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Abstract. Recently, interest has increased in applying reactive synthe-
sis to richer-than-Boolean domains. A major (undecidable) challenge in
this area is to establish when certain repeating behaviour terminates
in a desired state when the number of steps is unbounded. Existing
approaches struggle with this problem, or can handle at most deter-
ministic games with Biichi goals. This work goes beyond by contribut-
ing the first effectual approach to synthesis with full LTL objectives,
based on Boolean abstractions that encode both safety and liveness prop-
erties of the underlying infinite arena. We take a CEGAR approach:
attempting synthesis on the Boolean abstraction, checking spuriousness
of abstract counterstrategies through invariant checking, and refining the
abstraction based on counterexamples. We reduce the complexity, when
restricted to predicates, of abstracting and synthesising by an exponen-
tial through an efficient binary encoding. This also allows us to eagerly
identify useful fairness properties. Our discrete synthesis tool outper-
forms the state-of-the-art on linear integer arithmetic (LIA) benchmarks
from literature, solving almost double as many syntesis problems as the
current state-of-the-art. It also solves slightly more problems than the
second-best realisability checker, in one-third of the time. We also intro-
duce benchmarks with richer objectives that other approaches cannot
handle, and evaluate our tool on them.

Keywords: Infinite-state synthesis - Liveness refinement - CEGAR

1 Introduction

Reactive synthesis provides a way to synthesise controllers that ensure satisfac-
tion of high-level Linear Temporal Logic (LTL) specifications, against uncon-
trolled environment behaviour. Classically, synthesis was suggested and applied
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in the Boolean (or finite-range) variable setting [29]. Interest in the infinite-
range variable setting was soon to follow. Some of the milestones include the
adaptation of the theory of CEGAR to infinite-state games [20] and the early
adoption of SMT for symbolic representation of infinite-sized sets of game config-
urations [5]. However, in recent years, success of synthesis in the finite domain as
well as maturity of SMT solvers has led to sharply growing interest in synthesis
in the context of infinite-range variables, with several tools becoming available
that tackle this problem. We highlight the two different (but related) approaches
taken by the community: (a) application of infinite-state reactive synthesis from
extensions of LTL where atoms include quantifier-free first-order formulas over
infinite-range variables [8,14,22,23] and (b) direct applications to the solution
of games with an infinite number of configurations [3,18,19,34]. Two notable
examples of the two approaches from the last two years include: (a) the iden-
tification of a fragment of LTL with first-order atoms that allows for a decid-
able synthesis framework [30-32] and (b) the introduction of so-called accelera-
tion lemmas [18,19,34] targeting the general undecidable infinite-state synthesis
problem. The latter directly attacks a core issue of the problem’s undecidability:
identify whether certain repeated behaviour can eventually force the interaction
to a certain state. Thus, solving the (alternating) termination problem.

Infinite-state reactive synthesis aims at producing a system that manipulates
variables with infinite domains and reacts to input variables controlled by an
adversarial environment. Given an LTL objective, the realisability problem is
to determine whether a system may exist that enforces the objective. Then, the
synthesis problem is to construct such a system, or a counterstrategy by which the
environment may enforce the negation of the objective. While in the finite-state
domain realisability and synthesis are tightly connected, this is not the case in the
infinite-state domain and many approaches struggle to (practically) scale from
realisability to synthesis. In this paper we focus on the more challenging synthesis
problem, rather than mere realisability, to be able to construct implementations.
Furthermore, our approach is tailored for the general — undecidable — case.

As mentioned, a major challenge is the identification of repeated behaviour
that forces reaching a given state. Most approaches rely on one of two basic
techniques: either refine an abstraction based on a mismatch in the application
of a transition between concrete and abstract representations, or compute a
representation of the set of immediate successors/predecessors of a given set of
states. Both have limited effectiveness due to the termination challenge. Indeed,
in many interesting cases, such approaches attempt at enumerating paths of
unbounded length. For example, this is what happens to approaches relying on
refinement [14,22], which is sound but often cannot terminate. It follows that
reasoning about the effect of repeated behaviour is crucial.

We know of two attempts at such reasoning. temos [8] identifies single-action
loops that terminate in a desired state, but cannot generalise to more challeng-
ing cases, e.g., where the environment may momentarily interrupt the loop, and
moreover it cannot supply unrealisability verdicts. By contrast, rpgsolve [18]
summarises terminating sub-games via acceleration lemmas to construct an
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argument for realisability, relying on quantifier elimination with uninterpreted
functions. However, this approach is limited to at most deterministic Biichi
objectives, and is practically more effective for realisability than for synthe-
sis due to the challenges of quantifier elimination. Its extension rpg-STelLA [34]
attempts to identify acceleration lemmas that apply to multiple regions and thus
solves games compositionally, but only supports realisability.

[ 1
[
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Fig. 1. Workflow of our approach.

In this paper we address the limitations described above, generalising infinite-
state reactive synthesis to more expressive objectives. In particular, we consider
LTL objectives over infinite-state arenas, without imposing any limit on tempo-
ral nesting. Similar to others, our atoms may include quantifier-free first-order
formulas. However, we do not restrict the LTL formulas. Furthermore, our app-
roach does not distinguish between realisability and synthesis, and can synthesise
both controllers and counterstrategies. As shown in Fig. 1, our approach is based
on CEGAR [21], heavily adapted for synthesis. Our main contributions are:

1. An efficient binary encoding of predicates. This reduces complexity, in terms
of predicates, of abstraction building/size from exponential to polynomial,
and of finite synthesis over abstractions from doubly to singly exponential.

2. A method to check counterstrategy concretisability through invariant check-
ing, that finds minimal counterexamples to concretisability.

3. Two new kinds of liveness refinements: Structural refinement, which monitors
for terminating concrete loops in the abstract system, and enforces eventual
exit; and Ranking refinement that relies on the binary encoding, which ensures
the well-foundedness of terms relevant to the game in the abstraction.

4. An implementation of the above contributions for LIA problems.

5. The most extensive experimental comparison of infinite-state LIA realisabil-
ity and synthesis tools in literature. This shows our tool substantially out-
performing all others, making it the new state-of-the-art.

6. Separately, we enrich the dataset of existing benchmarks, which currently
include at most weak fairness requirements, with a selection of problems
incorporating strong fairness.

For the reader’s convenience we present the approach informally in Sect. 3,
before formalising it in detail (Sects. 4, 5, 6). Then we describe our techniques
to improve its efficiency (Sect.7), present and evaluate our tool (Sect.8), and
conclude while also discussing related and future work (Sects. 9-10). Given space
constraints here, more technical details and information about the evaluation can
be found in the extended version [2].
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2 Background

We use the following notation throughout: for sets S and T such that S C T, we
write Ay S for AS A Ayep\s 7s. We omit set 7' when clear from the context.
B(S) is the set of Boolean combinations of a set S of Boolean variables.

Linear Temporal Logic, LTL(AP), is the language over a set of propositions
AP, defined as follows," where p € AP: ¢ Ztt [ |p| —¢ | dAP| oV | X0 |
oU ¢.

For w € (2*7)%, we write w |= ¢ or w € L(¢), when w satisfies ¢. A Moore
machine is C = (S, s0, Xin, Zout, —, out), where S is the set of states, sg the
initial state, X, the set of input events, X,,; the set of output events, —:
S x2%in — § the complete deterministic transition function, and out : S — 2%out
the labelling of each state with a set of output events. For (s, I,s’) €—, where

. 1/0
out(s) = O we write s o, g,
A Mealy machine is C = (S, S0, Zin, Xout, —), where S, s, Xin, and Zyy
are as before and —: S x 2%in +— 2%ut x § the complete deterministic transition

. . 1/0
function. For (s,I,0,s') €— we write s 1o, s’
Unless mentioned explicitly, both Mealy and Moore machines can have an
infinite number of states. A run of a machine C is r = sg, s1, ... such that for

every ¢ > 0 we have s; M Si41 for some I; and O;. Run r produces the word
w = 0g,01,..., where o; = I; U O;. A machine C produces the word w if there
is a run r producing w. Let L(C) denote the set of all words produced by C.
We cast our synthesis problem into the LTL reactive synthesis problem, which
calls for finding a Mealy machine that satisfies a given specification over input
and output variables E and C.

Definition 1 (LTL Synthesis). A specification ¢ over E U C is said to be
realisable if and only if there is a Mealy machine C, with input 2% and output
2C such that for every w € L(C) we have w = ¢. We call C a controller for ¢.
A specification ¢ is said to be unrealisable if there is a Moore machine Cs,
with input 2° and output 2%, such that for everyw € L(Cs) we have that w = —¢.
We call Cs a counterstrategy for ¢.
The problem of synthesis is to construct C' or Cs, exactly one of which exists.

Note that the duality between the existence of a strategy and counterstrategy
follows from the determinacy of turn-based two-player w-regular games [24]. We
know that finite-state machines suffice for synthesis from LTL specifications [29].

To be able to represent infinite synthesis problems succinctly we consider
formulas in a theory. A theory consists of a set of terms and predicates over these.
Atomic terms are constant values (C) or variables. Terms can be constructed with
operators over other terms, with a fixed interpretation. The set 7 (V') denotes
the terms of the theory, with free variables in V. For t € 7(V), we write tpy¢, for
the term where variables v appearing in ¢ are replaced by fresh variables vprey.

! See [28] for the standard semantics.
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V= {target : int = 0, floor : int = 0} env_ine A door_open

E = {env_inc, door_open} s target++ Cenv ineA
C = {up, down} — dooriopen
Assumptions: -

— target——

Al. GFdoor_open
A2. GF-door_open
Guarantees:

G1. GF floor = target

door_open N\

—d
floor = target oor_open

down N\ —up up A\ ~down

G2. G(door_open = (up <= down)) — floor—— — floor++
Objective: up <= down
(A1 A A2) = (G1AG2) — floor := floor

Fig. 2. Elevator example.

We use ST (V) to denote the set of state predicates, i.e., predicates over
T(V), and TR(V) to denote the set of transition predicates, i.e., predicates over
T (V U Vprey), where vprey € Vprey iff v € V. Then, we denote by Pr(V) the set
of all predicates ST (V) UTR(V). We also define the set of updates U(V) of a
variable set V. Each U € U(V) is a function V — T (V).

We define the set of valuations over a set of variables V as Val(V) =V — C,
using val € Val(V) for valuations. For a valuation val € Val(V'), we write val |= s,
for s € ST (V) when wval is a model of s. We write t(val) for ¢t grounded on the
valuation val. Given valuations val, val' € Val(V'), we write (val, val') |= ¢, for
t € TR(V), when valy,e, Uval is a model of t, where valyrey (Upres) = val(v) and
dom(valyrey) = Viprev. We say a formula (a Boolean combination of predicates)
is satisfiable when there is a valuation that models it. To simplify presentation,
we assume val £ t for any val that does not give values to all the variables of ¢.

3 Informal Overview

We give a simple instructive LIA example (Fig.2) to illustrate our approach.
Despite its simplicity, we stress that no other existing approach can solve it (see
Sect. 8): since the environment can delay progress by the controller, the resulting
objectives are too rich to be expressed by deterministic Biichi automata.

On the right is an automaton representing a partial design for an elevator, our
arena (see Sect.4). A transition labelled g — U is taken when the guard g holds
and it performs the update U. Unmentioned variables maintain their previous
value. On the left, we identify input (E) and output (C) Boolean variables.
When guards include these variables, the environment and controller’s moves
can affect which transitions are possible and which one is taken. The updates
determine how to change the values of other variables (V), which could range over
infinite domains. Thus, the updates of the variables in V are determined by the
interaction between the environment and the controller. The desired controller
must have a strategy such that, for every possible choice of inputs, it will set
the output variables so that the resulting computation satisfies a given LTL
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objective, encoded on the left as (A; A;)) = (A;G;). LTL formulas can
include quantifier-free first-order formulas over infinite-domain variables (e.g.,
floor = target). Notice that this objective includes environment fairness, making
this synthesis problem impossible to encode as a deterministic Biichi game.

In our elevator, at state sg the environment can set a target by controlling
variables in [E to increase or decrease target. Once a target is set, the environment
closes the elevator door (door_open), and the arena transitions to s;. At s1, the
system can force the elevator to go up or down one floor, or remain at the same
floor. This is not a useful elevator: it may never reach the target floor, and it may
move with the door open. We desire to control it so that the target is reached
infinitely often (G1), and the latter never occurs (G2). We also assume aspects
of the elevator not in our control to behave as expected, i.e., that the door is
not broken, and thus it opens and closes infinitely often (A1-2).

Predicate Abstraction (Definition 5) First, we soundly abstract the arena A
in terms of the predicates in the specification (A; A A3) = (G1 A G2), and
the predicates, and Boolean variables of the arena (here, the states in the
automaton). That is,? Pr = {floor < target, target < floor, so, s1}. This abstrac-
tion considers all possible combinations of input and output variables and Pr,
and gives a set of possible predicates holding in the next state (according
to the corresponding updates). For example, consider the propositional state
p = s1 A up A =down A floor < target. In the automaton, this activates the
transition that increments floor. Then, satisfiability checking tells us that the
successor state is either p} := s1 A floor = target or py := s1 A floor < target.
We encode the arena abstraction as an LTL formula «(A, Pr) of the form
it AG(V 4 apirans @) Where abtrans is a set of abstract transitions (e.g., pA Xp}
and p A Xp), are in abtrans), and init is the initial state, i.e., so A floor=target.

Abstract Synthesis. From this sound abstraction, we create the abstract formula
a(A, Pr) = ¢ and treat predicates as fresh input Booleans. If this formula
were realisable, a controller for it would also work concretely, but it is not: at
the abstract state p, the environment can always force negation of floor = target.

Counterstrategy Concretisability (Definition 6). For an unrealisable abstract
problem we will find an abstract counterstrategy C's. To check whether it is spu-
rious, we model-check if A composed with Cs violates the invariant that the
predicate guesses of Cs are correct in the arena. Here, Cs admits a finite coun-
terexample ce where the environment initially increments target, then moves to
s1, and the controller increments floor, but Cs wrongly maintains floor < target.

Safety Refinement (Sect. 6.1). By applying interpolation [25] on ce we discover
new predicates, e.g., target — floor < 1, by which we refine the abstraction to
exclude ce. If we were to continue using safety refinement, we would be attempt-
ing to enumerate the whole space, which causes a state-space explosion, given
the exponential complexity of predicate abstraction, and the doubly exponential
complexity of synthesis.

2 LIA predicates are normalised to a form using only <; other relations are macros.
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Efficient Encoding (Sect. 7). We manage state-space explosion through a binary
encoding of predicates. Note each predicate on a term corresponds to an inter-
val on the reals. For the term t = floor — target, floor < target represents
t € (—00,0]. target < floor represents t € [0,00), and floor — target < 1 rep-
resents t € (—oo,1]. These may overlap, but instead we can define formulas
whose intervals partition the line R. Here, we get formulas for each interval:
(=00, —1],(-1,0], (0,1], (1, 00). Binary-encoding these reduces the complexity
of abstraction and synthesis by an exponential, w.r.t. arithmetic predicates.

Liveness Refinements (Sect. 6.2). Enumeration is not enough here, given the
infinite domain of the variables. Liveness refinements are necessary. Note, once
C's guesses that floor < target, it remains in states where floor < target is true.
Essentially, we discover a ce in which Cs exercises the loop while(floor j target)
floor := floor + 1, and the environment believes it is non-terminating. Using
known methods to determine the loop is terminating, we construct a monitor
for the loop in the abstraction, with extra variables and assumptions. Then a
strong fairness constraint that forces the abstraction to eventually exit the loop
monitor captures its termination. We term this structural loop refinement. Note
that this is not tied to a specific region in the arena. This allows us to encode
more sophisticated loops, beyond what current tools for LTL objectives can do.

With a new synthesis attempt on the refined abstraction, a fresh terminating
loop is learned, while (target j floor) floor := floor - 1. Refining accordingly allows
us to find a controller and thus solve the problem on the next attempt.

Acceleration (Sect. 7). The described partitions of the values of a term have a
natural well-founded ordering which we can exploit to identify that the controller
can force the abstraction to move left or right across the intervals. Consider that
if the term ¢ is currently in the interval (1,00), and the controller can force
strict decrements of ¢, then the value of the ¢ must necessarily eventually move
to an interval to the left (unless we have reached the left-most interval). Thus,
strict decrements force the value of ¢t to move towards the left of the partition,
while strict increments force move towards the right of the partition. Only when
the environment can match these increments (decrements) with corresponding
decrements (increments) then can this behaviour be prevented.

By adding LTL fairness constraints to represent the described behaviour we
can immediately identify a controller, with no further refinements needed.

4 Synthesis Setting

One of our contributions is our special setting that combines arenas and LTL
objectives, unlike existing LTL approaches which start immediately from LTL-
modulo-theories formulas [8,14,22]. We assume a theory, with an associated set
of predicates Pr(V) and updates U (V') over a set of variables V. We also assume
two disjoint sets of Boolean inputs and outputs E and C, respectively controlled
by the environment and the controller. Then our specifications are LTL formulas
over these variables, ¢ € LTL(E U CU Pry), where Pry € Pr(V). LTL formu-
las talk about an arena whose state is captured by the value of V', and which



Full LTL Synthesis over Infinite-State Arenas 281

modifies its state depending on environment and controller behaviour. Arenas
are deterministic; we model (demonic) non-determinism with additional environ-
ment variables. This allows us to encode concretisability checking as invariant
checking, rather than the significantly more complex CTL* model checking.

Definition 2 (Arena). An arena A over V is a tuple (V,valy,6), where V is
a finite set of variables, valy € Val(V') is the initial valuation, and ¢ : B(E U
CUPr(V)) - U(V) is a partial function with finite domain, such that for all
val € Val(V') and for every E C E and C C C there is always a single f € dom(J)
such that (val, EUC) |= f. An arena is finite when every v € V is finite.

Notice that due to the finite domain of §, an arena A defines a finite set of
predicates Pr C Pr(V) and a finite set of updates U C U(V') that appear in §.
We use the sets Pr and U when clear from the context.

An infinite concrete word w € (Val(V') x 2EYC) is a model of A iff w(0) =
(valy, E U C) (for some E and C'), and for every i > 0, w(i) = (val;, E; U C;),
then for the unique f; € dom(d) such that (val;, E; U C;) | f; we have val 11 =
(6(f:))(val;). We write L(A) for the set of all models of A.

During our workflow, the words of our abstract synthesis problem may have
a different domain than those of the arena. We define these as abstract words,
and identify when they are concretisable in the arena. Then, we can define the
meaning of (un)realisability modulo an arena in terms of concretisability.

Definition 3 (Abstract Words and Concretisability). For a finite set of
predicates Pr C Pr(V), and a set of Boolean variables B/, such that E C E/,
an abstract word a is a word over 2% YCYPT . Abstract word a abstracts concrete
word w, with letters from Val(V') x 2YC | when for every i, if a(i) = E;UC; UPr;,
then w(i) = (val;, (E; NE) U C;) for some Pry C Pr, valy = Np, Pro, and for
i >0 then (vali_1,val;) = Np, Pri. We write y(a) for the set of concrete words
that a abstracts. We say abstract word a is concretisable in an arena A when
L(A) Nn~(a) is non-empty.

Definition 4 (Realisability modulo an Arena). A formula ¢ in LTL(E U
CUPry) is said to be realisable modulo an arena A, when there is a controller
as a Mealy Machine MM with input 5;, = 2FYP7¢ and output X, = 2© such
that every abstract trace t of MM that is concretisable in A also satisfies ¢.

A counterstrategy to the realisability of ¢ modulo an arena A is a Moore
Machine Cs with output Yoy = 28YP7e and input X;, = 2 such that every
abstract trace t of Cs is concretisable in A and violates ¢.

5 Abstract to Concrete Synthesis

We attack the presented synthesis problem through an abstraction-refinement
loop. We soundly abstract the arena as an LTL formula that may include fresh
predicates and inputs. We fix the set of predicates that appear in the objective
¢ as Prg, and the set of predicates and inputs in the abstraction, respectively,
as Pr and [, always such that Pry C Prand E C E'.
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Definition 5 (Abstraction). Formula a(A, Pr) in LTL(E'UCUPr) abstracts
arena A if for every w € L(A) there is a € L(a(A, Pr)) such that w € vy(a).

a(A,Pr) is a standard predicate abstraction [16]. Given the lack of novelty,
we refer to Appendix B.1 of [2] for the full details. Note, a(A,Pr) can be non-
deterministic, unlike A. Constructing it is essentially an ALLSAT problem: given
a transition, we identify sets from 277 that can be true before the transition
and, for each of these, sets of 2P that can hold after the transition. However,
we construct these sets incrementally, adding predicates as we discover them;
and improve on the space/time complexity with a binary encoding (Sect. 7).

Given abstraction (A, Pr), we construct a corresponding sound LTL synthe-
sis problem, a(A, Pr) = ¢, giving the environment control of the predicates
in a(A, Pr). We get three possible outcomes from attempting synthesis of this:
(1) it is realisable, and thus the concrete problem is realisable; (2) it is unreal-
isable and the counterstrategy is concretisable; or (3) the counterstrategy is not
concretisable. We prove theorems and technical machinery essential to allow us
to determine realisability (1) and unrealisability (2). In case (3) we refine the
abstraction to make the counterstrategy unviable in the new abstract problem.

Theorem 1 (Reduction to LTL Realisability). For ¢ in LTL(EUCUPry)
and an abstraction (A, Pr) of A in LTL(E' UCU Pr), if a(A,Pr) = ¢ is
realisable over inputs B U Pr and outputs C, then ¢ is realisable modulo A.

However, an abstract counterstrategy Cs may contain unconcretisable traces,
since abstractions are sound but not complete. To analyse Cs for concretisability,
we define a simulation relation between states of the concrete arena and states of
Cs, capturing whether each word of Cs is concretisable. Recall, a set of predicates
Pr is the union of a set of state predicates, ST (describing one state), and
transition predicates, TR (relating two states), which require different treatment.

Definition 6 (Counterstrategy Concretisability). Consider a counter-
strategy as a Moore Machine Cs = (S, 50, Xin, Zout, —,0ut), and an arena A,
where Xi, = 2C and Xpy = 28 VPT.

Concretisability is defined through the simulation relation <4 C Val x S:

For every valuation val that is simulated by a state s, val <4 s, where out(s) =
EUSTUTR, it holds that:

1. the valuation satisfies the state predicates of s: val = N\ ST, and
2. for every possible controller output C C C: let valc = §(val, (ENE)UC), sc
be s.t. s s sc, and TR¢ be the transition predicates in out(sc), then
(a) the transition predicates of s¢ are satisfied by the transition (val, vale) E
NTRc, and
(b) the valuation after the transition simulates the Cs state after the transi-
tion: vale <4 sc.

Cs is concretisable w.r.t. A when valy =4 sg, for A’s initial valuation valy.



Full LTL Synthesis over Infinite-State Arenas 283

With concretisability defined, we then have a method to verify whether an
abstract counterstrategy is also a concrete counterstrategy.

Theorem 2 (Reduction to LTL Unrealisability). Given arena abstraction
a(A,Pr), if a(A,Pr) = ¢ is unrealisable with a counterstrateqgy Cs and Cs
s concretisable w.r.t. A, then ¢ is unrealisable modulo A.

In practice, we encode counterstrategy concretisability as a model checking
problem on the composition of the counterstrategy and the arena, with the
required invariant that predicate values chosen by the counterstrategy hold on
the arena. Conveniently, this also gives witnesses of unconcretisability as finite
counterexamples (rather than infinite traces), which we use as the basis for
refinement. Crucially, this depends on the choices of the environment/controller
being finite, which also gives us semi-decidability of finding non-concretisability.

Proposition 1. Counterstrategy concretisability is encodable as invariant
checking, and terminates for finite problems and non-concretisable counterstrate-
gies.

Proposition 2. A non concretisable counterstrategy induces a finite counterex-
ample ag, ..., a, € (2PYYPT)* and concretisability fails locally only on ay.

Synthesis Semi-Algorithm. Alg. 1 shows our high-level approach. Taking an arena
A and an LTL formula ¢, it maintains a set of predicates Pr and an LTL formula
1. When the abstract problem (in terms of Pr) is realisable, a controller is
returned (line 5); otherwise, if the counterstrategy is concretisable, it is returned
(line 7). If the counterstrategy is not concretisable, we refine the abstraction to
exclude it (line 8), and extend Pr with the learned predicates, and ¢ with the
new LTL constraints (line 9). Alg. 1 diverges unless it finds a (counter)strategy.

Algorithm 1: Synthesis algorithm based on abstraction refinement.

1 Function synthesise(A, ¢):

2 Pr,yp := Prg, true

3 while true do

a ¢% = (A, Pr) A ) =

5 if realisable(¢2,E U Pr,C) then return (true,strategy(¢?,EU Pr,C))
6 Cs := counter_strategy(¢”,E U Pr, C)

7 if concretisable(¢, A, Cs) then return (false, Cs)

8 Pr’ )’ := refinement(A, Cs)

9 Pr,y :=PrUPr’,yp Ay’
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6 Refinement

We now present the two refinements on which our iterative approach relies, based
on an analysis of a discovered counterstrategy. These refinements soundly refine
the abstraction with predicates and/or new LTL constraints such that similar
counterexamples will not be re-encountered in the next iteration.?

6.1 Safety Refinement

Consider a counterstrategy Cs and a counterexample ce = ag,aq,...,ar. The
transition from aj_; to ai induces a mismatch between the concrete arena
state and Cs’s desired predicate state. It is well known that interpolation
can determine sufficient state predicates to make Cs non-viable in the fresh
abstract problem; we give a brief description for the reader’s convenience. Let
pi = N\p,(a; NPr), with each variable v replaced by a fresh variable v;, and each
variable vpres by v;—1. Similarly, let g; and u; be respectively the corresponding
symbolic transition guard and update (i.e., §(g;) = w;), such that all updates
v := t are rewritten as v;y; = t;, where term t; corresponds to ¢ with every
variable v replaced by v;.

In order to characterize the mismatch between the arena and its abstraction,
we construct the following formulas. Let fy = wvalg A pg A go A ug, where we
abuse notation and refer to valy as a Boolean formula. For 1 < i < k, let f; =
pi Ag; Au;, while fr, = pi. Then /\f:0 fi is unsatisfiable. Following McMillan [25],
we construct the corresponding set of sequence interpolants I, ..., I;_1, where
fo = 6L, V1< i< kL Afi = It In_1 A fir is unsatisfiable, as all
the variables of I; are shared by both f;_; and f;. From these we obtain a set
of state predicates I(ce) by removing the introduced indices in each I;. Adding
I(ce) to the abstraction refines it to make the counterstrategy unviable.

6.2 Liveness Refinement

Relying solely on safety refinement results in non-termination for interesting
problems (e.g., Fig. 2). To overcome this limitation, we propose liveness refine-
ment. Our main insight is that if the counterexample exposes a spurious lasso in
the counterstrategy, then we can encode its termination as a liveness property.

Lassos and Loops. A counterexample ce = ay, . . ., ag V=*
induces a lasso in Cs when it corresponds to a path assume val;
50, ...,8 in Cs, where s = s; for some 0 < j < k. while A(a_jNPr)
We focus on the last such j. Here, for simplicity, we assume g,
V = U;(V)

require that concretisation failed due to a wrong state
predicate guess. We split the counterexample into two

parts: a stem ag,...,aj—1, and a loop a;,...,ar_1. ?/SS:M;(: glk&l)
Let gj+— Uj,...,gk—1+— Ux—1 be the corresponding
applications of § and let val; be the arena state at step j. Fig. 3. ce loop.

3 We prove a progress theorem for each refinement in Appendix C of [2].
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The counterexample proves that the while-program in Fig. 3 terminates (in
one iteration). To strengthen the refinement, we try to weaken the loop (e.g.,
expand the precondition) such that it still accepts the loop part of ce while
terminating. We formalise loops to be able to formalise this weakening.

Definition 7 (Loops). A loop is a tuple | = (V, pre, iter_cond, body), where pre
and iter_cond are Boolean combinations of predicates over variables V , and body
is a finite sequence of pairs (g;,U;), where g; € Pr(V) and U; e U(V).

A finite/infinite sequence of valuations vals = valy, valy, ... is an execution
of I, vals € L(1), iff valy = pre, for all i such that 0 < i < |vals|, where
n = |body|, then val; = gi mod n, vali+1 = Ui mod n(val;) and if i mod n = 0 then
val; |= iter_cond. We say a loop is terminating if all of its executions are finite.

Definition 8 (Weakening). Loop 11 = (Vi,prey,ic, body,) is weaker than
lo = (Va, prey, ica, bodys) when: 1. Vi C Va; 2. pre, = pre, and ico = icy;
3. |body,| = |bodys|; 4. for wa € L(l3) there is wy € L(ly) such that we and w;
agree on V1. A weakening is proper if both l; and ly terminate.

Heuristics. We attempt to find loop weakenings heuristically. In all cases we
reduce iter_cond to focus on predicates in ay that affect concretisability. We also
remove variables from the domain of the loop that are not within the cone-of-
influence [10] of iter_cond. We then attempt two weaker pre-conditions: (1) true;
and (2) the predicate state before the loop is entered in the ce. We check these two
loops, in the order above, successively for termination (using an external tool).
The first loop proved terminating (I(ce)) is used as the basis of the refinements.

Structural Loop Refinement. We present a refinement that monitors for execution
of the loop and enforces its termination.

We define some predicates useful to our definition. For each transition in the
loop we define a formula that captures when it is triggered: condy = iter_condgo
and cond; £ g; for all other i. For each update U;, we define a conjunction
of transition predicates that captures when it occurs: recall U; is of the form
00 = 1", 07 ;= tJ, then we define p; as v* = )., A...Av) =t . This
sets the value of variable v* to the value of term t* in the previous state. We
further define a formula that captures the arena stuttering modulo the loop,
st & /\’UGVZ UV = Uprey, Where V) is the set of variables of the loop. A technical
detail is that we require updates in the loop I(ce) to not stutter, i.e., U(val) # val
for all val. Any loop with stuttering can be reduced to one without, for the kinds
of loops we consider. Thus, here p; A st is contradictory, for all <.

Definition 9 (Structural Loop Refinement). Let [ be a terminating loop,
and cond;, p;, and st (for 0 < i < n) be as defined above. Assume fresh
variables corresponding to each step in the loop inloopy,...,inloop,_1, and
inloop = inloopg V ...V inloop, _1.

The structural loop abstraction ayeep(A, 1) is the conjunction of the following:

1. Initially we are not in the loop, and we can never be in multiple loop steps
at the same time: —inloop A \; G(inloop; = =\, (inloop;));
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2. The loop is entered when pre holds and the first transition is executed:
G(—inloop = ((pre A condy A X (pg)) <= X(inloop1)));

3. At each step, while the step condition holds, the correct update causes the
loop to step forward, stuttering leaves it in place, otherwise we exit:

(pi = inloop;19%,)\
/\0§i<nG (inloop; A cond;) = X | (st = inloop;)A ’
(= (st V p;) < —inloop)

4. At each step, if the expected step condition does not hold, we exit:
No<icn G((inloop; N —cond;) == X—inloop); and
5. The loop always terminates, or stutters: GF(—inloop) V\/; FG(st; Ainloop;).

Note the fresh propositions (inloop;) are controlled by the environment. The
LTL formulas 1-4 monitor for the loop, exiting if a transition not in the loop
occurs, and progressing or stuttering in the loop otherwise. LTL formula 5
enforces that the loop is exited infinitely often, or that the execution stutters
in the loop forever. This ensures that the abstract counterstrategy is no longer
viable.

7 Efficient Encoding and Acceleration

The problem we tackle is undecidable, but we rely on decidable sub-routines of
varying complexity: predicate abstraction (exponential in the number of pred-
icates) and finite synthesis (doubly exponential in the number of propositions,
of which predicates are a subset). Here we present an efficient binary encoding
of predicates of similar forms that (1) reduces the size of and the satisfiabil-
ity checks needed to compute the abstraction from exponential to polynomial,
and (2) reduces complexity of abstract synthesis from doubly to singly exponen-
tial, when restricted to predicates. Moreover, this encoding allows us to identify
fairness assumptions refining the abstraction, which significantly accelerate syn-
thesis. Computing this encoding only involves simple arithmetic, but we have
not encountered previous uses of it in literature.

We collect all the known predicates over the same term, giving a finite set
of predicates P, = {t < ¢o,...,t X ¢, }, where ¢ is a term only over variables,
<€ {<, <} and each ¢; is a value. W.l.g. we assume ¢ <1 ¢; = t X1 ¢;41 for all 4.
Thus, t < ¢ appears before any other predicate ¢t > ¢+« for a > 0. For simplicity,
let us assume that ¢ is a single variable. To enable a binary representation we find
disjoint intervals representing the same constraints on variable values. Namely,
replace the predicates in Py with (1) ¢ 1 ¢, (2) for 0 < ¢ < n the predicate
S(t < ¢—1) At X ¢, and finally, (3) —(¢ > ¢, ). Effectively, forming a partition
of the real line R.

Let part(Py) = {t b co, 2(t 1 ci_1) At ¢, m(t X ep) | 0 < i < n}. We
call the left- and right-most partitions the border partitions since they capture
the left and right intervals to infinity. The other formulas define non-intersecting
bounded intervals/partitions along R. Figure4 illustrates these partitions: this
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set of formulas covers the whole line, i.e. for each point ¢t = ¢, there is a formula f
in part(P;) such that (t = ¢) = f. Further, note how each two distinct formulas
f1, f2 € part(P;) are mutually exclusive. Namely, f1 A fo = L. Given this mutual
exclusivity, it is easy to construct a representation to reduce the number of
binary variables in the predicate abstraction. The complexity of computing these
partitions is only the complexity of sorting P; in ascending order based on values.

In a standard predicate abstraction approach, the number of predicates is
> icterms| Pl With this encoding, they shrink to » ,c,....[[log2(|P| + 1)[].
Moreover, this enables a more efficient predicate abstraction computation: given
we know each formula in part(P;) is mutually exclusive, we can consider each
formula separately. Then, for each ¢ instead of performing 22%17t satisfiability
checks we just need (|P;|+ 1)2, giving a polynomial time complexity in terms
of predicates, ([T,csepms(|P| + 1))?, instead of the exponential 22X s terms Pt |
The complexity of synthesis improves very significantly in terms of predicates,
to 21Trewermd P21+ instead of 227",

GFline = (GFtg) V (t < ¢)

GFlge = (GFli) V't < ¢

St <) At < ¢ 2t <cp) ANt <c,
o———O o—=0
t<c —\(t < Cn)
\ T T T T \
-00 Co Cq Cn—1 Cn o0

Fig. 4. Partitions for binary encoding.

Note that, to get the full view of time complexity for both abstraction and
synthesis, the complexity described must be respectively multiplied by |dom(8)|x

2Bl and 22" , where B is the set of Boolean propositions in the concrete problem.

As an optimisation, if both terms ¢ and —t are part of the abstraction, we
transform predicates over —t to predicates over t: —t < ¢ becomes t > —¢, which
becomes —(t < —c¢). We note the approach described applies to both LIA and
LRA, and might have applications beyond our approach.

Acceleration. The partitioning optimises the encoding of predicates extracted
from the problem and learned from safety refinements. Moreover, it allows to
identify liveness properties relevant to the infinite-state arena.

Consider that an abstract execution is within the leftmost partition, e.g.,
within ¢ < 0. An increment in ¢ in the arena leads to an environment choice in
the abstraction of whether to stay within ¢ < 0 or move to the next partition.
Suppose the controller can repeatedly increment ¢ with a value bounded from 0.

In the abstraction, the environment can still force an abstract execution
satisfying ¢ < 0 forever. The same is true for every partition, unless its size is
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smaller than the increment, e.g., a partition with one element. This abstract
behaviour is not concretisable. That is, for every concrete value of ¢ and every c,
after a finite number of increments bounded from 0, the predicate ¢ > ¢ becomes
false. Similarly for any other partition. The dual is true for decrements. We note
that in LIA, every increment or decrement is bounded from O.

We encode this fact using fairness assumptions that rely on detecting
increases and decreases of a term’s value with transition predicates. If for a
term ¢ we identify that all changes of ¢t in A are at least ¢, we define the tran-
sition predicates tine = tprev < t — € and tgee = t < tprew — €, refining the
abstraction by a memory of when transitions increase or decrease the value of ¢.
Notice that as changes to t are at least €, when both 4., and ¢;,. are false t does
not change. We then add the fairness assumptions: (GFtge.) = GF (tine V f1)
and (GFtin.) = GF(tgec V fr), where fi (fr) is t’s left-(right-)most partitions.

The first (second) assumption enforces every abstract execution where ¢
strictly decreases (increases) and does not increase (decrease), to make progress
towards the left-(right-)most partition. Thus, the environment cannot block the
controller from exiting a partition, if they can repeatedly force a bounded from 0
decrease (increase) without increases (decreases). For each term, we can then
add these two corresponding fairness LTL assumptions to the abstraction. If the
left- and right-most partitions are updated during safety refinement, we update
the predicates inside these fairness assumptions with the new border partitions,
ensuring we only ever have at most two such assumptions per term. In our imple-
mentation for LIA ¢ = 1, and to optimise we leave out these assumptions if we
cannot identify increases or decreases bounded from 0 in the arena.

8 Evaluation

We implemented this approach in a tool* targeting discrete synthesis prob-
lems. State-of-the-art tools are used as sub-routines: Strix [26] (LTL synthesis),
nuXmv [7] (invariant checking), MathSAT [9] (interpolation and SMT checking),
and CPAchecker [6] (termination checking). As a further optimisation, the tool
performs also a binary encoding of the states variables of the arena, given they
are mutually exclusive.

We compare our tool against 5 tools from literature raboniel [22], temos [8],
rpgsolve [18], rpg-STeLA [34], and tsImt2rpg (+rpgsolve) [19]. We consider also
a purely lazy version of our tool, with acceleration turned off to evaluate its
utility. We do not compare against other tools fully outperformed by the rpg
tools [33,35], limited to safety/reachability [3,13,27], and another we could not
acquire [23]. All experiments ran on a Linux workstation equipped with 32 GiB of
memory and an Intel i7-5820K CPU, under a time limit of 20 min and a memory
limit of 16 GiB. We show cumulative synthesis times in Fig.5a for tools that
support synthesis, and cumulative realisability times for other tools compared
with our tools’ cumulative synthesis times in Fig. 5b.

* https://github.com/shaunazzopardi/sweap. An artifact for this paper is avail-
able [11].
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Fig. 5. Time comparison.

Benchmarks. We collect 80 LIA benchmarks from the literature. Most encode
practical problems, such as robotic mission control, job scheduling, sorting, or
data buffering. They are defined in TSL [14] or as deterministic games, and may
include arbitrary integers as input, which we equivalently encode with extra
steps that let the environment set variables to any finite value (see Sect.9). All
these benchmarks consist of problems encodable as deterministic Biichi games.
Some benchmarks [34] compose multiple such games together, for added dif-
ficulty. Following others, we ignore problems [8,14] that are trivial. We only
introduce one novel reachability game to these benchmarks, robot-tasks,” that
we crafted to highlight the limitations of previous approaches compared to our
own. Some of the problems from [34] are not available in TSL format. We test
those on neither raboniel nor temos but we expect they would both fail, as their
techniques are insufficient for Biichi goals (see Sect.9), and for tsImt2rpg we
simply consider the time taken by rpgsolve on the corresponding RPG problem.

Results (comparative evaluation).% Tt is clear from Fig.5a that the eager ver-
sion of our tool solves almost double more synthesis problems than the best
competitor, and faster. The lazy version is comparable to the best competitor.
For realisability, Fig. 5b shows our tool with acceleration scaling and performing
much better on synthesis than the other tools do on realisability. However, the
lazy version is outperformed by the rpg tools. Table 1a summarises the evalua-
tion; for each tool we report the number of solved problems (out of 81), the ones
it solved in the shortest time, and those no other tool was able to solve. Our
tool is the clear winner in each category. If we consider synthesis, even without
acceleration we are comparable to the state of the art: our tools solve 61 (eager)
and 31 (lazy) problems, while the best competitor tsimt2rpg solves 36. When

5 Appendix D.1 of [2] has more details about this new benchmark.
5 Appendix D.2 of [2] has additional experimental data, and an extended discussion.
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looking closely at the behaviour on the easiest instances (see Fig.6 in [2]), we
see that our tool has an initialization overhead of a few seconds while other tools
can solve simple problems in under 1s. However, our tool scales better. We also
ran our lazy tool without the binary encoding, and measured noticeably worse
performances: it times out on two more problems, and takes on average 10%
more time (see Fig.7 in [2]).

Table 1. Experimental results.

(b) LTL benchmarks.

Name U Time (s)
Sace | S
(a) Comparative evaluation of arbiter 2.77 1 4.90
Raboniel, Temos, RP Gsolve, arbiter-failure 2.04 |1.98
Tslmt2Rpg, Rpg-SteLa, and our
Synthesis tool, with and without elevator 2.53 |15.92
acceleration. infinite-race 1.98 | 4.38
Synthesis |Rab|TemRPG|T2R/(Sscc| S infinite-race-u o - -
solved 121 0 | 15 | 36 |61 |31 infinite-race-unequal-1| | 6.50 | —
best 5] 0|11 | 13 |43 |4 infinite-race-unequal-2 - -
unique 0] 0 1 |11 |27]0 reversible-lane-r 7.39 |17.53
Realisability |[RPG|RStT2R|Sqcc| S reversible-lane-u ¢ 18.70|4.54
solved 37 |31] 54 |61 31 rep-reach-obst-1d 2.47 1 9.04
best 2110|1337 |7 rep-reach-obst-2d 3.85(38.51
unique 0 [0|11 9|0 rep-reach-obst-6d - -
robot-collect-v4 16.51 —
taxi-service 39.26/68.02
taxi-service-u e 4.14 13.50

Evaluation on Novel LTL Benchmarks. We contribute 15 benchmarks with LTL
objectives unencodable as deterministic Biichi objectives, i.e., they are theoret-
ically out of scope for other tools. For sanity checking we attempted them on
the other tools and validated their inability to decide these problems. We do not
include them with the previous benchmarks to ensure a fairer evaluation. Three
of these benchmarks could be solved by other tools if infinite-range inputs are
used (arbiter, infinite-race, and infinite-race-u), but they fail since incrementing
and decrementing requires environment fairness constraints.

These benchmarks involve control of cyber-physical systems such as the eleva-
tor from Fig. 2, variations thereof, a reversible traffic lane, and robotic missions,
some of which are extensions of literature benchmarks. They also include strong
fairness and/or let the environment delay progress for the controller.” Table 1b

" These benchmarks are also described in detail in Appendix D.1 of [2].
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reports how both configurations of our tool handle our novel benchmarks. Col-
umn U marks unrealisable problems. The lazy approach outperforms the eager
one on just 3 benchmarks out of 15. On 11 problems, acceleration enriches the
first abstraction enough to lead immediately to a verdict. We note that solving
infinite-race-unequal-1 requires structural refinement, as it allows infinite amount
of increments and decrements, but of unequal value, while for literature bench-
marks acceleration is enough.

Fuailure Analysis. Lastly, we discuss four limitations in our approach exposed
by our experiments. Section 9 contains more detail on when and why the other
tools fail. The first is inherent to synthesis: the Boolean synthesis problem may
become big enough to exceed machine resources. A bespoke finite-state synthesis
procedure could mitigate this, by relying on the underlying parity game rather
than creating fresh problems.

The second is that some unrealisable problems admit no finite counterstrate-
gies in our setting. robot-repair, which no tool solves, is the only such exam-
ple from literature (we also designed infinite-race-u to be of this kind). Briefly,
this involves two stages: a losing loop for which the controller controls exit and
(after the loop) a state wherein the goal is unreachable. The environment can-
not universally quantify over all predicates (since it controls them), hence no
finite counterstrategy exists. But if we construct the dual problem, by swapping
objectives between the environment and controller, we do find a strategy for the
original environment goal. We are working on automating this dualisation.

The third is that our requirements for when to apply structural refinement
may be too strong, and thus some loops go undiscovered. Instead of looking for
loops solely in the counterexample prefix, one may instead consider the strongly
connected components of the counterstrategy.

Lastly, there are pathological counterexamples, irrelevant to the problem,
that involve the controller causing an incompatibility by going to a partition
and the environment not being able to determine exactly when dec/increments
should force an exit from this partition. This is the main cause of failure for our
lazy approach. Modifications to concretisability checking might avoid this issue.

9 Related Work

Before discussing related synthesis approaches, we note that Balaban, Pnueli,
and Zuck describe a similar CEGAR approach for infinite-state model check-
ing [4]. From counterexamples they discover ranking functions for terminating
loops, and encode their well-foundedness in the underlying fair discrete system,
similar to how we encode well-foundedness during acceleration. Our structural
refinement is instead more localised to specific loops. We may benefit from the
more general ranking abstraction, but it is often easier to prove termination of
loops through loop variants rather than ranking functions, which do not admit
the same encoding. Interestingly, their approach is relatively complete, i.e. given
the right ranking functions and state predicates the LTL property can be ver-
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ified. We cannot say the same about our approach, given, as mentioned in the

previous section, there are some unrealisable problems we cannot terminate on.
We discuss the exact differences between our setting and that of T'SL synthe-

sis [14] and RPG [18]. We then discuss infinite-state synthesis more generally.

TSL and RPG Compared to our Approach. We start by noting that, in the con-
text of linear integer arithmetic, for every possible synthesis problem in TSL or
RPG, we can effectively construct an equi-realisable problem in our setting (see
Appendix E.1 of [2] for the full details). In both TSL and RPG, variables are
partitioned between inputs and outputs. At each step of the game, the environ-
ment sets values for all inputs (so, choosing among potentially infinitely-many
or continuously-many candidate values in one step) and the controller responds
by choosing among a finite set of deterministic updates to its own variables.
The environment also initialises all variables. Dually, in our setting, players only
own Boolean variables and have only a finite set of choices. Then, infinite-range
variables are updated based on the joint choice. For all three, repeating single
interactions ad-infinitum leads to traces that are either checked to satisfy an
LTL formula (TSL and our setting) or to satisfy safety, reachability, or repeated
reachability w.r.t. certain locations in the arena/program (RPG). The restriction
to finite-range updates hinders the applicability of our approach to linear real
arithmetic, given the necessity of repeated uncountable choices there. However,
we expect the more novel parts of our approach (liveness refinements and accel-
eration) to still be applicable in this richer theory. Indeed, we define acceleration
in a way that it is also applicable for LRA in Sect. 7.

Infinite-state Arenas. Due to space restrictions, we refer to other work [13,18] for
a general overview of existing symbolic synthesis methods, and leave out infinite-
state methods restricted to decidable settings, such as pushdown games [37],
Petri-net games [15], or restrictions of FO-LTL such as those mentioned in the
introduction [30-32]. Such approaches tend to apply very different techniques.
We instead discuss methods that take on the undecidable setting, and how they
acquire/encode liveness information. We find three classes of such approaches:

Fizpoint Solving. These extend standard fixpoint approaches to symbolic game
solving. GENSYS-LTL [33] uses quantifier elimination to compute the control-
lable predecessor of a given set, terminating only if a finite number of steps is
sufficient. A similar approach limits itself to the GR(1) setting [23], showing its
efficiency also in the infinite setting. rpgsolve [18] takes this further by finding
so-called acceleration lemmas. It attempts to find linear ranking functions with
invariants to prove that loops in the game terminate, and thus it may find fix-
points that GENSYS-LTL cannot. This information is however only used in a
particular game region. In problems such as robot-tasks, this requires an infinite
number of accelerations, leading to divergence. The reliance on identifying one
location in a game where a ranking function decreases is also problematic when
the choice of where to exit a region is part of the game-playing, or when the rank-
ing needs to decrease differently based on the play’s history. The latter would
be required in order to scale their approach to objectives beyond Biichi and co-
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Biichi. The realisability solver rpg-STeLA tries to bypass the locality limitation by
using game templates to identify lemmas that can be used in multiple regions. It
does well on benchmarks that were designed for it in a compositional way, but in
many other cases, the extra work required to identify templates adds significant
overhead. For example, it causes divergence in robot-tasks. As a bridge between
program specifications in TSL and the rpg tools, tsimt2rpg [19] translates T'SL
specifications to RPG while adding semantic information about infinite-range
variables that allows it to simplify regions in games. As for rpg-STeLA the anal-
ysis of the semantic information often causes a time overhead. Crucial here is
the underlying solver, which often times out on quantifier elimination.

Abstraction. Other methods, including ours, attempt synthesis on an explicit
abstraction of the problem. A failure witness may be used to refine the
abstraction and make another attempt. Some of these methods target games
directly [1,20,36]; others work at the level of the specification [8,14,22]. Many of
these focus on refining states in the abstraction, a kind of safety refinement, as
in the case of the tool raboniel [22]. As far as we know, only temos [8] adds some
form of liveness information of the underlying infinite domain. It attempts to
construct an abstraction of an LTL (over theories) specification by adding consis-
tency invariants, and transitions. It also uses syntax-guided synthesis to generate
sequences of updates that force a certain state change. Interestingly, it can also
identify liveness constraints that abstract the effects in the limit of repeating an
update u, adding constraints of the form G(preA (uW post) = F'post). However,
it can only deal with one update of one variable at a time, and fails when the
environment can delay u. Moreover, it does not engage in a CEGAR-loop, giving
up if the first such abstraction is not realisable.

Constraint Solving. One may encode the synthesis problem into constrained Horn
clauses (CHC), and synthesise ranking functions to prove termination of parts
of a program. Consynth [5] solves general LTL and w-regular infinite-state games
with constraint solving. However, it needs a controller template: essentially a
partial solution to the problem. This may require synthesising ranking functions,
and (unlike our approach) makes unrealisability verdicts limited to the given
template and thus not generalisable. MuVal [35] can encode realisability checking
of LTL games as validity checking in a fixpoint logic that extends CHC. It also
requires encoding the automaton corresponding to the LTL formula directly in
the input formula, and discovers ranking functions based on templates to enforce
bounded unfolding of recursive calls. Contrastingly, we do not rely on templates
but can handle any argument for termination.

10 Conclusions

We have presented a specialised CEGAR approach for LTL synthesis beyond
the Boolean domain. In our evaluation our implementation significantly out-
performs other available synthesis tools, often synthesising a (counter-)strategy
before other tools finish checking for realisability. Key to this approach are live-
ness refinements, which forgo the need for a large or infinite number of safety
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refinements. We carefully designed our framework so it can encode spuriousness
checking of abstract counterstrategies as simple invariant checking, using loops
in counterexamples to find liveness refinements. Another main contribution is
the reduction of the complexity of predicate abstraction and synthesis by an
exponential, through a binary encoding of related predicates. This also allows
to identify well-foundedness constraints of the arena, which we encode in the
abstraction through LTL fairness requirements.

Future Work. We believe that symbolic approaches for LTL synthesis and syn-
thesis for LTL over structured arenas [12,17], could significantly benefit our
technique. In these, determinisation for LTL properties would have to be applied
only to the objective, and not to the arena abstraction. Tool support for these
is not yet mature or available. For one such tool [12], we sometimes observed
considerable speedup for realisability; however, it does not supply strategies.
Other directions include dealing with identified limitations (see Sect.8),
extending the tool beyond LIA, dealing with infinite inputs automatedly, and
applying other methods to manage the size of predicate abstractions, e.g., [21],
data-flow analysis, and implicit abstraction, and to make it more informative.
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