
thesis for the degree of doctor of philosophy

Trajectory Optimization including Robot
Controller Emulation

Optimizing trajectories and generating robot code for industrial applications

Daniel Gleeson

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2025

Trajectory Optimization including Robot Controller Emulation
Optimizing trajectories and generating robot code for industrial applications

Daniel Gleeson
ISBN 978-91-8103-282-6

Acknowledgements, dedications, and similar personal statements in this the-
sis, reflect the author’s own views.

© Daniel Gleeson 2025 except where otherwise stated.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 5740
ISSN 0346-718X

Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Phone: +46 (0)31 772 1000

Cover:
A simulated and a physical image of the KUKA KR30 KRC2, and its sur-
rounding workspace, in the Production Systems Lab at Chalmers University
of Technology. Read more about accurately emulating the behavior of a phys-
ical robot in Chapter 4.

Printed by Chalmers Digital Printing
Gothenburg, Sweden, October 2025

Trajectory Optimization including Robot Controller Emulation
Optimizing trajectories and generating robot code for industrial applications
Daniel Gleeson
Department of Electrical Engineering
Chalmers University of Technology

Abstract
The manufacturing industry has seen an ever-increasing level of automation
with fully automated robotic assembly lines being commonplace in a wide va-
riety of manufacturing industries. The automotive industry has had a promi-
nent position in driving this development, and increasing the extent of au-
tomation has been a natural way to handle complex manufacturing processes
and high throughput production. With industrial robots becoming cheaper
and more available and product complexity and customization increasing, the
use of robotics in industrial settings shows no signs of slowing down. With
automated production lines, the use of simulation models and virtual com-
missioning has a place in every modern factory. A driving overall goal is to
produce a virtual representation of the physical world, with a digital rep-
resentation of every step in the manufacturing process, including CAD-file
descriptions of both the production cell and the final product, specific process
information, and full factory layouts. The work presented in this thesis is all
related to bridging the gap between the digital and physical world, optimizing
both the quality of the product and the efficiency of the robotic manufacturing
process, while simplifying the work needed to be done to realize these solu-
tions. One main contribution is modelling and optimizing collision free indus-
trial robot trajectories in a cluttered environment, with trajectories defined by
instantaneous torque values or as robot code equivalent parametrizations. To
implement these solutions for a wide variety of robots, a robot controller em-
ulator that executes robot code and accurately calculates the resulting robot
trajectories has been developed. Improved and automated robot trajectories
have been used in several applications, including in manufacturing processes
that require advanced modelling techniques, such as the accurate modelling
and optimization of robotic spray-painting trajectories.

Keywords: Industrial robots, trajectory optimization, robot controller, au-
tomatic code generation, manufacturing automation, spray painting.

i

To Sofia, Seve and Linnea.

List of Publications
This thesis is based on the following publications:

[A] Staffan Björkenstam, Daniel Gleeson, Robert Bohlin, Johan S. Carlson,
and Bengt Lennartson, “Energy Efficient and Collision Free Motion of Indus-
trial Robots using Optimal Control”.
Published in Proceedings of the 2013 IEEE International Conference on Au-
tomation Science and Engineering (CASE), Madison, Wisconsin, USA, pp. 510–
515, 2013. DOI: 10.1109/CoASE.2013.6654025.

[B] Daniel Gleeson, Staffan Björkenstam, Robert Bohlin, Johan S. Carlson,
and Bengt Lennartson, “Optimizing Robot Trajectories for Automatic Robot
Code Generation”.
Published in Proceedings of the 2015 IEEE International Conference on Au-
tomation Science and Engineering (CASE), Gothenburg, Sweden, pp. 495–
500, 2015. DOI: 10.1109/CoASE.2015.7294128.

[C] Daniel Gleeson, Staffan Björkenstam, Robert Bohlin, Johan S. Carl-
son, and Bengt Lennartson, “Towards Energy Optimization using Trajectory
Smoothing and Automatic Code Generation for Robotic Assembly”.
Published in Proceedings of the 6th CIRP Conference on Assembly Technolo-
gies and Systems (CATS), Procedia CIRP, Gothenburg, Sweden, Volume 44,
pp. 341–346, 2016. DOI: 10.1016/j.procir.2016.02.099.

[D] Daniel Gleeson, Christian Larsen, Johan S. Carlson, and Bengt Lennart-
son, “Implementation of a Rapidly Executing Robot Controller”.
Published in Proceedings of the 2019 IEEE 15th International Conference
on Automation Science and Engineering (CASE), Vancouver, BC, Canada,
pp. 1341–1346, 2019. DOI: 10.1109/COASE.2019.8843254.

[E] Daniel Gleeson, Stefan Jakobsson, Raad Salman, Fredrik Ekstedt,
Niklas Sandgren, Fredrik Edelvik, Johan S. Carlson, and Bengt Lennartson,
“Generating Optimized Trajectories for Robotic Spray Painting”.
Published in The IEEE Transactions on Automation Science and Engineering
(T-ASE), Volume 19, Issue 3, pp. 1380–1391, July 2022.
DOI: 10.1109/TASE.2022.3156803.

v

Other publications by the author, not included in this thesis, are:

[F] Staffan Björkenstam, Domenico Spensieri, Johan S. Carlson, Robert Bohlin,
and Daniel Gleeson, “Efficient sequencing of industrial robots through op-
timal control”.
Published in Proceedings of the 5th CIRP Conference on Assembly Technolo-
gies and Systems (CATS), Procedia CIRP, Dresden, Germany, Volume 23,
pp. 194–199, 2014. DOI: 10.1016/j.procir.2014.10.094.

[G] Daniel Gleeson, Stefan Jakobsson, Raad Salman, Niklas Sandgren,
Fredrik Edelvik, Johan S. Carlson, and Bengt Lennartson, “Robot spray paint-
ing trajectory optimization”.
Published in Proceedings of the 2020 IEEE 16th International Conference on
Automation Science and Engineering (CASE), Hong Kong, China, pp. 1135–
1140, 2020. DOI: 10.1109/CASE48305.2020.9216983.

vi

Contents

Abstract i

List of Papers v

Acknowledgements xiii

Acronyms xv

I Overview 1

1 Introduction 3
1.1 Background and motivation 4

Automation and robotics in industry 4
Automation and robotics research 5
Industrial workflow and bottlenecks 6
Problem focus . 7
Funding . 8

1.2 Research approach . 9
1.3 Research questions . 10
1.4 Contributions . 11
1.5 Outline . 12

vii

2 Optimization methods 15
2.1 Optimization problem formulation 16
2.2 Optimality conditions . 17

KKT conditions . 17
Constraint qualifications . 18

2.3 Active set methods versus interior point optimization 19
Optimization example with two non-linear constraints 21

2.4 Optimal control . 25
Pontryagin’s maximum principle 26
Double integrator example . 27

2.5 Summary . 31

3 Trajectory optimization 33
3.1 Joint space coordinates and inverse kinematics 34
3.2 Path planning . 37
3.3 Trajectory planning . 39
3.4 Illustrative examples . 39

Two-dimensional simple optimal control problem 40
3.5 Summary . 45

4 Robot controller emulation 47
4.1 Controller parameter identification 49
4.2 Time stamping . 52
4.3 Controller Light . 53

Types of movement commands 54
External axis and static TCP 56

4.4 Zone size maximization . 56
4.5 Summary . 58

5 Spray painting 59
5.1 Spray painting multi-physics simulation 61
5.2 Projection method for paint deposition 62
5.3 Applicator trajectory optimization 63
5.4 Spray painting trajectory . 65
5.5 Summary . 66

viii

6 Summary of included papers 67
6.1 Paper A . 67
6.2 Paper B . 68
6.3 Paper C . 69
6.4 Paper D . 70
6.5 Paper E . 71

7 Conclusions and future work 73
7.1 Conclusions . 73
7.2 Future work . 76

References 79

II Papers 87

A Energy Efficient and Collision Free Motion of Industrial Robots
using Optimal Control A1
1 Introduction . A3
2 Method . A5

2.1 Collision free path planning A6
2.2 Velocity tuning . A7
2.3 Numerical optimal control A7
2.4 The continuous optimal control problem A9
2.5 The discrete optimal control problem A10
2.6 Collision avoidance . A12

3 Results . A14
4 Conclusions . A17
References . A18

B Optimizing Robot Trajectories for Automatic Robot Code Gener-
ation B1
1 Introduction . B3
2 Method . B4
3 Problem setup . B6

3.1 Optimization variables B6
3.2 Problem constraints B8

ix

4 Results . B13
5 Conclusions . B17
References . B19

C Towards Energy Optimization using Trajectory Smoothing and
Automatic Code Generation for Robotic Assembly C1
1 Introduction . C3
2 Method . C4

2.1 Parametrizing the trajectory C5
2.2 Constraints . C10

3 Results . C14
4 Conclusions . C16
References . C19

D Implementation of a Rapidly Executing Robot Controller D1
1 Introduction . D3
2 Background . D5
3 Problem formulation . D7
4 Method . D7

4.1 Sampling the geometric path according to specified via-
points and zone sizes D7

4.2 Implemented algorithm for finding time stamps D9
5 Results . D12

5.1 Comparison with ABB virtual controller D12
5.2 Comparison with KUKA IIWA sampled robot trajectoryD14
5.3 Comparison with KUKA KR 30-3 sampled robot tra-

jectory . D14
6 Use cases . D15
7 Conclusions . D16
References . D17

E Generating Optimized Trajectories for Robotic Spray Painting E1
1 Introduction . E4
2 Background . E7
3 Problem description . E8
4 Initial curve generation . E9

4.1 Algorithm description E10

x

4.2 Computing normals and pseudo-projection E14
4.3 A modified method . E16

5 Optimization problem definition E16
5.1 Variables . E18
5.2 Goal function . E18
5.3 Constraints . E23
5.4 Optimization . E23

6 Results . E24
7 Discussion . E26
8 Conclusions . E30
References . E31

xi

Acknowledgments
I would first like to extend my gratitude to my two main supervisors. Bengt
Lennartson is Professor of Automation and the head of the Division of Systems
and Control in the Electrical Engineering Department at Chalmers University
of Technology. I want to thank you for being a kind and supportive mentor
throughout my long PhD journey. I always genuinely felt you wanted my best
and I appreciate everything you have done for me. Johan S. Carlson is the
Director of Fraunhofer-Chalmers Centre of Industrial Mathematics (FCC). I
am very grateful for how supportive you have been and how you have always
believed in me, and I appreciate your style of leadership where you trust and
see the best in everyone around you.

I am very thankful to my great colleagues at FCC, who all help to foster an
inclusive and inspiring nature. I really enjoy all interesting discussions about
work, life and everything. I would like to specially thank Staffan Björkenstam
for all the years both leading and exploring together with me all the way back
to my Master’s Thesis work.

From my time employed as a part-time PhD-student at Chalmers University
of Technology I would like to thank my fellow PhD-students for the friendly
and warm atmosphere and all collaboration, discussions about optimization
and joint work in the robotics lab.

To my parents, Ann and John, I have always felt your love and that “you
are on my team”, thank you for everything! You two are incredibly strong
human beings that both have handled and dealt with everything life has had
come your way and by doing so you have taught me so much! To my brother
Christopher I want to say thank you for being the best big little brother anyone
could wish for. I always enjoy talking to you and I cherish the connection we
have always had. I have always had reason to be the proud big brother.

To my two children Seve and Linnea, who are the most amazing little hu-
mans I have ever met. I am constantly filled with immense warmth in my
heart and pride in my chest at how kind and thoughtful you are, and how
much you care for everyone around you.

And finally, to my wife Sofia, I am so grateful for all days I have had the
fortune of spending with you, we have been through so much and there is
nowhere I would rather be. You are a true inspiration to me and the reason I
have a constant wish to improve myself. I feel so much love on so many levels
for you, you are the love of my life!

Daniel Gleeson
Gothenburg, October 2025

xiii

Acronyms

BVP: Boundary value problem

CAD: Computer-aided design

DOF: Degrees of freedom

FCC: Fraunhofer-Chalmers Centre of Industrial Mathematics

FK: Forward kinematics

FONC: First order necessary conditions for optimality

IK: Inverse kinematics

IPOPT: Interior Point Optimizer (software library)

IPS: Industrial Path Solutions (software)

KKT: Karush-Kuhn-Tucker, first-order optimality conditions

LICQ: Linear independence constraint qualification

LP: Linear programming

NLP: Non-linear programming

PLC: Programmable logic controller

PMP: Pontryagin’s maximum principle

QP: Quadratic programming

RCS: Robot Controller Software

RRS: Realistic Robot Simulation

RRT: Rapidly-exploring Random Tree

SOSC: Second order sufficient conditions for optimality

SQP: Sequential quadratic programming

TCP: Tool Center Point

xv

Part I

Overview

1

CHAPTER 1

Introduction

Historically, automation as a concept has had a profound impact on defining
the shape of the modern industrialized world. It can be viewed as the fore-
most enabler for the industrial revolution and has been the go-to solution to
achieve a wide variety of goals and improvements, such as saving labor and
material, reducing waste, and improving quality, accuracy, and precision. By
formulating the ironies of automation [1] in 1983, Bainbridge pointed out the
fragility of automated systems, and that overreliance on skilled workers in
an automated system may exacerbate the risks related to human factors. As
a response to alleviate these issues, research has been conducted on formu-
lating robust systems that fail gracefully, and developing tools that improve
the working conditions of engineers and operators controlling the automated
system.

Not only can a highly automated system be both complex and sensitive,
and require highly skilled workers to maintain. Setting up such an auto-
mated system is also a labor-intensive undertaking, which requires domain
specific knowledge to set up correctly, as well as extensive testing and phys-
ical prototyping. It is an iterative procedure where problems are discovered
and corrected, often becoming increasingly costly to rectify if not found until

3

Chapter 1 Introduction

the later stages of the commissioning process. There is a large incentive to
include more and more testing, assurances and optimization earlier on in the
commissioning of a new automated production line. Not only to increase the
performance of the system, but also to minimize or avoid unwelcome surprises
through all stages of the process, and especially in the final stages just before
production starts.

1.1 Background and motivation
An overall vision for production automation research at the Wingquist Labo-
ratory at Chalmers University of Technology has been to make physical proto-
typing and testing obsolete [2]. It has been concisely formulated as: the first
product to be produced should be sellable. The work presented in this thesis
can on one hand be of use in this pre-production stage, by optimizing and
verifying robot motions during the setup of an automated production line,
or even for feasibility analysis before any physical products are finalized. On
the other hand, by achieving a close correspondence to the real world, and
implementing solutions as executable robot code, it can also be used when
modeling and optimizing existing production lines.

Automation and robotics in industry
The degree of automation and robotics in industrial manufacturing has been
steadily increasing for decades. The main industries driving the field of au-
tomization forward, have from the very beginning been characterized by low
variability, large batch-size, and high throughput production. Examples in-
clude automotive, packaging and consumer electronics industries. These in-
dustries are continuously working towards a more automated and robust pro-
duction system, but automation and robotics have also been seen to revo-
lutionize other industries such as logistics centers, and are increasingly used
even in small batch-size production.

According to a report [3] in 2022 from the non-profit organization Interna-
tional Federation of Robotics, the year of 2021 saw an all-time high of newly
commissioned industrial robots, with over half a million units installed, setting
a new record of about 3.5 million operational industrial robots world wide.

The shift towards more flexible production lines with smaller batch-sizes

4

1.1 Background and motivation

creates a need of streamlining the setup and commissioning period of robotic
production lines. This includes all steps and problems to be solved when going
from a definition of a task to be performed, to obtaining executable robot code.
This thesis presents work related to the later stages of this chain of problems to
be solved. The earlier stages include defining a task, performing reachability
analysis for the robot, path planning to find a feasible collision free path,
and load balancing as well as scheduling the tasks to be performed. From
this point in the chain and onward we arrive at different types of problems,
questions, and considerations that are addressed in this thesis. Even after a
collision free piecewise linear path has been found, there is still a need to select
or fine tune robot code parameters to produce executable robot code. Will the
robot’s internal limits affect the execution of a given trajectory? Is it possible
to modify the found solution locally in order to improve the solution? How
will the robot controller and its control system affect the executed trajectory,
and will this depend on the brand and model of the robot? If more aspects
of the problem at hand are included in the formulated optimization problem,
then how will this affect the optimal trajectory?

Automation and robotics research
If historically, the main focus of trajectory optimization was purely on mini-
mizing distance and cycle time, there has now been a shift towards considering
multiple and more complex objectives, when determining the optimal load bal-
ancing of a production line. One objective commonly introduced is to include
a term aimed at reducing energy consumption [4]–[6]. In one example this is
achieved by formulating an optimal control problem and obtaining a solution
using a combination of direct collocation and indirect multiple shooting [7]. In
another it is included together with an obstacle avoidance potential function
in the optimal control formulation [8]. Other objectives include minimizing
equipment cost [9], or increasing the robustness and reliability of the produc-
tion, for example by reducing the wear and tear on robots and their dress
packs, and thereby minimizing production down time [10].

In multiple robot trajectory optimization, examples include motion plan-
ning and coordination between multiple robots with independent performance
measures [11], and globalization schemes for the optimization of multiple mo-
bile robots’ trajectories [12]. By handling the optimization of single robot
trajectory optimization separately, the multiple robot case is regarded as a

5

Chapter 1 Introduction

scheduling problem [13], [14], including energy optimal trajectories [15], [16].
A prerequisite for considering more complex trajectory constraints or cost

functions is to have robust methods for collision free path planning [17]–[22],
and trajectory planning [23]. The work presented in this thesis will often
make use of an initial trajectory found using a path planning algorithm, and
this is a common globalization technique to guide a subsequent more localized
search [24]. Including control signals in the problem formulation, and optimiz-
ing over them, we arrive at an optimal control formulation [25]. An optimal
control problem is a well-suited formulation when optimizing to find robot
control variables, and this is a formulation which has been extensively used
and researched in a wide variety of fields such as chemistry [26], economics [27]
and aeronautics [28]. Collision avoidance has also been included in stochas-
tic [29], [30] and optimal control formulations of the trajectory optimization
problem [31]. By decoupling the problem into a path planning step and a
subsequent path tracking optimization problem, the latter can be formulated
[32]–[37] without the need to include collision avoidance constraints.

Industrial workflow and bottlenecks
The workflow of an operator or engineer who wishes to automate a certain
task using industrial robots, typically consists of a number of well-defined and
extensively studied steps.

The first step could be said to be a setup phase, where the task to be
performed needs to be defined. This could for example be positions in space
to be visited to perform a pointwise task, such as for example a stud weld, a
spot weld, a laser measurement, applying a fastener, picking up or dropping
off a part. For point wise tasks, defined as a single position in space, there
could be a uniquely defined rotation of the tool needed to perform the task,
or there could be multiple ways to position the tool for example in tasks that
are rotationally symmetric. The task to be performed could also be defined as
a one dimensional curve to be followed, this could for example be to lay down
a sealing material, arc welding a seam, cutting into material along a specified
curve, applying a string of glue, 3D-printing an object using a feeding nozzle,
or solving factory logistics along specified delivery paths.

Examples of tasks defined over two-dimensional surfaces that occur in indus-
try are spray painting a specified surface such as a sheet metal part, mapping
out a factory layout or cleaning or disinfecting a work area. The task could

6

1.1 Background and motivation

even be defined in three spatial dimensions as in scanning an industrial pro-
duction line to get a 3D-representation of it, for example in the form of a point
cloud.

The second step is a robot path planning step, which also might include load
balancing and sequencing. The path planning problem is to find a collision
free path to connect all tasks to be performed. There might be a necessary
order in which the tasks are to be executed, or there might be an opportunity
for improving the cycle time by finding an optimal sequence in which to per-
form the tasks. For robot stations with multiple robots, it might be possible
to further reduce the cycle time by solving the assignment problem where we
want to determine which robot should perform what task. When robots are
working in the same space, with similar tasks, they might interfere with their
respective work-area. This is where a synchronization method, perhaps mak-
ing use of triggers and signals, could be used to make sure that the robots do
not collide or interfere with each other.

The third step is the transition from a robot path to a robot trajectory
and to executable robot code. In this trajectory planning step the robot path
should be time stamped in the time domain and perhaps smoothed out in
the spatial domain. Spatial smoothing will not only reduce the length of
the path but also reduce accelerations and forces along the trajectory. When
these solutions have been found, the operator typically would like to test the
solutions in a physical robot line by generating and then running robot code
that corresponds to the optimized trajectories.

Problem focus
The main focus of the work presented in this thesis is in some way connected
to improving the industrial workflow described above. The goal can either be
to improve some bottleneck in the workflow, so that the workflow is further
automated. Or it can be to improve the found solution, either by finding a
better solution as defined by some objective function, or that the solution is
a closer match to the reality of later stages in the workflow, as we get closer
to a physically realizable solution.

There are a number of different types of problems encountered when trying
to fulfill these goals. How can collision avoidance be included in trajectory op-
timization in an efficient way? How are competing and conflicting objectives
handled best? Examples include the competing goals of cycle time versus en-

7

Chapter 1 Introduction

ergy consumption or how to balance the quality metrics of a painted surface
with the parameters determining the executability of the robot trajectory of
the painting robot. How can found results be generalized for different robot
manufacturers with differences both on the level of robot code semantics and
functionality, as well as inter-manufacturer discrepancies on the robot trajec-
tory level even when issuing similar robot commands? What level of effort
should be put into optimizing the different stages of the trajectory genera-
tion? Where are there substantial improvements to be found? Do we need
to include a large set of optimization variables and solve the whole system
simultaneously to get the best solution, or is it more beneficial to take a more
incremental approach and focus on a few of the variables at a time?

Funding
While working on the papers presented in this thesis I have been employed
at the mathematical research institute Fraunhofer-Chalmers Centre (FCC).
I have also had a part-time employment at Chalmers University of Technol-
ogy where I was part of the Automation group at the Department of Signals
and Systems and later the Department of Electrical Engineering. I started
my work at FCC by writing my master’s thesis in the area of trajectory op-
timization and optimal control of a manikin, a mathematical model of the
human body. After that, my work pivoted over towards the robotics module
of the FCC software platform Industrial Path Solutions (IPS), with the goal
of including similar trajectory optimization procedures for robot trajectories
as had been done for the manikin.

Funding for the research has been provided by a number of different internal
and external projects and research initiatives. It has been supported by the
Swedish Governmental Agency for Innovation Systems (VINNOVA) through
the Wingquist Laboratory VINN Excellence Centre, as part of the Sustain-
able Production Initiative and the Production Area of Advance at Chalmers
University of Technology. Research has been conducted within a number of
different projects. One project is the EU-project Automation and Robotics
for European Sustainable Manufacturing (AREUS), concerning eco-friendly
design and programming of robotized factories. Research has also been con-
ducted within the VINNOVA project Sustainable motions - SmoothIT, where
optimization algorithms were used to reduce the energy use and increase
the service life of moving equipment in industry. Research related to opti-

8

1.2 Research approach

mization of robotic painting trajectories has been supported in part by the
project SelfPaint, funded by the Fraunhofer Gesellschaft and the internal pro-
gram for business oriented strategic alliances (WISA), and in part by Formas,
a Swedish Research Council for Sustainable Development, and the project
RoboClean, which optimizes and automates a robotic solution for cleaning
processes in the food industry. This work was also during the last year sup-
ported in part by the Swedish Governmental Agency for Innovation Systems,
VINNOVA, through the Advanced Digitalization program and the projects
The Virtual PaintShop – AI-Boosted Automated Painting (AUTOPAINT)
and Simulation-driven plasma optimization for improved paint adhesion and
bonding (SIMPL).

1.2 Research approach
As an Industrial PhD-student working on problems where the goal is to solve
real world industrial cases, the goal is to develop physically accurate mod-
els and algorithms that not only find a high quality solution, but also scale
well with the problem size so that it can be solved in a reasonable amount
of time. For complex problems where accuracy, optimality, and reasonable
solving times cannot be simultaneously achieved, there is a need for making a
trade-off between the different objectives. This can be done by either tailor-
ing the problem formulation, introducing meaningful heuristics or simplifying
the model. When it comes to the scientific contribution, given a sufficiently
complex problem, a scientifically interesting solution typically coincides with
solving for industrial goals and needs in cases where all criteria are fulfilled.
Furthermore, pushing the boundaries and improving each of these criteria can
even have its own research merits. But in cases where a trade-off is needed,
the scientific and industrial interests might diverge. As an example, in an
industrial setting, by prioritizing model accuracy and solving speed, and set-
tling for a good enough solution by industrial standards, the problem might
be solved using a simplified set of optimization routines. On the other hand,
the main focus in a scientific contribution might be to include multi-physics
modeling in the optimization problem for increased accuracy, or to provide a
proof for an improved lower bound of the optimal solution.

To state it succinctly, the research approach has been to develop, improve,
and use state-of-the-art models of physical systems, and to include these mod-

9

Chapter 1 Introduction

els in industrially valuable large-scale optimization problems.
The physical systems studied include robot controller internals and spray

paint droplet simulation, but all contributions and implementations presented
in this thesis have an overreaching goal of simplifying the engineering work-
flow in the set-up of a robotic production line. Improving the workflow of
production lines has unsurprisingly received a lot of interest, and in order to
be able to automate and make this process more efficient, there are a number
of core technologies and algorithms that have been developed. These are con-
stantly being improved both by improving the algorithms and by making use
of increasing computational power. It is possible to divide the workflow into
three main stages, where each stage typically makes use of results obtained in
preceding stages. The first two categories, path planning and load balancing,
will briefly be introduced in this thesis, to set the scene and to explain the
starting point of most of the presented work. This thesis and the appended
papers are all mainly related to the third stage in the automated workflow,
which could be denoted time synchronization and post processing.

To summarize, the research has been fueled by perceived needs in industrial
applications, the ambition of knowledge creation, and the will to improve
and generalize solutions. To increase understanding of the problem at hand,
there is often a need to implement an accurate model. However, models
of increased complexity are often cumbersome or impossible to incorporate
in an optimization routine. This typically leads to an iterative process of
formulating generalized mathematical models that capture relevant behavior,
and then simplifying the models while trying to retain the most important
aspects of the underlying behavior.

1.3 Research questions
The research presented in this thesis has been centered around the following
three research questions.

RQ1: For a robot with freely moving and accurately controlled actuators, how
can the optimal collision free trajectory be found when optimizing for cycle
time and/or energy consumption?

The first research question considers an industrial robot that is free to move
all joints and other actuators between target configurations and is not bound

10

1.4 Contributions

to follow a specified path. It is assumed that the robot can be accurately
and instantaneously controlled at each joint, instead of providing the robot
with target commands and letting the robot controller calculate the resulting
trajectory.

RQ2: How can robot controllers from different manufacturers be accurately
emulated and included in an optimization scheme for automatic robot code
generation?

Different robot manufacturers have their unique set of robot commands
that are used to execute a robot trajectory. Their proprietary robot controller
parses and executes the robot code by calculating the trajectory and feeding
the robot with the desired control values. By emulating the robot controller
behavior, and including robot code parameters as variables in the optimization
problem, the resulting optimal solution can be converted to directly executable
robot code.

RQ3: How can optimal robotic spray painting trajectories be found for an
arbitrary CAD-modeled surface?

The goal is to find a spray painting trajectory, which when executed will
produce a paint coverage where all points on the geometry have a paint thick-
ness sufficiently close to a specified target thickness. It is desirable to quickly
find solution trajectories even for small batch-size production, without relying
on extensive manual input.

1.4 Contributions
The main contributions presented in this thesis can be stated as follows with
regard to how they connect to the five included papers.

• Modeling and optimizing collision free industrial robot trajectories in a
cluttered environment, with trajectories defined by instantaneous torque
values or as robot code equivalent parametrizations. Paper A describes
an optimization scheme for robot trajectories in a cluttered environment
where the robot is controlled by using the torque values in each time
instance as control variables. In Paper B and Paper C the optimization
uses a parametrization of the trajectory matching robot controller input

11

Chapter 1 Introduction

parameters, which makes it possible to export the found solution as ex-
ecutable robot code. As starting point for the optimization, a piecewise
linear trajectory from a path planning algorithm is used as a feasible
initial solution.

• The implementation of a robot controller emulator that executes robot
code and accurately calculates the resulting robot trajectories. Paper D
describes how controllers from different robot manufacturers are accu-
rately simulated. An efficient algorithm is formulated, with a compu-
tation time orders of magnitude faster than the emulated time, making
it possible to include it in optimization schemes. The emulator has
been implemented in the Robotics module of the IPS (Industrial Path
Solutions) software under the name of Controller Light.

• The accurate modeling and optimization of robotic spray painting tra-
jectories. Paper E describes the generation of an initial trajectory, as
well as the optimization with regard to paint thickness and the experi-
mental setup used for model calibration. The optimization routine has
been developed to be included as an integral part of achieving the au-
tomated workflow of scanning and painting incoming parts in an auto-
mated robotic paint booth.

1.5 Outline
This chapter, Chapter 1, is the introduction of the thesis and covers back-
ground, motivation, research questions and contributions. This chapter is now
concluded by outlining the structure of the following chapters of Part I, the
Outline of the thesis. The included publications are found in Part II of the
thesis.
Chapter 2: Concepts related to mathematical optimization in a broader
sense are introduced and described, with an explicit focus on optimization
methods. These include how an optimization problem is formulated, its
optimality conditions, and the connection between the continuous and discrete
formulation of the problem.

Chapter 3: The trajectory optimization chapter covers robot trajectory
representations, path planning, and a presentation of theory and examples
related to trajectory optimization.

12

1.5 Outline

Chapter 4: This chapter on robot controller emulation presents how
robot controllers from robot manufacturers can be interfaced, differences be-
tween trajectory representations, and the work done on developing an internal
representation of a robot controller.

Chapter 5: The chapter is a brief introduction to robotic spray painting
with respect to simulation, verification, and optimization.

Chapter 6: In this chapter all included publications are briefly summarized.

Chapter 7: The final chapter starts out with some concluding remarks that
also reconnect the stated research questions with the presented work, and ends
by laying a path forward for further research in related areas.

13

CHAPTER 2

Optimization methods

In general, an optimization problem is any problem where we want to find the
optimal value, be it either a minimum or maximum value. This is something
we might encounter daily, solving the problem on the fly, without giving it
much thought, or it might be a highly complex problem that is challenging or
even impossible to solve in practice. Examples from the first category might
be calculations performed subconsciously to be able to catch a thrown ball
mid-air. Or it might be a problem that requires more conscious effort to
formulate and solve. Where, when, and for how long should we charge our
car on our long road trip, in order to arrive at our destination as quickly as
possible without ever running lower than a 5% battery charge level?

Optimization problems of different kinds and complexity are commonly en-
countered in industry. How many blades should our new wind turbine have
to maximize efficiency and minimize noise and vibrations? How many robots
are needed in the robot cell to be able to weld the sheet metal parts together
within the specified cycle time of the production line? In this chapter we
will in Section 2.1 introduce notation to describe these types of optimiza-
tion problems mathematically, along with theory for conditions of optimality
in Section 2.2. Thereafter, in Section 2.3, two different classes of solution

15

Chapter 2 Optimization methods

methods are described, and an example problem is solved using both of these
methods to highlight differences and similarities between active set and inte-
rior point methods. In Section 2.4 we will dive deeper into theory on optimal
control, which is the underlying problem formulation for most of the work
presented in this thesis.

2.1 Optimization problem formulation

An unconstrained optimization problem might be formulated as

min
x

f(x),

where f(x) is a function over the single or multi-variable input x.
Constraining the search space by including equality constraints, g(x) = 0,

and inequality constraints, h(x) ≤ 0, the problem formulation changes to

min
x

f(x), (2.1a)

subject to g(x) = 0, (2.1b)
h(x) ≤ 0. (2.1c)

Both g(x) and h(x) are in general vector-valued functions over the single
or multi-variable input x. It should be noted that for a given constrained
optimization problem either g(x) or h(x) might be absent.

The examples of optimization problems given in the introduction of this
chapter, are problems where the optimal value is to be found over a discrete
or continuous function of one or more variables.

A formulation often encountered in optimal control problems is to instead
optimize over a set of control functions u(x, t). The cost is now given by
a cost functional instead of a cost function, since we are optimizing over a
space of functions. But in practice, for problems presented in this thesis, this
distinction is not always obvious or necessary, since we typically discretize
the problem before optimizing. With the discretized version of the problem,
we are back to optimizing over a set of input variables. The alternative, to
optimize before discretizing, is also possible to do and results in a calculus of
variations formulation [38].

16

2.2 Optimality conditions

2.2 Optimality conditions
To determine if a point is optimal for an unconstrained single variable function,
we can check the first order derivative of the cost function at the point. If it is
zero, the point is a stationary point, and by also examining the second order
derivative it can give information about if the point is a maximum, minimum
or a saddle point. These conditions can be generalized and concisely stated
as follows for multi-variable unconstrained optimization problems:
First order necessary conditions: If the function f(x) is continuously
differentiable in an open neighborhood of the local minimizer x∗, then the
following holds:

∇f(x∗) = 0.

Second order necessary conditions: If ∇2f(x) is continuous in an open
neighborhood of the local minimizer x∗, then the following two statements
hold:

∇f(x∗) = 0,

∇2f(x∗) is positive semi-definite.

Second order sufficient conditions: If ∇2f(x) is continuous in an open
neighborhood of x∗, then x∗ is a strict local minimizer of f(x) if the following
two conditions hold:

∇f(x∗) = 0,

∇2f(x∗) is positive definite.

For a multi-variable constrained problem, (2.1), where equality and inequal-
ity constraints have been added, similar conditions of optimality can still be
formulated.

KKT conditions

First-order necessary conditions for optimality of a solution to a constrained
nonlinear programming problem were formulated by Kuhn and Tucker [39],
and independently by Karush [40]. Using a problem formulation as stated in
(2.1), with m number of equality constraints and n number of inequality con-

17

Chapter 2 Optimization methods

straints, the Karush-Kuhn-Tucker (KKT) conditions can be stated as points
fulfilling the following set of equations [41]

gi(x∗) = 0, i = 1, . . . , m, (2.2a)
hj(x∗) ≤ 0, j = 1, . . . , n, (2.2b)

µ∗
j ≥ 0, j = 1, . . . , n, (2.2c)

µ∗
j hj(x∗) = 0, j = 1, . . . , n (2.2d)

∇f(x∗) +
m∑

i=1
λ∗

i ∇gi(x∗) +
n∑

j=1
µ∗

j ∇hj(x∗) = 0. (2.2e)

The new variables introduced here, one for each of the constraints, are referred
to as Lagrange multipliers and are used to formulate a relationship between
the gradient of the cost and the gradient of the constraints. For each of the
equality constraints of g(x) a multiplier, λ, is introduced, while µ is used for
the inequality constraints of h(x).

The Karush-Kuhn-Tucker (KKT) conditions can be more compactly stated
after introducing the Lagrangian

L(x, λ, µ) = f(x) + λT g(x) + µT h(x).

and grouping the equations with respect to what condition they are related to.
A point (x∗, λ∗, µ∗) is called a KKT point if it satisfies the following conditions

Stationarity: ∇xL(x∗, λ∗, µ∗) = 0, (2.3a)
Primal feasibility: g(x∗) = 0, h(x∗) ≤ 0, (2.3b)

Dual feasibility: µ∗ ≥ 0, (2.3c)
Complementary slackness: µ∗ ⊙ h(x∗) = 0. (2.3d)

Here ⊙ denotes the elementwise Hadamard product, which makes the com-
plementary slackness condition equivalent to µ∗

j hj(x∗) = 0, ∀j.

Constraint qualifications
Linear independence constraint qualification (LICQ): For a point x,
we denote A(x) to be the set of active constraints at x. Linear indepen-

18

2.3 Active set methods versus interior point optimization

dence constraint qualification holds at x if the gradients of the set of active
constraints are linearly independent. LICQ holds at points where the ma-
trix [∇g(x) ∇hA(x)] of gradients of the equality constraints and the active
inequality constraints has full rank. Points where LICQ holds are regular
points.
First order necessary conditions (FONC): If x∗ is both a local optimum
and is regular, then there exists a unique vector of multiplier values λ∗ and
µ∗ such that (x∗, λ∗, µ∗) is a KKT point.
Second order sufficient conditions, (SOSC): We consider here functions
f , g and h that are C2, which means that the functions, and their first and
second derivatives are continuous. We also define the set of feasible directions
at a point x∗ as

F = {v | ∇g(x∗)⊤v = 0, ∇hi(x∗)⊤v ≤ 0, ∀i ∈ A}.

For a regular point x∗ where there exists multiplier values λ∗ and µ∗ such that
(x∗, λ∗, µ∗) is a KKT point, x∗ is a local minimum if the following inequality
holds

d⊤∇2L(x∗, λ∗, µ∗)d > 0

for any direction d ∈ F \ {0} with ∇hi(x∗)⊤d = 0 for µ∗
i > 0.

2.3 Active set methods versus interior point
optimization

When faced with a constrained optimization problem as formulated in (2.1),
there are a number of different solution methods that can be used to hope-
fully find an optimal solution to the problem. One way of trying to solve
the problem, is to first focus on trying to remove the inequality constraints.
This can be done by dividing the problem into two parts. First selecting a
set of constraints with the goal of finding all constraints that are active at
the optimum, and then solving the problem using only these constraints as
equality constraints. Methods of solving the optimization problem that make
use of this idea, are commonly referred to as active set methods. Areas where
active set methods are commonly used range from linear programming (LP),
the special case of (2.1) where the cost function and all constraints are linear,

19

Chapter 2 Optimization methods

and sequential quadratic programming (SQP) where a non-linear problem is
solved as a sequence of quadratic programming (QP) problems.

In the linear case, the optimal value will be found at the boundary of the
feasible region. Solving the problem using an active set method, will iterate
through intersection points of constraints as the set of active constraints are
updated. An example of a method using active set updating is the classic
Simplex algorithm for linear programming [42]. As long as the optimal set
of constraints remains to be found, these intersection points will continue to
jump around the boundary of the feasible region. More generally though,
for a given set of active constraints, their intersection will not necessarily lie
within the feasible region. This behavior of possibly violating some of the
constraints during intermediate steps of the minimization search will happen
also for active set methods for nonlinear optimization.

Interior point methods on the other hand are named so because they often
try to keep the evaluated points of the iterative search in the interior of the
feasible region. One quite straight forward way of making sure only feasible
points are evaluated during the search, is to assign an infinite cost to all infea-
sible points. The way this is typically done, is to introduce so-called barrier
functions in the cost function. These barrier functions should preferably be
differentiable in the feasible region, but grow to infinity as constraints are
approached from the interior of the feasible region, pushing the search away
from the constraints. These barrier functions are meant to keep the solution
in each step of the search iterations from violating the constraints.

It is not necessarily beneficial to force every search iteration to be strictly
feasible, but instead allow some constraint relaxation during intermediate
steps. Of the KKT-conditions, the most problematic condition for an iter-
ative solver to handle, is the complementary slackness criteria (2.3d). It is a
criteria with two components, the Lagrangian multiplier µ∗, and the value of
the inequality constraint function h(x), where one or both of the components
need to be zero for the criteria to be fulfilled. We say the criteria has two
branches, one where the constraint is active and h(x) = 0, and the other when
it is inactive and µ∗ = 0. The sign of each non-zero component is determined
by the primal feasibility (2.3b) and the dual feasibility (2.3c), respectively. A
plot of h(x) against µ∗ would show that points that fulfill the complimentary
slackness criteria will lie on the two half-axes of negative h(x∗) and positive
µ∗, with a sharp corner at the origin. This is problematic for any algorithm

20

2.3 Active set methods versus interior point optimization

Decreasing
ki

k = 10

k =
√

10
k = 1

|µ∗|0 1 2 3 4 5

|h
(x

∗)
|

0

1

2

3

4

5

Figure 2.1: Relaxing the complementarity slackness condition µ∗h(x∗) = 0 by in-
troducing a constant k on the right hand side of the equation. The
figure shows the level curves, ki, of |µ∗h(x∗)| for decreasing values of
ki.

that includes constraint linearizations. By relaxing this criteria with some
constant, k = µ∗h(x∗), we smooth out the corner, see Figure 2.1, making
it possible to switch from one solution branch to the other. The idea is to
navigate around the corner to the correct solution branch before lowering the
relaxation constant and homing in on a solution.

Optimization example with two non-linear constraints
As an illustrative example, consider the following constrained minimization
problem

min
x

x2
1 + x1x2 + x2

2 − 3x1 − 3x2, (2.4a)

subject to (x1/2 − 2)3 − x2 + 4 ≤ 0, (2.4b)
x3

1 + x2 − 4 ≤ 0. (2.4c)

The minimization problem has a quadratic cost function, f(x), over two vari-
ables, x = [x1, x2]⊤, and is constrained by two third degree polynomials. The
level curves of the cost function and the two constraints can be seen in Fig-

21

Chapter 2 Optimization methods

Figure 2.2: Level curves shown for the cost function f(x) along with the two non-
linear constraints in red and blue, that define the feasible region by
excluding the shaded area below them.

ure 2.2 along with a given starting point for the search at x0 = [5, 5]⊤. If
we only consider the minimization term of (2.4a), the unconstrained prob-
lem would have a solution at x∗ = [1, 1]⊤ where the objective function takes
the value f(x∗) = −3. Turning our attention to the two constraints, we see
that they define the feasible region by excluding the shaded area below the
curves, and the optimum should be found down in the crevasse where the two
constraints intersect.

One way to find the optimal solution is to use an active set method and
iteratively update our current point until it converges to a solution. If we at
the starting point linearize the two constraints, we get the two dotted lines in
the top left figure of Figure 2.3. Solving this problem with linear constraints
gives us a new point from where we can linearize the constraints and continue
our search. Note that even if the initial point was feasible, the fact that only
the linearized constraints are considered, has resulted in a situation where the
found solution of the quadratic programming problem is not in the feasible
set of the original problem. In the following iterations shown in Figure 2.3 we
can see how the search first updates the point back into the feasible region
and then rather quickly converges to the optimal value.

To demonstrate the differences between the solution methods we will also
solve the same optimization problem using an interior point method. One way

22

2.3 Active set methods versus interior point optimization

Figure 2.3: The first, second, third, and fifth iterations taken by the SQP solver
on a problem with third degree constraints. In each iteration the lin-
earizations of the constraints at the current point are also shown.

to do this is to introduce a logarithmic barrier function B(x), which is infinite
for positive values of hi(x) and otherwise is defined by

B(x) =
∑

i

− log(−hi(x)), (2.5)

and adding it to the original cost function. The benefit of this is that it now
is possible to formulate and solve an unconstrained problem

min
x

f(x) + kB(x). (2.6)

As the parameter k is lowered the solution to this unconstrained problem

23

Chapter 2 Optimization methods

k = 8 k = 3

k = 1 k = 0.1

Figure 2.4: Level curves shown for the cost function combined with a logarithmic
barrier function for each of the nonlinear constraints. As the barrier
weight parameter k is lowered, the optimum of the unconstrained prob-
lem improves with respect to the original constrained problem.

becomes a better approximation of the solution to the original constrained
optimization problem. The barrier functions restrict the search to the interior
of the feasible region, but the downside is that the simple quadratic term of
the objective function is turned into a more complex and non-linear function.
This new function can both have local minima, and will necessarily have a
highly non-linear behavior close to the constraints, especially for low values
of k.

Using this solution method to solve the problem of (2.4), we can add the
barrier functions and use the same initial point as was used with the active set
method. By iteratively solving for lower values of k the solution approaches
the optimal solution of the original problem as can be seen in Figure 2.4.

24

2.4 Optimal control

2.4 Optimal control

In an optimal control problem, the goal is to find the control of a system with
its corresponding state that will optimize some cost over a period of time,
subject to constraints. The constraints of the optimal control problem will
include dynamic constraints that define the state evolution of the dynamical
system. They will also often include path constraints that limit the variables
along the trajectory, as well as endpoint constraints specifying initial and
terminal conditions.

The time evolution of the state depends on both the current state, x(t), and
control, u(t), according to the so-called state equation. This is formulated as
a differential equation as follows

ẋ = f(x, u). (2.7)

In particular, the full trajectory of the state, x(t), can be determined for a
given initial state x0 and a particular applied control u(t) over the interval
t ∈ [0, T].

The overall cost, J , is often stated to be composed of two terms. The first
term includes costs related to endpoint values, Φ(x(ts), ts, x(tf), tf), while
the second term is a running cost, L(x(t), u(t), t), which is integrated up over
time. For a specified time interval, t ∈ [ts, tf], the optimal control problem
formulation can then be stated as a minimization of the cost functional

J = Φ(x(ts), ts, x(tf), tf) +
∫ tf

ts

L(x(t), u(t), t)dt, (2.8a)

while satisfying the following additional constraints.

State equations: ẋ(t) = f(x(t), u(t), t) (2.8b)

Path constraints: g(x(t), u(t), t) ≥ 0 (2.8c)

Terminal conditions: h(x(ts), ts, x(tf), tf) = 0 (2.8d)

These state equations and path constraints need to be fulfilled along the tra-
jectory for all times t ∈ [ts, tf]. This general formulation of an optimal control
problem can be found explicitly stated in Paper A, Paper B, and Paper C.

25

Chapter 2 Optimization methods

Pontryagin’s maximum principle

Pontryagin’s maximum principle (PMP) states a number of conditions that
are necessary to fulfill for a control input to be optimal. The principle was for-
mulated by Pontryagin [43] and has since then been restated with modernized
notation [44], [45]. These conditions are stated using the control Hamilto-
nian. For a specified cost functional, J , as in (2.8a) we formulate the control
Hamiltonian, H, of the system as

H(x(t), u(t), λ(t), t) = λ⊤(t)f(x(t), u(t)) + L(x(t), u(t)). (2.9)

The optimal state trajectory, x∗, optimal control, u∗, and Lagrange multipliers
λ∗ must minimize the Hamiltonian for all times t ∈ [0, T] and all permissible
control inputs u ∈ U ,

H(x∗(t), u∗(t), λ∗(t), t) ≤ H(x(t), u, λ(t), t). (2.10)

Restating the inequality of (2.10) in terms of a minimization problem to be
solved when finding the optimal control solution for a given problem we have

u∗(t) = arg min
u

H(x∗(t), u, λ∗(t), t). (2.11)

Just as the trajectory of the state is governed by the state equation (2.7), the
time evolution of the Lagrangian vector, λ, should equal the state derivative
of the Hamiltonian according to the costate equation,

λ̇⊤(t) = −∂H

∂x
, (2.12)

and should fulfill the terminal conditions

λ⊤(T) = ∂Φ
∂x

∣∣∣∣
x(T)

, (2.13a)

∂Φ
∂T

∣∣∣∣
x(T)

+ H(T) = 0, (2.13b)

where the second terminal condition (2.13b) only applies for non-fixed final
states.

The stated conditions are necessary to fulfill for optimality, but they are not

26

2.4 Optimal control

sufficient. They can be thought of as linking the time evolution of the state,
as described by the state equation (2.8b), with a condition of optimality with
respect to the cost functional (2.8a). There might also be terminal conditions
(2.8d) that should be fulfilled, and these could be included to formulate a two-
point boundary value problem (BVP). If there are also inequality constraints
that should be fulfilled along the path as in (2.8c), the switch from active to
inactive constraints will create junction points. This might happen at multiple
points along the trajectory, and the junction points will have their own set of
boundary constraints, which will need to be included in a multi-point BVP.

Double integrator example

As an example to show how Pontryagin’s maximum principle can be used
to solve an optimal control problem, we consider a minimum time control
problem for a double integrator. The states of the double integrator are the
position, x1(t), and its time derivative, x2(t) = ẋ1(t), and the system is con-
trolled using the second-order time derivative as control signal,

u(t) = ẋ2(t) = ẍ1(t).

The goal is to bring both states to zero as quickly as possible from a given
initial state x0, which can be stated as follows using the standard optimal
control problem formulation of (2.8)

min
u

∫ tf

0
1dt = min

u
tf , (2.14a)

while satisfying

ẋ1(t) = x2(t), (2.14b)
ẋ2(t) = u(t), (2.14c)
x(0) = x0, (2.14d)

Φ(x(tf)) = (x1(tf), x2(tf))⊤ = (0, 0)⊤, (2.14e)

where the control signal, u(t), is limited to values in the symmetric interval
[−umax, umax]. For simplicity we will use umax = 1 in the exemplified solutions.

27

Chapter 2 Optimization methods

Solution method 1. Solving the continuous problem

One way to solve the optimal control problem is to formulate the optimality
conditions for the continuous problem. To do this we first formulate the
Hamiltonian, H, of the system according to the definition given in (2.9)

H(x(t), u(t), λ(t), t) = λ1(t)x2(t) + λ2(t)u + 1. (2.15)

The optimal control solution is found by minimizing the Hamiltonian as stated
in (2.11)

u∗(t) = arg min
u

1 + λ1(t)x∗
2(t) + λ2(t)u.

Since u only enters the expression in the last term, the optimal control value
must obtain its maximum positive or negative value depending on the value
of λ2(t). This type of optimal solution is referred to as bang-bang control

u∗(t) =
{

umax, if λ2(t) < 0,

−umax, if λ2(t) ≥ 0.

The time evolution of the Lagrangian vector must fulfill the costate equation
of (2.12). This means that the time derivative of the Lagrange multipliers are
λ̇1(t) = 0 and λ̇2(t) = −λ1(t), which gives us λ1(t) = c1, and λ2(t) = c2 − c1t.

In a similar manner, by using the fact that the control variable takes one
of the two constant values of u(t) = ±umax, we have

x1(t) = x1(0) + x2(0)t ± umaxt2/2, (2.16a)
x2(t) = x2(0) ± umaxt. (2.16b)

By squaring the equation for x2(t), multiplying by ±umax/2, and subtracting
the two equations, we can eliminate the time dependency and find the relation

x1(t) ± umaxx2
2(t)/2 = constant. (2.17)

This relation defines a switching curve with two different solutions regions. A
plot of this switching curve can be seen in Figure 2.5.

28

2.4 Optimal control

Position, x1

−4 −2 0 2 4

V
el

oc
ity

,x
2

−4

−2

0

2

4

Figure 2.5: Switching curve for optimality for the double integrator example prob-
lem. The vector field of arrows show a small integration forward in
time for different starting conditions. Optimal curve shown for a given
set of initial conditions, first in red and then in blue after the control
value switch.

Solution method 2. Solving the problem by first discretizing and then
optimizing.

The same formulation of the double integrator example makes it possible to
compare two different solution methods. It is also possible to find a solution
by first discretizing the problem, and then solving the discrete problem. Here
the position, x1, the velocity, x2, and the acceleration which in this case is
the control signal, u, are all discretized at n + 1 discretization points.

x1 =


x1[0]
x1[1]

...
x1[n]

 , x2 =


x2[0]
x2[1]

...
x2[n]

 , u =


u[0]
u[1]

...
u[n]

 .

These are together with the final time, T , the variables, w, of our optimization
problem

w =
[
T x1[0] x2[0] u[0] . . . x1[n] x2[n] u[n]

]
.

29

Chapter 2 Optimization methods

We have upper and lower bounds on our control variable as well as initial and
terminal constraints on our two states

umin ≤ u[i] ≤ umax, i ∈ {0, 1, . . . n}, (2.18a)
x1[0] = x10, (2.18b)
x2[0] = x20, (2.18c)
x1[n] = 0, (2.18d)
x2[n] = 0. (2.18e)

The system dynamics are discretized using a first order approximation and
added as equality constraints to the optimization problem

0 = x1[i + 1] − x1[i] − T

n

x2[i + 1] + x2[i]
2 , (2.18f)

0 = x2[i + 1] − x2[i] − T

n

u[i + 1] + u[i]
2 . (2.18g)

The optimization problem can then be stated as a minimization over T , subject
to the constraints (2.18).

For an initial position of x10 = 4, initial velocity of x20 = 1 and using
40 discretization points, (n = 39), we obtain the optimal solution seen in
Figure 2.6. Comparing the solution to the plot of the switching curve of
Figure 2.5 we can see that they both describe the same solution. Specifically,
we can see that the optimal solution switches from a minimal control value to
a maximal control value, and this happens at a point where the position and
velocity values match the values of the switching point in Figure 2.5.

In this chapter different solution methods have been presented for solving
non-linear optimization problems and optimal control problems. The main
solution method used in Paper A, Paper B, Paper C, and Paper E is to first
model the problem continuously, then possibly simplifying the model, before
discretizing the continuous problem into a non-linear optimization problem.
The final step is to solve the resulting problem with a general-purpose non-
linear solver, for example an interior point solver such as Ipopt[46].

There are a number of ways to do these steps as we already have seen in
this chapter. Choices made in the modeling and discretization steps will affect
the solvability of the resulting optimization problem and the optimality of the
found solution. It is therefore important to keep the later stages in mind as the

30

2.5 Summary

Time, t

P
os

it
io

n,
x

1
V

el
oc

ity
,x

2
C

on
tr

ol
si

gn
al

,u

Figure 2.6: Optimal solution found for the discretized version of a double integrator
example problem. The position x1 (blue), velocity x2 (red), and control
signal u (yellow) are shown are shown at each discrete time value.

problem is formulated. The following chapter describes and breaks down robot
trajectory optimization in a number of distinct steps. Simplified problems are
used to exemplify what might go wrong if the modeling and discretization
leads to weaknesses in the problem formulation that the solver most often
will find and exploit. This can in turn lead to unwanted characteristics of the
solution or convergence towards infeasible solutions.

2.5 Summary
This chapter has described theory and introduced nomenclature related to
optimization problems and the solution methods used to solve them. A gen-
eral mathematical formulation of an optimization problem was introduced in
Section 2.1. In Section 2.2 conditions of optimality were introduced. Both nec-
essary and sufficient conditions were stated for an unconstrained optimization
problem. After introducing the KKT-conditions, the corresponding conditions
were also stated for a constrained NLP problem.

In Section 2.3 active set methods and interior point methods were described,
and similarities and differences were discussed using simplified example prob-
lems. Section 2.4 took the step from a finite dimensional problem to an infinite

31

Chapter 2 Optimization methods

dimensional problem by formulating an optimal control problem, where the
goal is to find an optimal control function, subject to constraints. This is a
type of problem formulation that is used in most of the papers presented in
this thesis. We saw how an example problem with a double integrator could
be solved analytically using Pontryagin’s maximum principle, or how it could
first be discretized and solved using a general-purpose NLP solver.

The following chapter will go into the specifics of what we need to consider
when an optimal control problem formulation is to be used within the field of
robot trajectory optimization.

32

CHAPTER 3

Trajectory optimization

When aiming to solve a trajectory optimization problem, it is quite natural
to first focus on solving a path planning problem. This is because it is quite
common to have a problem formulation with a set of tasks to be performed,
where every task is a specified target point in space. Each task could in turn
be performed using a specific set of robot configurations. Even when the task
is specified by both a fixed position and orientation of the TCP, there are
typically still multiple ways for a robot to fulfill the task, see Figure 3.1 for
an example of two different robot configurations with the same TCP trans-
formation. These configurations can be differentiated in the robot code using
some sort of configuration data or by using more informal descriptions for the
placement of for example the second joint which is referred to as the elbow
of the robot. In the figure we see the robot in a configuration with the elbow
up and the blue shadow alternative shows the robot in an elbow down axis
configuration.

The resulting path does not hold information about the time it takes to
reach the destination. But minimizing the length of the path is often tightly
correlated with lower execution time. For complex geometric obstacles it can
also be exceedingly difficult to even determine that there exists a collision

33

Chapter 3 Trajectory optimization

Figure 3.1: Two different configurations of the robot that meet the demands of a
task with a specified position and orientation of the robot Tool Center
Point (TCP). The TCP is in the figure represented by the three red,
green and blue lines that together define the local coordinate frame of
the tool.

free path between specified target points [17]–[22]. If the target points are
specified as points in space that the robot must reach, then the very first
problem to solve is the inverse kinematics problem. This is the problem of
finding combinations of joint values that fulfill target point constraints of the
end effector.

3.1 Joint space coordinates and inverse kinematics
When a robot is tasked with for example spot welding at a specific point,
the tool of the robot should be placed in the correct position, with correct
orientation. The spot weld position is a target point for the TCP of the robot.
It is defined in the TCP-space of the robot. The problem of determining
joint values of the robot, that matches the robots TCP to a target point,
is a problem which is referred to as inverse kinematics (IK). This term is
in contrast with forward kinematics (FK) where the position of the TCP is
calculated for given values of each robot joint. There might be a few different

34

3.1 Joint space coordinates and inverse kinematics

A

B

CJ1

J2

J3

Figure 3.2: Simplified representation of a three degree of freedom robot arm using
cylinders to represent joints and links. The three rotational axes of the
robot, denoted J1, J2 and J3, are shown as white dashed lines. The
surrounding geometry is made up of three rectangular blocks in red,
green and blue. A collision free trajectory moving between the three
defined points A, B and C while avoiding the blocks, is exemplified by
showing its TCP trace in cyan.

configurations for which the robot can perform a specific task. If we select
any one of these configurations, we now have a task defined in the joint space
of the robot. Moving between tasks in joint space, any configuration that
leads to collision with the surrounding geometry should be avoided. This
mapping between geometric obstacles and corresponding joint space regions
can be exemplified using a simple three degree of freedom robot arm.

Such a simplified 3DOF robot can be seen in Figure 3.2, where one meter
long cylinders are used for its three links and smaller cylinders are used to
show the rotation directions of its joints. Rectangular blocks in red, green
and blue of dimensions one by one by two meters are used to represent the
surrounding geometry. These simple geometric obstacles are used to exemplify
how the state space changes when transforming from the TCP-space to the
robot’s joint space. The robot is then tasked to reach three different target
points, A, B and C, without colliding with the surrounding geometry.

Even a simple surrounding geometry of the tree rectangular blocks shown

35

Chapter 3 Trajectory optimization

A

BC

J1

J2
J3

J1
J2

J3

Figure 3.3: Three-dimensional joint space plot showing joint value combinations
that lead to collisions with the surrounding geometry. The top and
bottom figures show two different views of the same joint space plot,
as indicated by the J1, J2 and J3 coordinate directions. The collision
free joint space trajectory between the points A, B and C is in the
top figure shown in cyan. The trajectory, with inserted intermediate
waypoints, is a piecewise linear path which curves around the blue and
red obstacles.

36

3.2 Path planning

in Figure 3.2 are morphed into unrecognizable geometries when viewed in the
joint space of the robot, as is shown in Figure 3.3. The shape of the joint
space obstacles seen in the figure is found by exhaustively sampling the full
three-dimensional joint space of the robot, using a grid-based sampling with
100 sample points along each dimension. By setting the robot joint values
to every possible combination of sampled values, and calculate if the robot is
colliding with either of the three rectangular blocks of Figure 3.2, each point
can be color coded accordingly. It can be noted firstly that these joint space
obstacles are no longer convex, nor are they necessarily connected, and the
repeated similar shapes are due to periodic similarities in the rotational space.
For example, rotating the first joint by one half revolution gives a mirrored
joint-space for the second and third joints. Secondly, even though the original
rectangular blocks do not intersect, the joint space obstacles can do so, as this
corresponds to combinations of joint values where the robot is colliding with
more than one of the blocks.

Even these simple examples of rectangular blocks spaced quite far apart,
hint at the complexity of solving a path planning problem in a cluttered
environment. In the next section we will define the path planning problem
more precisely and discuss a few solution methods used to find a collision free
path.

3.2 Path planning
In the field of path planning and trajectory optimization, a path is what is
mathematically more commonly referred to as a curve. A continuous path can
intuitively be thought of as the trace left by a moving point. The function
that defines the path is called the parametrization of the parametric path
x(s). This is an n-dimensional function of the one-dimensional s defined on
an interval a ≤ s ≤ b,

x(s) = [x1(s), x2(s), . . . , xn(s)] .

The description here focuses on continuous paths, and in robotics the paths
will most often be continuous, especially as paths often are expressed in joint
space coordinates of the robot. But one practical example of when a path
might not be continuous, is when tracing the active Tool Center Point (TCP)

37

Chapter 3 Trajectory optimization

of a robot with multiple defined TCP:s. Performing a robot motion which
includes TCP changes will produce a piecewise continuous path with discrete
jumps at each switching point.

To solve a path planning problem, we want to find a collision free para-
metric path x(s), expressed in the joint space of the robot, from a starting
configuration to a final configuration. This means there are regions in the
joint space the path must avoid, since the robot should at no point along the
path collide with the surrounding geometry. The goal is to find the shortest
possible path.

When the parametrized path x(s) uses the time t as the parametrization
variable, we talk about a trajectory x(t). The trajectory holds information,
not only about which path in space will be followed, but also at what time
each point along the path will be visited.

One classic class of graph traversal algorithms which can be useful in path
finding methods, are variants and generalizations of Dijkstra’s algorithm, such
as the A*-algorithm. The problem then becomes how to build up the search
graph in the first place. For problems of low dimensionality which can be ex-
haustively sampled with acceptable resolution, for example in two-dimensional
path finding, these algorithms are commonly used together with grid-based
sampling [47]. But for many applications, simple exhaustive grid-based sam-
pling will often be too costly, especially as the dimensionality of the problem
increases and the cost of performing a collision check with an increasingly
complex surrounding geometry rises.

A class of methods used to sample the search space and build a search
graph are referred to as probabilistic roadmap (PRM) methods. They first
find waypoint candidates using random sampling, and then check if there are
collision free straight lines between pairs of waypoints using a local planner.
This builds up a graph problem which can be solved to try to link waypoints
together from start to end configuration [19].

Another class of solution methods make use of so called rapidly exploring
random trees (RRT) in their search. By branching out from one or more
of the endpoints and choosing sampling direction and distance for each new
sampling point tree-like graphs are constructed that efficiently cover the search
space [48].

38

3.3 Trajectory planning

3.3 Trajectory planning
One way of going from a path to a trajectory is to use the exact same path and
find a mapping s(t) that will make the trajectory x(s(t)) fulfill any dynamic
constraints such as velocity and acceleration constraints. This time stamping
problem formulation is referred to as a velocity tuning problem since it is the
velocities along the path that are modified. It might however be beneficial to
modify the initial path to more easily be able to fulfill dynamic constraints.
That there is a potential gain in modifying the initial path can easily be un-
derstood when considering that most of the path planning solution methods
covered previously return a piecewise linear trajectory visiting a set of way-
points. If the path is not modified and we must follow this trajectory exactly,
then the robot will have to come to a complete stop at each waypoint to not
exceed a finite acceleration limit.

In Paper A the initial path is used as an initial feasible solution and the
trajectory is found by solving the full optimization problem. The goal is to
limit the trajectory as little as possible, trying to make use of the large search
space to find a faster and shorter solution. Collision avoidance is handled
by an iterative scheme that updates variable limits to pointwise fulfill the
collision avoidance criteria. In Section 3.4 some illustrative examples of solving
a trajectory planning problem in two dimensions are presented, and in for
example Figure 3.4 we can see how even for very simple problem formulations,
pointwise fulfillment of collision constraints might still cause problems and give
an unrealizable trajectory if not handled carefully.

In Paper B and Paper C, a formulation matching robot controller trajectory
parametrizations is used, with via-point zones used to smooth out the initial
piecewise linear path. Paper E formulates the full problem of first finding
an initial trajectory that adequately covers a surface and then optimizes the
trajectory with respect to spray paint coverage.

3.4 Illustrative examples
In this section we will make use of a simple two-dimensional example to de-
scribe concepts connected to trajectory optimization, and to exemplify issues
that can arise when trying to solve even a simplified problem.

When optimizing the robot trajectory and formulating it as a discrete op-

39

Chapter 3 Trajectory optimization

(x0, y0)

(xT , yT)

(cx,k, cy,k)

rk

Figure 3.4: Solution trajectory reaching target points while avoiding red circles.

timization problem there are a number of different considerations that have
to be made, and potential problems that need to be handled. One impor-
tant issue is to define the discrete optimization problem in such a way that
the solution to the problem describes a valid solution to the continuous prob-
lem. In order to exemplify a case where this might be a problem, a simple
two-dimensional example problem is introduced. Despite its simplicity, when
solving a few different instances of the problem we encounter a few differ-
ent types of difficulties that commonly are encountered also in more complex
problem formulations.

Two-dimensional simple optimal control problem
A point mass system in two dimensions is an example that has the beneficial
property that it is easy to visualize the problem as well as its solutions, while
still being complex enough to exhibit a lot of the problems and characteristics
of a more general problem formulation. It might be beneficial to consider a
graphical representation of the problem shown in Figure 3.4 as we introduce
the variables and states of the optimization problem.

This example problem is formulated as follows: A point mass system in
two dimensions is controlled by an applied force. The time evolution of the
point mass can be limited by lower and upper bounds on its position, velocity
and acceleration in each dimension. In the examples in this section, we will
only limit the position to a square and leave the velocities and accelerations

40

3.4 Illustrative examples

unbounded. What limits the movement instead, is an upper bound on the
magnitude of the applied force at each time step. A collision avoidance con-
straint is also included in the problem formulation. By setting a lower bound
on the distances to each point in a specified collection of points we introduce
circular obstacles to be avoided at all times. The goal is to get from an initial
configuration, x0, to a target configuration, xT , in the least amount of time.
This problem has a lot of similarities with the second order integrator studied
in Section 2.4. As was the case there, the cost functional of the standard
optimal control formulation (2.8) simplifies to minimizing the final time as in
(2.14a). The two configurations, x0 and xT , could in general have specified
velocities and accelerations, but in these examples we will for simplicity only
consider configurations where they both are at rest. The trajectory between
these two points is discretized into a number of points with constant time
difference.

The constants of the optimization problem are the number of discretization
points, n, the midpoints of each circular obstacle, ck = [cx,k; cy,k], the radius
of each obstacle, rk, the mass of the particle, m, and the maximum control
signal value, umax. The notation used for potential variables to use in the
optimization problem can be listed as follows,

qi = [xi; yi] = The position of each discretization point,
q̇i = Velocity at the midpoint of each discretization interval,
q̈i = Acceleration at each discretization point,
ui = Value of the force control at each discretization point,
T = Duration of movement,

where index i iterates over the number of discretization points, i ∈ [1, n].
Letting the velocities be defined at the midpoints of each interval is just for
convenient use of the midpoint method for time derivatives.

Of these variables, the selected state variables are the positions and veloc-
ities at all discretization points, the duration of the movement is included as
a free variable, while the control variables are the applied forces. With these
variables, the dynamics of the system are described by the following time

41

Chapter 3 Trajectory optimization

Figure 3.5: Jumping bounds despite problem being solvable. Increasing the num-
ber of discretization points from n = 20 to n = 40 and then to n = 100
does not solve the problem.

evolution of the state variables:

x1 = q1, ẋ1 = x3,

x2 = q2, ẋ2 = x4,

x3 = q̇1, ẋ3 = u1/m,

x4 = q̇2, ẋ4 = u2/m,

where the mass, m, is set to unity.
Additionally, we need to include a few constraints in the optimization prob-

lem. The first set of constraints handles the collision avoidance of the circular
obstacles, r2

k − (qi − ck)2 ≤ 0. And finally, we limit the maximum magnitude
of the control variables, u2

i − u2
max ≤ 0, so that the controlling forces always

lie within a circle of radius umax.

Problem solutions

A typical problem instance and its corresponding solution is as previously
stated shown in the left figure of Figure 3.4. The areas to avoid are shown as
red circles and black dots mark the start and target point of the trajectory.
The found solution navigates through the maze of obstacles and arrives at the
target point as quickly as possible. The initial solution is as a first approxi-
mation chosen to be the linear interpolation between the target points. The
number of discretization points along the trajectory are chosen to be n = 20.

42

3.4 Illustrative examples

Jumping constraint bounds

Modifying the problem to be a bit more complex, the number of obstacles
are increased and overlapping obstacles are introduced. In the right figure of
Figure 3.4 these overlapping obstacles are placed in such a way that there is no
valid solution to the continuous problem. Despite this, the solver produces a
solution to the discretized version of the problem. The found solution shown
in the figure has an obvious problem in that it is not physically realizable.
The optimizer has exploited the discretization of the problem and spaced
out the discretization points in such a way that all of the points fulfill the
stated constraints. But the resulting trajectory jumps over a forbidden region
between two of the discretization points. Notably, the solution even needs to
back up and gather speed to be able to make the jump in one time step.

A similar example, which also includes constraints with overlapping circles,
is seen in Figure 3.5. Ideally, the optimal solution should navigate through
the upper region of the figure and as quickly as possible move through the
maze-like structure. In particular it is worth noting that any solution of the
continuous problem which successfully navigates the maze of obstacles, will
necessarily be quite far from the straight line used as initial guess. This
contrasts with the first example we saw in Figure 3.4, where the initial linear
trajectory was a much better approximation of the final solution.

Exploiting free end time

The fact that the discretized solution only is feasible if the discrete trajectory
makes the jump over the forbidden region in a single time step hints at a
probable remedy to the problem. If the number of discretization points are
increased, it should get harder to clear the obstacle in a single jump and we
might be able to force the optimizer into a physically feasible solution. This
would leverage any globalization technique included in the solver to force it
away from infeasible solutions. The problem with this strategy is that since
the final time of the trajectory is a variable of the system, it can be increased
as needed by the optimizer. Given enough room to speed up for the jump, a
discretized trajectory, spanning the forbidden region in a single time step, can
be found even as the number of discretization points are increased. Solutions
for increasing number of discretization points can be seen in Figure 3.5. We
can see how the solver always converges to the same type of infeasible solution,

43

Chapter 3 Trajectory optimization

Figure 3.6: Finding a solution to the problem by using a new initial trajectory.

even taking the time to back up all the way to the boundary of the allowed
area, turn around, and accelerate as quickly as possible towards the forbidden
region in order to make the jump over the obstacle in a single discretization
interval.

Guiding the search using an initial solution

Often a more successful strategy of avoiding unwanted behavior of the ob-
tained solution is to make use of the solver’s sensitivity to the initial values
of the optimization variables. By finding and supplying appropriate initial
values to the solver, we can guide the search towards desirable search spaces
where the solver will converge to a feasible solution. This is as true when
solving one-dimensional root-finding problems using the Newton method as
when solving large scale nonlinear optimization problems using state-of-the-
art solvers. In Figure 3.6 a comparison between the solutions found using
different initial guesses can be seen. The linear interpolation from start to
end configuration ran into problems of jumping bounds. Modifying it to a
piecewise linear initial guess, which is continuously feasible, the solver can
be guided to a feasible discretized solution. This initial trajectory could in
turn be the output of a path planning problem. The two solutions shown for
the two different initial guesses also show that for these types of problems we
typically cannot guarantee that we have found a global optimum. Instead, we
often need to rely on the quality of the solution to the path planning problem,
to successfully guide the subsequent local search for optimality.

44

3.5 Summary

3.5 Summary
This chapter has introduced and described aspects related to robot trajectory
optimization. Section 3.1 aimed to shed some light on the connection be-
tween our regular three-dimensional space and the joint space coordinates of
a robot. An example with a 3-DOF robot was used to show the surrounding
geometry and a collision free trajectory in both spaces. In Section 3.2 the
path planning problem was described, and a few examples were given of so-
lution algorithms. In Section 3.3 we go from optimizing a path parametrized
in space to optimizing a trajectory as a function of time. It is described how
trajectory optimization is used in the included papers. Section 3.4 introduces
a simple two-dimensional problem to exemplify issues that might arise when
trying to solve a discretized trajectory optimization problem.

The next chapter will focus on robot trajectory parametrizations and on
how the robot trajectory is calculated when sending robot commands to a
robot controller from a specific manufacturer.

45

CHAPTER 4

Robot controller emulation

We have in Chapter 3 seen examples of how robot trajectory optimization
problems can be formulated and solved, along with example cases highlighting
potential difficulties encountered when searching for a physically realizable
solution. It has been stated that we want to find a solution to the problem
expressed in terms of parameters found in robot code, so that the solution can
be directly used to generate executable robot code. In this chapter we will
explore what these parameters are and how we can approximate the executed
trajectory for the robot, given a set of robot commands. Determining the
trajectory from the robot commands is the task of the robot controller.

To accurately be able to predict how the robot will move when executing a
robot program is important for a number of different reasons. It is important
to make sure that the robot performs its assigned tasks as expected. This
often corresponds to ensuring that the target points of the robot are correctly
expressed. If we instead look at simulating the robot motion between tasks,
perhaps the most common reason to do so, is to make sure the given robot
program will not make the robot collide with surrounding geometry or other
robots while moving between its specified tasks.

Complex robot stations with low specified clearance will necessarily have

47

Chapter 4 Robot controller emulation

a high accuracy requirement for calculating the robot trajectory. There will
however always be a discrepancy between the virtual emulator and the real-
world robot execution of the program. For example in ABB:s product spec-
ification [49] of their controller software IRC5, in the section covering their
Absolute Accuracy calibration concept, they state that

“The difference between an ideal robot and a real robot can typically be up
to 10 mm, resulting from mechanical tolerances and deflection in the robot
structure.”

To handle this problem, they offer different options of individually calibrat-
ing a specific robot and its control system to improve this accuracy.

When it comes to collision avoidance for static geometry, it is enough to
consider the path of the robot in the spatial domain. If we also want to
consider dynamic obstacles such as other robots, the time evolution of the
trajectory would also need to be considered. One way to handle these obstacles
could be to include blocking signals to ensure the robots will not collide, even
if one of them suddenly malfunctions and halts their execution.

There are other reasons where it would be important to consider the time
evolution of the robot trajectory. The reasons could be quite general, with a
focus on total execution time and an interest in fulfilling cycle time criteria.
They could also be more specific, where it is important to determine where the
TCP is at any given time, for example in cases with time-dependent processes,
such as spray painting or when applying a bead of sealant material.

When manually teaching a new robot path, the operator can run the robot
in a reduced mode to ensure the program runs as expected. When the robot
program is generated offline and uploaded to the robot or sent through a re-
mote connection, it is for safety reasons recommended to first dry run the
program in a virtual robot controller emulator. All major robot manufac-
turers provide such a virtual tool. Examples include RobotStudio [50] from
ABB, KUKA.Sim [51] from KUKA and URSim [52] from Universal Robots.
These emulators from robot manufacturers are of course a helpful tool for a
robot operator, and a lot of robot programs are prepared using the available
tools within a virtual simulator like this. For someone interested in perform-
ing standalone offline robot programming, these virtual environments often
include a brand specific interface, or can be accessed through RSS, which is a
general-purpose robot interface.

The industry standard Realistic Robot Simulation (RRS) enables offline

48

4.1 Controller parameter identification

programming software to interface with a propriety Robot Controller Soft-
ware (RCS) module of a robot manufacturer. This makes it possible to send
robot commands to the RCS module and in return get an accurate simulation
including cycle time estimates. This interface supports useful functionality,
and in the Industrial Path Solutions (IPS) software, there is similar function-
ality available with respect to ABB robots, using their virtual robot controller
VRC/RobotStudio interface. Including an RRS compatible interface in the
IPS software could be a good way to increase the number of supported robot
manufacturers. This would provide a general way for an end user to simu-
late the trajectories for a given set of robot instructions, given that they have
access to the RCS module of the robot manufacturer.

4.1 Controller parameter identification
When performing offline robot trajectory optimization as in Paper B and
Paper C, with the goal of generating executable robot code, it is desirable to
have an accurate description of what happens within a controller from a robot
manufacturer, and not only treat it as a black-box. An accurate mathematical
description of the controller enables us to derive analytical derivatives of the
controller, which can be supplied to the solver to improve the convergence
and decrease the number of necessary function evaluations. This was the fo-
cus of Paper D, to accurately simulate robot trajectories from different robot
manufacturers. The controller model also allows us to quickly evaluate the
trajectory, while the controllers from robot manufacturers are more focused on
simulating at, or near, real time evaluation. However, it is not always straight
forward to derive what happens internally in a proprietary robot controller.
Even if the robot code between manufacturers share a lot of functionality, dif-
ferent manufacturers vary in how they calculate and interpolate the resulting
trajectory.

The problem a robot controller is implemented to solve can be generally
stated, even if there are differences in how robot controllers from different
manufacturers implement their controllers. When a robot controller is given a
set of robot commands to execute, it should calculate the resulting trajectory
and determine what control values to apply to the robot. These are the power
levels of the servo motors which affect the actuator torques. Using a set look-
ahead, the controller determines what torque to apply at the current time for

49

Chapter 4 Robot controller emulation

incoming
segment

outgoing segment

interpolation
zone

x(s)

x1(s)

x2(s)

Figure 4.1: Sketch of the interpolation zone of a trajectory waypoint with linear
incoming and outgoing segments. The interpolated trajectory x(s)
within the zone is calculated from x1(s) and x2. These describe the
path the robot would follow if there is no zone interpolation, and the
waypoint is reached exactly.

each joint, and as the robot starts moving, it will monitor sensor values to
make sure the robot closely follows the calculated path and shut down if it
encounters any deviations.

There is a clear motivation for developing a lightweight and generic robot
controller, that can emulate controllers from different manufacturers. This
generic controller emulator will be referred to as Controller Light, and this
chapter describes the main steps involved in implementing it.

When developing Controller Light, an important step in the process has
been to use model fitting, to get manufacturer specific parametrized robot
trajectories. This step consists of selecting a few probable parametrizations,
looking at combinations of robot commands, and performing physical testing
and registering sampled joint values along the trajectory, especially within
the zones or blending areas. Test trajectories have been formulated where
the angle between incoming and outgoing segments is varied, which makes
it possible to find parameter values that show a good fit for a wide range of
possible robot command combinations. The sampled physical trajectories are
in a parameter estimation step compared to parametrized analytical trajecto-
ries. The parameters are optimized to achieve a close correspondence to the
physical trajectories for the full range of test trajectories.

50

4.1 Controller parameter identification

Value of joint 1 [deg]

V
al

ue
of

jo
in

t
2

[d
eg

]

Figure 4.2: A single test trajectory with a zoomed in section highlighting a part of
the blending zone and the type of deviations that might occur between
the calculated (blue) and the sampled (red) trajectory.

As an example of a zone interpolation, we can take the following expression
from Paper D using polynomials for α(s) and β(s)

x(s) = x1(s) + α(s)(x2(s) − x1(s)) + β(s)u,

to blend an incoming segment x1(s) with an outgoing segment x2(s), see Fig-
ure 4.1. The selection of the type of expression used, and the parameter
optimization needed to tune the parametric models to specific robot manufac-
turers, will determine how accurately the resulting trajectory can be modeled.

In Paper D good agreement of the analytical expression to robot trajecto-
ries generated by controllers from different manufacturers was achieved. In
Figure 4.2 we can see a comparison between a trajectory from Controller Light
and a physically sampled trajectory. The chosen parametrization follows the
trajectory as closely as possible given the chosen order of the polynomials.
The differences that can be seen between the two trajectories in the figure are
a consequence of higher order terms not being fully captured.

51

Chapter 4 Robot controller emulation

4.2 Time stamping

Calculating an accurate robot path in space is important, not only to ensure
a collision free trajectory but also in continuous processes such as spray paint-
ing, where the trace followed by the end effector directly affects the process.
The parameter identification described in Section 4.1 focuses on obtaining an
accurate spatial representation of the robot path. A full representation of the
robot trajectory also requires accurate time stamps of each sample point along
the robot path. Accurate trajectory times are essential for most applications
as it gives cycle time estimations, and a good prediction of when each point
of the path is reached is important for continuous processes.

The path should be time stamped in such a way that all limits on time
derivatives are fulfilled. These include TCP-velocity, joint space velocity and
joint space acceleration. All of these limitations are typically stated either in
the data sheet of the robot or specified in the robot code to apply to a specific
segment of the trajectory.

The velocity constraints can be fulfilled locally by considering each pair of
consecutive sample points and selecting a time duration between them which
will fulfill also the most constraining of constraints. The joint acceleration
constraints use a local calculation for three consecutive points, where the
second time interval can be determined in relation to the first. This is done
by matching the three points to a quadratic polynomial, f(t) = At2 + Bt + C,
where the constants A, B and C are calculated from the acceleration limits.

Making use of the fact that the robot is at rest at the start and at the
end of the trajectory, the local expression can be used to sweep first forward
through all samples and modifying time stamps so that all accelerations are
fulfilled, and then again backwards to fulfill all decelerations. These sweeps
are exemplified in Figure 4.3 and the main benefit of this method is that
a time stamped trajectory can be quickly calculated, without the need of
formulating an optimization problem to find the value of each time stamp.
It should be noted that in general, with more complex constraints on the
trajectory it might be necessary to formulate a full optimization problem. The
time stamping calculations are independent for each joint of the robot along
with any controllable external axes and are as previously mentioned combined
by selecting the most limiting constraint. Focusing on the simplified one-
dimensional case shown in Figure 4.3, we can see how the time stamps of the
trajectory are shifted forward in time to fulfill the acceleration constraints,

52

4.3 Controller Light

Figure 4.3: Exemplifying how running a time stamping algorithm over any given
trajectory can quickly generate a trajectory that fulfills velocity and ac-
celeration bounds. The top figure shows in blue dots a one-dimensional
trajectory going back and forward with non-uniform times between
samples. The green dots represent the updated samples after a sin-
gle sweep of the algorithm. The lower figure represents the backward
sweep, where the red dots show the final trajectory after again being
shifted forward to account for all decelerations.

and the final trajectory is smooth and gently comes to a standstill at the
endpoints as well as the intermediate switching points.

4.3 Controller Light
Controller Light is not a real time controller, in that it is not primarily used to
calculate instantaneous control values for the robot. It is rather a simulation
tool that can be used to quickly calculate a nominal path that closely follows
the actual path of the robot.

A lightweight robot controller simulator is also useful in cases where we
do not have a specific robot in mind, as we perform some optimization of an
external process, such as spray painting. It is useful both to get an approxi-
mation of a generic robot path or select a specific robot manufacturer to get

53

Chapter 4 Robot controller emulation

a more precise representation.
One limitation of the structure of Controller Light is that the path is speed

independent since the trajectory is first sampled in space, and then time
stamped. This is often true and helpful for operators that want to test run
solutions at lower speeds, however speed dependent blending could in some
cases be more efficient and there are examples of robot manufacturers that
have implemented this. It is also necessary to have a speed dependent tra-
jectory in cases where the robot movement should be synchronized with an
external moving object such as a conveyor.

Types of movement commands
The three different types of movement commands seen in Figure 4.4 can be
handled by Controller Light and represent movement primitives commonly
used by different robot manufacturers in a similar way. They represent linear
movement in joint space, linear movement in TCP space and circular move-
ment in TCP space, where the shorthand notation MoveJ, MoveL and MoveC
follows the ABB naming convention.

Moving the robots joints linearly in joint space, MoveJ, is a highly efficient
movement. This movement type can be used to quickly move between target
points in cases where the movement of the TCP is unimportant. The limiting
factors of such a movement will relate to physical limits of the motors driving
each joint. An example of a linear joint space movement was described in
Section 3.1 where the solution to the path planning problem is the piecewise
linear trajectory shown in the joint space plot of the robot workspace.

Specifying a movement in joint space is also necessary when moving between
different inverse configuration spaces or when moving close to kinematic sin-
gularities.

A linear movement in TCP-space, MoveL, is used where it is more important
to keep track of the position and orientation of the robot tool. This is a
commonly used movement type in industrial applications, perhaps even overly
so. When programming a robot, the main focus is on positioning the tool of
the robot and it can therefore feel quite natural to program the robot with
respect to the position and orientation of the tool, and to move between
specified positions in straight lines. Especially since it can be hard to get an
intuitive feeling about how the robot will move in space as it moves in joint
space between different configurations. Linear TCP movement could also be

54

4.3 Controller Light

MoveL
MoveJ

MoveC

Figure 4.4: Robot performing a simple trajectory involving three different types of
movement commands.

a useful way to find a collision free trajectory when for example moving close
to a work piece and the biggest collision risk comes from the tool colliding
with the workpiece. Additionally, if the robot is holding a heavy tool, it could
be an efficient strategy to move the tool the shortest possible distance.

A circular movement in TCP space, MoveC, can be used in curve following
processes to get the robot to follow a smooth trajectory curve using fewer
robot commands compared to trying to follow the curve using MoveL.

All of these three movement types are used by most robot venders and a
simple point-to-point trajectory using one of these commands will typically
look very similar irrespective of the type of robot model used. Despite this
seemingly generic way of expressing movement commands, there will be dif-
ferences in the resulting trajectory for different robot manufacturers as we
string these movement commands together. Looking at what happens when-
ever two of these movement commands are blended together, there is not a
single unique solution for how the transition should be made, for example
between a MoveC and the MoveJ command.

55

Chapter 4 Robot controller emulation

External axis and static TCP
External axes include additional actuators that can move synchronously with
the robot. These could be controlled by the robot controller or by the pro-
grammable logic controller (PLC) of the robot station. Examples include a
linear track that adds a translational degree of freedom to the base of the
robot, increasing its available workspace. Or a work-piece turn-table that
adds a rotational degree of freedom to the work-piece, to improve reachabil-
ity. In the controller these axes are handled in the same way as when the
robot is controlled with MoveJ commands. All external axis are calculated
using linear interpolation, before any inverse kinematics (IK) calculations are
performed to determine the desired position of the robot TCP.

The most common setup for an industrial robot is to have the TCP defined
as a point on a tool which is mounted on the face plate of the robot. There
are however cases where a bulky tool such as a spot-welding gun or a precise
measurement device is mounted in a fixed location. The TCP is still defined as
a point on the tool and from the robot’s perspective this is an external TCP
and the robot instead manipulates the work-piece. In this case the inverse
kinematics calculations close the kinematic loop just as in the standard setup,
the only difference is the choice of coordinate system and the order in which
interpolations are calculated.

4.4 Zone size maximization
With an accurate representation of the robot trajectory for a given set of
robot commands, it is possible to explore how changes in the parameters of
the robot code affect the trajectory. We have seen examples of optimizing
multiple robot code parameters simultaneously in Paper B and Paper C. A
more narrow focus on optimizing only a subset of these parameters, would
simplify the optimization scheme. In particular, if we only consider the sizes
of the waypoint zones we can see that the initial piece-wise linear trajectory
found by the path planner will have a zone size of zero, and to obtain a smooth
and fast trajectory we want to increase the zone sizes as much as possible. This
would both reduce peak accelerations and shorten the length of the trajectory.
This is the basis of the zone size maximization algorithm implemented in IPS
using Controller Light.

The algorithm works by looking at each waypoint, and maximizing its cor-

56

4.4 Zone size maximization

Figure 4.5: Four robots in a robot cell executing their robot programs in parallel.
The TCP trace of each robot is shown in blue, with the individu-
ally maximized waypoint zones represented as spheres. CAD model of
workpiece and robot cell courtesy of Volvo Car Corporation.

57

Chapter 4 Robot controller emulation

responding zone size using the bisection method, while checking the resulting
trajectory for collisions with the surrounding geometry. The resulting robot
programs produced by running the zone size maximization algorithm on all
robots in a robot cell are shown in Figure 4.5. The figure shows the TCP tra-
jectory of each of the four robots in blue. Any waypoint a robot passes when
moving between tasks is shown as a purple interpolation sphere. There is a
wide range of zone sizes seen in the figure. The size of the spheres are limited
by either the proximity to the previous or next waypoint, or that increasing
the zone size further will lead to a collision.

Since the initial path is known to be collision free, it is only possible to
collide within the interpolation spheres. This makes it possible to check for
collision more efficiently by only sampling the trajectory within the sphere we
are currently trying to maximize. The efficient bisection method uses interval
halving to further reduce the number of computationally expensive collision
checks.

4.5 Summary
This chapters has covered aspects related to robot controller emulation. Sec-
tion 4.1 described how parameter identification is used to ensure the emulated
robot path closely follows the physical robot path for a range of combinations
of movement commands. The path is converted to a trajectory using an effi-
cient time stamping algorithm described in Section 4.2. In Section 4.3 we see
how this has been packaged within the IPS software as Controller Light, and
are presented a number of different use cases that controller is able to handle.
Finally in Section 4.4 we see an example of how the implemented controller
is used in the zone size maximization algorithm. This is an algorithm which
is available to commercial users of the IPS software in industry.

The next chapter covers robot trajectory optimization in the context of
robotic spray painting. We will see how the spray painting process is described
and modeled with different levels of complexity and accuracy.

58

CHAPTER 5

Spray painting

In previous chapters the goal has been to find optimal robot trajectories be-
tween well-defined and precisely specified tasks, even if the tasks themselves
have a certain number of parameters to vary. We have discussed spot welding
tasks where the target point is set in space, as well as applying a bead of
sealant material by following a specified parametric path in space.

For robotic spray painting, exemplified by Figure 5.1, the task is specified in
terms of the desired result, an even paint thickness. But from the point of view
of the robot it is not necessarily clear what motion the robot should perform
to achieve this desired result. One way to specify the robot task requires good
knowledge of the painting process, and to know that if we move the paint
applicator along a specified path, we have empirically found this to produce
an even paint thickness. If we are able to simulate the paint deposition onto the
geometry, it would be possible to verify candidate trajectories, to determine
if they produce an adequate paint coverage with respect to paint thickness,
transfer efficiency, and cycle time.

The fact that the tasks in some sense have a higher dimensionality also
affects the design of painting robots. The robot’s kinematic structure can be
different compared to a typical 6-DOF industrial robot arm, with extra joints

59

Chapter 5 Spray painting

Figure 5.1: An example of an automated painting booth, where robots are painting
parts of a Volvo truck suspended on a rack. Image courtesy of AB
Volvo.

added for increased workspace flexibility. Another example can be seen in
Figure 5.1, where the painting robots have an extra dependent joint which
makes it possible to run paint tubes through the hollow wrist of the robot.
There are also examples of more experimental designs tailored to spray paint-
ing applications [53].

In the following sections some aspects and considerations of paint deposi-
tion modeling will be brought up, with Section 5.1 describing a multi-physics
simulation while Section 5.2 describes how this paint deposition model can be
simplified in order to be included in a painting trajectory optimization routine.
Section 5.3 shows some results from Paper E where an optimized applicator

60

5.1 Spray painting multi-physics simulation

Figure 5.2: Simulation of two robots spray painting a Volvo car body. The snap-
shot shows the simulated positions of each droplet in the paint cloud.
CAD model courtesy of Volvo Car Corporation.

trajectory is found using the described paint projection method. Section 5.4
covers aspects related to the obtained solution and how the found applicator
trajectory can be physically realized.

5.1 Spray painting multi-physics simulation
In order to realistically simulate the paint deposition of an industrial spray
painting process, the different physical processes that affect the paint droplets
all need to be accurately modeled.

To exemplify these processes, we can consider an electrostatically charged
rotary bell paint applicator. This is a commonly used setup for a robotic paint
booth in the automotive industry. The first physical process to consider here
is the atomization of the paint into tiny droplets at the edge of the quickly
spinning rotary bell. Each paint droplet then has to be simulated forward in
time while considering how the air-flow and the electric field affect the charged
paint droplets. By coupling the simulations for air-flows, electrostatic fields
and charged paint particles, each paint particle can be traced from when it is

61

Chapter 5 Spray painting

ejected out of the applicator until it collides with the target geometry. The
applied electric potential pulls the paint droplets towards the desired surfaces,
thereby improving the transfer efficiency of paint. It also allows paint to swirl
around corners and land on points that are not within a direct line of sight of
the applicator. This can have a positive effect on the consistency of the paint
thickness, but the increased electrostatic attraction of edges and protrusions
can also create difficulties when trying to apply an even amount of paint on
the whole surface. Integrating the contribution of the droplet landing on the
surface produces a paint thickness estimate for each triangle of the target
geometry to be painted [54]–[57]. A snapshot of a multi-physics simulation of
each paint droplet can be seen in Figure 5.2, where each rotary bell applicator
follows a specified trajectory.

5.2 Projection method for paint deposition
A calibrated multi-physics simulation can produce a highly accurate approx-
imation of the resulting paint thickness. It is a resource intensive simulation,
which can be invoked in the validation step of finding an adequate painting
trajectory, or when comparing a limited set of candidate trajectories. For pa-
rameters where the relation is well understood of how they affect the resulting
paint thickness, the simulation result can also be used to perform a local op-
timization over these parameters. This is for example the case for the speed
of the applicator and the paint flow rate, which both have an approximately
linear effect on the paint thickness. Speed optimization of a given trajectory
makes use of this by performing a full multi-physics simulation for the trajec-
tory and modifying the speed along each trajectory segment to obtain a more
even paint thickness.

In cases where it is desirable to modify a larger set of variables, it soon
becomes infeasible to directly include results from the multi-physics simulation
in the optimization. Here it would instead be beneficial to use a simplified
paint deposition model [58] to be able to optimize the paint thickness over
the surface mesh or point cloud representation [59]. In Paper E, which is an
extended and improved journal version of the work presented in an earlier
conference submission [60], painting trajectories are optimized by making use
of a paint projection deposition model. The main features of the projection
model can be seen in Figure 5.3. The paint applicator is modeled as a point

62

5.3 Applicator trajectory optimization

source
applicator

TCP

footprint
profile

static
geometry

Figure 5.3: Representation of the main components of the paint projection. The
modeled point source determines how the footprint profile is projected
onto the static geometry. The figure also shows a TCP-centered coor-
dinate system relative to the applicator.

source which projects a radially symmetric footprint profile down onto the
geometry to be painted.

In one of the figures of Paper E, Figure 6, we can see a representation of a
footprint profile, and how it is calibrated to physical experiments. The exper-
imental setup involves sweeping the applicator over flat surfaces at different
distances and measuring the resulting thickness profile in lines orthogonal to
the sweep direction. The paint deposition model is formulated as an ana-
lytical expression of radially symmetric spline functions. By projecting this
so-called brush function back onto a geometry, the resulting paint thickness
can be analytically calculated. As the model is to be used in an optimization
routine, it is important that all partial derivatives of the analytical expression
can be calculated with respect to each optimization variable.

5.3 Applicator trajectory optimization
Since the projection method treats the paint deposition process as a pure
projection of paint onto the geometry, it can be expected to perform well in
situations where this is a sufficiently accurate representation of the process.
This is true for low curvature surfaces, which are similar to the flat plates

63

Chapter 5 Spray painting

40 µm

50 µm

60 µm

Figure 5.4: Test case of a square plate with a side length of 1.0 m, an initial path
with a sweep width of 180 mm, and a target thickness of 50 µm. The
figures show from left to right the resulting simulated paint thickness
for the initial trajectory with a constant velocity, the thickness after
applying a speed optimization but leaving the path unchanged, and
after performing a full optimization where the trajectory points are
also allowed to move.

used to calibrate the method. But for cases with high curvature, or along
edges, this method will not fully capture the resulting painting pattern aris-
ing from inhomogeneous airflow and electric field. The optimization problem
formulation and initial path generation algorithms presented in Paper E are
formulated with this limitation in mind. The goal is to find a formulation
which optimizes trajectories in a range of values where the model gives a good
approximation of the paint deposition process. Specifically, the optimization
routine should not be able to exploit a weakness in the paint deposition model
to push the trajectory into a physically infeasible solution.

The results from the presented painting trajectory optimization, along with
initial trajectory generation algorithms, are promising and show how an initial
trajectory can be first generated, and then improved upon in the optimization
step, to provide an adequate paint result in terms of thickness and consistency.
Figures 5.4 and 5.5 taken from Paper E show examples of optimized trajec-
tories. In Figure 5.4 it is clear that speed optimization by itself can improve
the resulting paint thickness, but even in this simple two-dimensional case the
modification of trajectory waypoints is a clear improvement over the speed
optimized trajectory. For the industrial case shown in Figure 5.5 the simu-
lated results are again promising. The two figures show how the optimization
is able to take the automatically generated trajectory seen in Figure 5.5a and
smooth out the projected profile over the surface by modifying the waypoints
and obtaining the even paint result seen in Figure 5.5b.

64

5.4 Spray painting trajectory

35 µm

50 µm

65 µm

(a) Initial path with constant velocity.

35 µm

50 µm

65 µm

(b) Optimized trajectory.

Figure 5.5: The figures show the simulated paint thickness on a tractor fender
that is obtained when using the same paint projection as is used in the
optimization. The results are for an initial path with constant velocity,
and an optimized trajectory, where the target thickness is 50 µm. CAD
model courtesy of John Deere.

5.4 Spray painting trajectory

In Chapter 4, where robot controller trajectories are covered in detail, the tra-
jectory is linked to, and affected by, the particular robot performing the task.
The painting trajectories optimized in Paper E are formulated in more generic
terms, only capturing the movement of the applicator or TCP of the robot.
The path of the applicator is defined by a number of waypoints that specify
position and orientation of the applicator. These waypoints are here used as
optimization variables, but depending on application, it might be possible to
reduce the number of decision variables to a smaller set of trajectory generat-
ing parameters [61]–[63]. Even after finding a solution for the TCP trajectory,
there might be issues encountered when trying to physically realize this tra-
jectory. It might not be possible to place the workpiece relative to the robot
in such a way that the whole trajectory is reachable and within the robot’s
workspace. Even if the robot can reach each waypoint of the trajectory, it

65

Chapter 5 Spray painting

might not be possible to continuously connect them all using the same inverse
configuration. The kinematic singularity that would be reached when trying
to move between different inverse configurations, could also cause problems by
just being in the vicinity of the trajectory. This type of reorientation during
a robot motion typically requires large velocity and acceleration values for a
number of limiting joints. This could in turn produce a motion where the
required target TCP velocity is not obtained, which will affect the calculated
paint thickness. If this deviation is too large, it could be necessary to brake
up the trajectory in multiple parts or perhaps rerun the optimization with
additional constraints.

Physical limitations of the robot could also be included in the optimiza-
tion to directly handle these issues even in the problem formulation step and
Chapter 7 covers ongoing work related to this type of formulation.

5.5 Summary
This chapter has described the modeling and simulation of a spray painting
process, with the stated goal of including the model in trajectory optimization
for robotic spray painting. In Section 5.1 the multi-physics simulation of paint
deposition, and the physical phenomena it aims to simulate, were described
in general terms. Section 5.2 focused on the simplified projection method for
paint deposition, which has been used in trajectory optimization for a paint
applicator, as discussed in Section 5.3. The results from the optimization were
exemplified by included results from Paper E. The final section, Section 5.4,
compared the resulting applicator trajectories to robot trajectories, with a
focus on differences that might result in executability problems.

The next chapter contains summaries of the included papers in the thesis,
followed by conclusions and future work in the final chapter.

66

CHAPTER 6

Summary of included papers

This chapter provides a summary of the included papers.

6.1 Paper A
Staffan Björkenstam, Daniel Gleeson, Robert Bohlin, Johan S. Carl-
son, and Bengt Lennartson
Energy Efficient and Collision Free Motion of Industrial Robots using
Optimal Control
Published in Proceedings of the 2013 IEEE International Conference
on Automation Science and Engineering (CASE), Madison, Wisconsin,
USA, pp. 510–515, 2013.
©2013 IEEE, Reprinted with permission.
DOI: 10.1109/CoASE.2013.6654025.

The paper covers trajectory optimization for an industrial robot, which is
fully controllable on all joints, with respect to both cycle time and energy
norm, while maintaining a collision free trajectory. Collision avoidance along
the trajectory, even in highly cluttered environments, is achieved through an

67

Chapter 6 Summary of included papers

iterative process based on a local sensitivity analysis. Optimal solutions are
found by discretizing an optimal control formulation of the problem, and find-
ing solutions using a general-purpose interior point solver. Results from an
industrial case with two robots in an automotive stud welding station, show
that the optimized smoothed trajectory cut down the cycle travel time by
19.2%, while at the same time decreasing the energy consumption by 12.8%,
compared with the velocity tuned piecewise linear solution.

The work presented in the paper can be seen as a continuation of the Mas-
ter thesis work of Daniel Gleeson (DG), supervised by Staffan Björkenstam
(SB), about optimizing the trajectories of human model manikins. In this
paper similar methods are used and adapted to the context of the relatively
lower dimensional problem of industrial robots. The method, model and opti-
mization routine were developed by DG and SB. Robert Bohlin (RB) provided
valuable input regarding trajectory optimization and developed the path plan-
ning algorithm used to find initial paths. Johan S. Carlson (JSC) and Bengt
Lennartson (BL) are PhD and Master’s thesis head supervisor and examiner,
and have provided guidance and input. All authors participated in reviewing
and revising the manuscript.

Context: Sections 2.4, 3.1, 3.2, 3.3 and 3.4.

6.2 Paper B
Daniel Gleeson, Staffan Björkenstam, Robert Bohlin, Johan S. Carl-
son, and Bengt Lennartson
Optimizing Robot Trajectories for Automatic Robot Code Generation
Published in Proceedings of the 2015 IEEE International Conference
on Automation Science and Engineering (CASE), Gothenburg, Sweden,
pp. 495–500, 2015.
©2015 IEEE, Reprinted with permission.
DOI: 10.1109/CoASE.2015.7294128.

In the work presented in Paper A, the robot trajectory optimization consid-
ered a robot with double integrator joint dynamics, which is a generalized and
non-specific parametrization of a robot trajectory. To realize such a trajectory
in practice, requires exact control of the robot trajectory, using an interface to
send sampled trajectory values directly to the robot. In real world industrial
cases, robots are instead most commonly controlled by sending robot com-

68

6.3 Paper C

mands to be executed, leaving the exact trajectory to be followed up to the
internal robot controller. In this work the trajectory is optimized using such
robot code parameters as optimization variables, making it possible to export
the found solution to executable robot code. Results show that in an indus-
trial test case with two robots, optimized zone sizes reduce the cycle time by
21,8% compared to the initial piecewise linear trajectory. By optimizing the
trajectory zones a faster solution is found even when compared to a manually
fine-tuned solution with zone sizes selected from a predefined set of Robot
Studio zone sizes.

DG and SB jointly formulated the optimization problem and the iterative
procedure to maintain a collision free trajectory. RB provided valuable in-
put regarding distance measure calculations. JSC was involved in formulating
the problem and together with BL guided the work and provided input on
how it was presented. All authors participated in reviewing and revising the
manuscript.

Context: Sections 2.4, 3.1, 3.2 and 4.3.

6.3 Paper C
Daniel Gleeson, Staffan Björkenstam, Robert Bohlin, Johan S. Carl-
son, and Bengt Lennartson
Towards Energy Optimization using Trajectory Smoothing and Auto-
matic Code Generation for Robotic Assembly
Published in Proceedings of the 6th CIRP Conference on Assembly Tech-
nologies and Systems (CATS), Procedia CIRP, Gothenburg, Sweden,
Volume 44, pp. 341–346, 2016.
CC BY-NC-ND
DOI: 10.1016/j.procir.2016.02.099.

This paper can be seen as a continuation and refinement of the work pre-
sented in Paper B. Here the parametrization of the robot controller trajectory
is more explicitly stated, to simplify the formulation and calculations of the
resulting trajectory and all partial derivatives with respect to the robot code
parameters. The trajectory optimization problem is formulated using addi-
tional robot code parameters as optimization variables. The resulting tra-
jectory is compared to velocity tuned solutions using measures of both cycle
time and energy consumption approximations. Results show that by modi-

69

Chapter 6 Summary of included papers

fying waypoints and zone interpolation variables, a faster and more energy
efficient solution can be found. The cycle time is reduced by 14.3% and an
energy reduction of up to 10% on the load bearing links of the robot.

DG formulated the new parametrization of the robot trajectory. DG and
SB reformulated and improved the discretized optimization problem. RB pro-
vided valuable input regarding parametric trajectory optimization. JSC and
BL guided the work and provided input on how it is presented. All authors
participated in reviewing and revising the manuscript.

Context: Sections 2.4, 3.1, 3.2 and 4.3.

6.4 Paper D
Daniel Gleeson, Christian Larsen, Johan S. Carlson, and Bengt Lennart-
son
Implementation of a Rapidly Executing Robot Controller
Published in Proceedings of the 2019 IEEE 15th International Confer-
ence on Automation Science and Engineering (CASE), Vancouver, BC,
Canada, pp. 1341–1346, 2019.
©2019 IEEE, Reprinted with permission.
DOI: 10.1109/COASE.2019.8843254.

The work presented here aims to emulate robot controllers from different
robot manufacturers and find parametrizations of the robot trajectories that
can be quickly evaluated given a set of robot commands. One important mo-
tivation and benefit with this type of formulation is that it enables robots
from multiple manufacturers to be used in the work presented in Paper B and
Paper C, where robot trajectories are optimized in a cluttered environment
using robot code parameters as optimization variables. A fast and accurate
robot controller is formulated and implemented. It first analytically generates
a spatial trajectory from robot commands based on manufacturer-specific pa-
rameters found by solving a parameter identification optimization problem.
The trajectory is time stamped to fulfill velocity and acceleration bounds using
a double-sweep algorithm, which finds the optimal time stamps without ex-
plicitly formulating an optimization problem. Results show good agreement
with experimental values, with maximum trajectory deviations of less than
0.1° for the two industrial robots ABB 6640 and the KUKA KR 30-3, and
a somewhat larger maximum deviation of 0.3° for the smaller KUKA IIWA

70

6.5 Paper E

robot.
DG and Christian Larsen (CL) performed robot trajectory measurements,

with DG focusing on the KUKA KR 30-3 and CL on the KUKA IIWA. CL
investigated differences in a range of robot code from different brands. DG
implemented the lightweight robot controller, formulated the test trajectories
and performed the parameter identification optimization. JSC and BL pro-
vided guidance and input on the work. All authors participated in reviewing
and revising the manuscript.

Context: Sections 4.1, 4.2 and 4.3.

6.5 Paper E
Daniel Gleeson, Stefan Jakobsson, Raad Salman, Fredrik Ekstedt,
Niklas Sandgren, Fredrik Edelvik, Johan S. Carlson, and Bengt Lennart-
son
Generating Optimized Trajectories for Robotic Spray Painting
Published in The IEEE Transactions on Automation Science and Engi-
neering (T-ASE), Volume 19, Issue 3, pp. 1380–1391, July 2022.
CC BY
DOI: 10.1109/TASE.2022.3156803.

The painting trajectory optimization presented in this paper finds an appli-
cator trajectory that produces an even paint thickness. This is an important
step for reaching the overall goal of automating the full process of spray-
painting parts in a painting booth. An initial trajectory is found by projecting
and modifying a raster-curve of parallel sweeps onto the triangulated surface.
A paint thickness optimization problem is formulated making use of a paint
projection deposition model which has been calibrated to match experimental
results from spray painting rectangular test plates. The optimization vari-
ables are the spatial positions and orientations of the applicator along with
segment time durations, in contrast to the joint space robot code parameters
used as optimization variables in Paper B and Paper C. Testing the algorithm
on industrial cases show promising results, with the resulting trajectory pro-
ducing a paint thickness close to the target thickness for most experimentally
measured points on the geometry.

Stefan Jakobsson (SJ) formulated the first version of the optimization prob-
lem including implementing partial derivative calculations. DG, Raad Salman

71

Chapter 6 Summary of included papers

(RS) and Niklas Sandgren (NS) further developed the formulation, with DG
focused on the trajectory optimization formulation, RS on improving con-
straints and parameters by running test cases and NS on the projection depo-
sition model. Fredrik Ekstedt (FEk) worked on the algorithm for generating
an initial trajectory. Fredrik Edelvik (FEd), JSC and BL provided input and
guidance throughout the work. All authors participated in reviewing and
revising the manuscript.

Context: Sections 5.1, 5.2, 5.3 and 5.4.

72

CHAPTER 7

Conclusions and future work

The work presented in this thesis has been focused on different aspects of
robot trajectory optimization. The main focus, which has returned through
all different applications, has been on modeling, simulation and optimization.
In particular, special attention has often been given to the model formulation
step. It is important to formulate a model that captures the main behavior
and interesting aspects of the studied physical process, while at the same
time being simplified enough such that it is practically useful for simulation,
especially in a context where it is used in an optimization problem formulation.

7.1 Conclusions
In Paper A the trajectory optimization problem was formulated in quite gen-
eral terms, with a relatively unconstrained trajectory. The only included
limiting factors for the time evolution of the state variables, were the physical
limitations of the robot. The main focus was to be able to include colli-
sion avoidance constraints in such a way that it was feasible to use the op-
timization problem formulation even in complex and cluttered environments.
The trajectory itself was formulated without specific constraints defining the

73

Chapter 7 Conclusions and future work

parametrization of the trajectory. In such a relaxed formulation of the time
evolution of the trajectory, the trade-off in the amount of restriction applied,
instead becomes a matter of restricting the optimizer from exploiting weak-
nesses or inconsistencies in the formulation to arrive at infeasible solutions.
Examples of this kind of exploitations are shown in Chapter 3, where the
fact that all constraints are only fulfilled pointwise in the sampled trajectory
can lead to the final trajectory jumping over infeasible regions in the form of
physical barriers. The importance of using a good initial guess to guide the
optimization was also highlighted based on simplified examples.

The work presented in Paper B and Paper C was driven by an industrial
need where the robot trajectory should be restricted to follow a type of trajec-
tory produced by an industrial robot controller, and that the resulting trajec-
tory should be directly exportable in the form of robot code. In terms of how
this affects the optimization problem formulation, this additional constraint
is a restriction on the solution space compared to the formulation in Paper A.
It also includes the complexity of possibly nested optimization problems in
the case where we want to optimize with respect to for example time and
energy consumption. This is because the limitation to use robot code param-
eters introduce an inner optimization, where the robot controller generates
a time optimal trajectory given the robot code parameters and its internal
constraints.

Inspired by the industrial interest and feedback received for the work on
automatic code generation of optimized trajectories, the work presented in
Paper D was motivated by the need for expanding previous work to addi-
tional robot manufacturers. By finding common types of parametrizations
that are possible to apply to robot code generated by different manufacturers,
the previous work on robot trajectory optimization would become increas-
ingly more applicable to real world industrial cases. Finding an analytical
optimization-free method of generating robot trajectories from given robot
code, has additional benefits. It enables the unwinding of the nested opti-
mization mentioned previously for more general cost functions, removing the
need to include internal optimality conditions in the optimization problem
formulation.

In Paper E, the close coupling to robot code generation is relaxed into a
more simplified model of a robot trajectory. Here the trajectory only models
the motion of the end effector, while considering a more complex objective

74

7.1 Conclusions

function in the form of paint optimization. The main focus here is to suf-
ficiently simplify the modeled process to make it useable in an optimization
routine, while retaining enough information that the resulting trajectory pro-
duces an accurate enough result. This is the case both while modeling the
robot trajectory and when modeling the paint deposition process.

The research questions stated in Chapter 1 concern trajectory optimization,
robot controller modeling and optimization of robotic spray painting. Con-
sidering each of the questions, and restating them here for clarity, to what
degree have the research questions been answered by the work presented in
this thesis?

RQ1: For a robot with freely moving and accurately controlled actuators, how
can the optimal collision free trajectory be found when optimizing for cycle
time and/or energy consumption?

The first question is mainly answered in Paper A since this problem formu-
lation placed few constraints on the shape of the robot trajectory, while at the
same time optimizing for a combination of both cycle time and an approxima-
tion of the energy consumption. In Paper B and Paper C the focus was shifted
slightly from the initial research question formulation. Here the main result
is that we have optimized robot trajectories subject to robot controller con-
straints. It has been shown that it is possible to formulate a parametrization
of the problem such that the model formulation can be used in an optimization
scheme even in cluttered environments. However, it should be noted that this
restriction to solutions that are directly exportable to robot code reduces the
domain of the problem, excluding solutions that produce lower cost function
values by more closely controlling the time evolution of the state vector.

RQ2: How can robot controllers from different manufacturers be accurately
emulated and included in an optimization scheme for automatic robot code
generation? The second question is partly answered in Paper B and Paper C,

where the feasibility of the method is proven for a single robot manufacturer
trajectory formulation. Accurate parametrizations of the robot controller tra-
jectory are formulated in the two papers and are included directly in the opti-
mization problem. The main difference in Paper C is that the parametrization
is formulated using a set of differentiable basis functions, to separate param-
eters related to determining the shape of the trajectory from the via point

75

Chapter 7 Conclusions and future work

values of the trajectory. By using robot code parameters as variables in the
optimization problem, the found solutions are directly exportable as robot
code. This work is then possible to expand to multiple robot manufacturers
by making use of the work presented in Paper D, where similar parametriza-
tions are found using parameter fitting.

RQ3: How can optimal robotic spray painting trajectories be found for an ar-
bitrary CAD-modeled surface? This question is answered in Paper E where a

spray cone projection model and a paint applicator trajectory approximation
are used together to formulate an optimization problem for finding a trajec-
tory that will produce a paint thickness within specified limits. Constraints
are added to the problem to increase the probability of being able to physi-
cally realize the obtained robot trajectory. The robot trajectory optimization
presented in Papers A, B and C make use of a feasible initial collision free
trajectory which is found using a path planning search algorithm. Paper E
instead describes a broader view of the problem at hand, where the solution
is not only focused on optimizing a paint applicator trajectory given a feasi-
ble initial solution, but also formulates an algorithm for obtaining this initial
solution.

7.2 Future work
Future work expanding on the methods presented here can be divided into a
few different categories broadly based on the different applications presented.

Starting out, it would be of interest to continue working on improving the
trajectory optimization, for example by including more general optimization
formulations in the trajectory optimization, such as accurate energy consump-
tion models. The initial path used in the optimization is created by a path
planning algorithm. By more closely linking the trajectory optimization to
planning, sequencing and load-balancing algorithms, it could be possible to
find more efficient solutions in multi-robot stations, especially in cases where
robots need to perform tasks in close proximity to each other.

There is also a clear interest, especially from industry partners, in the impor-
tance of continually developing, improving and generalizing Robot Controller
Light. Different tracks of interest include generalizing the robot controller
simulator to include additional robot manufacturers, implementing more gen-

76

7.2 Future work

eral trajectory representations, for example speed dependent spatial trajec-
tories, and handling more complex constraints or objectives such as torque
minimization. For specific applications it would be beneficial if the controller
was able to handle multi-robot stations, with one robot holding the work-
piece. There are also possibilities for improving the accuracy of the controller
by implementing more general blending patterns and improving the blending
of certain combinations of movement commands, for example increasing the
accuracy of MoveC-MoveC interpolation.

One area where my colleagues and I plan to work extensively the com-
ing couple of years is improving the painting optimization. One important
improvement we wish to achieve is to include robotic kinematic constraints
directly in the paint optimization. One way to do this would be to make use
of derivative-free optimization algorithms to be able to make use of simulation
models which are not easily differentiable. We will also work on improving
the simplified paint deposition modeling to more closely resemble the depo-
sition of paint onto real world geometries, without a significant increase in
computation time. If successful, this would significantly increase the number
of use cases where the optimization is able to produce physically accurate and
realizable solutions.

77

References

[1] L. Bainbridge, “Ironies of automation,” in Analysis, design and evalua-
tion of man–machine systems, Elsevier, 1983, pp. 129–135.

[2] Wingquist laboratory, https://www.chalmers.se/en/centres/wingq
uist/about-us/, [Online; accessed 2025-09-23], 2025.

[3] World robotics report, https://ifr.org/downloads/press2018/2022
_WR_extended_version.pdf, [Online; accessed 2025-09-23], 2022.

[4] J. Gregory, A. Olivares, and E. Staffetti, “Energy-optimal trajectory
planning for robot manipulators with holonomic constraints,” Systems
Control Letters, vol. 61, no. 2, pp. 279–291, 2012.

[5] K. Paes, W. Dewulf, K. V. Elst, K. Kellens, and P. Slaets, “Energy
efficient trajectories for an industrial ABB robot,” Procedia CIRP, 21st
CIRP Conference on Life Cycle Engineering, vol. 15, pp. 105–110, 2014.

[6] S. Riazi, K. Bengtsson, O. Wigström, E. Vidarsson, and B. Lennart-
son, “Energy optimization of multi-robot systems,” in Automation Sci-
ence and Engineering (CASE), 2015 IEEE International Conference on,
Gothenburg, Sweden, Aug. 2015, pp. 1345–1350.

[7] O. von Stryk and M. Schlemmer, “Optimal control of the industrial
robot manutec r3,” Computational optimal control, International series
of Numerical Mathematics, vol. 115, pp. 367–382, 1994.

[8] A. Müller, “Energy optimal control of serial manipulators avoiding col-
lisions,” in Mechatronics, 2004. ICM’04. Proceedings of the IEEE Inter-
national Conference on, Istanbul, Turkey, 2004, pp. 299–304.

79

https://www.chalmers.se/en/centres/wingquist/about-us/
https://www.chalmers.se/en/centres/wingquist/about-us/
https://ifr.org/downloads/press2018/2022_WR_extended_version.pdf
https://ifr.org/downloads/press2018/2022_WR_extended_version.pdf

References

[9] J. Bukchin and M. Tzur, “Design of flexible assembly line to minimize
equipment cost,” IIE Transactions, vol. 32, no. 7, pp. 585–598, 2000.

[10] T. Hermansson, J. S. Carlson, J. Linn, and J. Kressin, “Quasi-static
path optimization for industrial robots with dress packs,” Robotics and
Computer-Integrated Manufacturing, vol. 68, p. 102 055, 2021.

[11] S. LaValle and S. Hutchinson, “Optimal motion planning for multi-
ple robots having independent goals,” Robotics and Automation, IEEE
Transactions on, vol. 14, no. 6, pp. 912–925, 1998, issn: 1042-296X.

[12] C. Rösmann, F. Hoffmann, and T. Bertram, “Planning of multiple robot
trajectories in distinctive topologies,” in 2015 European Conference on
Mobile Robots (ECMR), IEEE, Lincoln, UK, 2015, pp. 1–6.

[13] M. Gombolay, R. Wilcox, and J. Shah, “Fast scheduling of multi-robot
teams with temporospatial constraints,” Robotics: Science and Systems
IX, 2013.

[14] D. Spensieri, J. S. Carlson, F. Ekstedt, and R. Bohlin, “An iterative ap-
proach for collision free routing and scheduling in multirobot stations,”
IEEE Transactions on Automation science and Engineering, vol. 13,
no. 2, pp. 950–962, 2015.

[15] O. Wigström, B. Lennartson, A. Vergnano, and C. Breitholtz, “High-
level scheduling of energy optimal trajectories,” Automation Science and
Engineering, IEEE Transactions on, vol. 10, no. 1, pp. 57–64, Jan. 2013.

[16] O. Wigström, N. Murgovski, S. Riazi, and B. Lennartson, “Computa-
tionally efficient energy optimization of multiple robots,” in 2017 13th
IEEE Conference on Automation Science and Engineering (CASE),
Xi’an, China, 2017, pp. 515–522.

[17] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning collision-
free paths among polyhedral obstacles,” Communications of the ACM,
vol. 22, no. 10, pp. 560–570, 1979.

[18] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential
field techniques for robot path planning,” IEEE Transactions on Sys-
tems, Man, and Cybernetics, vol. 22, no. 2, pp. 224–241, 1992.

80

References

[19] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–
580, 1996.

[20] R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” in Pro-
ceedings 2000 ICRA. Millennium Conference. IEEE International Con-
ference on Robotics and Automation. Symposia Proceedings, vol. 1, San
Francisco, California, USA, 2000, pp. 521–528.

[21] L. Jaillet, J. Cortés, and T. Siméon, “Transition-based rrt for path plan-
ning in continuous cost spaces,” in 2008 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), Nice, France, 2008,
pp. 2145–2150.

[22] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[23] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic plan-
ning,” in 1999 IEEE International Conference on Robotics and Automa-
tion, vol. 1, Detroit, Michigan, USA, 1999, pp. 473–479.

[24] G. Field and Y. Stepanenko, “Iterative dynamic programming: An ap-
proach to minimum energy trajectory planning for robotic manipu-
lators,” in Proceedings of IEEE International Conference on Robotics
and Automation (ICRA), vol. 3, Minneapolis, Minnesota, USA, 1996,
pp. 2755–2760.

[25] R. Bordalba, T. Schoels, L. Ros, J. M. Porta, and M. Diehl, “Direct
collocation methods for trajectory optimization in constrained robotic
systems,” IEEE Transactions on Robotics, vol. 39, no. 1, pp. 183–202,
2023.

[26] J. E. Cuthrell and L. T. Biegler, “Simultaneous optimization and solu-
tion methods for batch reactor control profiles,” Computers & Chemical
Engineering, vol. 13, no. 1-2, pp. 49–62, 1989.

[27] R. Dorfman, “An economic interpretation of optimal control theory,”
The American Economic Review, vol. 59, no. 5, pp. 817–831, 1969.

81

References

[28] F. Fahroo and I. M. Ross, “Advances in pseudospectral methods for
optimal control,” in AIAA guidance, navigation and control conference
and exhibit, Honolulu, Hawaii, USA, 2008, p. 7309.

[29] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in
2011 IEEE International Conference on Robotics and Automation
(ICRA), Shanghai, China, 2011, pp. 4569–4574.

[30] W. Han, A. Jasour, and B. Williams, “Non-gaussian risk bounded tra-
jectory optimization for stochastic nonlinear systems in uncertain envi-
ronments,” in 2022 International Conference on Robotics and Automa-
tion (ICRA), IEEE, Philadelphia, Pennsylvania, USA, 2022, pp. 11 044–
11 050.

[31] M. Gerdts, R. Henrion, D. Hömberg, and C. Landry, “Path planning
and collision avoidance for robots,” Numerical Algebra, Control and Op-
timization, vol. 2, no. 3, pp. 437–463, 2012.

[32] J. M. Hollerbach, “Dynamic scaling of manipulator trajectories,” in 1983
American Control Conference, IEEE, San Francisco, California, USA,
1983, pp. 752–756.

[33] J. Bobrow, S. Dubowsky, and J. Gibson, “Time-optimal control of
robotic manipulators along specified paths,” The International Journal
of Robotics Research, vol. 4, no. 3, pp. 3–17, 1985.

[34] J. Park, “Motion profile planning of repetitive point-to-point control for
maximum energy conversion efficiency under acceleration conditions,”
Mechatronics, vol. 6, no. 6, pp. 649–663, 1996.

[35] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and M.
Diehl, “Time-optimal path tracking for robots: A convex optimization
approach,” IEEE Transactions on Automatic Control, vol. 54, no. 10,
pp. 2318–2327, 2009.

[36] T. Lipp and S. Boyd, “Minimum-time speed optimisation over a fixed
path,” International Journal of Control, vol. 87, no. 6, pp. 1297–1311,
2014.

82

References

[37] S. Riazi, O. Wigström, K. Bengtsson, and B. Lennartson, “Energy and
peak power optimization of time-bounded robot trajectories,” IEEE
Transactions on Automation Science and Engineering, vol. 14, no. 2,
pp. 646–657, 2017.

[38] I. M. Gelfand and S. V. Fomin, Calculus of variations. Prentice-Hall,
1963.

[39] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” Proceedings
of 2nd Berkeley Symposium, pp. 481–492, 1951.

[40] W. Karush, “Minima of functions of several variables with inequalities
as side conditions,” Master thesis, University of Chicago, 1939.

[41] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Uni-
versity Press, 2004.

[42] G. B. Dantzig, A. Orden, P. Wolfe, et al., “The generalized simplex
method for minimizing a linear form under linear inequality restraints,”
Pacific Journal of Mathematics, vol. 5, no. 2, pp. 183–195, 1955.

[43] L. Pontryagin, The Mathematical Theory of Optimal Processes (Inter-
national series of monographs in pure and applied mathematics). Perga-
mon Press; [distributed in the Western Hemisphere by Macmillan, New
York], 1964.

[44] A. E. Bryson and Y.-C. Ho, “Applied optimal control, revised printing,”
Hemisphere, New York, vol. 10, 1975.

[45] J. T. Betts, Practical methods for optimal control and estimation us-
ing nonlinear programming, 2nd ed. Society for Industrial and Applied
Mathematics, 2010.

[46] A. Wächter and L. T. Biegler, “On the implementation of a primal-
dual interior point filter line search algorithm for large-scale nonlinear
programming,” Mathematical Programming, vol. 106, no. 1, pp. 25–57,
2006.

[47] G. Tang, C. Tang, C. Claramunt, X. Hu, and P. Zhou, “Geometric a-
star algorithm: An improved a-star algorithm for agv path planning in
a port environment,” IEEE Access, vol. 9, pp. 59 196–59 210, 2021.

83

References

[48] J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach to single-
query path planning,” in Proceedings 2000 ICRA. Millennium Con-
ference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings, vol. 2, San Francisco, California, USA, 2000,
pp. 995–1001.

[49] ABB, Product specification Controller software IRC5, RobotWare 5.07,
Revision 3, https://library.e.abb.com/public/536adf0dbe55f9ae
c125766d003e8e4c/3HAC022349-001_rev3_en_library.pdf, [Online;
accessed 2025-09-23], 2004.

[50] ABB, RobotStudio API Reference, https://developercenter.robot
studio.com/api/robotstudio/api/index.html, [Online; accessed
2025-09-23], 2025.

[51] KUKA, KUKA.Sim simulation software, https://www.kuka.com/en-d
e/products/robot-systems/software/planning-project-enginee
ring-service-safety/kuka_sim, [Online; accessed 2025-09-23], 2025.

[52] Universal Robots, UR Sim offline simulator, https://www.universal
-robots.com/download/software-e-series/simulator-linux/off
line-simulator-e-series-ur-sim-for-linux-5126-lts/, [Online;
accessed 2025-09-23], 2024.

[53] F. Xu, B. Zi, Z. Yu, J. Zhao, and H. Ding, “Design and implementation of
a 7-dof cable-driven serial spray-painting robot with motion-decoupling
mechanisms,” Mechanism and Machine Theory, vol. 192, p. 105 549,
2024.

[54] A. Mark, B. Andersson, S. Tafuri, et al., “Simulation of electrostatic
rotary bell spray painting in automotive paint shops,” Atomization and
sprays, vol. 23, no. 1, 2013.

[55] B. Andersson, V. Golovitchev, S. Jakobsson, et al., “A modified tab
model for simulation of atomization in rotary bell spray painting,” Jour-
nal of Mechanical Engineering and Automation, vol. 3, no. 2, pp. 54–61,
2013.

[56] T. Johnson, S. Jakobsson, B. Wettervik, B. Andersson, A. Mark, and
F. Edelvik, “A finite volume method for electrostatic three species nega-
tive corona discharge simulations with application to externally charged
powder bells,” Journal of Electrostatics, vol. 74, pp. 27–36, 2015.

84

https://library.e.abb.com/public/536adf0dbe55f9aec125766d003e8e4c/3HAC022349-001_rev3_en_library.pdf
https://library.e.abb.com/public/536adf0dbe55f9aec125766d003e8e4c/3HAC022349-001_rev3_en_library.pdf
https://developercenter.robotstudio.com/api/robotstudio/api/index.html
https://developercenter.robotstudio.com/api/robotstudio/api/index.html
https://www.kuka.com/en-de/products/robot-systems/software/planning-project-engineering-service-safety/kuka_sim
https://www.kuka.com/en-de/products/robot-systems/software/planning-project-engineering-service-safety/kuka_sim
https://www.kuka.com/en-de/products/robot-systems/software/planning-project-engineering-service-safety/kuka_sim
https://www.universal-robots.com/download/software-e-series/simulator-linux/offline-simulator-e-series-ur-sim-for-linux-5126-lts/
https://www.universal-robots.com/download/software-e-series/simulator-linux/offline-simulator-e-series-ur-sim-for-linux-5126-lts/
https://www.universal-robots.com/download/software-e-series/simulator-linux/offline-simulator-e-series-ur-sim-for-linux-5126-lts/

References

[57] F. Edelvik, A. Mark, N. Karlsson, T. Johnson, and J. S. Carlson, “Math-
based algorithms and software for virtual product realization imple-
mented in automotive paint shops,” in Math for the Digital Factory,
Springer, 2017, pp. 231–251.

[58] D. Hegels, T. Wiederkehr, and H. Müller, “Simulation based iterative
post-optimization of paths of robot guided thermal spraying,” Robotics
and Computer-Integrated Manufacturing, vol. 35, pp. 1–15, 2015.

[59] S. Nieto Bastida and C.-Y. Lin, “Autonomous trajectory planning for
spray painting on complex surfaces based on a point cloud model,” Sen-
sors, vol. 23, no. 24, p. 9634, 2023.

[60] D. Gleeson, S. Jakobsson, R. Salman, et al., “Robot spray painting tra-
jectory optimization,” in 2020 IEEE 16th International Conference on
Automation Science and Engineering (CASE), Hong Kong, China, 2020,
pp. 1135–1140.

[61] H. Chen, W. Sheng, N. Xi, M. Song, and Y. Chen, “Automated robot
trajectory planning for spray painting of free-form surfaces in automo-
tive manufacturing,” in Proceedings 2002 IEEE International Confer-
ence on Robotics and Automation, vol. 1, Washington, DC, USA, 2002,
pp. 450–455.

[62] Q. Yu, G. Wang, and K. Chen, “A robotic spraying path generation
algorithm for free-form surface based on constant coating overlapping
width,” in 2015 IEEE International Conference on Cyber Technology
in Automation, Control, and Intelligent Systems (CYBER), Shenyang,
China, 2015, pp. 1045–1049.

[63] P. N. Atkar, H. Choset, and A. A. Rizzi, “Towards optimal coverage of
2-dimensional surfaces embedded in r3: Choice of start curve,” in Pro-
ceedings 2003 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), vol. 4, Las Vegas, Nevada, USA, 2003, pp. 3581–
3587.

85

