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ABSTRACT

Time- or frequency-dependent (“restricted”) diffusion potentially provides useful information about cellular-scale 
structures in the brain but is challenging to interpret because of intravoxel tissue heterogeneity. Multidimensional 
diffusion–relaxation correlation MRI with tensor-valued diffusion encoding enables characterization of intravoxel 
heterogeneity in terms of nonparametric distributions of diffusion tensors and nuclear relaxation rates, and was 
recently augmented with explicit consideration of frequency-dependence to resolve the effects of restricted diffu-
sion for distinct populations of tissue water. The simplest acquisition protocols for tensor-valued encoding unin-
tentionally cover a frequency range of a factor 2–3, which can be extended in a more controlled way with 
oscillating gradient waveforms. While microimaging equipment with high-amplitude magnetic field gradients 
allows exploration of frequencies from tens to hundreds of Hz, clinical scanners with more moderate gradient 
capabilities are limited to narrower ranges that may be insufficient to observe restricted diffusion for brain tissues. 
We here investigate the effects of including or omitting frequency-dependence in the data inversion from isotropic 
and anisotropic liquids, excised tumor tissue, ex vivo mouse brain, and in vivo human brain. For microimaging 
measurements covering a wide frequency range, from 35 to 320 Hz at b-values over 4·109 sm−2, the inclusion of 
frequency-dependence drastically reduces fit residuals and avoids bias in the diffusion metrics for tumor and 
brain voxels with micrometer-scale structures. Conversely, for the case of in vivo human brain investigated in the 
narrow frequency range from 5 to 11 Hz at b = 3·109 sm−2, analyses with and without inclusion of frequency-
dependence yield similar fit residuals and diffusion metrics for all voxels. These results indicate that frequency-
dependent inversion may be generally applied to diffusion–relaxation correlation MRI data with and without 
observable effects of restricted diffusion.

Keywords: diffusion MRI, frequency-dependent diffusion, multidimensional MRI, tensor-valued diffusion encoding, 
spectrally modulated gradients, oscillating gradient spin echo (OGSE), Monte Carlo data inversion
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1.  INTRODUCTION

MRI provides information about the brain at length scales 
below the millimeter-scale resolution of the imaging vox-
els via diffusion metrics (Jones, 2010), reporting on the 
micrometer-scale organization of macromolecules and 
cellular membranes acting as barriers for the tissue water 
(Beaulieu, 2002; Topgaard, 2020), and nuclear relaxation 
rates (Tofts, 2003) sensitive to the local concentrations  
of paramagnetic species (Laukien & Schlüter, 1956; 
Zimmerman, 1954) and chemically exchangeable pro-
tons on proteins (Edzes & Samulski, 1975) and carbohy-
drates (Hills et al., 1989). While quantitative diffusion and 
relaxation MRI measurements have traditionally been 
performed separately, recent developments have enabled 
adaption of multidimensional diffusion–relaxation cor-
relation NMR methods (Bernin & Topgaard, 2013; 
Galvosas & Callaghan, 2010; Song et al., 2016) to improve 
characterization of intravoxel heterogeneity in the brain 
(Benjamini & Basser, 2020; Slator et al., 2021; Tax, 2020). 
More widespread applications of these new methods in 
neuroscience studies rely on identification of the most 
informative acquisition dimensions, design of time-
efficient measurement protocols to explore the multidi-
mensional acquisition space, and development of data 
processing methods with optimal trade-offs between 
flexibility and risk of overfitting and overinterpretation.

The MRI signal is sensitized to translational motion on 
the micrometer length scale and the millisecond time 
scale by application of time-dependent magnetic field 
gradients. On this length scale, the translational motion in 
isotropic liquids such as water is fully captured by the 
self-diffusion coefficient D (Morris & Johnson Jr, 1992; 
Stejskal & Tanner, 1965; Stilbs, 1987), and the relevant 
acquisition dimension is the “b-value” (Le Bihan et  al., 
1986). For anisotropic materials, the diffusion is described 
with a tensor D (Jost, 1952) which can be determined by 
performing a series of measurements where the relative 
orientation between the gradient and the object is varied 
as demonstrated for clay (Boss & Stejskal, 1965), wood 
(MacGregor et  al., 1983), and brain white matter (WM) 
(Moseley et al., 1991). Here, the relevant acquisition vari-
able is the encoding tensor b (Basser et al., 1994), which 
can be parameterized in terms of its magnitude, anisot-
ropy, asymmetry, and orientation (Eriksson et al., 2015). 
In porous rocks (Latour et  al., 1993; Woessner, 1963), 
emulsions (Packer & Rees, 1972; Topgaard et al., 2002), 
and biological tissues (Cooper et al., 1974; Latour et al., 
1994; Tanner, 1979), where the investigated liquid is 
enclosed in or hindered by micrometer-scale objects, the 
measurements yield an apparent diffusion coefficient 
(ADC), which depends on the details of the timing param-
eters of the motion-encoding gradient waveform—in par-

ticular its overall duration which constitutes an additional 
acquisition variable. The time-dependence of the ADC is 
often referred to as “restricted” diffusion (Cooper et al., 
1974; Packer & Rees, 1972; Stejskal, 1965; Woessner, 
1963) and can be further analyzed to extract the surface-
to-volume ratio, pore size, and tortuosity of porous media 
(Latour et al., 1993, 1995). The waveform duration also 
determines whether the diffusivities of exchanging proton 
populations can be estimated individually or only as an 
average (Johnson Jr, 1993; Kärger, 1969).

Conventional diffusion MRI applied to the in vivo 
human brain is often performed with pairs of magnetic 
field gradient pulses with durations of tens of millisec-
onds, corresponding to displacements of a few tens of 
micrometers. For many tissues, this displacement is 
much larger than the typical cell sizes and thus yields 
ADC values that are independent of the experimentally 
accessible minor variations of the diffusion time and con-
tain aggregated information about local diffusivities, cel-
lular and sub-cellular structures, and barrier properties of 
the cell membranes (Clark et al., 2001; Le Bihan et al., 
1993; Nilsson et al., 2009). Trains of gradient pulse pairs 
can be used to widen the range over which diffusion is 
monitored toward shorter time scales and distances  
(Clark et  al., 2001; Schachter et  al., 2000; Stepišnik & 
Callaghan, 2000; Tanner, 1979; Topgaard et  al., 2002). 
While the individual pulse pairs give insufficient diffusion 
weighting, as quantified by the b-value, their effect is 
accumulated over the duration of the pulse train. The 
periodicity of such “oscillating gradient spin-echo” 
(OGSE) diffusion encoding lends itself to analysis with a 
powerful frequency domain formalism building on tensor-
valued diffusion spectra D(ω) defined as the Fourier 
transform of the velocity correlation function (Callaghan & 
Stepišnik, 1995; Stepišnik, 1981). In this case, the tensor-
valued encoding spectrum b(ω) is a useful acquisition 
variable (Jiang et al., 2023; Lundell & Lasič, 2020; Nielsen 
et  al., 2018; Topgaard, 2019b). In materials with pores 
having simple and uniform geometries, OGSE can be 
used to quantify the surface-to-volume ratio (Parsons 
et al., 2003; Parsons Jr et al., 2006; Reynaud et al., 2016a) 
and pore sizes (Li et al., 2014; Parsons Jr et al., 2006). 
Even without extracting quantitative geometrical informa-
tion, OGSE is useful for providing contrast not available 
with conventional diffusion methods and has been 
applied in preclinical MRI at encoding frequencies up to 
1  kHz (Portnoy et  al., 2013) to highlight specific brain 
regions, such as the cerebellum or the hippocampus 
(Aggarwal et  al., 2012; Lundell et  al., 2015), as well as 
ischemia (Aggarwal et  al., 2014; Does et  al., 2003; Wu 
et  al., 2019) and tumors (Colvin et  al., 2008, 2011; 
Reynaud et  al., 2016b; Xu et  al., 2012). The gradient 
hardware of clinical MRI systems typically limits the fre-
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quency range to 50 Hz which remains sufficient to obtain 
useful contrast in human brain ( Arbabi et al., 2020; Baron 
& Beaulieu, 2014; Baron et al., 2015; Tetreault et al., 2020; 
Van et al., 2014). The accessible frequency range is con-
tinuously being extended by further developments of 
gradient hardware (Dai et al., 2023; Hennel et al., 2021; 
Michael et al., 2022; Tan et al., 2020).

Interpretation of time- or frequency-dependent ADCs 
in terms of geometric properties is confounded by het-
erogeneity of the investigated object on length scales 
larger than those being mixed by diffusional exchange 
during the motion-encoding gradients, for instance, mul-
tiple tissue types or WM fiber bundles with different  
orientations within the same imaging voxel. Gradient 
waveforms with successive diffusion encoding in multiple 
directions reduce or even remove the effects of diffusion 
anisotropy on the acquired signal (Mori & van Zijl, 1995) 
and, when combined with data from conventional unidi-
rectional encoding, enable separation between isotropic 
and anisotropic sources of intravoxel heterogeneity 
(Eriksson et al., 2013; Lasič et al., 2014; Szczepankiewicz 
et  al., 2015; Topgaard, 2016b; Westin et  al., 2016). By 
capitalizing on the gain in information content obtained 
by varying the “shape” (Westin et  al., 2014) of the b-
tensor, the parametric diffusion tensor distribution (DTD) 
approach (Basser & Pajevic, 2003; Jian et al., 2007; Leow 
et al., 2009; Magdoom et al., 2021) for describing multi-
component diffusion in anisotropic media has been gen-
eralized to nonparametric distributions (de Almeida 
Martins & Topgaard, 2016; Topgaard, 2019a) with in vivo 
applications in preclinical (Yon et al., 2020) and clinical 
MRI (Daimiel Naranjo et  al., 2021; Reymbaut et  al., 
2020b). The pros and cons of nonparametric approaches 
and the corresponding model-based analyses have been 
extensively discussed in the literature (Benjamini, 2020; 
Veraart et  al., 2020). Combining DTD with diffusion–
relaxation correlation (Bernin & Topgaard, 2013; Galvosas 
& Callaghan, 2010; Song et al., 2016) via variable repeti-
tion and/or echo times results in multidimensional cor-
relations between D and the relaxation rates R1 and R2 
(de Almeida Martins & Topgaard, 2018), which has been 
demonstrated in vivo on small-animal (Rosenberg et al., 
2022) and whole-body MRI systems (de Almeida Martins 
et al., 2020, 2021; Martin et al., 2021; Reymbaut et al., 
2021).

Incorporating the sensitivity to restriction of OGSE into 
the DTD framework (Lundell et al., 2019) yields nonpara-
metric frequency-dependent DTDs or “D(ω)-distributions” 
(Narvaez et  al., 2024), which allow correlating isotropic 
and anisotropic diffusivities with restriction in heteroge-
neous voxels. For mathematical convenience, Narvaez 
et al. (2024) proposed writing the signal as a sum of con-
tributions from components with axisymmetric diffusion 

tensors with simple Lorentzian transitions between the 
low- and high-frequency diffusivities. Although a single 
Lorentzian produces a sharper frequency transition than 
those given by the planar, cylindrical, and spherical com-
partment models (Stepišnik, 1993; Stepišnik et al., 2006), 
as well as the even smoother power-law frequency-
dependence of the random permeable barrier model 
(Novikov et al., 2011), the multi-Lorentzian approximation 
was by simulations shown to reproduce the challenging 
case of the latter model over frequency ranges much 
larger than practically achievable on any existing MRI 
system (Narvaez et al., 2024).

While the high-performance gradient hardware of 
microimaging systems allows comprehensive exploration 
of both the spectral and tensorial aspects of b(ω) via “dou-
ble rotation” gradient waveforms (Jiang et al., 2023), the 
modest gradient amplitude offered by clinical scanners 
limits the accessible frequencies to ranges that may not be 
sufficient to quantify the effects of restriction. Still, tensor-
valued encoding on clinical scanners is often associated 
with a finite frequency range as a side effect of numerical 
optimization of gradient waveforms to maximize the b-
value for a range of tensor shapes at constant maximum 
gradient amplitude and waveform duration without con-
sideration of sensitivity to restriction (Martin et al., 2021; 
Sjölund et  al., 2015). Additionally, most gradient wave-
forms for “isotropic” or “spherical” diffusion encoding yield 
a directional-dependence of the spectral content (de Swiet 
& Mitra, 1996; Lundell & Lasič, 2020). Although typical clin-
ical protocols cover only a factor 2–3 of frequencies, for 
instance 6–16 Hz in Martin et al. (2021), such a narrow win-
dow may in fortuitous cases be sufficient for quantifying 
the effects of restriction as shown with a 53–160 Hz micro-
imaging protocol for ex vivo rat brain and 44–140 Hz for 
excised tumor tissue (Narvaez et al., 2024).

OGSE, tensor-valued encoding, and diffusion–
relaxation correlation were recently combined into the 
overarching “massively multidimensional diffusion–
relaxation correlation MRI” framework, giving nonpara-
metric D(ω)-R1-R2 distributions (Narvaez et  al., 2022). 
Initial in vivo applications have demonstrated anatomi-
cally plausible effects of restriction for rat brain (Yon 
et  al., 2024) but less clear-cut results for human data 
(Johnson et  al., 2024; Manninen et  al., 2024). While 
including the frequency dimension in the data inversion 
potentially yields useful information, it also comes at the 
prize of increasing data processing times and the risk of 
fitting subtle image artifacts rather than signal modula-
tions related to microstructural properties. Conversely, 
attempting frequency-independent inversion of data 
that features effects of restriction may result in system-
atic errors of the estimated parameters (de Swiet & 
Mitra, 1996; Jespersen et al., 2019).
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In this article, we investigate fit residuals and bias of 
metrics extracted from nonparametric D(ω)-R1-R2 and D-
R1-R2 distributions obtained with (Narvaez et  al., 2022) 
and without (de Almeida Martins & Topgaard, 2018), 
respectively, inclusion of frequency-dependence in the 
inversion of experimental data covering wide and narrow 
frequency ranges. More specifically, we analyze data 
acquired as a function of echo time, repetition time, and 
diffusion-encoding gradient waveforms giving b-tensor 
anisotropies (Eriksson et al., 2015) bΔ = –0.5 (planar), 0 
(spherical), and 1 (linear) using a microimaging system 
allowing a wide frequency range (35–320 Hz at b = 4·109 
sm−2) for phantoms with well-defined diffusion properties, 
excised tumor tissue, and fixated ex vivo mouse brain, as 
well as a conventional clinical system limited to a narrow 
frequency range (5–11 Hz at b = 3·109 sm−2) for in vivo 
human brain. Following previous papers (de Almeida 
Martins & Topgaard, 2018; de Almeida Martins et  al., 
2020; Topgaard, 2019a), we tackle the non-uniqueness of 
the data inversion with a Monte Carlo approach (Prange 
and Song, 2009) to generate ensembles of distributions 
from which statistical descriptors can be estimated with 
acceptable and quantifiable precision (Reymbaut et al., 
2020a). Building up for interpretation of the results on 
frequency-dependence of the water populations in the 
latter data, we go through the results for the series of 
simpler systems where mechanisms contributing to fre-
quency dispersion and the mixing of water populations 
are well known from the chemistry literature, an important 
message being that the frequency ranges and waveform 
durations selected mainly because of hardware con-

straints most likely coincide with some processes in the 
continuous range of restriction and exchange mecha-
nisms in the living human brain. Since tensor-valued 
encoding is invariably associated with a finite frequency 
range, we suggest that frequency-dependence should be 
included in the data inversion to accommodate the cases 
where restriction mechanisms happen to fall within the 
used frequency window. Likewise, interpretation of the 
obtained results should consider partial or complete mix-
ing of water populations during the waveform durations 
even when no attempts are made to actually quantify the 
exchange rates.

2.  METHODS

2.1.  Theory of multidimensional diffusion and 
relaxation encoding

The theory of frequency-dependent and tensor-valued 
diffusion encoding is described in detail in Lundell and 
Lasič (2020) and Narvaez et al. (2024), and was incorpo-
rated into diffusion–relaxation correlation in Narvaez et al. 
(2022). As illustrated in Figure  1, data are recorded for 
numerous combinations of recovery time τR and echo 
time τE, encoding for longitudinal and transverse relax-
ation, as well as gradient waveforms g(t) targeting the 
frequency-dependence and anisotropy of the transla-
tional motion. In brief, the signal S[b(ω),τR,τE] can be 
expressed as the sum of components i characterized by 
their weights wi, tensor-valued diffusion spectra Di(ω), 
and relaxation rates R1,i and R2,i according to

	S b ω( ),τR,τ E
⎡⎣ ⎤⎦ =

i
∑wiexp −

−∞

∞

∫b ω( ) :D i ω( )dω
⎛

⎝
⎜

⎞

⎠
⎟ 1− exp −τRR1,i( )⎡
⎣

⎤
⎦exp −τ ER2,i( ),

	
(1)

where the colon indicates a generalized scalar product 
(Kingsley, 2006) and b(ω) is the tensor-valued encoding 
spectrum given by the time-dependent magnetic field 
gradient g(t) via the time-dependent dephasing vector 
q(t) and its Fourier transform q(ω) according to

	
q t( ) = γ

0

t

∫ g ′t( )d ′t ,
	 (2)

	
q ω( ) =

0

τ

∫ q t( )exp iω t( )dt,
	 (3)

and

	
b ω( ) =  1

2π
q ω( )q −ω( )T .

	 (4)

In the equations above, γ is the gyromagnetic ratio, τ is 
the overall duration of the diffusion-encoding gradients 
including the imaging gradients, and T denotes a matrix 
transpose.

In the special case of constant Di(ω) = Di in the inves-
tigated frequency interval, Eq. (1) reduces to (de Almeida 
Martins & Topgaard, 2018)

	S[b,τR,τ E ] =
i
∑wiexp(−b :D i )[1− exp(−τRR1,i )]exp(−τ ER2,i ),

	
(5)

where b is the conventional b-matrix (Basser et al., 1994) 
or diffusion-encoding tensor (Westin et al., 2014) given by

	
b =

−∞

∞

∫b ω( )dω.
	

(6)

The ω-dependent and ω-independent tensors b(ω) and 
b are used in the Monte Carlo inversion of Eqs. (1) and (5) 
described below. For bookkeeping and to follow common 
practice in the field, we also convert b(ω) and b to the 
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encoding power spectrum b(ω) (Callaghan & Stepišnik, 
1995), b-value (Le Bihan et al., 1986), centroid frequency 
ωcent (Arbabi et al., 2020; Ligneul & Valette, 2017), and nor-
malized anisotropy bΔ (Eriksson et al., 2015) via

	 b ω( ) = trace b ω( ){ }, 	 (7)

	 b = trace b{ }, 	 (8)

	
ω cent =

1
b −∞

∞

∫ ω b(ω )dω,
	

(9)

and

	
bΔ = 1

b
bZZ −

bYY + bXX

2
⎛
⎝⎜

⎞
⎠⎟
,
	

(10)

where bXX, bYY, and bZZ are the eigenvalues of b ordered 
according to the convention |bZZ – b/3| > |bXX – b/3| > |bYY 
– b/3| (Topgaard, 2016b, 2017). The directionality of the 
encoding is reported as the polar and azimuthal angles, 
Θ and Φ, of the eigenvector corresponding to the bZZ 
eigenvalue.

For computational convenience, the component ten-
sors are assumed to have axial symmetry:

	

D i (ω ) = R(θ i,φ i )

DR,i (ω ) 0 0

0 DR,i (ω ) 0

0 0 DA,i (ω )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

R−1(θ i,φi ),

	
(11)

where R(θi,ϕi) is a rotation matrix. Further, the axial and 
radial eigenvalues DA,i(ω) and DR,i(ω) are approximated as 
Lorentzians (Narvaez et al., 2024),

	
DR,i (ω ) = D0,i −

D0,i − DR,i

1+ω 2/ ΓR,i
2  

	
(12)

and

	
DA,i (ω ) = D0,i −

D0,i − DA,i

1+ω 2/ Γ A,i
2 ,

	
(13)

where DA,i and DR,i are the low-ω diffusivities in the axial 
and radial directions, respectively, D0,i is the high-ω diffu-
sivity, assumed to be isotropic, and ΓA,i and ΓR,i are the 
values of ω at the mid-points of the transitions. The ω-
independent case in Eq. (5) corresponds to DA,i(ω) = DA,i 
and DR,i(ω) = DR,i.

2.2.  Samples

Saturated salt solutions were prepared by adding 
Mg(NO3)2·6 H2O and Co(NO3)2·6 H2O (both from Sigma-
Aldrich Sweden AB) to H2O (Milli-Q quality) until reach-

ing the solubility limits 71 g Mg(NO3)2 and 97 g Co(NO3)2 
per 100  mL H2O (Rumble, 2021). A small amount of 
Co(NO3)2 solution (0.27 wt%) was added to the Mg(NO3)2 
solution to increase 1H2O R1 and R2 to approximately 2 
and 20 s–1, respectively. A lamellar liquid crystal (Ekwall 
et al., 1969; Jiang et al., 2021) was prepared by mixing 
85.79 wt% H2O (Milli-Q), 9.17 wt% 1-decanol (Sigma-
Aldrich Sweden AB), and 5.04 wt% sodium octanoate 
(J&K Scientific via Th. Geyer in Sweden). The composite 
phantom was assembled by inserting 4-mm NMR tubes 
containing salt solution and liquid crystal into a 10-mm 
NMR tube with H2O.

The excised tumor tissue was obtained by culture of 
human neuroblastoma cells grown at 37°C and 5% CO2 
in a complete medium (RPMI 1640 supplemented with 
10% fetal bovine serum and 1% penicillin/streptomy-
cin). Approximately 2·106 of those tumor cells were sub-
cutaneously inoculated to a female BALB/c mouse 
(Janvier Labs, France). The mouse was sacrificed after 
5 weeks of tumor growth and the tumor was removed 
and immediately transferred to a 10-mm NMR tube con-
taining 4% paraformaldehyde (PFA) in phosphate buffer 
solution (Histolab, Sweden). The sample was stored at 
room temperature for several years before being inves-
tigated with MRI.

The ex vivo mouse brain was obtained from an 
8-week-old C57BL/6 female mouse intracardially per-
fused with 0.9% saline followed by 4% PFA fixation. The 
brain was carefully extracted from the skull and stored in 
2% PFA solution at 4ºC before MRI acquisition. The pro-
cedure was approved by the Animal Committee of the 
Provincial Government of Southern Finland following the 
guidelines established by the European Union Directives 
2010/63/EU.

The human data were obtained with informed consent 
on a healthy young adult with approval from the local 
institutional review board.

2.3.  MRI acquisition and reconstruction

The composite phantom, excised tumor tissue, and ex 
vivo mouse brain were investigated using a Bruker 
Avance Neo spectrometer (Bruker Biospin, Karlsruhe, 
Germany) with an 11.7 T magnet, an MIC-5 probe deliv-
ering 3 Tm–1 maximum gradient strength, and a 10 mm 1H 
radiofrequency coil. Images were acquired in Paravision 
360 v1.1 with custom-made sequences based on either 
Rapid Acquisition with Relaxation Enhancement (RARE) 
(Hennig et  al., 1986) or multi-slice multi-echo (MSME) 
(Edelstein et al., 1980) with spin-echo diffusion prepara-
tion according to the generic pulse sequence scheme 
presented in Figure 1a. The mouse brain MSME images 
were acquired at 25°C sample temperature with 
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14 × 9 × 0.5 mm3 field of view (FOV) and 100 × 64 × 1 
reconstructed image size, giving 140 ×  140 ×  500  µm3 
resolution. Using a single scan per each of the 36 phase-
encoding steps with 1.8 partial Fourier factor led to an 
acquisition time of 36 h and 8 min. The phantoms and 
tumor RARE images were acquired at 20°C sample tem-
perature with 12 × 12 × 0.5 mm3 FOV and 64 × 64 × 1 
matrix size, giving 190 × 190 × 500 µm3 resolution. A par-
tial Fourier factor of 1.8 was used in the first phase 
dimension to reduce the echo time and allow single-shot 
acquisition with 36 echoes. Using four averages led to an 
acquisition time of 4 h and 7 min. Anisotropic voxel sizes 
were used to reach acceptable signal-to-noise ratio 
(SNR) at high in-plane image resolution. The images were 
reconstructed with Paravision 360 v1.1, followed by 
denoising (Cordero-Grande et al., 2019) implemented in 
MRTrix3 (Tournier et al., 2019), as well as Gibbs ringing 
removal (Kellner et al., 2016) for the mouse brain dataset.

The in vivo data were recorded using a Siemens Mag-
netom Prisma (Siemens Healthineers AG, Erlangen, Ger-
many) with a 3 T magnet, a gradient system providing a 
maximum amplitude of 0.08 Tm–1, and a 20-channel head 
coil. The images were acquired with a single-shot spin 
echo-echo planar imaging (SE-EPI) sequence custom-
ized for general gradient waveforms (Martin et al., 2020; 
Wetscherek et  al., 2015). The acquisition parameters 
were 230 × 230 mm² FOV, 3 mm3 isotropic resolution, 30 
slices in axial orientation, 1496 Hz/Px readout bandwidth, 
and a factor 3 acceleration with GRAPPA reconstruction. 
The total measurement time was 20 min. The data were 
preprocessed with denoising (Cordero-Grande et  al., 
2019; Tournier et al., 2019), removal of Rician noise base-
line (Koay & Basser, 2006) and Gibbs ringing (Kellner 
et  al., 2016), and motion and eddy current correction 
(Klein et al., 2010; Nilsson et al., 2015).

2.4.  Multidimensional diffusion and relaxation 
acquisition protocols

In the preclinical system, diffusion encoding was per-
formed with two identical self-refocusing gradient wave-
forms, while in the clinical setting, the waveforms were 
different and not self-refocused to maximize the b-value 
per encoding time unit (Sjölund et  al., 2015). Gradient 
waveforms and the corresponding encoding spectra b(ω) 
at bΔ = –0.5, 0, and 1 are shown in Figure 1b and d for the 
preclinical and clinical scanners, respectively. In the pre-
clinical setting, the gradient waveforms were generated 
by double rotation of the q-vector (Jiang et al., 2023) and 
the ωcent dimension was explored over a wide range by 
varying the number of oscillations from 0 to 5 and the 
waveform duration from 4 to 22  ms as shown in Fig-
ure 1b. The values of b and ωcent for each acquired image 

volume are shown in Figure 1c, illustrating that the high-
est values of ωcent are achieved for low b-values only. The 
frequency-modulated gradient waveforms were normal-
ized to give constant b-values at identical waveform 
lengths, allowing us to map the entire b-value space 
(from 0.033 to 4.25·109 sm−2) for all number of oscilla-
tions. The deviations of bΔ from the target values –0.5, 0, 
and 1 at low b-values result from the imaging gradients 
which were all taken into account when computing b(ω) 
via Eqs. (2)–(4) above. In the clinical setting, the limited 
maximum gradient amplitude necessitated numerical 
optimization of the waveforms (Sjölund et  al., 2015) to 
reach b = 3·109 sm−2 at τE = 83 ms and bΔ = –0.5, 0, and 
1 as previously used in Martin et  al. (2020) and Martin 
et al. (2021). The directional-dependence of the diffusion 
was probed by rotating the waveforms in Figure 1b and d 
according to the angles Θ and Φ in Figure 1c and e.

Figure 1f and g shows quantitative assessments of the 
range of frequencies investigated in each acquisition pro-
tocol in terms of the b-weighted ωcent-distribution (black 
lines) and the total spectral content (gray lines) expressed 
as the sum of b(ω) over all acquisitions with index nacq. 
For the preclinical protocol (Fig. 1f), each waveform yields 
b(ω) focused on a narrow frequency range centered on 
ωcent, and the width of the total spectral content matches 
the one of the broad ωcent-distribution, implying that the 
protocol is appropriate for investigating frequency-
dependence. Conversely, each clinical waveform yields a 
poorly defined b(ω) with width that surpasses the spread 
of ωcent across the acquisitions, resulting in total spectral 
content far broader than the narrow ωcent-distribution 
(Fig. 1g) and data that are less amenable for extracting 
frequency-dependence.

The preclinical protocol of 1491 images includes vari-
able τR between 0.8 and 3.5 s as well as variable τE between 
13 and 49 ms for MSME and 22 to 58 ms for RARE, the 
latter being displayed in Figure  1c. The clinical protocol 
with 134 image volumes includes τR from 0.5 to 7.6 s and 
τE from 33 to 150 ms. Values of τR below 1.6 s were reached 
by acquiring the 30 slices in packages with a few slices 
each. The minimum value of τE is constrained by the dura-
tions of the imaging and diffusion-encoding gradients. 
These durations are determined by the gradient hardware 
capabilities and the choice of spatial resolution, b-value, 
and ωcent (Jiang et al., 2023). The maximum τE and mini-
mum τR are selected to reach nearly complete signal atten-
uation to the noise baseline. The maximum τR is chosen to 
reach almost full signal recovery by longitudinal relaxation.

2.5.  Monte Carlo data inversion

A Monte Carlo algorithm implemented in the md-dmri 
(Nilsson et  al., 2018) Matlab toolbox was used to esti-
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Fig. 1.  (a) Generic pulse sequence scheme for multidimensional diffusion–relaxation correlation MRI integrating 
variable echo time τE, recovery time τR, and time-modulated gradient waveforms g(t). (b) Double-rotation waveforms and 
encoding spectra b(ω), calculated with Eqs. (2)–(4), on the top right used for the preclinical acquisitions for encoding 
anisotropy bΔ = –0.5, 0, and 1, defined in Eq. (10), and up to five oscillations. (c) Preclinical (wide ωcent-range) acquisition 
protocol with 1491 images labeled with acquisition number nacq and sorted by b-value and centroid frequency ωcent, 
defined in Eqs. (8) and (9), respectively. (d) Numerically optimized gradient waveforms used for clinical acquisition. 
(e) Clinical (narrow ωcent-range) acquisition protocol with 134 image volumes. (f) Total spectral content (gray line) and 
b-weighted ωcent-distribution (black line) for the preclinical protocol in panel c. Red and blue vertical lines indicate the 
10th, 50th, and 90th percentiles of the ωcent-distribution: ω10%/2π = 35 Hz, ω50%/2π = 190 Hz, and ω90%/2π = 320 Hz. 
(g) Total spectral content (gray line) and ωcent-distribution (black line) for the clinical protocol in panel e, yielding 
ω10%/2π = 5 Hz, ω50%/2π = 9 Hz, and ω90%/2π = 11 Hz. The acquisition protocols in panels c and e are available as tables 
in the Supplementary Data.
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mate ensembles of discrete distributions in the spaces 
[DA,DR,θ,ϕ,D0,ΓA,ΓR,R1,R2] (Narvaez et  al., 2022) and 
[DA,DR,θ,ϕ,R1,R2] (de Almeida Martins & Topgaard, 2018), 
corresponding to Eqs. (1) and (5), respectively. Using the 
terminology in Reymbaut et al. (2020a), the inversion was 
performed with 20 steps of proliferation, 20 steps of 
mutation/extinction, 200 input components per step of 
proliferation and mutation/extinction, and 10 output com-
ponents. Bootstrapping was performed by 100 repeti-
tions using random sampling with replacement. Preclinical 
(clinical) data were inverted with the parameter limits 
5·10−12 m2s−1 < D0/A/R < 5·10−9 m2s−1, 0.1 s−1 < ΓA/R < 105 
s−1, 0.1 s−1 < R1 < 4 s−1, and 4 s−1 < R2 < 150 s−1 (5·10−11 
m2s−1  <  D0/A/R  <  5·10−9 m2s−1, 0.1  s−1  <  ΓA/R  <  104 s−1, 
0.2 s−1 < R1 < 2 s−1, and 1 s−1 < R2 < 30 s−1). The influence 
of noise on distributions obtained for synthesized data 
can be found in the Appendix.

2.6.  Quantitative parameter distributions and maps

To enable visualization, the distributions in the primary 
analysis space [DA,DR,θ,ϕ,D0,ΓA,ΓR,R1,R2] were evaluated 
at selected values of ω, using Eqs. (12) and (13), and pro-
jected onto the dimensions of isotropic diffusivity Diso(ω) 
and squared normalized diffusion anisotropy DΔ

2(ω) 
(Conturo et  al., 1996; Eriksson et  al., 2015; Topgaard, 
2019a) via

	
Diso,i (ω ) =

DA,i (ω ) + 2DR,i (ω )

3 	
(14)

and

	
DΔ,i

2 (ω ) =
DA,i (ω ) − DR,i (ω )

DA,i (ω ) + 2DR,i (ω )

⎛

⎝
⎜

⎞

⎠
⎟

2

,
	

(15)

respectively, yielding ω-dependent distributions in the 
[Diso(ω),DΔ

2(ω),θ,ϕ,R1,R2] space. The use of DΔ
2 rather 

than DΔ reduces the risk of microstructural overinterpre-
tation at values of |DΔ| below 0.5 were both oblate DΔ < 0 
and prolate DΔ  >  0 tensor shapes may be consistent 
with acquired data (Eriksson et  al., 2015). Projections 
onto the 2D Diso-DΔ

2 plane (Topgaard, 2019a) were 
obtained by mapping the weights wi of the discrete 
components onto a 64 ×  64 mesh using a 3 ×  3 grid 
points Gaussian kernel. Image segmentation was per-
formed by dividing the 2D Diso-DΔ² space into three bins 
with diffusion properties characteristic for white matter 
(WM, bin1), gray matter (GM, bin2), and cerebrospinal 
fluid (CSF, bin 3) using the limits bin1: Diso < 1·10−9 m2s−1 
and DΔ

2 > 0.25; bin2: Diso < 1·10−9 m2s−1 and DΔ
2 < 0.25; 

and bin3: Diso > 1·10−9 m2s−1 (bin1: Diso < 2·10−9 m2s−1 and 

DΔ
2 > 0.25; bin2: Diso < 2·10−9 m2s−1 and DΔ

2 < 0.25; and 
bin3: Diso > 2·10−9 m2s−1) for the ex vivo mouse (in vivo 
human) data and calculating bin-resolved signal frac-
tions fbinn by

	
fbinn =

1
S0 i∈binn
∑wi,

	
(16)

where

	
S0 =

i
∑wi  

	
(17)

is the signal extrapolated to b = 0, τR = ∞, and τE = 0. The 
values of fbinn were converted to RGB color via

	
R,G,B[ ] = [fbin1,fbin2,fbin3 ]

max(fbin1,fbin2,fbin3 )
.
	

(18)

The rich information in the [Diso(ω),DΔ
2(ω),θ,ϕ,R1,R2]-

distributions was further condensed into means E[X] over 
selected dimensions according to Topgaard (2019a)

	
E X[ ] = 1

S0 i
∑wiX i,

	
(19)

where X symbolizes Diso(ω) and DΔ
2(ω) at the frequencies 

ω10%, ω50%, and ω90% indicated in Figure 1f and g, as well 
as R1 and R2. The dispersion of the diffusion metrics 
within the investigated frequency window Δω/2πE[X] was 
calculated through (Aggarwal et al., 2012; Narvaez et al., 
2024)

	
Δω /2πE X[ ] =

E X (ω 90%)⎡⎣ ⎤⎦ −E X (ω 10%)⎡⎣ ⎤⎦
(ω 90% −ω 10%) / 2π

.
	

(20)

To evaluate the uncertainty of the data inversion pro-
cedure, the diffusion- and relaxation-encoded signals 
S[b(ω),τR,τE], 2D Diso-DΔ

2 projections, extrapolated sig-
nals S0, signal fractions fbinn, means E[X], and disper-
sions Δω/2πE[X] were calculated independently for each 
of the 100 bootstrap replicates. The values underlying 
the graphs and maps in the following figures were 
obtained as medians over these 100 replicates. Rough 
estimates of the per-voxel SNR were obtained by taking 
the ratio between S0 and the standard deviation of the 
difference between the measured and back-calculated 
S[b(ω),τR,τE].

For the ω-independent analysis based on Eq. (5), the 
metrics in Eqs. (14)–(19), including the binning, was per-
formed with the ω-independent values of DA and DR 
obtained directly in the primary analysis space 
[DA,DR,θ,ϕ,R1,R2]. Comparison between the ω-dependent 
and ω-independent results was performed by evaluating 
the former at the center of the investigated frequency 
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window, corresponding to the value ω50% labeled in Fig-
ure 1f and g, and computing the normalized difference via

	
normalized difference =

Yω -dependent −Yω -independent

Yω -dependent +Yω -independent( )/2 ×100%,

	
(21)

where Y represents S0, E[Diso], E[DΔ
2], E[R1], E[R2], or fbinn.

2.7.  Regions of interest

Regions of interest (ROIs) were manually delineated to 
exhibit homogeneous and pure signatures of the various 
chemicals and tissues. We chose their locations and 
sizes to ensure that all the selected voxels within each 
ROI contained an equivalent signature. Within such con-
ditions, increasing the ROI size increases the effective 
SNR. The parameter distributions of the ROIs were 
obtained by projecting all the voxel weights wi of the dis-
crete components onto the 2D Diso-DΔ

2 plane using a 
3 × 3 grid points Gaussian kernel.

3.  RESULTS AND DISCUSSION

Figure 2 shows data for a series of ROIs in samples with 
distinct restriction and anisotropy characteristics investi-
gated using the preclinical protocol shown in Figure 1c. 
The selected samples represent chemically “simple” sys-
tems, where the relevant time scales and mechanisms 
affecting the observed diffusivities are well understood 
from the chemistry literature, as well as a series of bio-
medically more interesting tissue ROIs where the contrib-
uting mechanisms are the same as for the previous 
examples, but the relevant time scales are more difficult 
to predict due to the increased chemical complexity and 
the continuous range of structural organization levels 
from the molecular to the macroscopic.

According to the literature, the saturated magnesium 
nitrate solution in panel a exhibits a water diffusivity of 
0.44·10−9 m2s−1 at 25ºC (Wadsö et  al., 2009), which is 
20% of the value 2.3·10−9 m2s−1 for pure water (Mills, 
1973) on account of interactions between the water and 
the ions. The chemical composition reported in the Meth-
ods section can be converted to a molar ratio of 12 water 
molecules per magnesium ion and 2 nitrate ions, implying 
that every water molecule is in direct atomic-level contact 
with neighboring ions. The water–ion electrostatic inter-
actions are dominated by the magnesium ion because of 
its higher charge density, two positive charges for an 
ionic radius of 86 ppm, compared with the nitrate ion with 
one negative charge for a thermochemical radius of 
179 ppm (Simoes et al., 2017). In dilute solution, the first 
hydration shell of the magnesium ion comprises six water 

molecules with a lifetime of about 1 μs before exchange 
with the less well-defined and more labile second hydra-
tion shell and surrounding bulk water (Bleuzen et  al., 
1997; Neely & Connick, 1970). Including the <10–12 s 
decay of the velocity autocorrelation function for pure 
water (Balucani et al., 1996) and the >103 s time required 
for the mean squared displacement to equal the distance 
between the walls of the 4 mm glass tube, we would thus 
expect the diffusion spectrum D(ω) to show ω-
dependence at the widely space values 10–3, 106, and 
1012 Hz, but not within the ~30–300 Hz range defined by 
the currently used gradient waveforms with ~50 ms total 
duration. Returning to Figure 2a, the expectations of iso-
tropic Gaussian diffusion are borne out by the absence of 
signal modulations from the acquisition variables ωcent, 
bΔ, Θ, and Φ at constant b, τR, and τE, as well as nearly 
identical fit residuals for data inversions based on the ω-
dependent and ω-independent expressions Eqs. (1) and 
(5), respectively. The corresponding 2D Diso-DΔ² projec-
tions of the obtained distributions comprise a single peak 
at Diso = 0.4·10−9 m2s−1 and DΔ² = 0 with no detectable ω-
dependence. The peak width originates mainly from the 
variability of the 100 replicate solutions obtained by the 
bootstrapping and Monte Carlo data inversion (Reymbaut 
et  al., 2020a), which includes neither the conventional 
Tikhonov regularization (Provencher, 1982; Whittal & 
MacKay, 1989), leading to peak broadening, nor sparsity 
constraints (Aranda et  al., 2015; Berman et  al., 2013) 
favoring narrow peaks. Our results at 20ºC are consistent 
with literature data at 25ºC (Wadsö et  al., 2009) and 
should be interpreted as an average over exchanging 
water populations in the first and second hydration shells 
of the magnesium ions with no influence from restriction 
by the glass tube walls. More detailed comparison 
between the plots of residuals in Figure 2 and the proto-
col in Figure 1c shows that acquisitions above 500 Hz 
yield data that cannot be fully captured even by the ω-
dependent expression in Eq. (1) despite the b-value being 
too low to give any appreciable diffusion weighting, indi-
cating that these data points are corrupted by image arti-
facts with magnitude of a few percent that may be difficult 
to detect by visual inspection of the raw images. Although 
these data points (overbrace in panel a) should be 
excluded in improved versions of the protocol, they 
appear to have negligible influence on the obtained distri-
butions and are useful in the context of this work as a 
reference for whether or not inclusion of ω-dependence 
in the inversion improves the analysis.

The lamellar liquid crystal in Figure  2b consists of 
stacks of decanol and sodium octanoate bilayers sepa-
rated by water. The bilayers have a thickness of 2.5 nm 
(Ekwall et al., 1969), a lamellar repeat distance of 15 nm 
(Jiang et al., 2021), and are organized with the hydrophilic 
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hydroxyl and carboxylate groups facing the water and 
hydrophobic hydrocarbon chains in the bilayer interior. 
The sodium ions are distributed across the 12.5 nm thick 
water layers with preferential location within a few nm 
distance from the bilayer surface on account of electro-
static interactions with the oppositely charged carboxyl-
ate groups (Evans & Wennerström, 1999). There are six 
water molecules within the first hydration shells of both 
divalent magnesium and monovalent sodium ions, but 
the lifetime is only ~1 ns (Helm & Merbach, 1999) for the 
latter species because of the lower charge density (one 
positive charge for an ionic radius of 116 pm). Addition-
ally, proton exchange between decanol hydroxyl groups 
and water takes place on time scales lower than 1 ms 
(Hills, 1990). The chemical composition of the liquid crys-
tal corresponds to ~160 water and 2 decanol molecules 
per sodium and octanoate ion pair, and, as opposed to 
the case of the saturated salt solution, only a small frac-
tion of the water molecules is in direct atomic-scale con-
tact with the ions or bilayers. The low water concentration 
within the hydrophobic interior of the bilayers makes 
them efficient barriers for water diffusion (Evans & 
Wennerström, 1999), and the time for the mean squared 
displacement to cover the gap between two adjacent 
bilayers is ~40 ns. The lateral extension of the bilayers 
may approach macroscopic length scales and is ulti-
mately limited by the walls of the glass tube (Bernin et al., 
2014; Topgaard, 2016a), leading to characteristic time 
scales above 102 s for diffusional exchange between dif-
ferently oriented bilayer sections having a radius of cur-
vature above 1  mm (Lutti & Callaghan, 2007). Partial 
alignment of the chain-like decanol molecules and octa-
noate ions in the direction of the bilayer normal vector 
renders the motional averaging of intermolecular 1H-1H 

dipolar couplings incomplete (Wennerström, 1973), lead-
ing to transverse relaxation on time scales shorter than 
the ~20 ms minimum echo time in the current protocol 
and minimal contribution from these species to the inten-
sity of the detected images. Taken together, we may thus 
anticipate ω-dependence of D(ω) at multiple frequencies 
including 10–2 (water diffusion along bilayer curvature), 
103 (water–decanol chemical exchange), 108 (diffusion 
across water layers), 109 (lifetime of water in sodium ion 
hydration layer), and 1012 Hz (transition from ballistic to 
diffusive regime of pure water), none of which being 
located within the narrow ω-range explored with the 
present gradient waveforms. Expectedly, the data for the 
liquid crystal in Figure 2b show pronounced signal mod-
ulations as a function of the bΔ, Θ, and Φ acquisition vari-
ables, which by itself indicates anisotropy, but no 
differences in fit residuals between the ω-dependent and 
ω-independent inversions, showing that the diffusion is 
Gaussian in the investigated window. The highest fit 
residuals of a few percent are found at low-b and high-
ωcent acquisitions and presumably originate from the 
minor image artifacts previously discussed for the salt 
solution. The 2D Diso-DΔ² projections feature a single ω-
independent peak at Diso = 1.0·10−9 m2s−1 and DΔ² = 0.25, 
corresponding to DA << DR and DR = 1.5·10−9 m2s−1. The 
latter value describes lateral diffusion along the planes of 
the bilayers and is given by a ~50 ms time average over 
protons in multiple exchanging populations including 
pure water in the center of the water layers, water in the 
hydration shells of the sodium ions and hydrophilic groups 
at the surfaces of the bilayers, and the hydroxyl groups  
of the decanol molecules. Additionally, the diffusion of  
the water molecules may be hindered by the roughness  
of the hydrophobic–hydrophilic interface originating from 

Fig. 2.  Comparison between ω-dependent and ω-independent data inversion results for illustrative cases with distinct 
water diffusion properties. (a) Isotropic Gaussian diffusion in an aqueous solution saturated with magnesium nitrate salt 
(sat). (b) Planar anisotropic Gaussian diffusion in a lamellar liquid crystal (lam). (c) Isotropic restricted diffusion in tumor 
tissue (tum). (d) Linear anisotropic Gaussian diffusion in white matter (WM) of the internal capsule. (e) Isotropic restricted 
diffusion in the gray matter (GM) of the cortex. (f) Isotropic restricted diffusion in the gray matter of the cerebellum (GMr). 
Panels to the left show labeled regions of interest (ROIs) for the composite phantom (lam and sat), excised tumor (tum), 
and ex vivo mouse brain (WM, GM, and GMr) on maps of the signal S0 extrapolated to b = 0, τR = ∞, and τE = 0, see  
Eq. (17). The center panels display measured signals S[b(ω),τR,τE] versus acquisition number nacq according to the 
preclinical (wide ωcent-range) protocol in Figure 1c (black circles), signals back-calculated from the distributions obtained 
by Monte Carlo inversion of the ω-dependent (green dots) and ω-independent (red dots) expressions in Eqs. (1) and (5), 
respectively, as well as residuals given by the differences between the measured and back-calculated signals. Signals and 
residuals are normalized with S0. The right part of the figure presents the ω-dependent (green) and ω-independent (red) 
distributions as projections onto the 2D Diso-DΔ

2 plane (contour plots) as well as the 1D Diso and DΔ
2 dimensions (horizontal 

and vertical line plots sharing axes with the 2D plots). The ω-dependence is illustrated by overlaying color-coded plots 
for 5 linearly spaced values of ω/2π between 35 (dark green) and 320 Hz (pale green). Contours extending slightly below 
DΔ

2 = 0 originate from the 3 × 3 Gaussian kernel used to map from ensembles of discrete components to the 64 × 64 mesh 
in the 2D Diso-DΔ

2 projection. Overbraces in panels a and c point out protocol sections at constant b,τR, and τE where the 
residuals are unaffected or decrease, respectively, by including ω-dependence in the inversion.
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molecular protrusions (Ben-Shaul & Gelbart, 1985) or 
bilayer undulations (Lindahl & Edholm, 2000), leading to 
an observed lateral diffusivity that is 75% of the value 
2.0·10−9 m2s−1 for pure water at 20ºC (Holz et al., 2000).

The data in Figure 2c are obtained on excised tumor 
tissue preserved in paraformaldehyde solution. Despite 
the increase in chemical and structural complexity, the 
basic mechanisms contributing to lowering the observed 
diffusivity compared with the reference state of pure 
water are the same as for the simpler systems in panels a 
and b, namely proton exchange between water and labile 
functional groups, hydration of ions, and obstruction by 
larger molecules and aggregates. While the importance 
of the two first mechanisms could in principle be esti-
mated by detailed analysis of the chemical composition 
of the tissue sample (Persson & Halle, 2008), the experi-
mental observations are dominated by the latter mecha-
nism which depends critically on the details of how the 
molecules are spatially arranged—in particular the 
assembly of lipids into bilayers that may or may not be 
efficient barriers for water diffusion (Topgaard, 2020). 
From the perspective of water dynamics, biological tis-
sues can conceptually be divided into numerous subvol-
umes with different local concentrations of everything 
from small ions and metabolites to large macromolecules 
and macromolecular assemblies that influence water 
motion via the mechanisms of hydration and obstruction. 
Some of these subvolumes are formed by the thermody-
namic equilibrium mechanism of liquid–liquid phase sep-
aration into regions with low and high concentration of 
macromolecules (Banani et al., 2017; Hyman et al., 2014). 
Other subvolumes are formed by semipermeable 
biomembranes that encapsulate regions of space with 
different chemical compositions than the surroundings 
and prevent equilibration of concentration gradients. The 
subvolumes—with or without biomembrane enclosure—
have dimensions evenly spread out within the 10 nm to 
100 μm range that is of relevance for rationalizing diffu-
sion data, some examples being vesicles, condensate 
droplets, lysosomes, mitochondria (with internal com-
partmentation), endoplasmic reticulum, nucleus, cytosol, 
and the extracellular space. Because of the varying bar-
rier properties of the biomembranes and the multiple 
structural levels in the tumor tissue, we may expect diffu-
sional exchange of water between the subvolumes on a 
continuous range of time scales as well as a continuous 
ω-dependence of D(ω) filling in the gaps of the numerous 
processes from 10–2 to 1012 Hz described above for the 
salt solution and lamellar liquid crystal. In some aspects, 
the signal data for the tumor in panel c resemble the one 
from the salt solution in panel a, showing minor influence 
of the acquisition variables Θ and Φ at constant b, τR, and 
τE, consistent with isotropic diffusion, as well as elevated 

residuals originating from image artifacts in the low b and 
excessively high ωcent range of the data. At higher b, the 
tumor data display a marked dependence of the signal 
on ωcent and greatly improved fit residuals with the ω-
dependent analysis (overbrace in panel c) indicating ω-
dependence of D(ω) within the investigated window 
~30–300 Hz. The corresponding ω-dependent 2D Diso-
DΔ² projections show a single peak moving from 
E[Diso] = 0.84·10−9 m2s−1 and E[DΔ²] = 0.050 at 35 Hz to 
E[Diso]  =  1.1·10−9 m2s−1 and E[DΔ²]  =  0.014 at 320  Hz. 
Although the observed values for E[Diso] can be repro-
duced by inserting 1.2·10−9 m2s−1 local diffusivity and 7 
μm radius in the model for restricted diffusion in a closed 
spherical compartment (Stepišnik, 1993), we emphasize 
that such a geometric interpretation is most certainly an 
oversimplification that may give rise to misconceptions if 
applied by users not familiar with the underlying assump-
tions and the plethora of alternative models with equal 
ability to describe the experimental results. Without over-
interpretation, we may state that all detectable proton 
populations with potentially distinct diffusion properties 
are mixed on the ~50  ms time scale of the diffusion-
encoding gradients, giving rise to a single peak in the 2D 
Diso-DΔ² projections, and that these exchange-averaged 
populations experience nearly isotropic structural barri-
ers on the length scale of a few micrometers. Converting 
these imprecise statements to quantitative information 
about, for example, compartment sizes and shapes, bar-
rier permeabilities, and local diffusivities, would require 
model assumptions that are difficult to justify in light of 
the known chemical and structural complexity.

The remaining panels d, e, and f in Figure 2 present 
results for three regions of the ex vivo mouse brain: white 
matter (WM) in the internal capsule, gray matter in the 
cortex (GM), and gray matter in the cerebellum (GMr). 
WM consists of closely packed aligned axons with ~0.1–
10 μm diameters (Saliani et al., 2017) and lengths on the 
macroscopic scale. The axons are piecewise enclosed 
by myelin sheaths formed by multilayer wraps of oligo-
dendrocyte cell membranes. In addition to the numerous 
cellular-scale subvolumes, WM can on a coarser level be 
divided into the intraaxonal and extracellular spaces, as 
well as the myelin sheaths which in themselves have 
intra- and extracellular spaces. All these subvolumes 
have distinct types of organization of macromolecular 
assemblies and biomembranes that determine the local 
diffusion properties of the water. In analogy with the rea-
soning for the tumor tissue, we may expect some 
exchange or restricted diffusion process to occur at any 
given time scale. The data for WM in panel d share some 
distinguishing features with the liquid crystal in Figure 2b: 
signal fluctuations with acquisition variables bΔ, Θ, and Φ 
at constant b, τR, and τE, but only minor differences in fit 
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residuals between the ω-dependent and ω-independent 
inversions. These observations indicate anisotropic diffu-
sion without detectable ω-dependence within the investi-
gated ~30–300 Hz window. The corresponding 2D 
Diso-DΔ² projection comprises a single peak at E[Diso]  = 
0.2·10−9 m2s−1 and E[DΔ²] moving slightly from 0.89 at 
35 Hz to 0.85 at 320 Hz. The presence of just one peak 
shows that exchange averaging over the ~50 ms duration 
of the gradient waveform has rendered the detectable 
water populations too similar to resolve within the vari-
ability of the 2D Diso-DΔ² projections of the 100 replicate 
solutions obtained by bootstrapping and Monte Carlo 
data inversion. According to Eq. (15), the value of DΔ² 
reaches unity in the extreme case of DA >> DR and DR = 0, 
corresponding to one-dimensional diffusion in an infini-
tesimally thin cylinder. The observed values of E[DΔ²] are 
close to one-dimensional diffusion, but still accommo-
date sufficient displacements in the radial directions to 
mix water populations in the intraaxonal and adjacent 
extracellular spaces via the gaps between the myelin 
patches or directly across the sheaths (Le Bihan et al., 
1993). Alternatively, the observations are consistent also 
with a scenario where the populations remain separate 
but coincidentally have too similar values of both Diso and 
DΔ² to resolve without postulating their existence as in the 
popular model-based approaches (Assaf & Basser, 2005; 
Zhang et al., 2012).

GM comprises mainly neuronal cell bodies, glial cells, 
and nonmyelinated axons with low orientational order. 
The cortex and cerebellum GM data in Figure 2e and f 
resemble the tumor data in Figure  2c, with negligible 
influence of Θ and Φ at constant b, τR, and τE, indicating 
isotropic diffusion. The deviations between the residuals 
from the ω-dependent and ω-independent analyses are 
clearly visible for both the cortex and cerebellum, but the 
magnitude is larger for the latter case indicating more 
pronounced ω-dependence in the ~30–300  Hz range. 
Both examples feature single peaks in the 2D Diso-DΔ² 
projections, with a shift of the peak maximum with fre-
quency being readily apparent for the latter. The explicit 
shifts are from E[Diso] = 0.33·10−9 m2s−1 and E[DΔ²] = 0.07 
at 35 Hz to E[Diso] = 0.37·10−9 m2s−1 and E[DΔ²] = 0.05 at 
320 Hz for the cortex and from E[Diso] = 0.28·10−9 m2s−1 
and E[DΔ²] = 0.16 at 35 Hz to E[Diso] = 0.58·10−9 m2s−1 and 
E[DΔ²]  =  0.03 at 320  Hz for the cerebellum. The ω-
dependence of E[Diso] can be reproduced with the closed 
spherical compartment model (Stepišnik, 1993) using 
0.4·10−9 m2s−1 local diffusivity and 4 μm radius for the cor-
tex and 0.7·10−9 m2s−1 local diffusivity and 5 μm radius  
for the cerebellum. Among many other possible mecha-
nisms, these lower and higher values of the local diffu-
sivity could result from the biologically plausible 
macromolecular contents of, respectively, 30 and 10 

vol% (Topgaard, 2020) in solutions with salt and metabo-
lites reducing the diffusivity to 50% of the pure water  
reference state. As stated above, this model-based inter-
pretation is certainly oversimplified but here serves the 
purpose to illustrate that rather subtle differences in local 
chemical composition or biomembrane geometry may 
have a large impact on data acquired under conditions 
that are determined more by hardware constraints than 
by the wishes of the experimentalist.

If D(ω) depends on ω within the investigated window, 
the ω-dependent and ω-independent analyses give differ-
ent residuals as well as 2D Diso-DΔ² projections. The differ-
ence for the latter is minimized if the ω-dependent 
projection is evaluated at the center of the investigated 
frequency range as quantified by the ω50% metric shown in 
Figure 1f. Visual inspection of the residuals and 2D Diso-
DΔ² projections in Figure 2 reveal a correlation between 
misfit and bias toward higher values of DΔ² with only minor 
influence on Diso. The magnitude of the bias is investi-
gated further in Figure  3 showing parameter maps 
extracted from the distributions obtained by the ω-
dependent (top row) and ω-independent (middle row) 
analyses, the former being evaluated at ω50%/2π = 190 Hz. 
The ω-dependence as such is reported in terms of the 
model-independent dispersion metrics Δω/2πE[Diso] and 
Δω/2πE[DΔ²] defined in Eq. (20). Superficially, the two analy-
sis approaches appear to give similar parameter maps, 
except for E[DΔ²] with noticeably lower values in GM for 
the ω-dependent analysis. For the cerebellum, this effect 
leads to sharper differentiation between GM and WM. The 
bias in E[DΔ²] is mirrored in the bin-resolved signal frac-
tions map, showing lower values of the anisotropic frac-
tion (bin1) in the ω-dependent results. The minor 
differences between the maps are amplified in the normal-
ized difference maps (bottom row) at the expense of 
exaggerating the deviations when the metrics are near 
zero. In general, the difference maps are positive (+10%) 
for E[Diso], negative (–100%) for E[DΔ²], and close to zero 
for S0, E[R1], and E[R2]. An exception to this general obser-
vation is the right part of the cerebellum which seems to 
be contaminated by an image artifact affecting primarily 
S0 and E[R1]. While S0, R1, and R2 do not have any explicit 
ω-dependence, a poor fit in the diffusion dimensions 
could introduce a bias also in the other metrics. The areas 
highlighted in the Δω/2πE[Diso] and Δω/2πE[DΔ²] maps, such as 
the cerebellar GM and the tip of the lateral ventricles 
(Aggarwal et al., 2012), coincide with the bias in E[Diso] and 
E[DΔ²].

Figures 4 and 5 show results for in vivo human brain 
obtained with the narrow ωcent-range protocol in Figure 1e. 
In addition to the numerous exchange and ω-dependence 
mechanisms described above for water in the salt solution, 
liquid crystal, tumor tissue, and fixated mouse brain, the 
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living brain features processes originating from the beating 
heart and the varying pressure in the blood vessels. These 
processes include not only blood flow in the arteries, veins, 
and capillary network, as well as pulsatile motion of the 
entire brain (Wagshul et al., 2011), but also flow of cerebro-
spinal fluid (CSF) in the ventricles, interstitial fluid (ISF) in 
the extracellular spaces, and mixed CSF and ISF in the 
perivascular spaces (Jessen et al., 2015), giving rise to dis-
persion in D(ω) at frequencies determined by the interplay 
between the fluid flow rates and vessel curvatures 
(Callaghan & Stepišnik, 1995). The gradient waveforms in 
Figure 1d were designed within hardware constraints with 
the aim of minimizing τE for given values of b and bΔ, unin-
tentionally giving rise to an anisotropic spread of spectral 
power in b(ω) for each waveform (Lundell & Lasič, 2020) as 
well as a variation of ωcent from ω10%/2π = 5 Hz to ω90%/2π = 
11 Hz. Although the relative variation of ωcent is sufficient to 
detect ω-dependence as previously demonstrated for ex 
vivo rat brain (Narvaez et al., 2022, 2024), the data for WM, 
GM, and CSF rectangle ROIs in Figure 4 show no clear dif-
ferences between the residuals or 2D Diso-DΔ² projections 
from the ω-dependent and ω-independent analyses. This 
absence of ω-dependence in the 5–11 Hz range is far from 
obvious considering the continuous range of structural 
length scales and dynamical time scales known to exist in 

the living brain, but is consistent with literature results of 
identical diffusion tensor distributions at the diffusion times 
19 and 49 ms (Song et al., 2022) and the numerous oscillat-
ing gradient spin-echo studies finding dispersion predomi-
nantly at higher frequencies (Arbabi et al., 2020; Baron & 
Beaulieu, 2014; Baron et al., 2015; Dai et al., 2023; Hennel 
et al., 2021; Michael et al., 2022; Tan et al., 2020; Tetreault 
et al., 2020; Van et al., 2014).

The overall description and interpretation of the in vivo 
WM and GM data in Figure 4a and b are similar to the ex 
vivo results above, one minor difference being an oblate 
component visible in the 1D DΔ² projection for WM at DΔ² 
slightly below 0.25. Spurious oblate components in gen-
eral appear as inversion artifacts at low signal-to-noise 
ratio and insufficient exploration of the bΔ acquisition 
dimension (de Almeida Martins & Topgaard, 2018). For 
acquisition protocols limited to bΔ = 1, such oblate com-
ponents may even dominate the distributions for most 
voxels except CSF and coherently aligned WM (Song 
et  al., 2022). The ω-dependent and ω-independent 1D 
DΔ² projections for GM are not completely overlapping 
despite the absence of discernible differences in the cor-
responding residuals. This effect may originate from the 
correlation between ωcent and bΔ at the highest values of b 
in the acquisition protocol in Figure 1e and the slightly 

Fig. 3.  Ex vivo mouse brain parameter maps obtained from ω-dependent and ω-independent inversions of data 
acquired with the preclinical (wide ωcent-range) protocol in Figure 1c. The primary distributions were converted to 
extrapolated signals S0, means E[X], and bin-resolved signal fractions fbinn via Eqs. (17), (16), and (19), respectively, using 
the frequency ω50%/2π = 190 Hz labeled in Figure 1f for the ω-dependent case. The color coding of fbinn is given in  
Eq. (18). The ω-dependence metrics Δω/2πE[X], defined in Eq. (20), were evaluated using the frequencies ω10%/2π = 35 Hz 
and ω90%/2π = 320 Hz shown in Figure 1f. The normalized differences were calculated according to Eq. (21).
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lower signal intensities observed for ωcent/2π = 10 Hz and 
bΔ = –0.5 than for ωcent/2π = 6 Hz and bΔ = 1. At constant 
b, the powder-averaged signal would increase with bΔ

2 
and decrease with ωcent for the cases of anisotropy and 
restriction, respectively (Jiang et  al., 2023). In modified 
versions of the acquisition protocol, disambiguation 
between the two cases could be achieved by extending 
the ωcent range for the two values of bΔ at the expense of 
increasing τE. The CSF data in Figure 4c show elevated 
residuals at low b which by visual inspection of the raw 
images may be attributed to signal dropouts from pulsa-
tion artifacts (Chen et al., 2015). The relative amplitudes 
of the residuals in Figure 4 are reflected in the values of 
SNR calculated as described in Eq. (20) in the Methods 
section, yielding the mean values 53, 69, and 20 for, 

respectively, the WM, GM, and CSF ROIs. These values 
correspond to SNR for a hypothetical b = 0, τR = ∞, and 
τE  =  0 image (not actually measured) and include the 
effects of random noise, imaging artifacts, and signal 
variations from mechanisms such as pulsation that are 
not captured by the expression in Eq. (1). Because of the 
poor fit for the CSF ROI, it is unclear whether the obtained 
distributions with E[Diso]  =  3.5·10−9 m2s−1, approx. 20% 
above the literature value 3.0·10−9 m2s−1 for pure water at 
37ºC (Holz et al., 2000), are influenced by intravoxel CSF 
flow. The absence of ω-dependence within the investi-
gated 5–11 Hz range is further accentuated by the simi-
larities of the ω-dependent and ω-independent parameter 
maps and the lack of brain-specific structures in the dif-
ference and dispersion metrics maps in Figure 5.

Fig. 4.  Comparison between ω-dependent and ω-independent data inversion results for in vivo human brain ROIs (white 
rectangles) in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) displayed over an S0 map. The data were 
acquired with the clinical (narrow ωcent-range) protocol in Figure 1e and the ω-dependent 2D Diso-DΔ² projections are plotted 
for three values of ω between ω10%/2π = 5 Hz (dark green) and ω90%/2π = 11 Hz (pale green). For additional explanations of 
symbols and labels, see Figure 2 caption.
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The 1491-volume preclinical and 131-volume clinical 
D(ω)-R1-R2 protocols illustrate two extremes for investi-
gating the effects of restriction by comparison of fit 
residuals, 2D Diso-DΔ² projections, and parameter maps 
obtained by ω-dependent and ω-independent data 
inversion. While the preclinical protocol shows superior 
sensitivity to restriction, it may be too exhaustive for 
implementation in studies of more than a few speci-
mens. Conversely, the clinical protocol has a measure-
ment time commensurate with clinical research studies, 
however, with a narrow frequency window where the 
effects of restriction appear to be absent for healthy 
human brain. Designing a time-efficient acquisition pro-
tocol for solving a particular scientific question is a chal-
lenging endeavor which we leave for future research 
focused on specific applications. Nevertheless, the pre-
sented protocols are appropriate for pilot studies of a 
few cases or specimens to determine which combina-
tion of dimensions and metrics—for instance the herein 
included E[Diso], E[DΔ²], E[R1], E[R2], fbinn, Δω/2πE[Diso], and 
Δω/2πE[DΔ²] parameters, as well as bin-resolved or higher-
order statistical descriptors (Narvaez et al., 2022)—that 
hold greatest promise for, say, distinguishing between 
tumor grades or detecting neurodegeneration. Based 
on such initial data, the protocols could be refined to 
focus the measurements on parts of the multidimen-
sional acquisition parameter space that show greatest 
raw signal amplitude differences between the cases to 
be distinguished, which in general leads to highest pre-
cision of the most valuable metrics obtained from the 
data inversion.

5.  CONCLUSION

Multidimensional diffusion–relaxation correlation MRI rely-
ing on tensor-valued diffusion encoding is associated with 
a sensitivity to restricted diffusion that depends on numer-
ous factors including the gradient waveform duration, the 
encoding tensor shape, and—for most non-linear tensor 
shapes—the spatial direction. Monte Carlo inversion of 
such data can be augmented with explicit consideration of 
the effects of restriction in terms of the frequency-
dependence of the tensor-valued diffusion spectrum for 
acquisition protocols exploring both wide and narrow fre-
quency ranges and samples with and without observable 
restriction effects within the investigated frequency win-
dow. In the former case, inversion including frequency-
dependence gives smaller fit residuals, mitigates bias in 
mainly the anisotropy metrics, and gives anatomically 
plausible restriction maps. In the latter case, inversions 
with and without consideration of frequency-dependence 
give similar fit residuals and maps of parameters unrelated 
to restriction, but gives frequency-dependence maps that 
mainly contain inversion noise and non-anatomical struc-
tures from image artifacts. Although the local diffusivities 
of tissue water, the membrane permeabilities, and the 
structural length scales of the healthy human brain are 
such that no frequency-dependence can be observed 
within the narrow 5–11 Hz window easily accessible with 
tensor-valued encoding on clinical scanners, the situation 
may be different for pathological tissues or protocols opti-
mized for expanded frequency range. Consequently, we 
propose that frequency-dependence is included in the 

Fig. 5.  In vivo human brain parameters maps obtained from ω-dependent and ω-independent inversions of data acquired 
with the clinical (narrow ω-range) protocol in Figure 1e. The ω-dependent E[X] maps were evaluated at ω50%/2π = 9 Hz 
while the ω-dependence metrics Δω/2πE[X] employed ω10%/2π = 5 Hz and ω90%/2π = 11 Hz labeled in Figure 1g. For 
additional explanations, see Figure 3 caption.
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data inversion by default to reduce bias in the diffusion 
metrics and allow detection of restriction in the somewhat 
unpredictable cases where its effect on the raw signal 
intensities exceeds the ones of the ever-present image 
artifacts.

DATA AND CODE AVAILABILITY

MATLAB source code for Monte-Carlo data inversion is 
freely available at https://github​.com​/daniel​-topgaard​
/md​-dmri/.
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APPENDIX: MONTE CARLO INVERSION OF  
SIMULATED DATA

A.1.  Generation of signal data and distributions

Signal data S[b(ω),τR,τE] were synthesized using the pre-
clinical and clinical acquisition protocols in Figure 1 for a 
single voxel containing equal signal contributions from 
three distinct components roughly corresponding to WM, 
GM, and CSF for in vivo human brain. For the WM-like 
component, D(ω) was expressed as an axisymmetric ten-
sor, according to Eq. (11), with axial diffusivity DA equal to 
the bulk liquid (high-ω) diffusivity D0 and an ω-dependent 
radial diffusivity DR(ω) given by the cylinder model 
(Stepišnik, 1993; Stepišnik et al., 2006)

	
DR ω( ) = D0 −

k=1

∞

∑wk

D0 − D∞

1+ω 2/ Γ k
2 ,

	
(A1)

where

	
wk =

2
ζ k

2 −1
,
	

(A2)

and
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ζ k
2D0

r 2
.
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In the equations above, D∞ is the tortuosity-limit (low-
ω) diffusivity, r the cylinder radius, and ζk the kth root of

	 ζJ0 ζ( ) − J1 ζ( ) = 0,	 (A4)

where Jν is the νth order Bessel function of the first kind. 
The GM-like component was described with an isotropic 
D(ω) with all eigenvalues D(ω) given by the random per-
meable barrier model (Novikov et al., 2011)
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(A5)

where

	 zω = i iω / Γ  	 (A6)

and Γ is the characteristic rate for the transition between 
the high- and low-ω plateau values D0 and D∞. The CSF-
like component was given by an isotropic and ω-
independent tensor with all eigenvalues equal to D0. Both 
the cylinder and random permeable barrier models in 
Eqs. (A1) and (A5), respectively, rely on the powerful 
Gaussian phase distribution approximation (Neuman, 
1974) that enables prediction of the signal for quite gen-
eral gradient waveforms, such as the ones in Figure 1b 
and d, but fails to account for diffraction-like effects that 
may occur under the special condition of diffusion encod-
ing by pairs of narrow gradient pulses separated by a 
time period of sufficient duration to give molecular dis-
placements across an isolated compartment or between 
the centers of neighboring compartments in a periodic 
geometry (Callaghan et  al., 1991). The validity of the 
approximation has been investigated with random walk 
simulations for diffusion encoding by gradient pulse 
pairs, cos-modulated oscillating gradients, and double 
rotation waveforms (Balinov et al., 1993; Topgaard, 2025). 
Custom pulse sequences for detecting deviations from 
the Gaussian phase distribution approximation have 
been demonstrated for in vivo rat (Henriques et al., 2020) 
and human (Novello et al., 2022) brain. Reconciling the 
design constraints of these sequences with the numeri-
cally optimized waveforms for efficient tensor-valued 
encoding in vivo remains a challenge.

Diffusion-related parameters as listed in Appendix 
Table A1 were used to calculate D(ω) according to Eqs. 
(A1)–(A6). The values of D0, D∞, r, and Γ were selected to 
emulate Diso and DΔ

2 observed with the clinical protocol 
(5–11 Hz), as well as to give pronounced ω-dependence 
with the preclinical (35–320 Hz) protocol. Together with 
the signal weights and relaxation rates in Appendix Table 
A1, the calculated D(ω) was inserted into Eq. (1) to gener-
ate ground-truth S[b(ω),τR,τE].

For both acquisition protocols, Monte Carlo data 
inversion was performed as described in the main text 

Appendix Table A1.  Weights, relaxation rates, and diffusion parameters for generating signal data in Appendix Figures 
A1 and A2.

component w R1 /s
–1 R2 /s

–1 geometry D0 /10–9 m2s–1 D∞ /10–9 m2s–1 transition orientation

WM 1/3 1 20 cylinder 2.5 0.10 r = 1.0 μm ϕ = 20º, 
θ = –30º

GM 1/3 0.5 15 RPBM* 2.5 0.70 Γ = 100 s–1

CSF 1/3 0.2 1 free 3.0

*RPBM: random permeable barrier model.
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Methods section using the settings for the clinical pro-
tocol with the exceptions of the number of output com-
ponents and bootstrapping repetitions, which were 
increased to 50 and 1000, respectively. Additionally, 
instead of random sampling with replacement, boot-
strapping employed the same ground-truth data using 
different realizations of Gaussian noise with signal-to-
noise ratios SNR = 64, 256, 1024, and 4096 at the signal 
levels corresponding to the S0 data, where b = 0, τR = ∞, 
and τE = 0. At the minimum values of τE included in the 
protocols, the SNR levels are approximately a factor of 
2 lower.

A.2.  Effect of noise on resolution of distribution 
components

Signal data and inversion results are shown in Appendix 
Figures A1 and A2 for the preclinical and clinical proto-

cols, respectively. At the highest SNR, the back-
calculated signals and the major peaks in the 2D 
projections of the distributions reproduce the ground 
truth. The widths of these peaks reflect the numerical 
instability of the data inversion as well as the finite num-
ber of sharp Lorentzian transitions required to reproduce 
the smoother transitions given by the geometrical models 
in Eqs. (A1) and (A5). Noteworthily, the ω-dependencies 
of the WM- and GM-like components, as here repre-
sented by the cylinder and random permeable barrier 
models, are simultaneously detected in the preclinical 
(35–320 Hz) protocol, but are too small to observe with 
the clinical (5–11  Hz) one. Since the underlying ω-
dependence is the same for both cases, these results 
illustrate that the numerical values of restriction metrics 
and even microstructural conclusions—for instance, iso-
lated compartments versus structural disorder—may be 
worryingly sensitive to the specifics of the acquisition 

Appendix Fig. A1.  Signal data S[b(ω),τR,τE] (top row) and projections of the D(ω)-R1-R2 distributions (bottom rows) for the 
preclinical protocol in Figure 1c at four values of the SNR (columns). Noise-free ground-truth and back-calculated signals 
are shown with gray circles and black dots, respectively, as a function of nacq. Ground-truth values of Diso, DΔ

2, R1, and R2, 
for the WM- (red), GM- (green), and CSF-like (blue) components are shown as progressively smaller and brighter circles at 
values of ω/2π corresponding to ω10%/2π = 35 Hz, ω50%/2π = 190 Hz, and ω90%/2π = 320 Hz of the acquisition protocol. 2D 
contours and 1D traces (lines with gray scale given by ω/2π) represent projections of the distributions obtained by Monte 
Carlo inversion of the signal data.
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protocol. Decreasing SNR leads to increasing fit residuals 
and loss of resolution of the three components in the 2D 
projections. At the SNR levels typical for in vivo condi-
tions, it is not reasonable to expect multimodal distribu-
tions to be faithfully reproduced in the 2D projections. 
Still, the results may be converted to lower-level statisti-
cal descriptors, such as the means E[X] displayed as 
parameter maps in Figures 3 and 5, as well as variances 
V[X] and covariances C[X,Y] condensing the information 
about intra-voxel heterogeneity into scalar metrics that 
are less susceptible to measurement noise (de Almeida 

Martins et al., 2020). For the special case of a clinically 
feasible protocol using 85 acquisitions with varying b, bΔ, 
Θ, and Φ at narrow range of ω and constant τR and τE, the 
accuracy and precision of metrics equivalent to E[Diso], 
E[DΔ

2], and V[Diso] were previously investigated for data 
synthesized from a wide range of ground-truth distribu-
tions at infinite and typical in vivo SNR (Reymbaut et al., 
2020a). Extending this comprehensive uncertainty analy-
sis to the numerous metrics and relevant distribution 
dimensions offered by the additional variation of ω, τR, 
and τE is, however, beyond the scope of the present work.

Appendix Fig. A2.  Signal data and distributions for the clinical protocol in Figure 1e with ω10%/2π = 5 Hz, ω50%/2π = 8 Hz, 
and ω90%/2π = 11 Hz. See Appendix Figure A1 caption for additional details.


