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Radiators with improperly calibrated flow rates are common in modern hydronic heating systems, often resulting
in undesirable temperature variations across thermal zones. Flow rates are typically regulated by manually ad-
justable balancing valves installed at various points throughout the hydronic system. Traditionally, these valves
are configured using calculations based on data from construction plans. However, these valve configuration of-
ten give a zone temperature variance, which can be attributed to commonly occurring discrepancies between the
construction plan and the actual building. Consequently, manual rebalancing — an iterative and time-consuming
process based on practical heuristics - is often required.

This work addresses these challenges through a model-based approach informed by operational sensor data.
Through modeling of the pipe network hydraulics and thermal dynamics of each zone, an expression is derived to
evaluate the performance of the radiators’ flow rates. Model coefficients are obtained from both the construction
plan and through system identification using operational sensor data. This enables evaluation of current system
performance and the computation of valve reconfigurations that optimize it. To demonstrate the applicability
of the method, a retrospective case study of a rebalancing operation in a Swedish heating system is presented.
The analysis indicates that the rebalancing improved the balancing conditions, in line with observed reductions
in zone temperature variance. Although the method was not applied during the original rebalancing, the results

also suggest that using it could have led to even greater performance improvements.

1. Introduction

Space heating accounts for 30 % of the energy consumed in the EU
[1], and improving the efficiency of those systems has been pointed
out as an important development area to eventually reach the goal of
a carbon-neutral energy system [2]. Many heating systems can be de-
scribed as various types of hydronic radiator systems [3], which may be
used with different kinds of central heat sources such as heat pumps [4],
district heating [5], or gas condensing boilers. Reportedly, hydronic ra-
diator systems are often configured to give an unnecessarily high power
output, resulting in indoor temperatures well above the levels recom-
mended by the authorities [6]. Hence, there should be a potential to
save energy consumption by reducing this overheating by decreasing
the margin to the lower comfort limit. What often prevents this from
being done is variations in the indoor temperature, both in time and be-
tween different thermal zones, that can be attributed to insufficient heat
demand control [7]. Due to these variations, an average indoor temper-
ature reduction in a large heating system, e.g., a multi-family dwelling,
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would typically result in an uncomfortable indoor climate in a subset of
the thermal zones. Therefore, it is desirable to avoid these variations by
improving the heat demand control mechanisms.

In hydronic radiator systems, hot water is pumped from a central
heat source to radiators located inside the thermal zones, where the
water is cooled by heat transfer to the inside air and eventually recir-
culated to the central heat source [8]. The delivered heat is a function
of water temperature and flow rate, which is utilized in the common
control mechanisms. The probably most basic setup is to only have
automatic control centrally, with the supply water temperature set
by a feedforward controller from the outdoor temperature, known as
weather-compensated control. To allocate the heating power appropri-
ately between the thermal zones, there are balancing valves which are
manually adjusted to obtain appropriate flow rates in the radiators. With
no automatic feedback from the indoor temperature, such simple setups
are often poorly tuned, such that overheating is common [9]. By also in-
troducing thermostatic radiator valves (TRVs), automatic control is also
enabled locally since TRVs adjust the flow rate with feedback from the
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\begin {equation}\begin {aligned} \label {eq:hydraulic:model} &\left \{ \begin {aligned} &\text {Eqs. (4a) and (5a)} \\ &\text {Eqs. (4b) to (4e) and (5b) to (5d)} \end {aligned} \right . \\ \iff & \left \{ \begin {aligned} &\bm {0} \leq \bm {g}(\bm {q}, \bm {k} \mid \bm {L}_{\rm val}, \bm {U}_{\rm val}) \\ &\bm {0} = \bm {h}(\bm {q}, \bm {k}, \bm {p}, \bm {f} \mid \Delta p_{\rm pump}, \bm {{\tilde k}}_{\rm rad}, \bm {d}, \bm {l}, \bm {\varepsilon }) \end {aligned} \right . \end {aligned}\end {equation}
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\begin {equation}\dot {y}_z(t)=\theta _z\,\left (w(t) - y_z(t)\right ) + C_z \sum _{r=P_z}^{R_z} \Phi _{r}(t) \label {eq:zone:dynamics}\end {equation}
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\begin {equation}\label {eq:radiator:approx} C_z \sum _{r=P_z}^{R_z} \Phi _{r}(t)\approx \nu _z\left (q_{\text {zon}, z}\right ) \; (u(t) - y_z(t)),\end {equation}
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\begin {equation}\begin {split} \dot {\bm {y}}(t)&=\text {diag}(\bm {\theta })\,(\mathds {1}\,w(t)-\bm {y}(t))+\text {diag}(\bm {\nu }(\bm {q}_{\rm rad}))\,(\mathds {1}\,u(t)-\bm {y}(t))\\ &=-\text {diag}(\bm {\theta }+\bm {\nu }(\bm {q}_{\rm rad}))\,\bm {y}(t) + \bm {\theta }\,w(t)+\bm {\nu }(\bm {q}_{\rm rad})\,u(t), \label {eq:thermal:model} \end {split}\end {equation}
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\begin {equation}u(t)=y_{\rm ref} - \bm {F}_e^\top \,\bm {e}(t) - F_w\,(y_{\text {ref}} - w(t)), \label {eq:supplytemp:control}\end {equation}
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indoor temperature in the thermal zone [10]. The commonly used me-
chanical TRVs can, however, only perform well within a limited flow
range [11], meaning that the control performance of the TRVs is de-
graded if balancing valves are inappropriately set [12-14]. Therefore,
properly done hydronic balancing, i.e., by configuring balancing valves,
is crucial for achieving successful heat demand control in all thermal
zones regardless of whether TRVs are installed or not [10,15,16].

Poorly balanced hydronic heating systems have been recognized
as an obstacle in the current building stock to achieve more energy-
efficient control [17]. The typical balancing strategy starts by calculat-
ing a flow rate, or a configuration, for each balancing valve, based on
information from the construction plan [14,18]. After disabling TRVs,
if such are installed, a technician initially adjusts the balancing valves
according to the calculation [19], but due to discrepancies between the
construction plan and the actual system, this procedure may often not
provide a satisfactory heat allocation to at least some of the thermal
zones. Consequently, there is a significant temperature variance even
after the initial configuration, which a technician has to mitigate with
a time-consuming trial-and-error approach to redistribute the flow rate
by reconfiguring the valves. Also, since system properties may change
over time, e.g., changes in thermal characteristics due to replacement
of components, hydronic balancing needs to be performed regularly.

Finding alternatives and improvements that facilitate hydronic bal-
ancing, and ultimately automate the manual work [20], is thus nec-
essary to optimize the efficiency of the present hydronic systems.
There have been several developments of flow control equipment, e.g.,
pressure-independent balancing valves [10,18,21] and motorized TRVs
[22], that have showed improvements of the balancing conditions. Yet,
such setups are still rare in Swedish dwellings due to the extra invest-
ment costs [23]. On the other hand, many housing companies have re-
cently installed temperature sensors inside apartments to enable feed-
back control for the central heating power [7]. Although such efforts
of improving the central control have led to significant energy savings,
the potential is limited since only the accumulated heating power of
all apartments is affected, and thereby only the average indoor tem-
perature. With insufficient local conditions, there will always be tem-
perature variations in individual apartments, and some degree of over-
heating will be necessary to avoid discomfort [24]. Sarran et al. [25]
developed a data-based approach for diagnosing the balancing condi-
tions in a modern building equipped with electronic TRVs and heat me-
ters. While most apartment buildings in Sweden have a simpler setup,
consisting of only an indoor temperature sensor in each apartment, it
is still possible to retrieve information about the heat allocation of the
radiator system as obtained through balancing.

In recent years, the interest in data-driven modeling for thermal
dynamics in heating systems in general has increased [26]. The main
reason behind this movement is the simultaneously increased inter-
est in model predictive control (MPC) for central control [27]. Within
this field, gray-box approaches have been regarded as attractive since
they often offer both interpretability and decent model quality to rel-
atively little effort [28]. A hydronic heating system may be particu-
larly challenging to model due to the non-linearities of the hydronic
radiators, but studied model complexity includes both rather detailed
models of those nonlinearities [29,30] and linear approximations [31].
For the case of MPC, there are results suggesting that simple models
may perform as well as more complex [32]. It should, however, be
pointed out that none of the aforementioned works considers model-
ing for assisting hydronic balancing, which arguably introduces other
requirements than what is needed for a model to be used in a feedback
controller.

This work presents a modeling approach for assisting the rebalancing
work using both construction plan data and operational time-series data
collected from sensors in all thermal zones. This sensor setup reflects re-
cent installations by housing companies aimed at enabling centralized
feedback control. Unlike conventional methods, which are based solely
on the construction plan and do not assess the actual thermal state of
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the system, the proposed approach uses operational data to evaluate
the current hydronic balancing status. Based on this evaluation, poten-
tial valve reconfigurations can also be calculated to improve balancing
conditions.

1.1. Outline

The remainder of this paper is structured as follows: Section 2 out-
lines the aims of this work and specifies the data and system information
required to apply the proposed methods. Section 3 introduces modeling
for evaluating the performance of flow rates and valve configurations.
Section 4 builds on the modeling in Section 3 to derive tools for assisting
rebalancing using the data listed in Section 2. Section 5 demonstrates the
application of these tools through a retrospective analysis of a rebalanc-
ing operation carried out in a Swedish heating system. Lastly, Section 6
discusses the results from the case study and suggests refinements to the
approach.

2. Problem formulation

We consider a hydronic heating system with a central heat source
and a pump that serves radiators in different thermal zones. The pipe
system is a two-pipe system, i.e., each radiator is connected to a supply
pipe and a return pipe, and the pump operates with a known constant
differential pressure. The supply temperature of the heat source can be
controlled in real time, and there are balancing valves that can be man-
ually configured to affect the distribution of flow rates to the different
radiators. We have time-series data consisting of the supply and return
temperature of the central heat source, the outdoor temperature, and
the air temperature from each thermal zone. With access to the con-
struction plan, we also have information about the full pipe network,
accompanied by lengths, diameters, and materials. We have a protocol
with the valves’ current configurations and flow rates, and we know the
valve types and their corresponding specification.

The overall performance objective addressed in this work is to track
the same reference temperature in each thermal zone, meaning that we
aim to eliminate any temperature variance in time or across thermal
zones. Given this objective, the problem we focus on in this work is to
use the earlier-mentioned data to configure the manual balancing valves
to facilitate successful automatic control.

3. Modeling of balancing performance

For a hydronic system with radiators r = 1, ..., R, the heating power
delivered at time ¢ by radiator r is denoted by ®.(t | u,. graq,(Kya))s
which is given by the past and current supply temperature u., =
{u(s) | s <t} and the static radiator flow rate g,q,, which in turn is
a function of the static valve configurations k,, € RV of all valves
v=1,...,V. The radiators in a thermal zone z = 1,..., Z have indices
r=P,...,R,. The temperature in zone z at time ¢, y,(¢), depends on
the past and current heating power ®, _,(u,, graq (Kya) = {®,(s) | s < 1}
of the zone’s radiators r = P,,..., R,, but also past and current dis-
turbances W, ., = {W(s) | s <t} mainly from the weather conditions.
The objective when controlling the supply temperature » and con-
figuring the valves with k,, is to generate radiator heating powers

.
‘bgt (ugtv qrad(kval)) = [d)l,gn s (I)R,St]
tures y(r) = [Yl (t),”.,yz(t)]T are close to the reference temperature
Ve at each time 7. That is, the norm of the vector of errors in each
zone

such that the zone tempera-

e(t]| e, W) =L ypes — y(t | &, Woy). )

should be desirably small at each time . The balancing performance for
the valve configurations k,,; is formulated as the asymptotic integrated
squared error norm produced by the valve configurations k,, and an
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optimally controlled supply temperature uy

N 2
J(kyy) = 71211 min T ”e(r | q’sr(”szvqrad(k’val))a WS,) ‘zdt. (2)

o U<t

In the remainder of this section, an upper bound of the performance
J (k) is derived by modeling the thermal and hydraulic characteristics
of the hydronic system. In Section 3.1, the connection between valve
configurations k., and the radiator flow rates g, 4 is modeled via non-
linear equations and inequalities based on the pipe system hydraulics.
In Section 3.2, the dynamics of the error in Eq. (1), e, is modeled by
considering the thermal balance in each zone. Finally, in Section 3.3,
the upper bound for the balancing performance J(k,,) is derived by us-
ing the hydraulic model from Section 3.1 and the error dynamics model
from Section 3.2.

3.1. Modeling radiator flow rates

The relation between valve configurations k,, and radiator flow
rates q,,q is modeled from the hydraulics of the whole pipe system.
The hydraulic model is formulated using a directed graph structure with
edgesa=1,...,R+V + ., corresponding to the R radiators, V' valves,
and S pipe sections. The edges are ordered by the component types as
follows:

a=1,....,R, R+1,....,R+V,R+V +1,...,R+V +S. 3)
—— J
R radiators V valves S pipe sections

The graph’s vertices are indexed b = 1, ..., B, where vertex b =1 is
located at the outlet of the pump and vertex b = B is located at the
pump’s inlet. Thus, all flow paths of the pipe network start in » = 1 and
end in b = B. §*(b) and 6 (b) denote the sets of outgoing and incoming
edges at a vertex b, and ¢"(a) and ¢'(a) for the head and tail vertices of
an edge a. The graph structure is schematically visualized in Fig. 1.

Each edge a has a flow rate g, and hydraulic resistance k,, and each
vertex b has a pressure p, relative to the lowest pressure in the system
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at b = B. The basic hydraulics in the pipe network is described with the
following set of equations and inequalities

0<gq, (4a)
Yaesty da = Lacs-da  b=2,...,B—1 (4b)
Poh(a) = Pot(a) = Ka 47 a=1,....,R+V+S (40)
D= Appump (4d)
pg =0, (4e)

where Eq. (4b) models conservation of mass at a vertex b, whereas Eq.
(4c) models the pressure drop across an edge a by the quadratic flow
rate qi and the hydraulic resistance k, [13], Eq. (4d) and (4e) models
the total pressure drop for all flow paths to equal the pump’s differential
pressure Apynp, and Eq. (4a) ensures non-negative flow rates g,.

The modeling of the hydraulic resistance k, depends on the type
of edge a. For a valve v, corresponding to the edge a = R + v, the resis-
tance kg, = ky,, is the adjustable configuration which can be set to any
value between its lower clamp capacity L., , and upper clamp capacity
Uy~ For a radiator r, corresponding to the edge a = r, the resistance
k, = kg, is assumed to be a fixed known resistance k4. For a pipe s,
corresponding to the edge a = R+ V + s, the resistance kg, = kyjp
is calculated using standard models given by its properties concerning
its diameter d, length /,, pipe roughness ¢, and friction factor f,. The
water density is denoted p, and the dynamic viscosity of water is denoted
u. Altogether, the resistances of all edges are modeled by

Lval,v < kval,v < UvaLv v= 1’ % (53)

krad,r = lgra]d,rf’ r=1,...R(5b)
kpip,s = :zsdsss S = 1, ,S (5C)

L 251xdg £ _
A 2 logy (—A‘/){inw\/fT + 3A72dx> s=1,...,8, (5d)
where Eq. (5a) sets the bounds on the valve configuration, Eq. (5b) mod-
els the constant radiator resistance, Eq. (5¢) models the pipe resistance
using the Darcy-Weisbach equation [8], and Eq. (5d) is the Colebrook
equation [8] which implicitly gives the pipe friction factor f;.

9 10 11
Radiators | Valves | Pipes | Flow direction

Supply Return
_—

>

Fig. 1. Schematic of the directed graph used for hydraulic modeling of the example heating system visualized in Fig. 2 where R=3, V =3, .S =11, and B = 16.
Crosses denote the vertices b = 1,..., 16 with the corresponding indices in the boxes. Edges are marked by brackets and colored by the edge type: green radiator
edges a = 1,2, 3, orange valve edges a = 4,5, 6, and purple pipe section edges a =7, ..., 11. Due to limited space, pipe section edges a = 12, ..., 17 are not labeled. The
heat source, which is located close to the pump, is omitted in this view. (For interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)
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Given values of the pump’s differential pressure Apy,,, constant ra-
diator resistances k,,q, lower valve configurations L, ., upper valves
configurations U, ,, pipe diameters d, pipe lengths I, pipe roughnesses
€, the set of equations and inequalities in Egs. (4) and (5) gives a

T

feasible set of edge flow rates g = [qm & q\Tﬂl, q;p , edge resistances

rad’ "“val’ " pip
By separating the inequalities and equations in Egs. (4) and (5), the
feasible set of q, k, p, f is denoted as

Egs. (4a) and (5a)

Egs. (4b) to (4e) and (5b) to (5d)

0<g(q,k| Ly, Uy,)
= -

0= h(q, k, p, f | Appump’ krad’ dl, €)

.
k= [kT kT kT | , vertex pressures p, and pipe friction factors f.

©)

Since the radiator flow rates g4 is a subset of all edge flow rates
g, and the valve configurations k., is a subset of all edge resistances,
the relation gq,,4(k,,), appearing in Eq. (2), is implicitly modeled with
Eq. (6).

3.2. Modeling error dynamics

The rate of change of the air temperature y, in zone z is modeled as

RZ
V(0 =0, (w(t) = y.(0) + C, Y, () @)

r=P,

where 6, is a lumped parameter for the thermal leakage through the
building envelope in zone z, w(t) is the outdoor temperature at time ¢,
C, is a zone-specific parameter in K/W-s for converting heating power @,
from the zone’s radiators r = P, ..., R, to a temperature. By linearizing
a radiator’s heat output ®, with respect to supply temperature u and
zone temperature y,, and by approximating all radiators in a zone as
one single radiator, which is described in more detail in Appendix A,
the heating terms in Eq. (7) are approximated as

R,
C, Y @0~ v, (dgonz) W) =y, (1)), (®)
r=P,
where
RZ
4zon,z = z Grad,r 9
r=P,

is the summed flow rate of the radiators, and v, is a heat supply coefficient
given by

_(RZ—PZ+1)LZmZ>>’ 10

Cp 4zon,z

Vz(qzon,z) =C, €p 4zon,z <1 — exp <

where ¢, is the specific heat capacity of water, L, is the length of a
radiator, and m,, is a radiator-specific heat transfer coefficient. Due to the
linearized heat transfer, the coefficient m, is valid for an operating range
of supply temperature « and zone temperature y,. The approximation of
treating all the zone’s radiators as one is reasonable when the flow rates
of the zone’s radiators gpaq p_, ---, drad,r, are close to the zonal average
flow rate g,,, ./(R, — P, + 1), which is explained further in Appendix A.
From Eq. (7), and with the radiator approximation in Eq. (8), the model
for the thermal dynamics of zones is

Y(©) = diag() (1 w(®) — y(») + diag(v(graq)) (L u(®) — y(©)

. 1D

= —diag(6 + v(gr.a) Y(O) + 0 w(t) + v(grye) u(®),
where  y() =[y,®),....,y,®OI", 6= [491,...,492]T and  v(gg) =
[vi (qzon,l)’""VZ(qzon,Z)]T' A schematic visualization of the thermal

model Eq. (11) can be seen in Fig. 2.
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With the error e(r) defined in Eq. (1), the error dynamics given the
thermal model in Eq. (11) is

&) =4 (1yyer = y(©)
=-g®
=diag(8 + v(qy,q)) Y(t) — 0 w(1) — v(graq) u(t)
=diag(0 + v(grq) Y() — 0 w(t) — v(gryq) u(t)
+ (0 + v(qraa)) Vrer = Vrer)
= —diag(0 + v(q,,q)) €(t) + 0 (Vs — W(1))
+ V(Graa) Iref — u(®)).

12)

3.3. Upper bound of balancing performance

To create an upper bound for the performance J(k,,), the supply
temperature u(t) is assumed to be regulated by using feedback of the
error e(r) and feed-forward of the outdoor temperature w(r) according
to the control law

u(t) = yrep — F1 €(t) = Fy, (yref — (1)), (13)

where F, € RZ is the static feedback gain, F,, € R is the static feed-
forward gain. With such a regulator, the resulting error dynamics are

e(t) =(—diag(0 + 1(qu0) + ¥(qraa) F)' ) e(®)

as
+ (0 + F, v(Graq)) Vret — w(D)).

The error dynamics are inherently exponentially stable, since 0 < 8 and
0 < v(q,,)- The feedback term v(q,,q) is used to improve control per-
formance, and if it is sufficiently small, it will not compromise stability.
Without loss of generality, assuming a zero-error initial state e(0) = 0
gives the bound on the squared error norm at time ¢

le®1? < [0 + F,, v(gr)|3Z(0). (15)
where
t
10 = / ¥ exp (=4 (1 = )| yyes — wit — 7)||3dT 16)
0

and y and 4 are some finite positive constants. A proof for Eq. (15) can be
found in, e.g., Rugh [33]. At any time step ¢, the upper bound in Eq. (15)
is minimized by setting the feed-forward gain F,, as

0" v(q,
F,, = argmin||6 + qu(qmd)”; = —Lﬂd;. a17)
Fu [¥(awall2
With the performance proxy
L(qrad) = n}in ”0 + Fwy(qrad)Hg
18

0— o7 V(qrad)

“V(qrad)”g

V(qraq)

>

2

where valve configurations k., and radiator flow rates gq.,4, subsets of
all edge resistances k and edge flow rates g, forms a feasible solution
together with pressures p and pipe friction factors f of the hydraulic
model in Eq. (6),

0<g(q.k| Lval’ Uval)

- 19
0 =h(g.k.p. | Appumps Krag> -1, €),
the performance J in Eq. (2) is, using Eq. (15), upper bounded by
/T
J(kyy) < L(gpyg) lim = / 1(1)dt, (20)
T-c0o T 0

and I(r) is given by Eq. (16). Since the upper bound in Eq. (20) is scaled
by the performance proxy L(q,,q), L can be used to assess how the valve
configurations k,,; affect the upper bound of the performance J via the
Eq. (19).



H. Hdkansson et al.

6, (w(®) — ()

O, (w(t) — y2()
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Fig. 2. Schematic overview of the thermal model for a heating system of Z = 3 thermal zones, corresponding to Fig. 1. The pump, which is located close to the heat

source, is omitted in this view.

From Eq. (18), the performance proxy L can be rewritten as

PSP CAL ) CAC )il L)
rad/ — 27
[v(@0)ll3 (2a)ll3
_ ”0”2 _ (BT V(Qrad))z
2
””(qrad)Hg 21
16112 [[(gra)|[5 cos® @D
= o]} -~ e TR P

”V(qrad)ng
= 1015 (1 — cos @)

2 in2
= 16]|; sin” @,

where g is the angle between the vectors 8 and v/(q,,9). The last row in
Eq. (21) may provide intuition on how the flow rates g ideally should
be set: the vector of heat supply coefficients v(q,,q) and the vector of
thermal leakage coefficients 6 should be aligned so that the angle ¢ is
the smallest possible. Although it is generally not achievable, the ideal
scenario would be to obtain ¢ =0 such that 6 and v(q,,4) are paral-
lel and the reference temperature y,; can be maintained in all zones,
irrespective of outdoor temperature w.

4. Guidance for rebalancing using operational data

With a traditional balancing approach, data from the construction
plan is used to calculate valve settings and flow rates without taking
into account an observed state of balancing in the thermal zones. There-
fore, a traditional approach can not instruct how to rebalance the flow
rates to correct for observed misalignments that are not connected to
updates in the construction plan. This section describes tools, based on
the modeling in Section 3, in which collected operational data, as spec-
ified in Section 2, is used to facilitate informed decisions of rebalanc-
ing. In Section 4.1, it is described how coefficients needed for calcu-
lating the balancing performance proxy L(§,,q) in Eq. (18) under fixed
radiator flow rates §,,4 are collected by the means of the construction
plan and the sensor data. Based on those coefficients, bounds of the
performance obtained from a rebalancing Agq,,4, the post-rebalanced per-
formance proxy L(§,,q + Aq,,q) are derived in Section 4.2. The bounds
of the post-rebalanced performance proxy enable anticipating the ef-
fect of a given rebalancing Agq,,, but it also provides an opportu-
nity to calculate an optimized rebalancing Agq,,q, which is described
in Section 4.3.

4.1. Determining model coefficients

The data sources from the problem formulation in Section 2 are the
balancing protocol, which gives flow rates § and valve configurations
k.1, the construction plan, which gives the pipe characteristics of diam-
eters d, lengths I, and roughnesses ¢, and the sampled operational data,
which gives time-series of the zone air temperatures y, supply temper-
ature u, and outdoor temperature w sampled with a period of Atz.

To set up the hydraulic model in Eq. (6), the pump’s differential pres-
sure Appm, is retrieved from the setting of the pump, the lower and up-
per bounds of the valve clamping capacities L,,; and U,, are retrieved
from the data sheets of the installed valves, the pipe characteristics d,
l, and € are retrieved from the construction plan. The constant radiator
resistances k,,4, used in Eq. (5b), are selected such that the flow rates §

and valve configuration k., forms a feasible solution in Eq. (6)

0< g(q,’} | Lval’ Uval)

. . (22)
0="h(G.k.p, f | APpump Krags d- 1. ©).

where the flow rates §, valve configurations k., are retrieved from the
balancing protocol. The pipes’ friction factors f and resistances I}pip are
retrieved by inserting the known values for §, k,,4, d, I, and € in Eq.
(5¢) and (5d). Given these values of k,, and Tcpip, the pressures p can
then be calculated from Eq. (4c), (4d), and (4d) since there is only one
radiator per flow path from b =1 to b = B in a two-pipe system. Given
p and §,,4, there is a unique vector k,,q satisfying Eq. (4c) for radiator
edgesa=1,...,R.

The operational data, collected under the current flow rates G4,
is used to determine the thermal coefficient of the thermal leakage 6
and the heat supply v(§,,q), which appear in the performance proxy
L in Eq. (18). The coefficient estimates 6 and D(§,,q) are fitted to the
discretized dynamics of Eq. (11),
Yy + A —y@®)

A = diag(6) (1 w(®) — y() + diag() L u(®) —y(1).  (23)

4.2. Bounds of the post-rebalanced performance proxy

From the expression for the performance proxy L in Eq. (18),
evaluation of the post-rebalanced performance proxy L(§,,q + Ag,,q) Te-
quires the corresponding values of the rebalanced heat supply coeffi-
cient v(§,,q + Ag,,q)- Although the heat supply coefficient v(§,,4) is esti-
mated, the operational data with constant flow rates §,,q does not allow
for uniquely determining the underlying C,, L, m, in Eq. (10). Conse-
quently, rebalanced heat supply coefficient v/(§,,q + Aq,,q) can not be
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assigned with a unique value, but it can be bounded as justified in this
section.
Given a positive C, from Egs. (7) and (10) gives

0.(0)=0
0< v;(qzon’z) 24)
V2 (dzon.2) <O,

which is shown in Appendix B. Thus, v, is monotonically increasing and
concave in g,,, .. The positive derivative 0 < v, means that the radiators’
heating power ®p ., increases with the zonal flow rate g, ;, and the
negative second derivative v/ < 0 corresponds to a return temperature
that increases with the flow rate g,,, ,, which is explained in more detail
in Appendix B.

The properties in Eq. (24) gives the lower and upper bounds

vz (qzon,z)

Vz(qzon,z + A‘hon,z) € Vz(qzon,z) + quon,zq—’

Zon,z

Vz(‘izon,z):| > ifAqzon,z € [_qzon,zs 0]’

_ (25)
Vz(qzon,z + quon,z) € Vz(qzon,z)’
. V2 (Gzon,) | .
Vz(qzon,z) + quon,z ﬁ] ,if Agyon, . € [0, 00).
zon,z
where
RZ
quon,z = Z Aqrad,r (26)
r=P,

is the total flow rate change in zone z. The derivation of Eq. (25) is
given in Appendix B. Based on the bounds in Eq. (25), we formulate the
possible values for the heat supply coefficient of all zones (g, ,q + Ag,,q)
as obtained after a flow rate redistribution Aq,,q with the set

V(qrad + Aqrad) € {V(qrad) + n(Aqrﬂd’ o | qrad) | [e 2= [0’ I]N} (27)

where o € [0,1]V is a parameter for describing the possible outcomes,

N(Adrag: & | Grag) = [1(Adgon 1 @1 | Gon 1) -+ 1Adgon 287 | Gon )1
(28)

and

. V2 (Gzon,z)
”(quon,zﬂ a; | qzon,z) = aquzon,z Z~ =R (29)
9z0n,z

An example of the set in Eq. (27), but for one of the zones, is depicted
in Fig. 3.

Potential region of v,(qzon, z)
-== Example realization of v;(qon,2)
3/2 - v(Gion, 2) a,=1.0
{__%,F_Q.S.-
V2(Gzon, 2) a;=0.0 __,,o—“" a,=0.0
a;=0.5 }/”
-
1/2- Vz(quon,z) T az =/l’0
/,,
,/
01 @&
0 1/2- CN,zon,z Gzon, z 3/2- dzon,z

Fig. 3. Example of the bounds of v,(G,on . + Ag,0n.) as described by Eq. (27),
for one zone z. Black dots denote the known values of v,(0) = 0 and v, (g, .)-
The left vertical line shows a, = 0,0.5, 1 corresponding to a flow rate decrease
of Ag,g, . = —%qmn’z, and the right vertical line shows the same for a flow rate

. 1~
increase Ag,,, , = 3 9z0n,z*
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Given the set in Eq. (27), the post-rebalanced performance proxy is
bounded by
Lyc(AGraq | Grag: 0) £ L(Grag + AGrag) £ Lye(AGrag | Grag» 6) (30
where L, is the best-case post-rebalanced performance proxy
Lyc(AGyyq | Grag 60) =
(07 W (Gra0) + M(AGrags e | Graa))’

min |3 ~ ——— — @B
e €L01] ”V(qrad) + U(A%am Oty | qrad)”z
and L, is the worst-case post-rebalanced performance proxy
Lwc(Aqrad | qrad, 0) =
(07 W (Graa) + M AGag: Oty | o))’
”0”5 _ rad rad we rad (32)

m. .
e €l0.1Y ”V(qrad) + n(Aqrad’ Ay | qrad)Hg

Since o, = 0 gives an upper bound of Eq. (31), the best-case post-
rebalanced performance proxy is upper bounded by

Lbc(Aqrad | Qrad’ 0) < L(qrad)’ (33)

and since o, = 0 gives a lower bound of Eq. (32) the worst-case post-
rebalanced performance proxy is lower bounded by

L(qrad) < Lwc(Aqrad | qrad’ 0). (34

In other words, the best-case post-rebalanced performance proxy
L .(Ag,,q) cannot be worse than the pre-rebalanced performance
proxy L(§.,q) and the worst-case post-rebalanced performance proxy
L,.(Ag,,q) cannot be better than the pre-rebalanced performance proxy
L(arad)'

Given a suggested flow rate rebalancing Aq,,4, the outcome by ap-
plying Aq,,4 can be anticipated in advance through the worst-case and
best-case performance proxies L, and L. Thus, a technician can be in-
formed whether the suggested rebalancing Aq,,4 has any improvement
potential at all, and compare it with other candidate rebalancings.

4.3. Optimization of valve reconfigurations

In simple heating systems, such as the toy example in Figs. 1 and
2, it might be possible to rebalance flow rates such that Aq,,4 # 0 with
L o(AGraq) < L(Graq) = Lywc(AGr,q), i-€., the performance proxy will for
sure not be worsened. It is, however, common to have nested pipe struc-
tures and non-ideal sizing of valves and pumps, such that the hydraulics
in Eq. (6) will constrain how flow rates can be rebalanced. Under such
circumstances, the best-case performance proxy L, . and worst-case per-
formance proxy L,. may be conflicting, i.e., to get a small best-case
performance proxy L,. we might simultaneously also have to take a
risk with a large worst-case performance L,,.

A valve reconfiguration k., + Ak,,, producing the rebalanced radia-
tor flow rates §,,q + Aq,,q, that corresponds to a Pareto-optimal solution
of worst-case L, and baset-case L, is retrieved by

minimize ¢ Ly (Adrag | raa- 0) (352)
+ (1 = OLy(AGryq | Grag- 0)
subject to
0<g(G+Aqk+Ak| L., U,) (35b)
0=h(G+Aq.k+Ak.p. f | Appump: Krag» dn 1. €) (35¢)

where the objective function in Eq. (35a) is sum of L. in Eq. (31) and
L. in Eq. (32) weighted by the parameter ¢ € [0, 1], Egs. (35b) and
(35c¢) are inequalities and equations from the hydraulic model in Eq. (6)
set up as described in Section 4.1.

With a small ¢ in Eq. (35a), minimizing the risk from the worst-case
performance is prioritized over enabling a low best-case performance
L,.. Conversely, a large ¢ corresponds to risking a high worst-case per-
formance L, to prioritize a low best-case performance L, . By knowing
a preferred risk level ¢, the optimal valve reconfiguration Ak,, can be
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Initial flow rates q,
Initial valve configurations k

Collect sensor data under q, k -
Apply Ak, giving updates
d<q+A4q

* Indoortemp.y

¢ Outdoortemp. w F R+ ak
* Supply temp. u <k+

N pply P * ) T

Estimate thermal coefficients Calculate rebalancing 4q and
9, 9(qraa); EQ- (23) reconfigurations Ak, Eq. (35)

* L fOnly1st

Calculate performance proxy = iteration

L(@raa)> Eq. (18) ﬂ
—
v =]

[ Is L(Graq) < Threshold? ]—

No
Yes l

Finished

Set up hydraulic model
using data from
construction plan, Eqg. (22)

Fig. 4. Overview of an iterative workflow using the model-based tools for eval-
uation and reconfiguration guidance presented in this paper.

obtained by Eq. (35). However, interpreting the effect of the weighting
parameter ¢ in advance may be difficult to do beforehand, and a more
convenient approach is to calculate multiple Pareto-optimal solutions by
varying the weighting parameter ¢ and then select a rebalancing Ag,,q
which correspond to a desired point at the Pareto front.

Altogether, the reconfiguration guidance can be combined with the
evaluation based on the performance proxy L(g,,q) in Eq. (18) in an
iterative manner, as illustrated in Fig. 4. In a full adoption of the pro-
posed framework, rebalancing would be repeated until the performance
proxy L(q,,q) falls below a predefined threshold. After each iteration,
new operational data must be collected to refit the thermal coefficients
in Eq. (23). This implies a trade-off: longer waiting times between itera-
tions provide more data and thus more reliable estimates, but also delay
the rebalancing process. By contrast, the hydraulic model remains un-
changed once it has been set up, unless modifications to the construction
plan are introduced.

5. Case study

In this section, data from before and after the rebalancing of a heat-
ing system on February 7, 2024, is used to analyze the applicability of
the methods described in Sections 3 and 4. While the tools presented
in this work were not directly used for assisting the rebalancing, they
are used here to assess the outcome of the rebalancing and to retro-
spectively find whether there would have been other, more favorable
reconfigurations.

5.1. Description of the heating system and balancing work

The heating system, which is visualized in Fig. 5, is a two-pipe system
connected to the city’s district heating grid via the substation, where the
district heating water heats the supply water through a heat exchanger.
From the heat exchanger, the supply water is led through the pump and
into the main pipe that leads through the basement. The radiators are
connected to the main pipe via vertical risers so that radiators located
at a similar position but on different floors share the same riser.

There are 70 apartments of varying sizes, from 33 - 100 m?, between
one and four rooms. Each apartment has 1 - 5 radiators, depending on
the apartment size, and the air temperature is measured from a sensor
mounted close to the entrance. Since there is only one temperature sen-
sor per apartment, each apartment is treated as a single thermal zone in
the remainder of the analysis.
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Risers
”

Radiator valves
........... (untouched)

Zone 2

Riser valves
(reconfigured)

Substation

Fig. 5. Schematic of the structure of the pipe system in the case study.

In addition to balancing valves on each radiator, there are balancing
valves at the bottom of the return pipe of each riser, riser valves, before its
junction with the main return pipe. Therefore, the configuration of one
riser valve affects multiple radiators on different floors. The apartments
connected to a single riser differ in size, flor plan and window direction.
The riser valves are easy to access since they are all mounted on the
main pipe in the basement, while access to the radiator valves requires
permission from the tenants.

Before the rebalancing on February 7, 2024, the heating system un-
derwent thorough balancing work in 2020 and 2021, when both radiator
and riser valves were configured according to a flow rate protocol, as
given by an ordinary balancing calculation based on construction plan
data. When the balancing work finished in 2021, the TRVs were re-
mounted on all radiators. Still, the zone temperature variance was high
in the succeeding years 2022 - 2024. It was observed that many zones
had a similar climate to the other zones connected to the same riser, and
simultaneously disparate from zones connected to other risers. There-
fore, reconfiguration of riser valves was identified as an appropriate
measure to mitigate temperature variance. However, since there were
no updates in the construction plan since 2021, redoing the balancing
procedure from scratch would just result in the same valve configura-
tions. Instead, the riser valves were reconfigured to increase the flow
rate in risers serving zones assessed to be underheated and decrease it
in other overheated zones. 10 of 61 riser valves underwent reconfigura-
tion in February 2024, affecting 16 of 70 apartments. To not affect the
pump’s operating condition and the other valves, the total flow rate was
aimed to be kept intact by compensating for the increased flow rate at
one valve with the decreased flow rate at the other valves.

5.2. Analysis of the rebalancing outcome

Given the flow rates §,,q, a successful rebalancing Ag,,4 should mod-
ify the heat supply coefficients v such that the reduced performance
proxy L is reduced as, using Eq. (21),

L(qrad + Aqrad) < L(qrad)
=
(BT V(érad + AQrad))z
~ 2
”V(qrad + Aqrad)Hz
=

(07 v(Gra0))’

el -
’ @)l

<lel; -
(36)
1113 sin* @po < 16115 sin* @y
=

(pposl < (ppre
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Model input data
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Fig. 6. Dynamic model input signals, supply temperature u and outdoor temperature w, collected from the operation during pre- and post-rebalancing periods. The

signals are negatively correlated such that u is higher when w is lower.

where @, is the angle between 0 and the pre-rebalanced heat sup-
ply coefficients v(§,,q) and @, is the angle between 6 and the post-
rebalanced heat supply coefficients v(§,,q + Aq,,q)- The last row in
Eq. (36) underlines that with this modeling, a rebalancing Aq,,q will
not affect the performance proxy L through the norm of the thermal
leakage coefficients ||0||% but through the angle ¢ calculated by

)

given coefficients 6 and v.

To analyze the outcome of the rebalancing Agq,,q in terms of the an-
gle @, values of the thermal leakage 8 € RZ and the heat supply v € R?
are estimated by fitting of the discretized dynamics in Eq. (23) to the
operational data sampled with a period of A7r =1 hour. To estimate
the pre-rebalanced angle ¢, coefficients éprc and V.. (§) are fitted to
data from a pre-rebalancing period December 1st 2023 - February 7,
2024, and to estimate the post-rebalanced angle ¢, coefficients épost
and Vo (Graq + Agryq) are fitted to data from a post-rebalancing period
February 7, 2024 - March 10, 2024.

In both pre- and post-rebalancing periods, the data is collected dur-
ing normal system operation, when the controlled supply temperature
u is negatively correlated with the outdoor temperature w, which can
be seen in the middle row in Fig. 6. Such a control strategy is suitable
to maintain a small error norm ||e||§, as described in Section 3.3, but
it makes identification challenging since the correlated signals cause
estimation variance of fitted coefficients § and ¥. To ensure that phys-
ically realistic coefficients  and ¥ are obtained, a Bayesian regression
approach is used with a Gaussian prior on the thermal leakage

Tv

¢ = arccos ( 37)

I~ 161

0, ~ N (g, 07) (38)

for each zone z =1, ..., Z. Earlier studies of Swedish residential build-
ings have found time constants ranging from 4 - 12 days for multi-family
buildings [34]. The time constant corresponds to 1/6, of the thermal
dynamics in Eq. (7), and the hyperparameters in the Gaussian prior
Eq. (38), pp and 03, are selected such that y + 30, i.e., 99.7 % of the
probability mass, of the prior covers time constants 4 - 12 days. For the
heat supply coefficients v, a flat prior is used.

The zone temperature variance is varying in time, with the supply
temperature u and the outdoor temperature w, which can be seen by
comparing Figs. 6 and 7. Fig. 7 also shows that such a time-varying
variance is obtained when simulating zone temperatures using the ob-
tained maximum aposteriori (MAP) coefficients 6 and v, although the
variance is underestimated at several occasions. The MAP estimates of
the time constants 1 /9Z, forz=1,..., Z are around 6 days for all zones.

Based on the fitted coefficients, the pre- and post-rebalanced angles
@pre and @ are calculated for four groups of thermal zones: the in-
tervened zones, which are the Z = 16 zones affected by the rebalancing,
and three groups of non-intervened zones, of which each group consists
of Z = 16 zones not affected by the rebalancing. With coefficients 8 and

Table 1

The first and second columns show the estimated pre- and post-
rebalanced angles where the first number in each cell correspond to
the MAP estimate, and the range corresponds to a 99 % credibility in-
terval. The third column show the posterior probability for a angle
decrease @,y < @, following the rebalancing.

Ppre Ppost P(@post < Ppre)
Intervened 0.077 + 0.009 0.069 + 0.016 0.802
Non-intervened [ 0.065 + 0.010 0.067 + 0.015 0.263
Non-intervened II 0.058 + 0.008 0.071 + 0.015 0.009
Non-intervened IIT 0.070 + 0.013 0.076 + 0.024 0.127

v sampled from posterior distribution, Table 1 and Fig. 8 indicate some
degree of uncertainty in the results, but the posterior probability for a
decreased angle ¢, < @ is substantially higher for the intervened
zones than for any non-intervened group. For the three non-intervened
groups, and particularly non-intervened group II, the results in Fig. 8
suggest @pre < Ppog» 1-€., Worsened balancing performance, with a high
posterior probability.

The results of the angles ¢, and ¢, from Table 1 and Fig. 8 agrees
with the observed temperature variance, visualized in Fig. 9. The vari-
ance range is shifted between pre- and post-rebalancing periods for all
four groups, which is partly explained by the effect of the time-varying
behavior of the variance visualized in Fig. 7. Still, the intervened zones
stand out in that the variance is shifted downwards more than for any
other group.

5.3. Analysis of the pre-rebalancing options

To demonstrate how the method can assist balancing, the pre-
rebalancing coefficients épre and V,.(§r.), fitted as described in
Section 5.2, are used for calculating the worst-case performance proxy
L, in Eq. (32) and the best-case performance proxy L, in Eq. (31). Like
in Section 5.2, the results here are presented in terms of angles ¢, and
@y, instead of the performance proxies L, and L. The range of ¢,
and ¢, which can be computed before applying a rebalancing, is com-
pared with a Pareto front of ¢, ¢y, for other, non-applied rebalancings
Ag,,q, calculated by solving Eq. (35) given data from the construction
plan and balancing protocols as described in Section 4.1, with different
weightings ¢.

The results, shown in Fig. 10, indicate that the best-case performance
¢, and the worst-case performance ¢, for the applied rebalancing
Ag,,q are above the Pareto front. If one of the other rebalancing op-
tions on the Pareto front had been chosen instead, the same risk ¢,
could be obtained with a better potential ¢, or vice versa. Neverthe-
less, one can conclude from Fig. 10 that the applied rebalancing Ag,,4 is
one candidate solution to improve the balancing performance since the
best-case angle is better than the pre-rebalanced angle, @y < @p.
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Fig. 7. Comparison of measured and simulated zone temperature variance. The distribution of measured zone temperatures over time is visualized in the upper
row, and its variance is indicated in the lower row. The variance of the simulated zone temperatures in the lower row follows the general pattern of the measured

variance.
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Fig. 8. Posterior probabilities for ¢, — ¢, Of the four zone groups. Negative
Ppost — Ppre SUGEeSts balancing improvement for the intervened zones, while pos-
itive or zero-centered ¢, — @, Suggests preserved or worsened balancing for
the non-intervention groups.

In the right-hand plot of Fig. 10, we see that the obtained MAP esti-
mate of the post-rebalanced angle @, is in the range [@y, @y, ], demon-
strating that the outcome is correctly anticipated. The plot also shows
how the width of the interval [¢,,., @] is, in general, associated with the
norm of the rebalancing ||Aqy,q||>. In other words, a large magnitude of
the rebalancing ||Ag,, ||§ typically means high risk but simultaneously
high improvement potential.

6. Discussion

This paper introduces a novel framework for model-based analysis
of hydronic balancing, enabling simplification of the balancing process
and more effective use of sensor data, as demonstrated in the case study
in Section 5. The following discussion reflects both on the potential
and the limitations of the proposed methods and results. Specifically,
Section 6.1 interprets the results of the case study. Section 6.2 contrasts
the proposed framework with conventional approaches, explaining how
it can enhance the workflow and be implemented in practice. Finally,
Section 6.3 addresses methodological limitations and suggests directions
for future work.

6.1. Case study results

The case study demonstrates that the proposed thermal dynamics
model can, to a large extent, explain the observed weather-dependent

zone temperature variations shown in Fig. 7. The model-based evalu-
ation in Table 1 and Fig. 8 indicates that rebalancing improved per-
formance in the 16 intervened zones, while no such improvement was
observed in the groups of non-intervened zones. This result is consis-
tent with the analysis of temperature variation in the pre- and post-
rebalancing periods (Fig. 9), where the reduction in variation was more
pronounced for the intervened zones. Furthermore, the pre-rebalancing
analysis suggested that the applied reconfiguration had improvement
potential, although a different configuration strategy might have yielded
even greater benefits.

Despite these encouraging results, several uncertainties remain.
While the results indicate performance improvements for the intervened
zones, the level of uncertainty in the estimates is non-negligible. Ana-
lyzing the results strictly even suggests that balancing performance may
have been worsened in some non-intervened zones, where no changes
should have been applied, potentially indicating that the rebalancing in-
directly affected them in adverse ways. Such uncertainties are difficult
to eliminate entirely, as the evaluation relies on fitting a model to opera-
tional data collected under real-world conditions, where occupancy and
human activity inevitably introduce disturbances that may influence the
coefficient estimates. Improved experimental design-further discussed
in Section 6.3-could mitigate these issues. Ideally, repeated trials would
be analyzed through carefully designed comparative experiments, min-
imizing discrepancies to validate the efficiency of the methods between
an intervention group and a control group—for example, using two sets
of risers with apartments having very similar characteristics.

6.2. Comparison with a conventional approach

With the conventional practice of rebalancing work, evaluating the
outcome is challenging due to the time-varying temperature variance as
seen in Fig. 7. Typically, the evaluation is carried out by observing the
temperature variance in different weather conditions over a long time,
i.e., months or even years. The tools presented in this work provide
an opportunity to shorten the cycle time by utilizing the collected sen-
sor data. Rather than directly inspecting the temperature variance, the
evaluation can be based on the estimated post-rebalanced angle @, as
described in Section 5.2, making the process less dependent on specific
weather conditions.
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Fig. 9. Distribution of zone temperature variance during the pre- and post-rebalancing periods of four zone groups. The upper and lower range limits for the
temperature variance of intervened zones are shifted down more than for any of the groups with non-intervened zones.
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Furthermore, generating the Pareto front of reconfigurations, as in
Section 5.3, enables automated suggestions for how to proceed with the
upcoming rebalancing work. The remaining manual work for a techni-
cian is to interpret the estimated ¢, to decide whether the rebalancing
work should continue, and then possibly reconfigure valves according
to a solution from the Pareto front. It should also be emphasized that
since temperature sensors are already widespread in Swedish residential
heating systems, often no additional equipment is required for employ-
ing the tools proposed here.

Although the case study presented here demonstrates the applicabil-
ity of the methods, it remains an open question whether the proposed
approach is more efficient than the educated guesswork performed by
technicians using their domain knowledge. To rigorously evaluate this,
empirical studies would be needed in which the methods are actively ap-
plied by technicians in some systems and compared with other systems
where only the conventional approaches are used.

6.3. Limitations of the method

Although the methods presented in this paper enable the utilization
of collected sensor data, the main limitation is that the success of the
methods requires good data quality. Despite several weeks of estima-
tion data in both pre- and post-rebalancing periods, the posterior distri-
butions of the angle difference @y, — @ fail to provide unambiguous

10

results to the effect of rebalancing, which is due to the uncertainty in @
and V. One approach to improve the reliability and the efficiency of an-
alyzing the rebalancing outcome and calculating new reconfigurations
is to design the operation specifically for estimating the thermal coef-
ficients 6 and v. In the case study, data were collected during normal
operation, where the control of the supply temperature u was optimized
to maintain indoor comfort. This suggests that improved excitation of u
may help to reduce the uncertainty of the coefficient estimates § and v.
Nevertheless, maintaining comfort remains essential, and it is an open
question to what extent better excitation of u is implementable and how
much the uncertainties can be reduced.

Another limitation is that, although the bounds in Eq. (25) can be
established, the post-rebalanced heat supply v(§,,q + Aq;,q) cannot be
calculated exactly prior a rebalancing. This is due to the problem for-
mulation in Section 2, which states that the radiator flow rates §,,q
are fixed, which correspond to how technicians conventionally collect
data and information during balancing work. However, when collecting
data under fixed radiator flow rates §,,q, the coefficients C, and L, - m,
in Eq. (A.1) can not be identified. One alternative for future work is
that once the radiator flow rates §,,q are rebalanced, the coefficients
C, and L, - m, can be identified by combining data from pre- and post-
rebalancing periods. With such an approach, the post-rebalanced per-
formance proxy L(§,,q + Ag,,q) can be calculated directly, eliminating
the need for worst- and best-case bounds as given in Section 4.2. Such
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and approach is likely more fruitful after several rebalancing iterations,
in contrast to the case study in Section 5 which was limited to a single
rebalancing event.

7. Conclusions

This paper contributes tools that can guide the balancing work in a
structured way while incorporating the operational status through the
sensor data. Since the equipment requirements correspond to what is al-
ready installed in many Swedish residential heating systems, these meth-
ods are widely implementable. The main contribution from this work is a
metric for evaluating the performance of flow rate balancing, the perfor-
mance proxy, in isolation. Unlike relying on zone temperature variance,
this evaluation metric is invariant to weather conditions and supply tem-
perature. Furthermore, this framework can be utilized to guide rebal-
ancing, allowing for the calculation of different valve reconfigurations
with respect to risk and improvement potential. The case study demon-
strates the applicability of these methods, showing that the metrics de-
veloped in this work align with the observed zone temperature variance,
indicating improved balancing. Also, when only using pre-rebalancing
data, the methods suggest that the applied rebalancing had the poten-
tial to improve the balancing. However, that analysis also indicates that
there were other reconfigurations with even higher potential and lower
risk.
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Appendix A. Derivation of radiator approximation

In this section, we motivate and explain the details of the heat supply

approximation as given in Egs. (8) and (10). For aradiatorr = P,, ..., R,
in zone z, the heat delivered by the radiator is
D.(t) = ¢, Grag, w(®) — T, (1)), (A.1)

where c, is the specific heat capacity of water in J / (kg-K), gyaq, is the
radiator flow rate, u(t) is the supply temperature in and T} .(¢) is the ra-
diator outlet temperature. To derive an explicit expression for T; ., we
model each radiator in zone z as a one-dimensional heat exchanger of
length L.. Since the radiator temperature dynamics are much faster than
the indoor air, we consider steady-state radiator temperature dynamics
such that the outlet temperature T, adapts instantly to changes in the

supply temperature u(r) and zone temperature y.(®). The heat balance
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equation of an infinitesimal length dx of the radiator with water tem-
perature T is

Cp drad,r dT =m, (y,(t) —T)dx, (A.2)

where m, is a radiator-specific heat transfer coefficient in W/(K- kg).
In practice, the value of the parameter m, depends on the temperature
difference y,(t) — T [29], although we consider a linearization of the

dynamics such that m, is fixed. Rearranging the terms in Eq. (A.2) gives
m, 1

——dx=———dT, (A.3)

4 y.(t)-T

and by integrating over the radiator length L_, and from u() to T, , we

get
L, .0
dx = ——d (A.4)
0 cp q: u(t) yz(t) -T
=
L 1) —u(t
=Mz _ og (_yz( ) — u(®) ) (A.5)
cp Grad,r yz(t) - Tr,r(t)
With
—-L
K, = ="z (A6)
p
outlet temperature is
KZ KZ
T, @) = exp u(t)+ {1 —exp v, (A.7)
Grad,r Grad,r

and using Eq. (A.1), we can express the heat delivered by radiator r as

KZ

(1) = €, Grad,r (1 —exp (q d )) (u@®) — y.®))
[5) K"

=c ‘Iradr< Z £ > u(’)_yz(l))
0 dr

=c < > u(t) = y, (1))
=1 radr

Now, to approximate the total heating power delivered to zone z, ®.
we denote

(A.8)

zon,z>

Q.=R,-P,+1 (A.9)

as the number of radiators in zone z, and use Eq. (8) to (10) and (A.6)
to obtain

Byon (1) = o V2(dpon )W) = y:(1)

C 0. K
C_icp ‘hon,z(l — eXp ( qz =

>>(u(t) = (1)

s )) (u() = y.@))

o
= CpGzon,z <1 — eXp < =
4zon,z
01 K?

2 )(u(r) - 7:(1)

[so]
= Cp z0n,z <1 -

n=0 zon,z
L Qn K"
=cp<z n_zl ;!>(u(1)—yz(t)),

n=1 qzon,z

(A.10)

Given the linearized radiator model Eq. (A.8), the error of the single
zone approximation in Eq. (A.10) is

an
QnKn R; o

P

r= zrl=1

R,
D r >) u(t) = y-(0)).
r=pP; radr

ZOn z =

= Cp<z (A.11)

n—1 ]
n= lqzonzn

o0 Krl Qﬂ
(& (&

> u(t) - y, (1))

Z()n Z
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Consider the representation of the radiator flow rates using the scaling
factor &, of the zonal average flow rate as

Q70n,z

0:

With such a representation, equal flow rate in all radiators, g;,qp =
-+ = drq g, correspond to a scaling factor of ¢, = 1 for all radiators r =
P,,...,R,. Using Eq. (A.12), the error in Eq. (A.11) can be written as

s (A.12)

Grad,r = ér

RZ
q)zon,z - Z @,
r=P,

X Kn Qn R, Qn—l
=\ Xl oo~ 2 o ) )0 = y-0) (A.13)
n=1 n qzon,z r=P, én qzon,z
X KN Qn—l R, 1
=¢( 2= 0:.- Y == | (- y,0),
n=1 n! qzon,z r=P, 5

From Eq. (A.13), each term in the Taylor expansion is separated into
multiple factors: the approximation error will increase with K, and de-
crease with the zonal average flow rate g¢,,, ,/Q,, and it also depends
on flow rate distribution between the zone’s radiators’ scaling factors
¢p,, -+ ¢, - When all radiator flow rates g.,q, are equal, i.e., §p = ... =
& R, = 1, the single radiator formulation of Eq. (A.10) is equivalent to the

RZ(D

summed radiator heating power given Eq. (A.8), i.e., ®,,, = X =, @,.

Appendix B. Bounds on post-rebalanced heat supply coefficients

The derivative of Eq. (10) is

- (0

’
Vz(qzon,z) =C, ¢p

QZ LZ mZ) ( QZ LZ mz>
+——)exXp| ——
——

>0

€p 4zon,z €p 4zon,z

(B.1)

<1

>0

i.e., the heat supply coefficient v, is monotonically increasing in the
zonal flow rate g, .. Given the identified value of the heat supply co-
efficient v,(q,,p ), we use the property of monotonically increasing of
V;(dzon 2)> @s shown by Eq. (B.1), to establish the bound

{Vz(‘izon,z + quon,z) < Vz(‘izon,z) if quon,z € [_gzon,z’O] (B.2)
VZ(qZOD,Z) S VZ(qZOﬂ,Z + AqZC'Il,Z) lf AqZO]’l,Z E [0’ 00].
Further, the second derivative of Eq. (10) is
L2 m2 QZ Q L.m
V! (d0n2) = —C. ¢, ; 37‘ Z exp <— e ) <0, (B.3)
c €p 4zon,z

» 9zon,z

i.e., since 0 < C,, v,(¢,op.) is concave. Besides the known value of
V;(dzon2)» Eq. (10) gives v,(0) = 0 for any values of the coefficient C,,
L,, and m,. Writing the secant between g,,, ., = 0 and g,,, ; = Gyon; aS

-~ - V. (q On, )
S(qzon,z + quon,z) = Vz(qzon,z) + quon,z Z~ o B (B.4)
zon,z
the concavity of v,(q,, .) gives
S(qzon,z + quon,z) < Vz(‘izon,z + quon,z)
if quon,z € [_ézon,zao] (B.5)

Vz(qzon,z + quon,z) < s(qzon,z + quon,z)
if Agyon . € [0,00)

Thus, by combining Egs. (B.2) and (B.5), we obtain the lower and upper
bounds in Eq. (25).
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