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 a b s t r a c t

Radiators with improperly calibrated flow rates are common in modern hydronic heating systems, often resulting 
in undesirable temperature variations across thermal zones. Flow rates are typically regulated by manually ad-
justable balancing valves installed at various points throughout the hydronic system. Traditionally, these valves 
are configured using calculations based on data from construction plans. However, these valve configuration of-
ten give a zone temperature variance, which can be attributed to commonly occurring discrepancies between the 
construction plan and the actual building. Consequently, manual rebalancing – an iterative and time-consuming 
process based on practical heuristics – is often required.
 This work addresses these challenges through a model-based approach informed by operational sensor data. 
Through modeling of the pipe network hydraulics and thermal dynamics of each zone, an expression is derived to 
evaluate the performance of the radiators’ flow rates. Model coefficients are obtained from both the construction 
plan and through system identification using operational sensor data. This enables evaluation of current system 
performance and the computation of valve reconfigurations that optimize it. To demonstrate the applicability 
of the method, a retrospective case study of a rebalancing operation in a Swedish heating system is presented. 
The analysis indicates that the rebalancing improved the balancing conditions, in line with observed reductions 
in zone temperature variance. Although the method was not applied during the original rebalancing, the results 
also suggest that using it could have led to even greater performance improvements.

1.  Introduction

Space heating accounts for 30% of the energy consumed in the EU 
[1], and improving the efficiency of those systems has been pointed 
out as an important development area to eventually reach the goal of 
a carbon-neutral energy system [2]. Many heating systems can be de-
scribed as various types of hydronic radiator systems [3], which may be 
used with different kinds of central heat sources such as heat pumps [4], 
district heating [5], or gas condensing boilers. Reportedly, hydronic ra-
diator systems are often configured to give an unnecessarily high power 
output, resulting in indoor temperatures well above the levels recom-
mended by the authorities [6]. Hence, there should be a potential to 
save energy consumption by reducing this overheating by decreasing 
the margin to the lower comfort limit. What often prevents this from 
being done is variations in the indoor temperature, both in time and be-
tween different thermal zones, that can be attributed to insufficient heat 
demand control [7]. Due to these variations, an average indoor temper-
ature reduction in a large heating system, e.g., a multi-family dwelling, 
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would typically result in an uncomfortable indoor climate in a subset of 
the thermal zones. Therefore, it is desirable to avoid these variations by 
improving the heat demand control mechanisms.

In hydronic radiator systems, hot water is pumped from a central 
heat source to radiators located inside the thermal zones, where the 
water is cooled by heat transfer to the inside air and eventually recir-
culated to the central heat source [8]. The delivered heat is a function 
of water temperature and flow rate, which is utilized in the common 
control mechanisms. The probably most basic setup is to only have
automatic control centrally, with the supply water temperature set 
by a feedforward controller from the outdoor temperature, known as 
weather-compensated control. To allocate the heating power appropri-
ately between the thermal zones, there are balancing valves which are 
manually adjusted to obtain appropriate flow rates in the radiators. With 
no automatic feedback from the indoor temperature, such simple setups 
are often poorly tuned, such that overheating is common [9]. By also in-
troducing thermostatic radiator valves (TRVs), automatic control is also 
enabled locally since TRVs adjust the flow rate with feedback from the 
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indoor temperature in the thermal zone [10]. The commonly used me-
chanical TRVs can, however, only perform well within a limited flow 
range [11], meaning that the control performance of the TRVs is de-
graded if balancing valves are inappropriately set [12–14]. Therefore, 
properly done hydronic balancing, i.e., by configuring balancing valves, 
is crucial for achieving successful heat demand control in all thermal 
zones regardless of whether TRVs are installed or not [10,15,16].

Poorly balanced hydronic heating systems have been recognized 
as an obstacle in the current building stock to achieve more energy-
efficient control [17]. The typical balancing strategy starts by calculat-
ing a flow rate, or a configuration, for each balancing valve, based on 
information from the construction plan [14,18]. After disabling TRVs, 
if such are installed, a technician initially adjusts the balancing valves 
according to the calculation [19], but due to discrepancies between the 
construction plan and the actual system, this procedure may often not 
provide a satisfactory heat allocation to at least some of the thermal 
zones. Consequently, there is a significant temperature variance even 
after the initial configuration, which a technician has to mitigate with 
a time-consuming trial-and-error approach to redistribute the flow rate 
by reconfiguring the valves. Also, since system properties may change 
over time, e.g., changes in thermal characteristics due to replacement 
of components, hydronic balancing needs to be performed regularly.

Finding alternatives and improvements that facilitate hydronic bal-
ancing, and ultimately automate the manual work [20], is thus nec-
essary to optimize the efficiency of the present hydronic systems. 
There have been several developments of flow control equipment, e.g., 
pressure-independent balancing valves [10,18,21] and motorized TRVs 
[22], that have showed improvements of the balancing conditions. Yet, 
such setups are still rare in Swedish dwellings due to the extra invest-
ment costs [23]. On the other hand, many housing companies have re-
cently installed temperature sensors inside apartments to enable feed-
back control for the central heating power [7]. Although such efforts 
of improving the central control have led to significant energy savings, 
the potential is limited since only the accumulated heating power of 
all apartments is affected, and thereby only the average indoor tem-
perature. With insufficient local conditions, there will always be tem-
perature variations in individual apartments, and some degree of over-
heating will be necessary to avoid discomfort [24]. Sarran et al. [25]
developed a data-based approach for diagnosing the balancing condi-
tions in a modern building equipped with electronic TRVs and heat me-
ters. While most apartment buildings in Sweden have a simpler setup, 
consisting of only an indoor temperature sensor in each apartment, it 
is still possible to retrieve information about the heat allocation of the 
radiator system as obtained through balancing.

In recent years, the interest in data-driven modeling for thermal 
dynamics in heating systems in general has increased [26]. The main 
reason behind this movement is the simultaneously increased inter-
est in model predictive control (MPC) for central control [27]. Within 
this field, gray-box approaches have been regarded as attractive since 
they often offer both interpretability and decent model quality to rel-
atively little effort [28]. A hydronic heating system may be particu-
larly challenging to model due to the non-linearities of the hydronic 
radiators, but studied model complexity includes both rather detailed 
models of those nonlinearities [29,30] and linear approximations [31]. 
For the case of MPC, there are results suggesting that simple models 
may perform as well as more complex [32]. It should, however, be 
pointed out that none of the aforementioned works considers model-
ing for assisting hydronic balancing, which arguably introduces other 
requirements than what is needed for a model to be used in a feedback
controller.

This work presents a modeling approach for assisting the rebalancing 
work using both construction plan data and operational time-series data 
collected from sensors in all thermal zones. This sensor setup reflects re-
cent installations by housing companies aimed at enabling centralized 
feedback control. Unlike conventional methods, which are based solely 
on the construction plan and do not assess the actual thermal state of 

the system, the proposed approach uses operational data to evaluate 
the current hydronic balancing status. Based on this evaluation, poten-
tial valve reconfigurations can also be calculated to improve balancing 
conditions.

1.1.  Outline

The remainder of this paper is structured as follows: Section 2 out-
lines the aims of this work and specifies the data and system information 
required to apply the proposed methods. Section 3 introduces modeling 
for evaluating the performance of flow rates and valve configurations. 
Section 4 builds on the modeling in Section 3 to derive tools for assisting 
rebalancing using the data listed in Section 2. Section 5 demonstrates the 
application of these tools through a retrospective analysis of a rebalanc-
ing operation carried out in a Swedish heating system. Lastly, Section 6 
discusses the results from the case study and suggests refinements to the 
approach.

2.  Problem formulation

We consider a hydronic heating system with a central heat source 
and a pump that serves radiators in different thermal zones. The pipe 
system is a two-pipe system, i.e., each radiator is connected to a supply 
pipe and a return pipe, and the pump operates with a known constant 
differential pressure. The supply temperature of the heat source can be 
controlled in real time, and there are balancing valves that can be man-
ually configured to affect the distribution of flow rates to the different 
radiators. We have time-series data consisting of the supply and return 
temperature of the central heat source, the outdoor temperature, and 
the air temperature from each thermal zone. With access to the con-
struction plan, we also have information about the full pipe network, 
accompanied by lengths, diameters, and materials. We have a protocol 
with the valves’ current configurations and flow rates, and we know the 
valve types and their corresponding specification.

The overall performance objective addressed in this work is to track 
the same reference temperature in each thermal zone, meaning that we 
aim to eliminate any temperature variance in time or across thermal 
zones. Given this objective, the problem we focus on in this work is to 
use the earlier-mentioned data to configure the manual balancing valves 
to facilitate successful automatic control.

3.  Modeling of balancing performance

For a hydronic system with radiators 𝑟 = 1,… , 𝑅, the heating power 
delivered at time 𝑡 by radiator 𝑟 is denoted by Φ𝑟(𝑡 ∣ 𝑢≤𝑡, 𝑞rad,𝑟(kval)), 
which is given by the past and current supply temperature 𝑢≤𝑡 =
{𝑢(𝑠) ∣ 𝑠 ≤ 𝑡} and the static radiator flow rate 𝑞rad,𝑟, which in turn is 
a function of the static valve configurations kval ∈ ℝ𝑉  of all valves 
𝑣 = 1,… , 𝑉 . The radiators in a thermal zone 𝑧 = 1,… , 𝑍 have indices 
𝑟 = 𝑃𝑧,… , 𝑅𝑧. The temperature in zone 𝑧 at time 𝑡, 𝑦𝑧(𝑡), depends on 
the past and current heating power Φ𝑟,≤𝑡(𝑢≤𝑡, 𝑞rad,𝑟(kval)) = {Φ𝑟(𝑠) ∣ 𝑠 ≤ 𝑡}
of the zone’s radiators 𝑟 = 𝑃𝑧,… , 𝑅𝑧, but also past and current dis-
turbances 𝑊𝑧,≤𝑡 = {𝑊 (𝑠) ∣ 𝑠 ≤ 𝑡} mainly from the weather conditions. 
The objective when controlling the supply temperature 𝑢 and con-
figuring the valves with kval is to generate radiator heating powers 
Φ≤𝑡

(

𝑢≤𝑡,qrad
(

kval
))

=
[

Φ1,≤𝑡,… ,Φ𝑅,≤𝑡
]⊤  such that the zone tempera-

tures y(𝑡) = [

𝑦1(𝑡),… , 𝑦𝑍 (𝑡)
]⊤  are close to the reference temperature 

𝑦ref  at each time 𝑡. That is, the norm of the vector of errors in each
zone

e
(

𝑡 ∣ Φ≤𝑡,W≤𝑡
)

= 1 𝑦ref − y(𝑡 ∣ Φ≤𝑡,W≤𝑡). (1)

should be desirably small at each time 𝑡. The balancing performance for 
the valve configurations kval is formulated as the asymptotic integrated 
squared error norm produced by the valve configurations kval and an 
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optimally controlled supply temperature 𝑢≤𝑇

𝐽 (kval) = lim
𝑇→∞

min
𝑢≤𝑇

1
𝑇 ∫

𝑇

0

‖

‖

‖

e
(

𝑡 ∣ Φ≤𝑡
(

𝑢≤𝑡,qrad
(

kval
))

,W≤𝑡
)

‖

‖

‖

2

2
𝑑𝑡. (2)

In the remainder of this section, an upper bound of the performance 
𝐽 (kval) is derived by modeling the thermal and hydraulic characteristics 
of the hydronic system. In Section 3.1, the connection between valve 
configurations kval and the radiator flow rates qrad is modeled via non-
linear equations and inequalities based on the pipe system hydraulics. 
In Section 3.2, the dynamics of the error in Eq. (1), ė, is modeled by 
considering the thermal balance in each zone. Finally, in Section 3.3, 
the upper bound for the balancing performance 𝐽 (kval) is derived by us-
ing the hydraulic model from Section 3.1 and the error dynamics model 
from Section 3.2.

3.1.  Modeling radiator flow rates

The relation between valve configurations kval and radiator flow 
rates qrad is modeled from the hydraulics of the whole pipe system. 
The hydraulic model is formulated using a directed graph structure with 
edges 𝑎 = 1,… , 𝑅 + 𝑉 + 𝑆, corresponding to the 𝑅 radiators, 𝑉  valves, 
and 𝑆 pipe sections. The edges are ordered by the component types as 
follows:

𝑎 = 1,… , 𝑅,
⏟⏞⏟⏞⏟
𝑅 radiators

𝑅 + 1,… , 𝑅 + 𝑉 ,
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑉  valves
𝑅 + 𝑉 + 1,… , 𝑅 + 𝑉 + 𝑆
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑆 pipe sections
. (3)

The graph’s vertices are indexed 𝑏 = 1,… , 𝐵, where vertex 𝑏 = 1 is 
located at the outlet of the pump and vertex 𝑏 = 𝐵 is located at the 
pump’s inlet. Thus, all flow paths of the pipe network start in 𝑏 = 1 and 
end in 𝑏 = 𝐵. 𝛿+(𝑏) and 𝛿−(𝑏) denote the sets of outgoing and incoming 
edges at a vertex 𝑏, and 𝜎ℎ(𝑎) and 𝜎𝑡(𝑎) for the head and tail vertices of 
an edge 𝑎. The graph structure is schematically visualized in Fig. 1.

Each edge 𝑎 has a flow rate 𝑞𝑎 and hydraulic resistance 𝑘𝑎, and each 
vertex 𝑏 has a pressure 𝑝𝑏 relative to the lowest pressure in the system 

at 𝑏 = 𝐵. The basic hydraulics in the pipe network is described with the 
following set of equations and inequalities 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 ≤ 𝑞𝑎 (4a)
∑

𝑎∈𝛿+(𝑏) 𝑞𝑎 =
∑

𝑎∈𝛿−(𝑏) 𝑞𝑎 𝑏 = 2,… , 𝐵 − 1 (4b)
𝑝𝜎ℎ(𝑎) − 𝑝𝜎𝑡(𝑎) = 𝑘𝑎 𝑞2𝑎 𝑎 = 1,… , 𝑅 + 𝑉 + 𝑆 (4c)
𝑝1 = Δ𝑝pump (4d)
𝑝𝐵 = 0, (4e)

where Eq. (4b) models conservation of mass at a vertex 𝑏, whereas Eq. 
(4c) models the pressure drop across an edge 𝑎 by the quadratic flow 
rate 𝑞2𝑎 and the hydraulic resistance 𝑘𝑎 [13], Eq. (4d) and (4e) models 
the total pressure drop for all flow paths to equal the pump’s differential 
pressure Δ𝑝pump, and Eq. (4a) ensures non-negative flow rates 𝑞𝑒.

The modeling of the hydraulic resistance 𝑘𝑎 depends on the type 
of edge 𝑎. For a valve 𝑣, corresponding to the edge 𝑎 = 𝑅 + 𝑣, the resis-
tance 𝑘𝑅+𝑣 = 𝑘val,𝑣 is the adjustable configuration which can be set to any 
value between its lower clamp capacity 𝐿val,𝑣 and upper clamp capacity 
𝑈val,𝑣. For a radiator 𝑟, corresponding to the edge 𝑎 = 𝑟, the resistance 
𝑘𝑟 = 𝑘rad,r is assumed to be a fixed known resistance 𝑘̃rad,𝑟. For a pipe 𝑠, 
corresponding to the edge 𝑎 = 𝑅 + 𝑉 + 𝑠, the resistance 𝑘𝑅+𝑉 +𝑠 = 𝑘pip,𝑠
is calculated using standard models given by its properties concerning 
its diameter 𝑑𝑠, length 𝑙𝑠, pipe roughness 𝜀𝑠, and friction factor 𝑓𝑠. The 
water density is denoted 𝜌, and the dynamic viscosity of water is denoted 
𝜇. Altogether, the resistances of all edges are modeled by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐿val,𝑣 ≤ 𝑘val,𝑣 ≤ 𝑈val,v 𝑣 = 1,… , 𝑉 (5a)
𝑘rad,𝑟 = 𝑘̃rad,𝑟, 𝑟 = 1,…𝑅 (5b)
𝑘pip,𝑠 =

8 𝜌 𝑙𝑠 𝑓𝑠
𝜋2 𝑑5𝑠

𝑠 = 1,… , 𝑆 (5c)

1
√

𝑓𝑠
= −2 log10

(

2.51𝜋 𝑑𝑠 𝜇
4 𝜌 𝑞pip,𝑠

√

𝑓𝑠
+ 𝜀𝑠

3.72 𝑑𝑠

)

𝑠 = 1,… , 𝑆, (5d)

where Eq. (5a) sets the bounds on the valve configuration, Eq. (5b) mod-
els the constant radiator resistance, Eq. (5c) models the pipe resistance 
using the Darcy-Weisbach equation [8], and Eq. (5d) is the Colebrook 
equation [8] which implicitly gives the pipe friction factor 𝑓𝑠.

Fig. 1. Schematic of the directed graph used for hydraulic modeling of the example heating system visualized in Fig. 2 where 𝑅 = 3, 𝑉 = 3, 𝑆 = 11, and 𝐵 = 16. 
Crosses denote the vertices 𝑏 = 1,… , 16 with the corresponding indices in the boxes. Edges are marked by brackets and colored by the edge type: green radiator 
edges 𝑎 = 1, 2, 3, orange valve edges 𝑎 = 4, 5, 6, and purple pipe section edges 𝑎 = 7,… , 11. Due to limited space, pipe section edges 𝑎 = 12,… , 17 are not labeled. The 
heat source, which is located close to the pump, is omitted in this view. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.)
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Given values of the pump’s differential pressure Δ𝑝pump, constant ra-
diator resistances 𝒌̃rad, lower valve configurations 𝐿val,v, upper valves 
configurations 𝑈val,v, pipe diameters d, pipe lengths l, pipe roughnesses 
ε, the set of equations and inequalities in Eqs. (4) and (5) gives a 
feasible set of edge flow rates q =

[

q⊤
rad, q

⊤
val, q

⊤
pip

]⊤
, edge resistances 

k =
[

k⊤
rad, k

⊤
val, k

⊤
pip

]⊤
, vertex pressures p, and pipe friction factors f . 

By separating the inequalities and equations in Eqs. (4) and (5), the 
feasible set of q, k, p, f is denoted as 

{

Eqs. (4a) and (5a)
Eqs. (4b) to (4e) and (5b) to (5d)

⟺

{

0 ≤ g(q,k ∣ Lval,Uval)

0 = h(q,k,p,f ∣ Δ𝑝pump, 𝒌̃rad,d, l,ε)

(6)

Since the radiator flow rates qrad is a subset of all edge flow rates 
q, and the valve configurations kval is a subset of all edge resistances, 
the relation qrad(kval), appearing in Eq. (2), is implicitly modeled with 
Eq. (6).

3.2.  Modeling error dynamics

The rate of change of the air temperature 𝑦̇𝑧 in zone 𝑧 is modeled as

𝑦̇𝑧(𝑡) = 𝜃𝑧
(

𝑤(𝑡) − 𝑦𝑧(𝑡)
)

+ 𝐶𝑧

𝑅𝑧
∑

𝑟=𝑃𝑧

Φ𝑟(𝑡) (7)

where 𝜃𝑧 is a lumped parameter for the thermal leakage through the 
building envelope in zone 𝑧, 𝑤(𝑡) is the outdoor temperature at time 𝑡, 
𝐶𝑧 is a zone-specific parameter in K/W⋅s for converting heating power Φ𝑟
from the zone’s radiators 𝑟 = 𝑃𝑧,… , 𝑅𝑧 to a temperature. By linearizing 
a radiator’s heat output Φ𝑟 with respect to supply temperature 𝑢 and 
zone temperature 𝑦𝑧, and by approximating all radiators in a zone as 
one single radiator, which is described in more detail in Appendix A, 
the heating terms in Eq. (7) are approximated as

𝐶𝑧

𝑅𝑧
∑

𝑟=𝑃𝑧

Φ𝑟(𝑡) ≈ 𝜈𝑧
(

𝑞zon,𝑧
)

(𝑢(𝑡) − 𝑦𝑧(𝑡)), (8)

where

𝑞zon,𝑧 =
𝑅𝑧
∑

𝑟=𝑃𝑧

𝑞rad,𝑟 (9)

is the summed flow rate of the radiators, and 𝜈𝑧 is a heat supply coefficient
given by

𝜈𝑧(𝑞zon,𝑧) = 𝐶𝑧 𝑐𝑝 𝑞zon,𝑧

(

1 − exp
(

−
(𝑅𝑧 − 𝑃𝑧 + 1)𝐿𝑧 𝑚𝑧

𝑐𝑝 𝑞zon,𝑧

))

, (10)

where 𝑐𝑝 is the specific heat capacity of water, 𝐿𝑧 is the length of a 
radiator, and 𝑚𝑧 is a radiator-specific heat transfer coefficient. Due to the 
linearized heat transfer, the coefficient 𝑚𝑧 is valid for an operating range 
of supply temperature 𝑢 and zone temperature 𝑦𝑧. The approximation of 
treating all the zone’s radiators as one is reasonable when the flow rates 
of the zone’s radiators 𝑞rad,𝑃𝑧 ,… , 𝑞rad,𝑅𝑧

 are close to the zonal average 
flow rate 𝑞zon,𝑧∕(𝑅𝑧 − 𝑃𝑧 + 1), which is explained further in Appendix A. 
From Eq. (7), and with the radiator approximation in Eq. (8), the model 
for the thermal dynamics of zones is

ẏ(𝑡) = diag(θ) (1𝑤(𝑡) − y(𝑡)) + diag(ν(qrad)) (1 𝑢(𝑡) − y(𝑡))

= −diag(θ + ν(qrad))y(𝑡) + θ𝑤(𝑡) + ν(qrad) 𝑢(𝑡),
(11)

where y(𝑡) = [𝑦1(𝑡),… , 𝑦𝑍 (𝑡)]⊤ , θ =
[

𝜃1,… , 𝜃𝑍
]⊤  and ν(qrad) =

[

𝜈1(𝑞zon,1),… , 𝜈𝑍 (𝑞zon,𝑍 )
]⊤ . A schematic visualization of the thermal 

model Eq. (11) can be seen in Fig. 2.

With the error e(𝑡) defined in Eq. (1), the error dynamics given the 
thermal model in Eq. (11) is

ė(𝑡) = 𝑑
𝑑𝑡

(1 𝑦ref − y(𝑡))

= − ẏ(𝑡)

=diag(θ + ν(qrad))y(𝑡) − θ𝑤(𝑡) − ν(qrad) 𝑢(𝑡)

=diag(θ + ν(qrad))y(𝑡) − θ𝑤(𝑡) − ν(qrad) 𝑢(𝑡)

+ (θ + ν(qrad)) (𝑦ref − 𝑦ref )

= − diag(θ + ν(qrad))e(𝑡) + θ (𝑦ref −𝑤(𝑡))

+ ν(qrad) (𝑦ref − 𝑢(𝑡)).

(12)

3.3.  Upper bound of balancing performance

To create an upper bound for the performance 𝐽 (kval), the supply 
temperature 𝑢(𝑡) is assumed to be regulated by using feedback of the 
error e(𝑡) and feed-forward of the outdoor temperature 𝑤(𝑡) according 
to the control law
𝑢(𝑡) = 𝑦ref − F ⊤

𝑒 e(𝑡) − 𝐹𝑤 (𝑦ref −𝑤(𝑡)), (13)

where F𝑒 ∈ ℝ𝑍 is the static feedback gain, 𝐹𝑤 ∈ ℝ is the static feed-
forward gain. With such a regulator, the resulting error dynamics are
ė(𝑡) =

(

−diag(θ + ν(qrad)) + ν(qrad)F ⊤
𝑒
)

e(𝑡)

+ (θ + 𝐹𝑤 ν(qrad)) (𝑦ref −𝑤(𝑡)).
(14)

The error dynamics are inherently exponentially stable, since 0 < θ and 
0 ≤ ν(qrad). The feedback term ν(qrad) is used to improve control per-
formance, and if it is sufficiently small, it will not compromise stability. 
Without loss of generality, assuming a zero-error initial state e(0) = 0

gives the bound on the squared error norm at time 𝑡
‖e(𝑡)‖22 ≤ ‖

‖

θ + 𝐹𝑤 ν(qrad)‖‖
2
2(𝑡), (15)

where

(𝑡) = ∫

𝑡

0
𝛾 exp (−𝜆 (𝑡 − 𝜏))‖

‖

𝑦ref −𝑤(𝑡 − 𝜏)‖
‖

2
2𝑑𝜏 (16)

and 𝛾 and 𝜆 are some finite positive constants. A proof for Eq. (15) can be 
found in, e.g., Rugh[33]. At any time step 𝑡, the upper bound in Eq. (15) 
is minimized by setting the feed-forward gain 𝐹𝑤 as

𝐹𝑤 = argmin
𝐹𝑤

‖

‖

θ + 𝐹𝑤ν(qrad)‖‖
2
2 = −

θ⊤ ν(qrad)
‖

‖

ν(qrad)‖‖
2
2

. (17)

With the performance proxy

𝐿(qrad) = min
𝐹𝑤

‖

‖

θ + 𝐹𝑤ν(qrad)‖‖
2
2

=
‖

‖

‖

‖

‖

‖

θ −
θ⊤ ν(qrad)
‖

‖

ν(qrad)‖‖
2
2

ν(qrad)
‖

‖

‖

‖

‖

‖

2

2

,
(18)

where valve configurations kval and radiator flow rates qrad, subsets of 
all edge resistances k and edge flow rates q, forms a feasible solution 
together with pressures p and pipe friction factors f of the hydraulic 
model in Eq. (6),
0 ≤ g(q,k ∣ Lval,Uval)

0 = h(q,k,p,f ∣ Δ𝑝pump, 𝒌̃rad,d, l,ε),
(19)

the performance 𝐽 in Eq. (2) is, using Eq. (15), upper bounded by

𝐽 (kval) ≤ 𝐿
(

qrad
)

lim
𝑇→∞

1
𝑇 ∫

𝑇

0
(𝑡) 𝑑𝑡, (20)

and (𝑡) is given by Eq. (16). Since the upper bound in Eq. (20) is scaled 
by the performance proxy 𝐿(qrad), 𝐿 can be used to assess how the valve 
configurations kval affect the upper bound of the performance 𝐽 via the 
Eq. (19).
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Fig. 2. Schematic overview of the thermal model for a heating system of 𝑍 = 3 thermal zones, corresponding to Fig. 1. The pump, which is located close to the heat 
source, is omitted in this view.

From Eq. (18), the performance proxy 𝐿 can be rewritten as

𝐿(qrad) = ‖θ‖22 − 2
(θ⊤ ν(qrad))2

‖

‖

ν(qrad)‖‖
2
2

+
(θ⊤ ν(qrad))2 ‖‖ν(qrad)‖‖

2
2

‖

‖

ν(qrad)‖‖
4
2

= ‖θ‖22 −
(θ⊤ ν(qrad))2

‖

‖

ν(qrad)‖‖
2
2

= ‖θ‖22 −
‖θ‖22

‖

‖

ν(qrad)‖‖
2
2 cos2 𝜑

‖

‖

ν(qrad)‖‖
2
2

= ‖θ‖22 (1 − cos2 𝜑)

= ‖θ‖22 sin2 𝜑,

(21)

where 𝜑 is the angle between the vectors θ and ν(qrad). The last row in 
Eq. (21) may provide intuition on how the flow rates q ideally should 
be set: the vector of heat supply coefficients ν(qrad) and the vector of 
thermal leakage coefficients θ should be aligned so that the angle 𝜑 is 
the smallest possible. Although it is generally not achievable, the ideal 
scenario would be to obtain 𝜑 = 0 such that θ and ν(qrad) are paral-
lel and the reference temperature 𝑦ref  can be maintained in all zones, 
irrespective of outdoor temperature 𝑤.

4.  Guidance for rebalancing using operational data

With a traditional balancing approach, data from the construction 
plan is used to calculate valve settings and flow rates without taking 
into account an observed state of balancing in the thermal zones. There-
fore, a traditional approach can not instruct how to rebalance the flow 
rates to correct for observed misalignments that are not connected to 
updates in the construction plan. This section describes tools, based on 
the modeling in Section 3, in which collected operational data, as spec-
ified in Section 2, is used to facilitate informed decisions of rebalanc-
ing. In Section 4.1, it is described how coefficients needed for calcu-
lating the balancing performance proxy 𝐿(𝒒rad) in Eq. (18) under fixed 
radiator flow rates 𝒒rad are collected by the means of the construction 
plan and the sensor data. Based on those coefficients, bounds of the 
performance obtained from a rebalancing Δqrad, the post-rebalanced per-
formance proxy 𝐿(𝒒rad + Δqrad) are derived in Section 4.2. The bounds 
of the post-rebalanced performance proxy enable anticipating the ef-
fect of a given rebalancing Δqrad, but it also provides an opportu-
nity to calculate an optimized rebalancing Δqrad, which is described
in Section 4.3.

4.1.  Determining model coefficients

The data sources from the problem formulation in Section 2 are the 
balancing protocol, which gives flow rates 𝒒 and valve configurations 
𝒌̃val, the construction plan, which gives the pipe characteristics of diam-
eters d, lengths l, and roughnesses ε, and the sampled operational data, 
which gives time-series of the zone air temperatures y, supply temper-
ature 𝑢, and outdoor temperature 𝑤 sampled with a period of Δ𝑡.

To set up the hydraulic model in Eq. (6), the pump’s differential pres-
sure Δ𝑝pump is retrieved from the setting of the pump, the lower and up-
per bounds of the valve clamping capacities Lval and Uval are retrieved 
from the data sheets of the installed valves, the pipe characteristics d, 
l, and ε are retrieved from the construction plan. The constant radiator 
resistances ̃𝒌rad, used in Eq. (5b), are selected such that the flow rates 𝒒
and valve configuration 𝒌̃val forms a feasible solution in Eq. (6)
0 ≤ g(𝒒, 𝒌̃ ∣ Lval,Uval)

0 = h(𝒒, 𝒌̃, 𝒑̃,𝒇 ∣ Δ𝑝pump, 𝒌̃rad,d, l,ε).
(22)

where the flow rates 𝒒, valve configurations 𝒌̃val are retrieved from the 
balancing protocol. The pipes’ friction factors 𝒇 and resistances ̃𝒌pip are 
retrieved by inserting the known values for 𝒒, 𝒌̃rad, d, l, and ε in Eq. 
(5c) and (5d). Given these values of 𝒌̃val and 𝒌̃pip, the pressures 𝒑̃ can 
then be calculated from Eq. (4c), (4d), and (4d) since there is only one 
radiator per flow path from 𝑏 = 1 to 𝑏 = 𝐵 in a two-pipe system. Given 
𝒑̃ and 𝒒rad, there is a unique vector 𝒌̃rad satisfying Eq. (4c) for radiator 
edges 𝑎 = 1,… , 𝑅.

The operational data, collected under the current flow rates 𝒒rad, 
is used to determine the thermal coefficient of the thermal leakage θ
and the heat supply ν(𝒒rad), which appear in the performance proxy 
𝐿 in Eq. (18). The coefficient estimates θ̂ and ν̂(𝒒rad) are fitted to the 
discretized dynamics of Eq. (11), 
y(𝑡 + Δ𝑡) − y(𝑡)

Δ𝑡
= diag(θ) (1𝑤(𝑡) − y(𝑡)) + diag(ν) (1 𝑢(𝑡) − y(𝑡)). (23)

4.2.  Bounds of the post-rebalanced performance proxy

From the expression for the performance proxy 𝐿 in Eq. (18),
evaluation of the post-rebalanced performance proxy 𝐿(𝒒rad + Δqrad) re-
quires the corresponding values of the rebalanced heat supply coeffi-
cient ν(𝒒rad + Δqrad). Although the heat supply coefficient ν(𝒒rad) is esti-
mated, the operational data with constant flow rates 𝒒rad does not allow 
for uniquely determining the underlying 𝐶𝑧, 𝐿𝑧 𝑚𝑧 in Eq. (10). Conse-
quently, rebalanced heat supply coefficient ν(𝒒rad + Δqrad) can not be 
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assigned with a unique value, but it can be bounded as justified in this 
section.

Given a positive 𝐶𝑧 from Eqs. (7) and (10) gives
𝑣𝑧(0) = 0

0 < 𝜈′𝑧(𝑞zon,𝑧)

𝜈′′𝑧 (𝑞zon,𝑧) < 0,

(24)

which is shown in Appendix B. Thus, 𝜈𝑧 is monotonically increasing and 
concave in 𝑞zon,𝑧. The positive derivative 0 < 𝜈′𝑧 means that the radiators’ 
heating power Φ𝑃𝑧∶𝑅𝑍

 increases with the zonal flow rate 𝑞zon,𝑧, and the 
negative second derivative 𝜈′′𝑧 ≤ 0 corresponds to a return temperature 
that increases with the flow rate 𝑞zon,𝑧, which is explained in more detail 
in Appendix B.

The properties in Eq. (24) gives the lower and upper bounds
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜈𝑧(𝑞zon,𝑧 + Δ𝑞zon,𝑧) ∈

[

𝜈𝑧(𝑞zon,𝑧) + Δ𝑞zon,𝑧
𝜈𝑧(𝑞zon,𝑧)
𝑞zon,𝑧

,

𝜈𝑧(𝑞zon,𝑧)

]

, ifΔ𝑞zon,𝑧 ∈
[

−𝑞zon,𝑧, 0
]

,

𝜈𝑧(𝑞zon,𝑧 + Δ𝑞zon,𝑧) ∈

[

𝜈𝑧(𝑞zon,𝑧),

𝜈𝑧(𝑞zon,𝑧) + Δ𝑞zon,𝑧
𝜈𝑧(𝑞zon,𝑧)
𝑞zon,𝑧

]

, ifΔ𝑞zon,𝑧 ∈ [0,∞).

(25)

where

Δ𝑞zon,𝑧 =
𝑅𝑧
∑

𝑟=𝑃𝑧

Δ𝑞rad,𝑟 (26)

is the total flow rate change in zone 𝑧. The derivation of Eq. (25) is 
given in Appendix B. Based on the bounds in Eq. (25), we formulate the 
possible values for the heat supply coefficient of all zones ν(𝒒rad + Δqrad)
as obtained after a flow rate redistribution Δqrad with the set
ν(𝒒rad + Δqrad) ∈ {ν(𝒒rad) + η(Δqrad,α ∣ 𝒒rad) ∣ α ∈ [0, 1]𝑁} (27)

where α ∈ [0, 1]𝑁  is a parameter for describing the possible outcomes, 
η(Δqrad,α ∣ 𝒒rad) = [𝜂(Δ𝑞zon,1, 𝛼1 ∣ 𝑞zon,1),… , 𝜂(Δ𝑞zon,𝑍 , 𝛼𝑍 ∣ 𝑞zon,𝑍 )]

⊤

(28)

and

𝜂(Δ𝑞zon,𝑧, 𝛼𝑧 ∣ 𝑞zon,𝑧) = 𝛼𝑧Δ𝑞zon,𝑧
𝜈𝑧(𝑞zon,𝑧)
𝑞zon,𝑧

. (29)

An example of the set in Eq. (27), but for one of the zones, is depicted 
in Fig. 3.

Fig. 3. Example of the bounds of 𝜈𝑧(𝑞zon,𝑧 + Δ𝑞zon,𝑧) as described by Eq. (27), 
for one zone 𝑧. Black dots denote the known values of 𝜈𝑧(0) = 0 and 𝜈𝑧(𝑞zon,𝑧). 
The left vertical line shows 𝛼𝑧 = 0, 0.5, 1 corresponding to a flow rate decrease 
of Δ𝑞zon,𝑧 = − 1

2
𝑞zon,𝑧, and the right vertical line shows the same for a flow rate 

increase Δ𝑞zon,𝑧 = 1
2
𝑞zon,𝑧.

Given the set in Eq. (27), the post-rebalanced performance proxy is 
bounded by
𝐿bc(Δqrad ∣ 𝒒rad,θ) ≤ 𝐿(𝒒rad + Δqrad) ≤ 𝐿wc(Δqrad ∣ 𝒒rad,θ) (30)

where 𝐿bc is the best-case post-rebalanced performance proxy
𝐿bc(Δqrad ∣ 𝒒rad,θ) =

min
αbc∈[0,1]𝑁

‖θ‖22 −
(θ⊤ (ν(𝒒rad) + η(Δqrad,αbc ∣ 𝒒rad)))2

‖

‖

ν(𝒒rad) + η(Δqrad,αbc ∣ 𝒒rad)‖‖
2
2

, (31)

and 𝐿wc is the worst-case post-rebalanced performance proxy
𝐿wc(Δqrad ∣ 𝒒rad,θ) =

max
αwc∈[0,1]𝑁

‖θ‖22 −
(θ⊤ (ν(𝒒rad) + η(Δqrad,αwc ∣ 𝒒rad)))2

‖

‖

ν(𝒒rad) + η(Δqrad,αwc ∣ 𝒒rad)‖‖
2
2

. (32)

Since αbc = 0 gives an upper bound of Eq. (31), the best-case post-
rebalanced performance proxy is upper bounded by
𝐿bc(Δqrad ∣ 𝒒rad,θ) ≤ 𝐿(𝒒rad), (33)

and since αwc = 0 gives a lower bound of Eq. (32) the worst-case post-
rebalanced performance proxy is lower bounded by
𝐿(𝒒rad) ≤ 𝐿wc(Δqrad ∣ 𝒒rad,θ). (34)

In other words, the best-case post-rebalanced performance proxy 
𝐿bc(Δqrad) cannot be worse than the pre-rebalanced performance 
proxy 𝐿(𝒒rad) and the worst-case post-rebalanced performance proxy 
𝐿wc(Δqrad) cannot be better than the pre-rebalanced performance proxy 
𝐿(𝒒rad).

Given a suggested flow rate rebalancing Δqrad, the outcome by ap-
plying Δqrad can be anticipated in advance through the worst-case and 
best-case performance proxies 𝐿wc and 𝐿bc. Thus, a technician can be in-
formed whether the suggested rebalancing Δqrad has any improvement 
potential at all, and compare it with other candidate rebalancings.

4.3.  Optimization of valve reconfigurations

In simple heating systems, such as the toy example in Figs. 1 and 
2, it might be possible to rebalance flow rates such that Δqrad ≠ 0 with 
𝐿bc(Δqrad) < 𝐿(𝒒rad) = 𝐿wc(Δqrad), i.e., the performance proxy will for 
sure not be worsened. It is, however, common to have nested pipe struc-
tures and non-ideal sizing of valves and pumps, such that the hydraulics 
in Eq. (6) will constrain how flow rates can be rebalanced. Under such 
circumstances, the best-case performance proxy 𝐿bc and worst-case per-
formance proxy 𝐿wc may be conflicting, i.e., to get a small best-case 
performance proxy 𝐿bc we might simultaneously also have to take a 
risk with a large worst-case performance 𝐿wc.

A valve reconfiguration ̃𝒌val + Δkval, producing the rebalanced radia-
tor flow rates 𝒒𝐫𝐚𝐝 + Δqrad, that corresponds to a Pareto-optimal solution 
of worst-case 𝐿wc and baset-case 𝐿bc is retrieved by 

minimize
Δk,Δq,p,f

𝜁𝐿bc(Δqrad ∣ 𝒒rad,θ) (35a)

+ (1 − 𝜁 )𝐿wc(Δqrad ∣ 𝒒rad,θ)

subject to
0 ≤ g(𝒒 + Δq, 𝒌̃ + Δk ∣ Lval,Uval) (35b)

0 = h(𝒒 + Δq, 𝒌̃ + Δk,p,f ∣ Δ𝑝pump, 𝒌̃rad,d, l,ε) (35c)

where the objective function in Eq. (35a) is sum of 𝐿bc in Eq. (31) and 
𝐿wc in Eq. (32) weighted by the parameter 𝜁 ∈ [0, 1], Eqs. (35b) and
(35c) are inequalities and equations from the hydraulic model in Eq. (6) 
set up as described in Section 4.1.

With a small 𝜁 in Eq. (35a), minimizing the risk from the worst-case 
performance is prioritized over enabling a low best-case performance 
𝐿bc. Conversely, a large 𝜁 corresponds to risking a high worst-case per-
formance 𝐿wc to prioritize a low best-case performance 𝐿bc. By knowing 
a preferred risk level 𝜁 , the optimal valve reconfiguration Δkval can be 
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Fig. 4. Overview of an iterative workflow using the model-based tools for eval-
uation and reconfiguration guidance presented in this paper.

obtained by Eq. (35). However, interpreting the effect of the weighting 
parameter 𝜁 in advance may be difficult to do beforehand, and a more 
convenient approach is to calculate multiple Pareto-optimal solutions by 
varying the weighting parameter 𝜁 and then select a rebalancing Δqrad
which correspond to a desired point at the Pareto front.

Altogether, the reconfiguration guidance can be combined with the 
evaluation based on the performance proxy 𝐿(qrad) in Eq. (18) in an 
iterative manner, as illustrated in Fig. 4. In a full adoption of the pro-
posed framework, rebalancing would be repeated until the performance 
proxy 𝐿(qrad) falls below a predefined threshold. After each iteration, 
new operational data must be collected to refit the thermal coefficients 
in Eq. (23). This implies a trade-off: longer waiting times between itera-
tions provide more data and thus more reliable estimates, but also delay 
the rebalancing process. By contrast, the hydraulic model remains un-
changed once it has been set up, unless modifications to the construction 
plan are introduced.

5.  Case study

In this section, data from before and after the rebalancing of a heat-
ing system on February 7, 2024, is used to analyze the applicability of 
the methods described in Sections 3 and 4. While the tools presented 
in this work were not directly used for assisting the rebalancing, they 
are used here to assess the outcome of the rebalancing and to retro-
spectively find whether there would have been other, more favorable 
reconfigurations.

5.1.  Description of the heating system and balancing work

The heating system, which is visualized in Fig. 5, is a two-pipe system 
connected to the city’s district heating grid via the substation, where the 
district heating water heats the supply water through a heat exchanger. 
From the heat exchanger, the supply water is led through the pump and 
into the main pipe that leads through the basement. The radiators are 
connected to the main pipe via vertical risers so that radiators located 
at a similar position but on different floors share the same riser.

There are 70 apartments of varying sizes, from 33 - 100m2, between 
one and four rooms. Each apartment has 1 - 5 radiators, depending on 
the apartment size, and the air temperature is measured from a sensor 
mounted close to the entrance. Since there is only one temperature sen-
sor per apartment, each apartment is treated as a single thermal zone in 
the remainder of the analysis.

Fig. 5. Schematic of the structure of the pipe system in the case study.

In addition to balancing valves on each radiator, there are balancing 
valves at the bottom of the return pipe of each riser, riser valves, before its 
junction with the main return pipe. Therefore, the configuration of one 
riser valve affects multiple radiators on different floors. The apartments 
connected to a single riser differ in size, flor plan and window direction. 
The riser valves are easy to access since they are all mounted on the 
main pipe in the basement, while access to the radiator valves requires 
permission from the tenants.

Before the rebalancing on February 7, 2024, the heating system un-
derwent thorough balancing work in 2020 and 2021, when both radiator 
and riser valves were configured according to a flow rate protocol, as 
given by an ordinary balancing calculation based on construction plan 
data. When the balancing work finished in 2021, the TRVs were re-
mounted on all radiators. Still, the zone temperature variance was high 
in the succeeding years 2022 - 2024. It was observed that many zones 
had a similar climate to the other zones connected to the same riser, and 
simultaneously disparate from zones connected to other risers. There-
fore, reconfiguration of riser valves was identified as an appropriate 
measure to mitigate temperature variance. However, since there were 
no updates in the construction plan since 2021, redoing the balancing 
procedure from scratch would just result in the same valve configura-
tions. Instead, the riser valves were reconfigured to increase the flow 
rate in risers serving zones assessed to be underheated and decrease it 
in other overheated zones. 10 of 61 riser valves underwent reconfigura-
tion in February 2024, affecting 16 of 70 apartments. To not affect the 
pump’s operating condition and the other valves, the total flow rate was 
aimed to be kept intact by compensating for the increased flow rate at 
one valve with the decreased flow rate at the other valves.

5.2.  Analysis of the rebalancing outcome

Given the flow rates 𝒒rad, a successful rebalancing Δqrad should mod-
ify the heat supply coefficients ν such that the reduced performance 
proxy 𝐿 is reduced as, using Eq. (21),

𝐿(𝒒rad + Δ𝒒rad) < 𝐿(𝒒rad)

⟺

‖θ‖22 −
(θ⊤ ν(𝒒rad + Δqrad))2

‖

‖

ν(𝒒rad + Δqrad)‖‖
2
2

< ‖θ‖22 −
(θ⊤ ν(𝒒rad))2

‖

‖

ν(𝒒rad)‖‖
2
2

⟺

‖θ‖22 sin
2 𝜑post < ‖θ‖22 sin

2 𝜑pre

⟹

𝜑post < 𝜑pre

(36)
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Fig. 6. Dynamic model input signals, supply temperature 𝑢 and outdoor temperature 𝑤, collected from the operation during pre- and post-rebalancing periods. The 
signals are negatively correlated such that 𝑢 is higher when 𝑤 is lower.

where 𝜑pre is the angle between θ and the pre-rebalanced heat sup-
ply coefficients ν(𝒒rad) and 𝜑post is the angle between θ and the post-
rebalanced heat supply coefficients ν(𝒒rad + Δqrad). The last row in 
Eq. (36) underlines that with this modeling, a rebalancing Δqrad will 
not affect the performance proxy 𝐿 through the norm of the thermal 
leakage coefficients ‖θ‖22 but through the angle 𝜑 calculated by

𝜑 = arccos
(

θ⊤ ν

‖ν‖2 ‖θ‖2

)

, (37)

given coefficients θ and ν.
To analyze the outcome of the rebalancing Δqrad in terms of the an-

gle 𝜑, values of the thermal leakage θ ∈ ℝ𝑍 and the heat supply ν ∈ ℝ𝑍

are estimated by fitting of the discretized dynamics in Eq. (23) to the 
operational data sampled with a period of Δ𝑡 = 1 hour. To estimate 
the pre-rebalanced angle 𝜑̂pre, coefficients 𝜽̂pre and 𝝂pre(𝒒) are fitted to 
data from a pre-rebalancing period December 1st 2023 - February 7, 
2024, and to estimate the post-rebalanced angle 𝜑̂post coefficients 𝜽̂post
and 𝝂post (𝒒rad + Δqrad) are fitted to data from a post-rebalancing period 
February 7, 2024 - March 10, 2024.

In both pre- and post-rebalancing periods, the data is collected dur-
ing normal system operation, when the controlled supply temperature 
𝑢 is negatively correlated with the outdoor temperature 𝑤, which can 
be seen in the middle row in Fig. 6. Such a control strategy is suitable 
to maintain a small error norm ‖e‖22, as described in Section 3.3, but 
it makes identification challenging since the correlated signals cause 
estimation variance of fitted coefficients 𝜽̂ and 𝝂. To ensure that phys-
ically realistic coefficients 𝜽̂ and 𝝂 are obtained, a Bayesian regression 
approach is used with a Gaussian prior on the thermal leakage
𝜃𝑧 ∼  (𝜇𝜃 , 𝜎2𝜃 ) (38)

for each zone 𝑧 = 1,… , 𝑍. Earlier studies of Swedish residential build-
ings have found time constants ranging from 4 - 12 days for multi-family 
buildings [34]. The time constant corresponds to 1∕𝜃𝑧 of the thermal 
dynamics in Eq. (7), and the hyperparameters in the Gaussian prior 
Eq. (38), 𝜇𝜃 and 𝜎2𝜃 , are selected such that 𝜇 ± 3𝜎, i.e., 99.7% of the 
probability mass, of the prior covers time constants 4 - 12 days. For the 
heat supply coefficients ν, a flat prior is used.

The zone temperature variance is varying in time, with the supply 
temperature 𝑢 and the outdoor temperature 𝑤, which can be seen by 
comparing Figs. 6 and 7. Fig. 7 also shows that such a time-varying 
variance is obtained when simulating zone temperatures using the ob-
tained maximum aposteriori (MAP) coefficients 𝜽̂ and 𝝂, although the 
variance is underestimated at several occasions. The MAP estimates of 
the time constants 1∕𝜃̂𝑧, for 𝑧 = 1,… , 𝑍 are around 6 days for all zones.

Based on the fitted coefficients, the pre- and post-rebalanced angles 
𝜑pre and 𝜑post are calculated for four groups of thermal zones: the in-
tervened zones, which are the 𝑍 = 16 zones affected by the rebalancing, 
and three groups of non-intervened zones, of which each group consists 
of 𝑍 = 16 zones not affected by the rebalancing. With coefficients θ and 

Table 1 
The first and second columns show the estimated pre- and post-
rebalanced angles where the first number in each cell correspond to 
the MAP estimate, and the range corresponds to a 99% credibility in-
terval. The third column show the posterior probability for a angle 
decrease 𝜑post < 𝜑pre following the rebalancing.

𝜑pre 𝜑post ℙ(𝜑post < 𝜑pre)

 Intervened  0.077 ± 0.009  0.069 ± 0.016  0.802
 Non-intervened I  0.065 ± 0.010  0.067 ± 0.015  0.263
 Non-intervened II  0.058 ± 0.008  0.071 ± 0.015  0.009
 Non-intervened III  0.070 ± 0.013  0.076 ± 0.024  0.127

ν sampled from posterior distribution, Table 1 and Fig. 8 indicate some 
degree of uncertainty in the results, but the posterior probability for a 
decreased angle 𝜑post < 𝜑pre is substantially higher for the intervened 
zones than for any non-intervened group. For the three non-intervened 
groups, and particularly non-intervened group II, the results in Fig. 8 
suggest 𝜑pre < 𝜑post , i.e., worsened balancing performance, with a high 
posterior probability.

The results of the angles 𝜑pre and 𝜑post from Table 1 and Fig. 8 agrees 
with the observed temperature variance, visualized in Fig. 9. The vari-
ance range is shifted between pre- and post-rebalancing periods for all 
four groups, which is partly explained by the effect of the time-varying 
behavior of the variance visualized in Fig. 7. Still, the intervened zones 
stand out in that the variance is shifted downwards more than for any 
other group.

5.3.  Analysis of the pre-rebalancing options

To demonstrate how the method can assist balancing, the pre-
rebalancing coefficients 𝜽̂pre and 𝝂pre(𝒒rad), fitted as described in
Section 5.2, are used for calculating the worst-case performance proxy 
𝐿wc in Eq. (32) and the best-case performance proxy 𝐿bc in Eq. (31). Like 
in Section 5.2, the results here are presented in terms of angles 𝜑wc and 
𝜑bc instead of the performance proxies 𝐿wc and 𝐿bc. The range of 𝜑wc
and 𝜑bc, which can be computed before applying a rebalancing, is com-
pared with a Pareto front of 𝜑wc, 𝜑bc for other, non-applied rebalancings 
Δqrad, calculated by solving Eq. (35) given data from the construction 
plan and balancing protocols as described in Section 4.1, with different 
weightings 𝜁 .

The results, shown in Fig. 10, indicate that the best-case performance 
𝜑bc and the worst-case performance 𝜑wc for the applied rebalancing 
Δqrad are above the Pareto front. If one of the other rebalancing op-
tions on the Pareto front had been chosen instead, the same risk 𝜑wc
could be obtained with a better potential 𝜑bc, or vice versa. Neverthe-
less, one can conclude from Fig. 10 that the applied rebalancing Δqrad is 
one candidate solution to improve the balancing performance since the 
best-case angle is better than the pre-rebalanced angle, 𝜑bc < 𝜑pre.
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Fig. 7. Comparison of measured and simulated zone temperature variance. The distribution of measured zone temperatures over time is visualized in the upper 
row, and its variance is indicated in the lower row. The variance of the simulated zone temperatures in the lower row follows the general pattern of the measured 
variance.

Fig. 8. Posterior probabilities for 𝜑post − 𝜑pre of the four zone groups. Negative 
𝜑post − 𝜑pre suggests balancing improvement for the intervened zones, while pos-
itive or zero-centered 𝜑post − 𝜑pre suggests preserved or worsened balancing for 
the non-intervention groups.

In the right-hand plot of Fig. 10, we see that the obtained MAP esti-
mate of the post-rebalanced angle 𝜑̂post is in the range [𝜑wc, 𝜑bc], demon-
strating that the outcome is correctly anticipated. The plot also shows 
how the width of the interval [𝜑wc, 𝜑bc] is, in general, associated with the 
norm of the rebalancing ‖

‖

Δqrad‖‖
2
2. In other words, a large magnitude of 

the rebalancing ‖
‖

Δqrad‖‖
2
2 typically means high risk but simultaneously 

high improvement potential.

6.  Discussion

This paper introduces a novel framework for model-based analysis 
of hydronic balancing, enabling simplification of the balancing process 
and more effective use of sensor data, as demonstrated in the case study 
in Section 5. The following discussion reflects both on the potential 
and the limitations of the proposed methods and results. Specifically,
Section 6.1 interprets the results of the case study. Section 6.2 contrasts 
the proposed framework with conventional approaches, explaining how 
it can enhance the workflow and be implemented in practice. Finally, 
Section 6.3 addresses methodological limitations and suggests directions 
for future work.

6.1.  Case study results

The case study demonstrates that the proposed thermal dynamics 
model can, to a large extent, explain the observed weather-dependent 

zone temperature variations shown in Fig. 7. The model-based evalu-
ation in Table 1 and Fig. 8 indicates that rebalancing improved per-
formance in the 16 intervened zones, while no such improvement was 
observed in the groups of non-intervened zones. This result is consis-
tent with the analysis of temperature variation in the pre- and post-
rebalancing periods (Fig. 9), where the reduction in variation was more 
pronounced for the intervened zones. Furthermore, the pre-rebalancing 
analysis suggested that the applied reconfiguration had improvement 
potential, although a different configuration strategy might have yielded 
even greater benefits.

Despite these encouraging results, several uncertainties remain. 
While the results indicate performance improvements for the intervened 
zones, the level of uncertainty in the estimates is non-negligible. Ana-
lyzing the results strictly even suggests that balancing performance may 
have been worsened in some non-intervened zones, where no changes 
should have been applied, potentially indicating that the rebalancing in-
directly affected them in adverse ways. Such uncertainties are difficult 
to eliminate entirely, as the evaluation relies on fitting a model to opera-
tional data collected under real-world conditions, where occupancy and 
human activity inevitably introduce disturbances that may influence the 
coefficient estimates. Improved experimental design–further discussed 
in Section 6.3–could mitigate these issues. Ideally, repeated trials would 
be analyzed through carefully designed comparative experiments, min-
imizing discrepancies to validate the efficiency of the methods between 
an intervention group and a control group–for example, using two sets 
of risers with apartments having very similar characteristics.

6.2.  Comparison with a conventional approach

With the conventional practice of rebalancing work, evaluating the 
outcome is challenging due to the time-varying temperature variance as 
seen in Fig. 7. Typically, the evaluation is carried out by observing the 
temperature variance in different weather conditions over a long time, 
i.e., months or even years. The tools presented in this work provide 
an opportunity to shorten the cycle time by utilizing the collected sen-
sor data. Rather than directly inspecting the temperature variance, the 
evaluation can be based on the estimated post-rebalanced angle 𝜑post , as 
described in Section 5.2, making the process less dependent on specific 
weather conditions.
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Fig. 9. Distribution of zone temperature variance during the pre- and post-rebalancing periods of four zone groups. The upper and lower range limits for the 
temperature variance of intervened zones are shifted down more than for any of the groups with non-intervened zones.

Fig. 10. Visualization of 𝜑wc and 𝜑bc for the applied reconfiguration and the Pareto optimal reconfigurations. The left plot shows that the applied reconfiguration is 
not Pareto optimal since it is above the Pareto front. The right plot shows that the range in 𝜑wc − 𝜑bc is associated with the flow rate redistribution norm ‖

‖

Δqrad
‖

‖

2
2, 

and that the experimentally obtained MAP estimate 𝜑̂post satisfies the pre-rebalancing computed bounds 𝜑bc < 𝜑̂post < 𝜑wc.

Furthermore, generating the Pareto front of reconfigurations, as in 
Section 5.3, enables automated suggestions for how to proceed with the 
upcoming rebalancing work. The remaining manual work for a techni-
cian is to interpret the estimated 𝜑̂post to decide whether the rebalancing 
work should continue, and then possibly reconfigure valves according 
to a solution from the Pareto front. It should also be emphasized that 
since temperature sensors are already widespread in Swedish residential 
heating systems, often no additional equipment is required for employ-
ing the tools proposed here.

Although the case study presented here demonstrates the applicabil-
ity of the methods, it remains an open question whether the proposed 
approach is more efficient than the educated guesswork performed by 
technicians using their domain knowledge. To rigorously evaluate this, 
empirical studies would be needed in which the methods are actively ap-
plied by technicians in some systems and compared with other systems 
where only the conventional approaches are used.

6.3.  Limitations of the method

Although the methods presented in this paper enable the utilization 
of collected sensor data, the main limitation is that the success of the 
methods requires good data quality. Despite several weeks of estima-
tion data in both pre- and post-rebalancing periods, the posterior distri-
butions of the angle difference 𝜑post − 𝜑pre fail to provide unambiguous 

results to the effect of rebalancing, which is due to the uncertainty in 𝜽̂
and 𝝂. One approach to improve the reliability and the efficiency of an-
alyzing the rebalancing outcome and calculating new reconfigurations 
is to design the operation specifically for estimating the thermal coef-
ficients θ and ν. In the case study, data were collected during normal 
operation, where the control of the supply temperature 𝑢 was optimized 
to maintain indoor comfort. This suggests that improved excitation of 𝑢
may help to reduce the uncertainty of the coefficient estimates 𝜽̂ and 𝝂. 
Nevertheless, maintaining comfort remains essential, and it is an open 
question to what extent better excitation of 𝑢 is implementable and how 
much the uncertainties can be reduced.

Another limitation is that, although the bounds in Eq. (25) can be 
established, the post-rebalanced heat supply ν(𝒒rad + Δqrad) cannot be 
calculated exactly prior a rebalancing. This is due to the problem for-
mulation in Section 2, which states that the radiator flow rates 𝒒rad
are fixed, which correspond to how technicians conventionally collect 
data and information during balancing work. However, when collecting 
data under fixed radiator flow rates 𝒒rad, the coefficients 𝐶𝑧 and 𝐿𝑧 ⋅ 𝑚𝑧
in Eq. (A.1) can not be identified. One alternative for future work is 
that once the radiator flow rates 𝒒rad are rebalanced, the coefficients 
𝐶𝑧 and 𝐿𝑧 ⋅ 𝑚𝑧 can be identified by combining data from pre- and post-
rebalancing periods. With such an approach, the post-rebalanced per-
formance proxy 𝐿(𝒒rad + Δqrad) can be calculated directly, eliminating 
the need for worst- and best-case bounds as given in Section 4.2. Such 
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and approach is likely more fruitful after several rebalancing iterations, 
in contrast to the case study in Section 5 which was limited to a single 
rebalancing event.

7.  Conclusions

This paper contributes tools that can guide the balancing work in a 
structured way while incorporating the operational status through the 
sensor data. Since the equipment requirements correspond to what is al-
ready installed in many Swedish residential heating systems, these meth-
ods are widely implementable. The main contribution from this work is a 
metric for evaluating the performance of flow rate balancing, the perfor-
mance proxy, in isolation. Unlike relying on zone temperature variance, 
this evaluation metric is invariant to weather conditions and supply tem-
perature. Furthermore, this framework can be utilized to guide rebal-
ancing, allowing for the calculation of different valve reconfigurations 
with respect to risk and improvement potential. The case study demon-
strates the applicability of these methods, showing that the metrics de-
veloped in this work align with the observed zone temperature variance, 
indicating improved balancing. Also, when only using pre-rebalancing 
data, the methods suggest that the applied rebalancing had the poten-
tial to improve the balancing. However, that analysis also indicates that 
there were other reconfigurations with even higher potential and lower
risk.

CRediT authorship contribution statement

Henrik Håkansson: Writing – original draft, Software, Methodol-
ogy, Formal analysis, Conceptualization; Magnus Önnheim: Writing 
– review & editing, Supervision, Funding acquisition; Jonas Sjöberg:
Writing – review & editing, Supervision, Funding acquisition; Mats 
Jirstrand: Writing – review & editing, Supervision, Funding acquisition.

Data availability

The authors do not have permission to share data.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements

This work was financially supported by the Swedish Foundation for 
Strategic Research (SSF). We also acknowledge Pedram Zadeh, Jonas 
Tannerstad and Örebrobostäder AB for enabling the case study through 
active participation and for fruitful discussions. 

Appendix A.  Derivation of radiator approximation

In this section, we motivate and explain the details of the heat supply 
approximation as given in Eqs. (8) and (10). For a radiator 𝑟 = 𝑃𝑧,… , 𝑅𝑧
in zone 𝑧, the heat delivered by the radiator is
Φ𝑟(𝑡) = 𝑐𝑝 𝑞rad,𝑟 (𝑢(𝑡) − 𝑇r,r (𝑡)), (A.1)

where 𝑐𝑝 is the specific heat capacity of water in J / (kg⋅K), 𝑞rad,𝑟 is the 
radiator flow rate, 𝑢(𝑡) is the supply temperature in and 𝑇r,𝑟(𝑡) is the ra-
diator outlet temperature. To derive an explicit expression for 𝑇r,𝑟, we 
model each radiator in zone 𝑧 as a one-dimensional heat exchanger of 
length 𝐿𝑧. Since the radiator temperature dynamics are much faster than 
the indoor air, we consider steady-state radiator temperature dynamics 
such that the outlet temperature 𝑇r,𝑟 adapts instantly to changes in the 
supply temperature 𝑢(𝑡) and zone temperature 𝑦𝑧(𝑡). The heat balance 

equation of an infinitesimal length 𝑑𝑥 of the radiator with water tem-
perature 𝑇  is
𝑐𝑝 𝑞rad,𝑟 𝑑𝑇 = 𝑚𝑧 (𝑦𝑧(𝑡) − 𝑇 ) 𝑑𝑥, (A.2)

where 𝑚𝑧 is a radiator-specific heat transfer coefficient in W/(K⋅ kg). 
In practice, the value of the parameter 𝑚𝑧 depends on the temperature 
difference 𝑦𝑧(𝑡) − 𝑇  [29], although we consider a linearization of the 
dynamics such that 𝑚𝑧 is fixed. Rearranging the terms in Eq. (A.2) gives
𝑚𝑧
𝑐𝑝 𝑞𝑧

𝑑𝑥 = 1
𝑦𝑧(𝑡) − 𝑇

𝑑𝑇 , (A.3)

and by integrating over the radiator length 𝐿𝑧, and from 𝑢(𝑡) to 𝑇r,𝑟 we 
get

∫

𝐿𝑧

0

𝑚𝑧
𝑐𝑝 𝑞𝑧

𝑑𝑥 = ∫

𝑇r,𝑟(𝑡)

𝑢(𝑡)

1
𝑦𝑧(𝑡) − 𝑇

𝑑𝑇 (A.4)

⟺

𝐿𝑧 𝑚𝑧
𝑐𝑝 𝑞rad,𝑟

= log
(

𝑦𝑧(𝑡) − 𝑢(𝑡)
𝑦𝑧(𝑡) − 𝑇r,𝑟(𝑡)

)

. (A.5)

With

𝐾𝑧 =
−𝐿𝑧 𝑚𝑧

𝑐𝑝
, (A.6)

outlet temperature is

𝑇r,𝑟(𝑡) = exp
(

𝐾𝑧
𝑞rad,𝑟

)

𝑢(𝑡) +
(

1 − exp
(

𝐾𝑧
𝑞rad,𝑟

))

𝑦𝑧(𝑡) (A.7)

and using Eq. (A.1), we can express the heat delivered by radiator 𝑟 as

Φ𝑟(𝑡) = 𝑐𝑝 𝑞rad,𝑟

(

1 − exp
(

𝐾𝑧
𝑞rad,𝑟

))

(

𝑢(𝑡) − 𝑦𝑧(𝑡)
)

= 𝑐𝑝 𝑞rad,𝑟

(

1 −
∞
∑

𝑛=0

𝐾𝑛
𝑧

𝑞𝑛rad,𝑟 𝑛!

)

(

𝑢(𝑡) − 𝑦𝑧(𝑡)
)

= 𝑐𝑝

( ∞
∑

𝑛=1

𝐾𝑛
𝑧

𝑞𝑛−1rad,𝑟 𝑛!

)

(

𝑢(𝑡) − 𝑦𝑧(𝑡)
)

(A.8)

Now, to approximate the total heating power delivered to zone 𝑧, Φzon,𝑧, 
we denote
𝑄𝑧 = 𝑅𝑧 − 𝑃𝑧 + 1 (A.9)

as the number of radiators in zone 𝑧, and use Eq. (8) to (10) and (A.6) 
to obtain
Φ̃zon,𝑧(𝑡) =

1
𝐶𝑧

𝜈𝑧(𝑞zon,𝑧)(𝑢(𝑡) − 𝑦𝑧(𝑡))

=
𝐶𝑧
𝐶𝑧

𝑐𝑝 𝑞zon,𝑧

(

1 − exp
(

𝑄𝑧 𝐾𝑧
𝑞zon,𝑧

))

(𝑢(𝑡) − 𝑦𝑧(𝑡))

= 𝑐𝑝 𝑞zon,𝑧

(

1 − exp
(

𝑄𝑧 𝐾𝑧
𝑞zon,𝑧

))

(

𝑢(𝑡) − 𝑦𝑧(𝑡)
)

= 𝑐𝑝 𝑞zon,𝑧

(

1 −
∞
∑

𝑛=0

𝑄𝑛
𝑧 𝐾

𝑛
𝑧

𝑞𝑛zon,𝑧 𝑛!

)

(

𝑢(𝑡) − 𝑦𝑧(𝑡)
)

= 𝑐𝑝

( ∞
∑

𝑛=1

𝑄𝑛
𝑧 𝐾

𝑛
𝑧

𝑞𝑛−1zon,𝑧 𝑛!

)

(

𝑢(𝑡) − 𝑦𝑧(𝑡)
)

,

(A.10)

Given the linearized radiator model Eq. (A.8), the error of the single 
zone approximation in Eq. (A.10) is

Φ̃zon,𝑧 −
𝑅𝑧
∑

𝑟=𝑃𝑧

Φ𝑟

= 𝑐𝑝

( ∞
∑

𝑛=1

𝑄𝑛
𝑧 𝐾

𝑛
𝑧

𝑞𝑛−1zon,𝑧 𝑛!
−

𝑅𝑧
∑

𝑟=𝑃𝑧

∞
∑

𝑛=1

𝐾𝑛
𝑧

𝑞𝑛−1rad,𝑟 𝑛!

)

(

𝑢(𝑡) − 𝑦𝑧(𝑡)
)

= 𝑐𝑝

( ∞
∑

𝑛=1

𝐾𝑛
𝑧

𝑛!

(

𝑄𝑛
𝑧

𝑞𝑛−1zon,𝑧
−

𝑅𝑧
∑

𝑟=𝑃𝑧

1
𝑞𝑛−1rad,𝑟

))

(

𝑢(𝑡) − 𝑦𝑧(𝑡)
)

.

(A.11)
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Consider the representation of the radiator flow rates using the scaling 
factor 𝜉𝑟 of the zonal average flow rate as

𝑞rad,𝑟 = 𝜉𝑟
𝑞zon,𝑧
𝑄𝑧

, (A.12)

With such a representation, equal flow rate in all radiators, 𝑞rad,𝑃𝑧 =
… = 𝑞rad,𝑅𝑧

 correspond to a scaling factor of 𝜉𝑟 = 1 for all radiators 𝑟 =
𝑃𝑧,… , 𝑅𝑧. Using Eq. (A.12), the error in Eq. (A.11) can be written as

Φ̃zon,𝑧 −
𝑅𝑧
∑

𝑟=𝑃𝑧

Φ𝑟

= 𝑐𝑝

( ∞
∑

𝑛=1

𝐾𝑛
𝑧

𝑛!

(

𝑄𝑛
𝑧

𝑞𝑛−1zon,𝑧
−

𝑅𝑧
∑

𝑟=𝑃𝑧

𝑄𝑛−1
𝑧

𝜉𝑛−1 𝑞𝑛−1zon,𝑧

))

(

𝑢(𝑡) − 𝑦𝑧(𝑡)
)

= 𝑐𝑝

( ∞
∑

𝑛=1

𝐾𝑛
𝑧 𝑄

𝑛−1
𝑧

𝑛! 𝑞𝑛−1zon,𝑧

(

𝑄𝑧 −
𝑅𝑧
∑

𝑟=𝑃𝑧

1
𝜉𝑛−1

))

(

𝑢(𝑡) − 𝑦𝑧(𝑡)
)

,

(A.13)

From Eq. (A.13), each term in the Taylor expansion is separated into 
multiple factors: the approximation error will increase with 𝐾𝑧 and de-
crease with the zonal average flow rate 𝑞zon,𝑧∕𝑄𝑧, and it also depends 
on flow rate distribution between the zone’s radiators’ scaling factors 
𝜉𝑃𝑧 ,… , 𝜉𝑅𝑧

. When all radiator flow rates 𝑞rad,𝑟 are equal, i.e., 𝜉𝑃𝑧 = … =
𝜉𝑅𝑧

= 1, the single radiator formulation of Eq. (A.10) is equivalent to the 
summed radiator heating power given Eq. (A.8), i.e., Φ̃zon,𝑧 =

∑𝑅𝑧
𝑟=𝑃𝑧

Φ𝑟.

Appendix B.  Bounds on post-rebalanced heat supply coefficients

The derivative of Eq. (10) is

𝜈′𝑧(𝑞zon,𝑧) = 𝐶𝑧 𝑐𝑝
⏟⏟⏟

≥0

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 −
(

1 +
𝑄𝑧 𝐿𝑧 𝑚𝑧
𝑐𝑝 𝑞zon,𝑧

)

exp
(

−
𝑄𝑧 𝐿𝑧 𝑚𝑧
𝑐𝑝 𝑞zon,𝑧

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≤1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

≥ 0

(B.1)

i.e., the heat supply coefficient 𝜈𝑧 is monotonically increasing in the 
zonal flow rate 𝑞zon,𝑧. Given the identified value of the heat supply co-
efficient 𝜈𝑧(𝑞zon,𝑧), we use the property of monotonically increasing of 
𝜈𝑧(𝑞zon,𝑧), as shown by Eq. (B.1), to establish the bound
{

𝜈𝑧(𝑞zon,𝑧 + Δ𝑞zon,𝑧) ≤ 𝜈𝑧(𝑞zon,𝑧) if Δ𝑞zon,𝑧 ∈
[

−𝑞zon,𝑧, 0
]

𝜈𝑧(𝑞zon,𝑧) ≤ 𝜈𝑧(𝑞zon,𝑧 + Δ𝑞zon,𝑧) if Δ𝑞zon,𝑧 ∈ [0,∞].
(B.2)

Further, the second derivative of Eq. (10) is

𝜈′′𝑧 (𝑞zon,𝑧) = −𝐶𝑧 𝑐𝑝
𝐿2
𝑧 𝑚

2
𝑧 𝑄

2
𝑧

𝑐2𝑝 𝑞
3
zon,𝑧

exp
(

−
𝑄𝑧 𝐿𝑧 𝑚𝑧
𝑐𝑝 𝑞zon,𝑧

)

≤ 0, (B.3)

i.e., since 0 ≤ 𝐶𝑧, 𝜈𝑧(𝑞zon,𝑧) is concave. Besides the known value of 
𝜈𝑧(𝑞zon,𝑧), Eq. (10) gives 𝜈𝑧(0) = 0 for any values of the coefficient 𝐶𝑧, 
𝐿𝑧, and 𝑚𝑧. Writing the secant between 𝑞zon,𝑧 = 0 and 𝑞zon,𝑧 = 𝑞zon,𝑧 as

𝑠(𝑞zon,𝑧 + Δ𝑞zon,𝑧) = 𝜈𝑧(𝑞zon,𝑧) + Δ𝑞zon,𝑧
𝜈𝑧(𝑞zon,𝑧)
𝑞zon,𝑧

, (B.4)

the concavity of 𝜈𝑧(𝑞zon,𝑧) gives

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑠(𝑞zon,𝑧 + Δ𝑞zon,𝑧) ≤ 𝜈𝑧(𝑞zon,𝑧 + Δ𝑞zon,𝑧)

if Δ𝑞zon,𝑧 ∈
[

−𝑞zon,𝑧, 0
]

𝜈𝑧(𝑞zon,𝑧 + Δ𝑞zon,𝑧) ≤ 𝑠(𝑞zon,𝑧 + Δ𝑞zon,𝑧)

if Δ𝑞zon,𝑧 ∈ [0,∞)

(B.5)

Thus, by combining Eqs. (B.2) and (B.5), we obtain the lower and upper 
bounds in Eq. (25).
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