is used in the compression zone of the floor cross-section,
while timber is positioned in the tension zone. These two materials are con-
nected through shear connectors, forming an efficient hybrid system. Projects
where TCC floors were employed are e.g. the Anna Freud “Kantor” Centre
in London and the eight-storey Life-Cycle-Tower ONE in Austria [68], [69].
TCC floors are primarily used for spans of approximately 6 to 8 m, with their
design being predominantly governed by serviceability criteria, such as limit-
ing mid-span vertical deflection. To reduce midspan deflections, multi-span
systems might be used. Lately, researchers recognised the potential of multi-
span TCC floors and investigated the mechanical behaviour of such floors
experimentally and numerically [69], [70]. Continuity transforms a TCC floor
from an isostatic, single-span beam into a statically indeterminate plate/beam
system that develops both positive and negative bending moments.

Arches and trusses
Traditional arches and trusses are often determinate (e.g. a three-hinged arch,
or a simple truss with pinned joints). But variations exist that make them
indeterminate; for example, a two-hinged glulam arch (fixed at the base with
no hinge at the crown) introduces one extra reaction (horizontal thrust is not
statically determinate) [12] (Figure 2.7).

Figure 2.7: Structural systems for arches: three-hinged arch, three-hinged
arch with interior joints, two-hinged arch and interior joints.

Modern long-span timber arches (for stadium roofs, etc.) frequently use
moment-resisting base connections or splices, making them indeterminate and
stiffer. One example of MRj used to splice a three-hinge arch is represented by
the Singapore roof structures [11] (Figure 2.8-Figure 2.9). The joint is realised
using steel plates and inclined STS, which resist both tensile and compressive
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forces generated by moments. Symmetrical central plates on each side resist
shear forces.

(a) (b)

Figure 2.8: (a) Arch with moment resisting joints during construction, (b)
external view of the roof arch. Photo: Ermanno Acler [11].

Figure 2.9: Illustration of the moment resisting joints with inclined STS and
steel plates used for the arch of the University Sport Hall (Sin-
gapore). Reproduced from the author’s licentiate thesis [71].

Gridshells and domes
Due to recent advancements in computational technology, the design of com-
plex timber structures such as domes and gridshells has become more popular
[72]. These structures primarily resist loads through axial forces in the mem-
bers. In geodesic domes, composed of rigid triangular units, the loads are
distributed without the need for additional bracing. However, joint behaviour
is often simplified in design, assuming pinned or clamped joint behaviour,
although it significantly affects structural performance and failure. The dom-
inating failure in these structures is usually buckling, which is affected by
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the boundary conditions of the members, i.e. by joint stiffness. Similarly,
assumptions of joint stiffness are also critical in gridshell for the same moti-
vation. Examples include a reticular dome in Brindisi, Italy, with steel plate
joints designed to resist construction-phase forces. In this case, steel plates
and inclined STS are used to realise the joints (Figure 2.10).

(a) (b)

Figure 2.10: Reticular dome in Brindisi, Italy. (a) internal view, (b) external
view. Rubner. Photo: Oliver Jaist Fotografie

2.6 Reliability analysis

Methods of structural reliability

Structural reliability analysis aims to determine the probability of failure of
a system according to one or more failure modes in the presence of different
uncertainties. Each one of the failure modes is defined by a model and a limit-
state function g(X) (also called performance function), and it is expressed as
the difference between resistance, R, and load, E. Both capacity and demand
depend on the vector of random variables X.

The probability of failure is defined as follows [73]:

Pf =
∫

Df

fX(x)dx =
∫
Rn

1Df
(x) fX(x) dx (2.45)

The indicator function 1Df
(x) takes the value 1 in the failure domain Df

and 0 everywhere else:
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1Df
(x) =

1, g(x) ≤ 0

0, g(x) > 0
(2.46)

fX() is the probability density function of the vector of random variables
X and Df is the failure domain where g(X) ≤ 0. The probability of failure
can also be represented using a reliability index, which is defined as follows:

βreq = −ϕ−1(Pf ) (2.47)

ϕ is the standard normal cumulative distribution function. Except for trivial
cases, Equation 2.45 rarely has a closed-form solution. Consequently, approx-
imate analytical methods (e.g., First Order Reliability Method/Second Order
Reliability Method), simulation techniques (Monte Carlo, Importance or Sub-
set Sampling), or Adaptive Surrogate-Based approaches (polynomial chaos,
Gaussian-process/Kriging models) are employed.

Monte Carlo Simulation

Given a sample of size N of the input random vector X, the unbiased Monte
Carlo Simulation (MCS) estimator of the expectation value in Equation 2.45
is given by [73], [74]:

P̂f = 1
N

N∑
i=1

1Df
= (Xi) = Nf

N
(2.48)

Nf describes the number of samples such that g(X) ≤ 0. For large enough
N , the central limit theorem guarantees that P̂f follows asymptotically a
normal distribution:

P̂f ∼ N (Pf , σ
2
P̂f

) (2.49)

With σ
P̂f

=
√

1−P̂f

N . The coefficient of variance (CoV) can be calculated
as:

CoV =

√
1 − Pf

N · Pf
(2.50)

This means that when estimating small probabilities of failure, the number
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of samples increases. Therefore, for applications that require long computation
times, the use of alternative methods, such as approximation or metamodelling
methods, becomes necessary.

Approximation methods

Importance Sampling (IS) is a combination of First Order Reliability Method
(FORM) and MCS. First, the design point by FORM is computed. Then,
a shifted multinormal probability density function (PDF) is used, which is
centred around the design point. Thanks to this shift, a smaller sample size
is necessary compared to a crude MCS.

An alternative method to reduce the sample size needed to estimate the
probability of failure is represented by Subset simulation (Subset). This
method was introduced by Au and Beck [75] that translated the problem
of estimating a certain probability of failure in solving a series of simpler re-
liability problems with intermediate failure thresholds. Thus, the probability
of failure is calculated as [73]:

Pf = P(Dm) = P
( m⋂

k=1
Dk

)
= P(D1)

m−1∏
i=1

P
(
Di+1 | Di

)
. (2.51)

With the sequence of failure domainsD1 ⊃ D2 ⊃ · · · ⊃ Dm = Df such that
Df =

⋂m
k=1 Dk.

Metamodelling methods

When evaluations are demanding in terms of time, surrogate model-based
approaches can be used. The limit state equation in this case is replaced by
a metamodel such as Polynomial chaos expansion (PCE) or Gaussian process
modelling, also known as Kriging. These samples, however, are generally not
optimal for estimating the failure probability. Thus, a more sophisticated
methodology, known as active learning, can be employed.

1. Based on the experimental design, a surrogate model is built.

2. The surrogate model and a reliability estimation algorithm is used to
estimate Pf .
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3. The convergence of the algorithm is checked according three criteria: the
first group is related to the learning function, the second one is based
on the accuracy of estimated failure probability and last one concerns
the stability of the failure probability.

4. If the convergence is not reached, the experimental design is enriched
by a selection of one pair of sample points Xenr, g(Xenr) based on the
learning function. The learning function gives information about which
points are most likely to increase the accuracy of the surrogate, once
added to the experimental design (and thus, of the probability of failure).

The flowchart of this method is illustrated in Figure 2.11.

Build an initial
experimental design

Build a surrogate
model ĝi using εi

Estimate the failure
probability pi using ĝi

Converged?

End

Enrich the
experimental design

i = i+ 1

yes

no

Figure 2.11: Flowchart of the surrogate-model design algorithm.
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Reliability of systems

In Section 2.6, methods for estimating Equation 2.45 were discussed. That
concerned the component reliability (or failure probability). In reality, struc-
tures are more similar to a system made of more than one component. Sudret
and Marelli [73] describe a system as “a set of components whose joint func-
tioning is required to ensure the performance of the system.”. To estimate the
reliability of a system, one must identify the configurations of the components
within the system.

Three main types of configurations exist:

1. Series systems

2. Parallel systems

3. Mixed systems

The present section focuses on series systems and parallel systems, since
the third category can be described as a combination of the first two.

Series systems

A series system appears as a sequence of blocks linked in a line (Figure 2.12).

Figure 2.12: Block diagram representation of a series system

In a series system, the failure of one of the components implies the failure
of the whole system. The probability of failure of a series system is the
probability of the union of the component failure events:

Pf,series = P
( n⋃

i=1
Fi) (2.52)
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By De Morgan’s law,

P

(
n⋃

i=1
Fi

)
= 1 − P

(
n⋂

i=1
F c

i

)
. (2.53)

If the component failures are independent, then

P

(
n⋂

i=1
F c

i

)
=

n∏
i=1

(
1 − pi

)
⇒ Pf,series = 1 −

n∏
i=1

(1 − pi). (2.54)

For small failure probabilities (pi ≪ 1), only the first-order terms are kept:

n∏
i=1

(1 − pi) = 1 −
n∑

i=1
pi +

∑
i<j

pipj − · · · =⇒ Pf,series ≈
n∑

i=1
pi, (2.55)

neglecting terms of order pipj and higher. The approximation error is O
(∑

i p
2
i

)
.

Parallel systems

A parallel system is represented by a diagram block with parallel components
(Figure 2.13).

Pf,parallel = P
( n⋂

i=1
Fi

)
=

n∏
i=1

pi (2.56)

In a parallel system, the failure of the system happens only when all the
component fails. The probability of failure of such a system is the probability
of the intersection of the failure events of each component. In case the failures
are independent, then it is equal to the product of each probability.
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Figure 2.13: Block diagram representation of a parallel system

Reliability studies on timber structures

Several studies investigated the reliability of timber structures regarding the
influence of joints [5]–[7], [76]–[78].

Hansson [76] studied the effects of the nonlinear behaviour of nailed joints
with punched plates on the reliability analysis of timber trusses. The impact
of system effects and the boundary conditions on the reliability of the struc-
ture at ULS was studied. Kirkegaard [77] studied how the ductile and timber
materials affected the robustness of the timber structures. The outcome was
that even a small ductility provides extra reliability. Brühl studied the impact
of ductility (and also of the overstrength factor) [78]. It was shown that plas-
tic distribution is possible, provided that joints meet capacity, stiffness and
ductility criteria. A reliable overstrength factor was suggested for the case
of dowelled joints in a statically indeterminate beam. Schilling [7] investi-
gated the effect of semi-rigid joints on the reliability of timber trusses. While
joints are typically assumed to be pinned in trusses, they exhibit nonlinear
behaviour in reality. The study revealed that oversimplifying the modelling
of these joints results in lower reliability indices, which could lead to poten-
tially unsafe designs. It was shown that modelling these joints simplistically
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decreases the reliability indices, leading to potentially unsafe design. Caprio
[5] developed a probabilistic model of a statically indeterminate timber beam
with joints modelled as elastic, perfectly ductile. The results showed that
nonlinear behaviour impacts the reliability of the structure, underscoring the
importance of considering nonlinearities in the joints and their related vari-
ability.

43





CHAPTER 3

Analysis

This chapter outlines the methodology used to address RQ1–RQ3. Section 3.1
introduces the case study, which involves the EC5 design of a statically inde-
terminate timber beam subjected to a uniformly distributed load; this study
supports RQ3 and Paper IV. To evaluate system reliability, models for the
joints are necessary. Section 3.2 describes the methods for the construction of
the empirical-probabilistic model for single-screw joints, addressing RQ1 and
references in Paper I and Paper II. Sections 3.3 and 3.4 describe the method
for the construction of the semi-analytical model for multi-screw joints. Fi-
nally, Section 3.5 formulates the probabilistic model for the case study struc-
ture, which is related to RQ3 and is discussed in Paper III and Paper IV.

3.1 The case study

A statically indeterminate beam is the simplest example of a statically inde-
terminate structure (Figure 3.1). The moments at the joints and midspan
moments are written as a function of the coefficients α and β, which depend
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on the rotational stiffness of the joints, as follows:

α = Kθ,joints · l
24 · Em,beam · Ibeam + 12 ·Kθ,joints · l

and β = 1
8 − α. (3.1)

The coefficients α and β describe how the moment at the joint and the
midspan change according to the dimensionless stiffness of the joint kb =
Kθ,joints · l/(Em,beam · Ibeam), see Figure 3.2. Kθ,joints is the stiffness of a
joint, and Em,beam · Ibeam/l is the bending stiffness of the beam. On the
vertical axis, α and β are plotted in function of kb.

ME,joints=α·qtot·l2

ME,field=β·qtot·l2

qtot 

ME,joints=α·qtot·l2

l

Figure 3.1: Uniformly loaded beam with semi-rigid joints. From Paper IV .

Design of the structure
Different design approaches can be followed for the design of a statically inde-
terminate beam. For the sake of simplicity, two approaches are selected and
discussed: the stiffness-based approach and the capacity-based approach.

The stiffness-based approach follows the following steps:

1. Choice of rigidity level αreq:

A rigidity level between 0 and 0.0833 (clamped joint) is selected.

2. Calculation of the maximum moment:

The maximum moment along the beam is calculated as: ME,max =
max(MEd,joints,MEd,field).
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3.1 The case study

Figure 3.2: Moment at joint and at midspan in function of kb. Adapted from
Paper IV .

3. Choice of the beam section:

hbeam =

√
6 · max

(
MEd,joints,MEd,field

)
bbeam fm,d

(3.2)

4. Selection of nscrews:

Assuming the neutral axis is located at the middle of the beam height,
the total number of screws on the tension side can be determined as
follows:

nscrews = Kθ,d,ULS,joints

Kθ,ULS,joints
= Kθ,d,ULS,joints

KULS,joints · z2 (3.3)

KULS,joints represents the lateral stiffness at ULS of single-screw joints,
while Kθ,ULS,joints is the rotational stiffness of multi-screw joints. The
lever arm z, is equal to hbeam/2. The calculation for Kθ,ULS,joints is as
follows:

Kθ,ULS, joints = nscrews ·KULS,joints · z2 (3.4)

The capacity-based approach follows Steps 1–3; however, nscrews is deter-
mined based on the bending capacity of the joints MRd,joints as nscrews =
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MEd,joints/MRd,joints.

3.2 Model for single-screw joint

Experimental investigation

The experimental program included two phases. An exploratory series and a
main test series. An exploratory test series (three replicates per configuration)
was carried out to investigate the influence of some of the relevant parameters
on the load-displacement curve: test set-up (asymmetric and symmetric), STS
length, load-to-screw axis angle, friction, torque, moisture cycling and washer.
The load-to-screw axis angle was selected as a parameter to vary in the main
test series to study the variability of the load-displacement curve, since varying
this parameter markedly changed the shape of the load-displacement curve.
In the main test series, the other parameters were kept fixed (l = 200 mm,
d = 8 mm, Mtorque = 15 Nm). Plots of the curves and related discussion on
the influence of the parameters can be found in Paper II. Preliminary report
was drafted by undergraduate strudes in a Bachelor thesis supervised by the
authour [79].

The main series quantified the variability in the load-displacement curve
as a function of the load-to-screw axis angle. All tests used an asymmetric
configuration of the test setup. The protocol was based on EN 12512 [80] but
displacement-controlled: each specimen was loaded in displacement control at
1mm/min. The loading consisted of a loading up to 40% ·Fest, followed by an
unloading phase to 10% · Fest, and finally a loading phase up to failure. Fest

is the estimated load-carrying capacity. To eliminate initial slip, a 0.15 kN

pre-tension was applied at the tests of the main test series. Reaction forces
were measured by one or two load cells integrated into the test frame.

In the asymmetric setup, a single steel side plate was attached to one side
of the timber specimen and subjected to loading. An additional electronic
load cell, with a capacity of 220 kN , was connected to the machine load cell
to record the applied force (see Figures 3.3a and 3.3b).

The deformations were measured in two ways: digital image correlation
(DIC) was mainly used only in the exploratory test series, whereas linear
variable displacement transducers (LVDTs) were mainly applied in the main
test series. LVDTs were also used for specimens subjected to moisture cycling
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(a) (b)

Figure 3.3: The two asymmetric test set-ups used in the experiments. (a):
with the DIC system; (b): with LVDTs.

and the joints with rough steel plate surfaces. More details and results about
the preliminary test series can be found in Paper II.

In the main test series, the relative displacement between the steel plate
and the timber parallel to the shear plane was measured using LVDTs placed
on each side of the joint. Two additional LVDTs were placed at the top and
bottom of the steel plate to monitor the movements of the steel plate per-
pendicular to the shear plane. The displacement was measured relative to the
steel plate and in correspondence with the position of the STS (approximately
12 · d from the top border of the timber specimen) with a frequency of 8 Hz.

Materials

The steel plates, STS, and washers used in the experiments are shown in
Figure 3.4. Three plate variants were employed: (i) a plate with a smooth
surface, (ii) a plate that was blast-treated to increase steel-to-timber friction,
and (iii) a plate with a smooth surface with two milled holes to evaluate
joints with double STS. The blast plate treatment is classified as Sa 2½ (Very
Thorough Blast Cleaning) according to ISO 8503 [81]. The washer was only
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used in an exploratory test series for joints with a load-to-screw axis angle of
45◦. In the main test series, only steel plates with milled holes were used.

The material properties of the STS according to ETA are reported in Ta-
ble 3.1a. The mean value of the tensile capacity of the screw (ftens,m,exp) and
the characteristic value of the tensile capacity of the screw (ftens,k,exp) were
also estimated with experiments, conducting six tensile tests and determining
the properties in accordance with ISO 6892 [82]. The experimentally derived
properties of the screws are reported in Table 3.1b.

(a)

(b)

Figure 3.4: (a) Three types of steel plate used, from the left: first is a blast-
surfaced plate with an oval hole for the washer, second is a
smooth surface plate with a milled hole, and third is a plate
with two milled holes for a multi-screw joint. (b) STS of dif-
ferent lengths and washers. Reproduced from the author’s own
publication: [83] - CC BY 4.0.
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Table 3.1: STS geometrical and mechanical properties (a) from ETA-
11/0190 [84], (b) from experimental testing.

(a)
d [mm] dcore [mm] lscrews [mm] leff [mm] My,k [Nm] Mtor,k [Nm] ftens,k [kN]

8 5.1 ± 0.3 120/200/400 97/177/377 23 25 22

(b)
ftens,m,exp [kN] ftens,k,exp [kN]

26.3 23

Test series and parameters

An overview of the varied parameters with the corresponding number of rep-
etitions is given in Table 3.2. The load-displacement curves of joints with
double screw can be found in the Appendix A.

Table 3.2: lscrew = 200 mm , d = 8 mm, Mtor = 15 Nm.
γ Repetition Head tear-off Withdrawal

Single-screw joints
30 10 4 6
45 20 18 2
60 10 10 0
90 20 20 0

Double-screw joints
45 16* 15 1

Note: (*) 1 repetition presented one STS failing due to tear-off and another screw failing
due to withdrawal.

Empirical-probabilistic modelling
Selection of the mathematical model

One of the goals of using parametrised models for the description of the load-
displacement behaviour of timber joints is to be able to better compare the
behaviour of different joint typologies and to assess the variability in the be-
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haviour that is associated with the different parameters. Mathematical models
were fitted to the test data, performing regression along a certain region of
the curve.

The fitting of the mathematical model to the data was cast as:

min
Pmod,1,Pmod,2,...,Pmod,m

∑
j

(f(vj ;Pmod,1, Pmod,2, . . . , Pmod,m) − Fexp,j)2, (3.5)

where f(vj , Pmod,1, Pmod,2, . . . , Pmod,m) is the value of the specified regres-
sion model that is dependent on the displacement values vj and on a set of
m parameters Pmod,1, Pmod,2, . . . , Pmod,m (with m depending on the model),
and Fexp,j is j-th component of the load vector.

The models of Richard-Abbot, Foschi, Brandner, Glos and two polynomi-
als of different degrees were compared in terms of goodness-of-fit and stabil-
ity. Goodness of fit refers to the ability of a model to reproduce the load-
displacement data within the regression interval. Stability refers to the ro-
bustness of the fitted parameter set with respect to the intrinsic experimental
variability, i.e. the extent to which small perturbations in the data lead to
limited changes in parameter estimates of the model.

Determination of the model parameters

After a comparison among different mathematical models, the most suitable
one was selected to approximate the nonlinear behaviour of joints with STS;
The construction of the empirical probabilistic model of the single-screw joint
followed the following steps:

• Step1 : Nonlinear regression of the selected mathematical model to the
experimental data.

• Step2 : Assignment of a probabilistic distribution to each of the model
parameters.

• Step3 : Determination of the correlation matrix.

• Step4 : Generation of synthetic load-displacement curves.

In Step1, a parametrised analytical expression f is used to fit each load-
displacement data.
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3.2 Model for single-screw joint

yα = f(Pmod,1,α, Pmod,2,α, Pmod,3,α, . . . , Pmod,m,α) (3.6)

The m parameters of the model are in function of the parameter of influence
(in this case, the load-to-screw axis angle).

In Step2 a probabilistic distribution is assigned to each of the parameters,
based on empirical fit and theoretical consideration.

Pmod,i ∼ Dist(parameters) (3.7)

In Step3, the dependencies among the m parameters and between the pa-
rameters and the material properties are taken into account. If the correlation
between variables is considered, the parameters should be sampled together
from a joint probability distribution of the correlated parameters. This is
done by factorising the correlation matrix using the Cholesky decomposition,
as follows:

C = L LT, (3.8)

where L is triangular (lower or upper). Given a vector of independent standard
normal variates yields the correlated random vector Y. X ∼ N (0, I), the
transformation

Y = L X (3.9)

C links the material-property vector M =
(
Ebeam, fm

)
with the curve-fit

parameter vector of a single-screw joint: Pmod =
(
Pmod,1, . . . , Pmod,m

)
.

In MCS every joint is composed of nscrews screws, so Pmod was generated
nscrews times in each run. For every screw j = 1, . . . , nscrews in the joint, and
given the material-property realisation M = (Ebeam, fm), the associated pa-
rameter vector P(j)

mod =
(
P

(j)
mod,1, . . . , P

(j)
mod,m

)
is sampled conditionally. More

details about the procedure are explained in Paper IV.
In Step4, synthetic data are generated, providing 1, 2, ..., g new load-displacement

curves. The number of the sampled curves g is chosen in a way to is statisti-
cally representative of the variation of the dataset.

y1 = f(Pmod,11,α, Pmod,21,α, Pmod,31,α, . . . , Pmod,i1,α)
y2 = f(Pmod,12,α, Pmod,22,α, Pmod,32,α, . . . , Pmod,i2,α)
yg = f(Pmod,1g,α, Pmod,2g,α, Pmod,3g,α, . . . , Pmod,ig,α)

(3.10)
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3.3 Model for multi-screw joint
The empirical-probabilistic model of single-screw joint was used as input for
the multi-fastener joint model. A different load-displacement curve was STS.
The model is based on the following assumptions:

• Timber was assumed to be rigid. Thus, the deformations between the
fasteners were neglected.

• Steel plates were assumed to be rigid. Thus, the STS were subjected to
the same axial and lateral deformation.

• For each increment in displacement ∆v,i, the force in the multi-screw
model could be determined according as:

Fmulti,i(∆v,i) =
nscrews∑

j=1
Fsingle,j(∆v,i) , (i = 1, . . . , n) (3.11)

Thus, the overall load-displacement curve of multi-screw joints can be ob-
tained.

3.4 Model for moment-rotation curve
The output of the multi-screw joint is then used as input for the moment-
rotation model. The rotation point is assumed at the middle of the beam
height, and the lever arm is assumed at z = hbeam/2, the perpendicular dis-
tance from the force line of action to the rotation point while s = hbeam is the
couple arm. Thus, the moment and the corresponding rotation can be writted
as:

MR,joints,i = Fmulti,i · s, (3.12) θi = ∆v,i

z
, (i = 1, . . . , n) (3.13)

With n the number of displacement increments.

3.5 Reliability analysis of the structure
In the case of a statically indeterminate timber beam, one performance func-
tion is not enough to describe the failure domain of the structure. In fact,
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the presence of joints introduces additional complexities: failure can occur at
midspan, at the joints, or the joints themselves can fail. For each of these
cases, a corresponding limit state equation can be defined. The failure at
midspan occurs when g1 ≤ 0, where g1 is the following performance function:

g1 = MR,beam(X) −ME,field(X) (3.14)

The failure at the joints occur when g2 ≤ 0, where g2 is the following
performance function:

g2 = MR,beam(X) −ME,joints(X) (3.15)

MR,beam is the bending resistance of the beam, ME,joints is the moment
acting at joints, ME,field is the moment acting at midspan. Finally, the
ultimate rotation at the joints can be exceeded. This turns the system into a
simply supported beam, whose failure is defined when g3 ≤ 0. g3 is defined as
follows:

g3 = max(g3.1, g3.2) (3.16)

where g3.1 is the joints rotation performance function:

g3.1 = θu(X) − θreq(X) (3.17)

θreq is defined as:

θreq = qtot · l3

24 · Ebeam · Ibeam
− ME,joints · l

2 · Ebeam · Ibeam
(3.18)

g3.2 is the simply supported beam performance function.

g3.2 = MR,beam(X) −Mmax(X) (3.19)

Since they are independent, meaning that they can be defined mutually
exclusive, the total probability of failure is the sum of the single failure prob-
abilities:

Pf = P [g1 ≤ 0 ∪ g2 ≤ 0 ∪ g3 ≤ 0] (3.20)
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In some situations, the condition g3.1 ≤ 0 (ultimate rotation of the joints is
exceeded) can be considered critical, causing the failure of the entire structure.
In this case, g3 = g3.1.

Elastic-perfectly plastic curve

When the joints are modelled with a bilinear curve, the distinction between
the elastic and the plastic "mechanism" is possible. In this case, additional
limit state equations are needed. This was implemented in Paper III, where
the distinction was not made in terms of the location of failure, but in terms
of brittle/ductile. In particular, three failure modes were identified:

1. Brittle/Elastic failure: the resistance was reached at midspan or joints.
The equilibrium was reached inside the elastic domain of the joints.

2. Ductile/Plastic failure with plastic hinges: the resistance was reached
at midspan or joints. The equilibrium was reached inside the ductile
domain of the joints.

3. Ductile/Plastic failure: the resistance was reached at midspan or joints.
The ultimate rotation of the joints was exceeded, and the structural
system was evaluated as a simply supported beam.

The probability that "Brittle/Elastic failure" is defined as:

Pb,1 = P [g1 ≤ 0 ∪ g2 ≤ 0 ∩ gj1 ≤ 0] (3.21)

Where gj1 is the performance function that defines the condition of equi-
librium reached in the elastic domain of joints, defined as follows:

gj1(X) = ME,joints(X) −MR,joints(X) (3.22)

Where MR,j is the bending resistance of the joints.
The probability that "Ductile/Plastic failure with plastic hinges" is defined

as:

Pb,2 = P [g1 ≤ 0 ∪ g2 ≤ 0 ∩ gj2 ≤ 0] (3.23)
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Where gj2 is the performance function that defines the condition of equi-
librium reached in the plastic domain of joints, defined as follows:

gj2(X) = ME,joints(X) −MR,joints(X) (3.24)

Finally, the probability that "Ductile/Plastic failure" occurs after the ex-
ceedence of the ultimate joints rotation is defined as follows:

Pb,3 = P [g2 ≤ 0 ∩ gj3 ≤ 0] (3.25)

Where gj3 is the performance function that defines the condition of excee-
dence of the ultimate rotation of joints, defined as follows:
gj3(X) = θu(X) − θreq(X)

Beam-line method

The beam-line method was used to obtain ME,field and ME,joints. ME,joints

is defined as the intersection between the beam-line and the moment-rotation
curve of the joints.

The equation of the beam line is the following:

ME,joints = 2
3 ·Mmax ·

(
1 − θ

θmax

)
(3.26)

ME,field is obtained as Mmax −ME,joints.
For each load increment j, the intersection between the moment-rotation

curve and Equation 3.26 was found. The resulting ME,joints and θ are used to
compute the performance functions g1, g2 and g3 and to verify if any gi ≤ 0,
indicating failure. More details about the beam-line method can be found in
Paper IV.
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Results and discussion

This chapter presents the results obtained from the methodology in Chap-
ter 3. First, Section 4.1 reports the EC5 design outcomes for the case-study
structure (RQ3). Next, Section 4.2 provides the results for RQ1, namely the
empirical-probabilistic model of single-screw joints, as developed in Paper I
and Paper II . Section 4.3 then addresses RQ2 by constructing the multi-screw
joint model (Paper IV ). Finally, Section 4.4 presents the system reliability
analysis for the case study (RQ3; Paper III , Paper IV ).

4.1 Design of the structure

A joint needs to satisfy both the stiffness and the capacity requirements. For
this reason, not all the values of α are feasible. Feasible points first appear
at α ≥ 0.077 for joints with STS inclined 30◦ or 45◦ to the load axis, and at
α ≥ 0.074 for joints with a 60◦ load-to-screw axis angle. All the α values are
feasible for joints with a load-to-screw axis angle of 90◦. When α = 0.08, for
joints with load-to-screw axis angle of 90◦, a very large number of screws is
needed, while for the values α ≤ 0.035, the design is governed by SLS criteria.
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4.2 Single-screw joint model

Selection of the mathematical model
In this section, the models by Foschi, Richard-Abbott, Glos, and Brandner,
as well as polynomial models (described in Section 2.4), were applied to a
selection of the curves retrieved from the state of the art and the performance
of these models is compared. The curves shown in Figure 4.1 were selected to
represent a sufficiently diverse range of load-shape behaviours and to test the
goodness of the fit of the models.

Figure 4.1: Load-displacement shapes considered for the analysis.
Reproduced from the author’s own publication: [32] - CC BY

4.0.

The performance of the models was evaluated by examining the regres-
sion coefficient between the fitted mathematical models and the experimental
curve. Among the candidates, the Richard-Abbott model and a 7th degree
polynomial demonstrated the best goodness of fit. These two models were sub-
sequently assessed for stability using a dataset of load-displacement curves of
timber-to-timber joints with self-tapping screws subjected to combined axial
and lateral loading [44]. The parameters of the model in function of the load-
to-screw axis angle are illustrated in Figure 4.2. The CoVs for the 7th degree
polynomial is generally quite large and often exceeds the changes seen in the
parameters associated with variations in density groups or inclinations. This
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indicates that the variability in the coefficients is not linked to the variability
in the input data; rather, it is associated with the noise in the fitted model.
The parameters of the Richard-Abbott model exhibit a clear trend in both the
mean value and variability, depending on the load-to-screw axis angle, as well
as between datasets characterized by high and low density. The variability of
these parameters falls within the expected range for timber joints. Further
details regarding parameter estimates can be found in Paper I.

(a) Richard-Abbott
model: stiffnesses

Kin and Kp

(b) Richard-Abbott
model: force
intercept Ft

(c) Richard-Abbott
model: shape
parameter a1

(d) Polynomial
coefficient g of 7th

degree

(e) Polynomial
coefficient f of 7th

degree

(f) Polynomial
coefficient e of 7th

degree

Figure 4.2: Variation of the model coefficients in dependency of the load-to-
screw axis angle. Reproduced from the author’s own publication:
[32] - CC BY 4.0.
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Empirical-probabilistic model
Based on the procedure described in Section 3.2, the empirical-probabilistic
model of the single-screw joint was developed. The probability distribution
of each regression parameter must be identified to accurately model the me-
chanical behaviour of joints and their variability. Fitting a distribution can
also provide insights into the data behavior, variability, and underlying phys-
ical phenomena. The distribution is selected based on the variability of the
data and the physical meaning of distribution parameters. The values of the
parameters Kin, Ft, a1, and vu are expected to always be positive; thus, a
lognormal distribution is selected for these parameters. A normal distribution
is chosen for the parameter Kp since it follows the data and can also assume
both negative and positive values. It adapts to the case of joints with inclined
STS and softening behaviour (negative value) and to the case of joints with
STS perpendicular to the grain with a hardening behaviour (positive value).

An initial slip vin,shift, even if this did not occur in the analysed test,
might always be possible due to hole tolerance. It is assumed equal to a
random realisation from the uniform distribution over the 1 mm hole-clearance
tolerance, i.e.

vin,shift ∼ U
(
0, +1 mm

)
. (4.1)

The distribution characteristics for each value of load-to-screw axis angle
are summarised in Table 4.1. A probabilistic distribution was assigned to each

Table 4.1: Overview of the parameters and their CoV for different load-to-
screw angles.

γ Kin Ft Kp a1 vu

[◦] [kN/mm] [kN] [kN/mm] [-] [mm]
30 18.35 (0.21) 35.1 (0.06) -4.10 (0.14) 8.10 (0.53) 2.53 (0.07)
45 16.24 (0.14) 38.25 (0.24) -4.90 (0.56) 5 (0.31) 2.97 (0.13)
60 8.84 (0.10) 39.80 (0.25) -3.64 (0.37) 4.19 (0.29) 4.47 (0.10)
90 1.63 (0.32) 2.75 (0.75) 0.76 (0.20) 7.26 (0.58) 13.85 (0.16)

parameter, and the correlation matrix among the parameters was computed,
as illustrated in Table 4.1 and Table 4.2.

For the load-to-screw axis angle of 30◦ and 45◦, both head tear-off failure
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Table 4.2: Correlation matrix of the regression parameters as a function of
the load-to-screw axis angle.

γ 30◦ 45◦

Ft Kp a1 vu ρden Ebeam, fm * Ft Kp a1 vu ρden Ebeam, fm*

Kin 0.72 -0.72 -0.85 -0.77 0.40 0.20 0.42 -0.49 -0.43 -0.71 0.40 0.20
Ft 1.00 -1.00 -0.60 -0.47 0.40 0.20 1.00 -0.99 -0.81 -0.15 0.20 0.00

Kp 1.00 0.60 0.47 -0.40 -0.20 1.00 0.80 0.19 -0.20 0.00
a1 1.00 0.46 -0.20 0.00 1.00 -0.07 -0.20 0.00
vu 1.00 -0.20 0.00 1.00 -0.20 0.00

ρden 1.00 0.60 1.00 0.60
Ebeam, fm 1.00 1.00

γ 60◦ 90◦

Ft Kp a1 vu ρden Ebeam, fm * Ft Kp a1 vu ρden Ebeam, fm*

Kin -0.25 0.26 0.14 -0.79 0.40 0.20 0.10 0.28 -0.19 -0.50 -0.40 -0.20
Ft 1.00 -0.95 -0.93 0.60 0.20 0 1.00 -0.75 -0.40 0.10 -0.20 0

Kp 1.00 0.86 -0.48 -0.20 0 1.00 0.40 -0.34 0.00 0
a1 1.00 -0.51 -0.20 0 1.00 0.02 0.00 0
vu 1.00 -0.40 -0.40 1.00 0.40 0.20

ρden 1.00 0.60 1.00 0.60
Ebeam, fm 1.00 1.00

* The correlation between Em and fm is set to 0.8 as prescribed by JCSS [18].

and withdrawal failure of the STS occurred. The load-displacement curves
presented different characteristics: head-tear off failure of the screw resulted
in a drop in load at the failure point, while withdrawal failure of the STS
resulted in a softening post-peak behaviour. Therefore, the random curves are
generated reflecting the probability of occurrence of a failure mode, calculated
as:

PHT O = nHT O

ntot
, PW IT H = 1 − PHT O. (4.2)

PHT O is the probability of occurrence of the head-tear off failure, PW IT H

is the occurrence of the withdrawal failure, nHT O is the number of tests
characterized by head-tear off failure, while ntot is the total number of the
tests. For joints with STS with load-to-screw axis angle of 30◦, PHT O = 60%,
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Figure 4.3: Generated load-displacement for load-to-screw axis angles of 90◦,
60◦, and 45◦. Reproduced from the author’s own publication:
[83] - CC BY 4.0.

PW IT H = 40%. For the angle 45◦, PHT O = 90% and PW IT H = 10%. For the
angles of 60◦ and 90◦, PHT O = 100%.

Since the variability of the parameters in case of withdrawal failure of the
STS cannot be reliably determined, the load-displacement curve and its vari-
ability are assumed identical to those of head tear-off, with the sole modifi-
cation that the curve is extended until the load decreases to zero rather than
truncated at the ultimate displacement vu.

Sampling synthetic curves from the model yields load-displacement curves
whose envelope fully contains the experimental load-displacement curves, as
can be observed in Figure 4.3.

4.3 Multi-screw joint model
The empirical-probabilistic model for single-screw joint developed in Section
4.2 was used as input for developing a semi-analytical (statistical) model of
multi-screw. Three characteristics that usually describe the shape of a load-
displacement curve: the mean elastic secant stiffness K10−40, the mean ca-
pacity Fmax and the mean absolute ductility Dab. K10−40 was computed as
secant stiffness at to load levels (40% Fmax and 10% Fmax), The load-carrying
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capacity Fmax is the maximum force the joint can experience, and the ductil-
ity follows the absolute definition, i.e. Dab = vu − vy. vy is the displacement
at the yielding point, and vu is the ultimate displacement at failure or a 20%
drop of the curve after the load peak. Increasing nscrews had no effect on
K10−40/nscrews, Fmax/nscrews and Dab for all the angle except for the 90◦

case. In this case, Fmax/nscrews and Dab notably decreased. The introduc-
tion of initial slip had small effect on K10−40/nscrews for all the angles, while
no remarkable effect either on Fmax/nscrews and Dab and on relative CoVs
compared to the case of no initial slip. As nscrews increases, the CoVs for
every angle falls with each additional screw. All the discussed effects dimin-
ish and eventually plateau: the mean values of K10−40/nscrews, Fmax/nscrews

and Dab converge, falling to asymptotic levels (Figure 4.4).

Figure 4.4: Variation of the mean values of K10-40/nscrews, Fmax/nscrews,
and Dab and related CoVs in function of nscrews. From Paper IV .

4.4 Reliability analysis of the structure
In the first part, different methodologies to estimate the reliability of the
structures are compared in terms of computational time and accuracy. In the
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second part of this subsection, after the selection of the most suitable method-
ologies, the full reliability analysis is performed on the statically indeterminate
timber beam incorporating nonlinear joint behaviour and the related variabil-
ity.

Methodology selection
MCS, Subset, IS and APCK-Subset were evaluated on the structure in Fig-
ure 3.1, assuming an elastic-perfectly plastic material model. The characteris-
tic load was taken as Gk = 4.6 kN/m, a typical value for roof beams. Timber
grade C24 served as the material basis for all calculations. The probabilistic
analysis was performed using UQLAB toolbox [74]. The maximum sample size
was set as the stopping criterion for MCS, Subset, and IS. MCS was tested set-
ting the maximum sample size equal to 107 and 106. The initial value m0 for
the Active learning algorithm was set to 10. The algorithm was stopped when
the maximum sample size was reached or the default convergence criteria were
met.

The resulting probabilities of failure are summarised in Table 4.4. MCS
(maximum sample size equal to 106) returned a good estimation of the prob-
ability of failure in relatively low computational time. The accuracy can be
improved by increasing the sample size, but at the expense of computational
time. For example, increasing the sample size from 106 to 107 resulted in
increased computational time by a factor of ≈ 45.

Table 4.4: Comparisons of different reliability methods.
Method Evaluations Pf CV Time
MCS 107 2.85 · 10−4 0.02 89.44 sec
MCS 106 2.76 · 10−4 0.06 2.18 sec
Subset 36998 2.56 · 10−4 0.09 0.17 sec
IS 1196 2.94 · 10−4 0.07 0.32 sec
APCK-Subset 162 4.02 · 10−4 0.02 1211 sec

Subset required a smaller sample size (≈ 3 · 104), but the estimation is
characterised by less accuracy (CoV = 0.09) if compared to MCS. IS requires
an even smaller sample size (≈ 1 ·102), with improved accuracy (CoV = 0.07)
if compared to Subset, but less accuracy if compared to MCS with a sample
size of 107. APCK-Subset did not return a satisfactory estimation of the
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probability of failure due to the complexity of the problem and the larger
number of performance functions involved.

Full reliability analysis
A comprehensive reliability analysis was conducted, considering the nonlinear
behaviour of the joints. The MCS sample size (2 · 106) was calibrated to
achieve an accurate estimation of the target failure probability, Pf = 2.2·10−5.
The resulting estimate has a CoV of 0.15. The input variables are listed in
Table 4.5.

Table 4.5: Distribution parameters of the considered random vari-
ables.

Input variable Unit Distribution Char V. Mean V. CV
G∗ kN

m Normal - 0.65 0.1
Q∗ kN

m Gumbel 5.85 3.21 0.3
f∗

m
N

mm2 Lognormal 30 38.8 0.15
E∗

beam
N

mm2 Lognormal - 13′000 0.13
Wel m−3 Constant Design based -
l m Constant - 10 -

(*) Based on the indication contained in JCSS [18].

First, the influence of the ratio KULS/KSLS on Pf was studied, then for
the case when Pf did not meet the target values, the ratio KULS/KSLS was
calibrated to restore the target value of Pf .

Influence of the ratio KULS/KSLS

For the case KULS/KSLS = 2/3, the failure probability Pf exceeds the target
value when α ≤ 0.07 for joints with a load-to-screw axis angle of 90◦. For
all other angles, Pf remains close to the target across the examined range of
α (Figure 4.5). For the case KULS/KSLS = 1, Pf exceeds the target value
for joints with a load-to-screw axis angle of 90◦ and α ≤ 0.07. For the other
angles Pf stays unchanged for the feasible values of α (Figure 4.6).
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Figure 4.5: Probability of failure as a function of α (KULS/KSLS = 2/3).
From Paper IV .

Figure 4.6: Probability of failure as a function of α (KULS/KSLS = 1).
From Paper IV .

Calibration of the ratio KULS/KSLS

For cases where the estimated failure probability Pf exceeded the target, the
ratio KULS/KSLS was calibrated. A combined grid-search and bisection al-
gorithm was employed to determine the ratio that satisfies the target value of
Pf . The calibrated ratio can be written as a function of α. For α ≤ 0.063,
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the ratio is almost constant, with an average value of 0.56. For α ≥ 0.067, the
ratio is constant and equal to 1 (Figure 4.7). This can be explained by the fact
that when the joints are designed as clamped or close to clamped conditions,
the equilibrium points fall inside the elastic region, making redundant the use
of the stiffness reduction ratio. For the other load-to-screw axis angle, no
calibration was needed, since Pf already was within a threshold of the target
value. In this case, the ratio KULS/KSLS is equal to 1.

Figure 4.7: Calibration of the ratio KULS/KSLS in function of α. From
Paper IV .
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CHAPTER 5

Conclusions and future work

5.1 Conclusions
Despite advances in timber design codes, the reliability of statically indeter-
minate beams with nonlinear joints remains underexplored. This thesis aims
to quantify the structural reliability (probability of failure Pf /reliability in-
dex βrel) of statically indeterminate timber beams by explicitly modelling the
nonlinear behaviour and statistical variability of the joints together with ma-
terial and load uncertainties. To achieve this aim, a three-level probabilistic
framework was developed, from the development of the single-screw model
to the development of the probabilistic model of the structure. This chapter
presents the main conclusions of this thesis. Following the general conclusions,
the main findings are organized in relation to the research questions described
in Section 1.2.

General conclusions
The empirical probabilistic model is useful to model the nonlinear behaviour
of joints and their variability. It can serve as input for a more complex model
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involving multiple screws, as well as for structural modelling and reliability
analysis. This will allow structural analysis of complex structures at different
load levels. The multi-screw joint illustrates how the variability in the load-
displacement curve, along with associated properties like stiffness, capacity,
and ductility depends on the number of fasteners used.

Results of the calibration of the stiffness reduction ratio highlighted how
the stiffness reduction ratio depends on the nonlinear behaviour of the specific
joints where the equilibrium points fall inside the joint curve. A unique ratio
can hardly cover all the design situations conservatively. The use of calibrated
stiffness ratios ensure the target level of reliability.

RQ1: Single-screw joint model
Two inputs were required to answer RQ1: (i) a mathematical model that could
approximate the nonlinear load-displacement curve and the related variability;
(ii) experimental data as a basis for the single-screw model.

Foschi, Richard-Abbott Glos, Brander, and polynomial models were fitted
to representative experimental load-displacement curves of timber joints from
the state of the art, and the goodness of fit was evaluated. Subsequently, the
stability, i.e. how well the models represent the variability of the curves, of
two best models in terms of goodness of fit: the Richard-Abbott model and
the polynomial of 7th degree, was evaluated. The main conclusions of the
thesis were the following:

• Mathematical model comparision:
The models of Foschi and Richard-Abbott are comparably simple and
showed good performance on curves with or without softening. They can
be too rigid to represent the local features of some curves, such as hard-
ening or residual capacity at very large displacements. The Brandner
and Glos models can approximate the softening with a nonlinear trend.
However, they are not suitable to represent the load-displacement curves
without softening branches. A Polynomial of sufficiently high degree can
approximate curves characterised by very complex shapes, but they fail
to represent the variability associated with the load-displacement curve.

• Consideration of the initial slip:
For any model, a small horizontal shift to the load-displacement curve
can be applied, representing the initial slip. Alternatively, when using
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the Glos model or a sufficiently high-degree polynomial, the initial slip
is directly formulated in the model, preserving the continuity of the
function throughout.

• Mathematical model stability:

Only the Richard-Abbott model was able to capture the variability in the
test data through its regression parameters, whereas fitting a polynomial
of 7th degree to the curves resulted in significant parameter estimates
with noise.

An experimental campaign was conducted on steel-to-timber single-screw
joints at several load-to-screw axis angles, with 10–20 repetitions per config-
uration to characterise the variability. Once a suitable mathematical model
and the experimental data were obtained, the construction of the empirical-
probabilistic model could be initiated. The following conclusions were derived:

• Probabilistic distribution assignment:

A lognormal distribution for the Richard-Abbott parameters Kin, Ft, a1
was acceptable for both the goodness of fit and physical interpretation,
since these parameters are always expected to be positive. A normal
distribution was better suited for the parameter Kp, since it can assume
positive values if the curve is characterised by a hardening trait, or neg-
ative values if it is characterised by softening. An additional parameter
vu was introduced to define the value of the displacement at which the
curve should be stopped. A lognormal distribution was then assigned to
this parameter.

• Validation:

Monte Carlo generated synthetic curves reproduced the experimental
load-displacement curves: the 5–95% percentile envelope of the syn-
thetic load-displacement curves fully contained all observed test curves,
supporting the model validity.

• Forward applicability:

The model can be used as input for a multi-screw model (RQ2) that can
consequently be used in structural and reliability analyses (RQ3).
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RQ2: Multi-screw joint
Based on RQ1, the single-screw load-displacement curve was used as input to
a semi-analytical, displacement-controlled model for multi-screw joints. The
trend of the normalised values of stiffness, load-carrying capacity and ductil-
ity per STS was studied as a function of the number of STS. The following
conclusions were drawn:

• Evolution of mean properties with the number of screws:

For all screw orientations except 90◦, the mean values of stiffness, load-
carrying capacity normalised per STS, and the mean value of ductility,
remain essentially constant as the number of STS increases. For joints
with STS inclined at 90◦ while the stiffness per STS also remains con-
stant, the mean capacity and ductility per STS decrease slightly with
increasing STS before levelling off near their asymptotic values.

• Evolution of the variability with the number of screws:

As the number of STS increases, the coefficient of variation in stiffness,
capacity, and ductility decreases monotonically, approaching asymptotic
values.

• Influence of the initial slip:

Incorporating an initial slip randomly assigned between 0 and 1 mm to
each load-displacement curve only affects the normalised stiffness per
screw: its mean value decreases slightly with increasing number of STS
before converging to an asymptotic value, while the other properties and
the related CoVs remain unchanged.

RQ3: Reliability of the structure
Three inputs were needed to answer RQ3: (i) an adequate methodology to
estimate the probability of failure and a probabilistic model of the structure,
(ii) a probabilistic model of the structure, (iii) the multi-screw joint model
(developed in RQ1 and RQ2). A preliminary reliability analysis was used
to identify the correct methodology to estimate the reliability of statically
indeterminate timber structures. Uncertainties were assigned to loads, mate-
rials, and nonlinear behaviour of joints. MCS, IS, Subset and APCK-Subset
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were compared in terms of accuracy and computational time. Based on this
preliminary analysis, the following conclusions were drawn:

• Reference probability of failure:

MCS with 107 samples returned Pf = 2.85 ·10−4 (CoV = 2 %), adopted
as the benchmark for method comparison. Reducing MCS to 106 sam-
ples changed Pf by only -3.2%, indicating that (106) simulations already
provide an acceptably stable estimate for that case study.

• Surrogate-based bias:

APCK-Subset delivered a markedly higher Pf = 4.02 · 10−4. Thus, the
accuracy of reliability methods relying on the reconstruction of the limit
state equation, such as APCK-Subset, might be affected by approxima-
tion errors as the number of performance functions and failure modes
increases.

• Performance of other sample size reduction methods:

Subset required only a number of evaluations equal to ≈ 3 · 104, but
it decreased accuracy (CoV =0.09). IS required even fewer evaluations
(≈ 1 · 103) with a similar accuracy (CoV=0.07).

• Selection of the method:

Given the accuracy of MCS and possible approximation error using
methods that rely on approximation methods and on the reconstruc-
tion of the performance function, MCS was selected as a method for the
reliability analysis of the statically indeterminate beam.

After the selection of the methodology, the nonlinear behaviour of joints
was included in the model (RQ3). The statically indeterminate timber beam
was designed according to EC5. The influence of the ratio KULS/KSLS on
the reliability of the structure was studied. The following conclusions were
drawn:

• Non-uniqueness:

The ratio KULS/KSLS cannot cover all the design situations and joint
typologies.

75



Chapter 5 Conclusions and future work

• Influence of the current prescribed value of 2/3:

The current prescribed ratio KULS/KSLS = 2/3 is overconservative for
joints with 30◦, 45◦, 60◦, 90◦ for joints in the clamped region, since
the probability of failure stays the same, but the joints requires a larger
number of STS. It is instead unconservative for the case 90◦, when the
joints are within the semi-rigid region.

• Calibrated values:

For 30◦, 45◦, 60◦, the calibrated stiffness ratio KULS/KSLS is 1 for all
feasible α values (no reduction), because the joints are designed close to
clamped and are used in the elastic range. For 90◦, the calibrated ratio
averages 0.56 when α ≤ 0.070 and equals 1 for α > 0.070.

5.2 Future work
Based on the findings of this thesis, several directions for further research were
identified. These are outlined below.

Single-screw joint model extension
The Richard-Abbott model provided a good approximation of the load-displacement
curve of the timber joints with STS. However, it could not fully reproduce cer-
tain local features of the post-peak softening branch, i.e. the small residual
load-carrying capacity that can appear at very large displacements. Because
this region contributes little to serviceability or ultimate limit states, the re-
liability impact was limited; however, achieving a faithful representation at
large displacement would improve predictions for design situations involving
extreme deformation or progressive damage. Future work could explore hybrid
formulations involving multiple mathematical functions.

In the experimental campaign, only the load-to-screw axis angle was varied.
Other additional parameters of influence exist, such as timber density, STS
diameter, thread geometry, penetration depth, friction, and moisture varia-
tion. All these parameters affect the load-displacement curve. Consequently,
the validity of the empirical-probabilistic model cannot be assumed outside
the range of density and geometry adopted. A larger test database is required
to strengthen the validity of the model.
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Multi-screw joint model extension
In practice, a joint rarely experiences a single load component; bending mo-
ments, shear forces and axial tension or compression typically act simultane-
ously, so a realistic timber joint model must account for their simultaneous
action and interaction.

A future advancement of the model is to introduce dependency on the spac-
ing among the STS. The spacing affects the force in the single-screw joint and
consequently, the overall load-displacement curve of the multi-screw joint.

Reliability of the structure
Due to the limited experimental data, the correlations among joint model
parameters and between the joint parameter and the material properties of
timber should be regarded as approximate. Increasing the number of experi-
ments would reduce the uncertainties.

A comprehensive reliability analysis must also include all relevant limit
states: beyond bending, shear and axial actions, brittle mechanisms can be-
come governing in joints with many fasteners.

Future work might concern time-dependent variability. Long-term creep,
moisture cycling, fatigue and progressive displacement in the joints affect the
reliability of the structures.

77





APPENDIX A

Load-displacement curves

The empirical-probabilistic model presented in this thesis was based on single-
screw joint test data. Load-displacement curves for double-screw joints were
therefore not analysed, but are reproduced here for reference alongside the
other datasets of the main test series.
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Appendix A Load-displacement curves
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