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Abstract. Recently, interest has increased in applying reactive synthe-
sis to richer-than-Boolean domains. A major (undecidable) challenge in 
this area is to establish when certain repeating behaviour terminates 
in a desired state when the number of steps is unbounded. Existing 
approaches struggle with this problem, or can handle at most deter-
ministic games with Büchi goals. This work goes beyond by contribut-
ing the first effectual approach to synthesis with full LTL objectives, 
based on Boolean abstractions that encode both safety and liveness prop-
erties of the underlying infinite arena. We take a CEGAR approach: 
attempting synthesis on the Boolean abstraction, checking spuriousness 
of abstract counterstrategies through invariant checking, and refining the 
abstraction based on counterexamples. We reduce the complexity, when 
restricted to predicates, of abstracting and synthesising by an exponen-
tial through an efficient binary encoding. This also allows us to eagerly 
identify useful fairness properties. Our discrete synthesis tool outper-
forms the state-of-the-art on linear integer arithmetic (LIA) benchmarks 
from literature, solving almost double as many syntesis problems as the 
current state-of-the-art. It also solves slightly more problems than the 
second-best realisability checker, in one-third of the time. We also intro-
duce benchmarks with richer objectives that other approaches cannot 
handle, and evaluate our tool on them. 

Keywords: Infinite-state synthesis · Liveness refinement · CEGAR 

1 Introduction 

Reactive synthesis provides a way to synthesise controllers that ensure satisfac-
tion of high-level Linear Temporal Logic (LTL) specifications, against uncon-
trolled environment behaviour. Classically, synthesis was suggested and applied 
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in the Boolean (or finite-range) variable setting [ 29]. Interest in the infinite-
range variable setting was soon to follow. Some of the milestones include the 
adaptation of the theory of CEGAR to infinite-state games [ 20] and the early 
adoption of SMT for symbolic representation of infinite-sized sets of game config-
urations [ 5]. However, in recent years, success of synthesis in the finite domain as 
well as maturity of SMT solvers has led to sharply growing interest in synthesis 
in the context of infinite-range variables, with several tools becoming available 
that tackle this problem. We highlight the two different (but related) approaches 
taken by the community: (a) application of infinite-state reactive synthesis from 
extensions of LTL where atoms include quantifier-free first-order formulas over 
infinite-range variables [ 8,14,22,23] and (b) direct applications to the solution 
of games with an infinite number of configurations [ 3,18,19,34]. Two notable 
examples of the two approaches from the last two years include: (a) the iden-
tification of a fragment of LTL with first-order atoms that allows for a decid-
able synthesis framework [ 30– 32] and (b) the introduction of so-called accelera-
tion lemmas [ 18,19,34] targeting the general undecidable infinite-state synthesis 
problem. The latter directly attacks a core issue of the problem’s undecidability: 
identify whether certain repeated behaviour can eventually force the interaction 
to a certain state. Thus, solving the (alternating) termination problem. 

Infinite-state reactive synthesis aims at producing a system that manipulates 
variables with infinite domains and reacts to input variables controlled by an 
adversarial environment. Given an LTL objective, the realisability problem is 
to determine whether a system may exist that enforces the objective. Then, the 
synthesis problem is to construct such a system, or a counterstrategy by which the 
environment may enforce the negation of the objective. While in the finite-state 
domain realisability and synthesis are tightly connected, this is not the case in the 
infinite-state domain and many approaches struggle to (practically) scale from 
realisability to synthesis. In this paper we focus on the more challenging synthesis 
problem, rather than mere realisability, to be able to construct implementations. 
Furthermore, our approach is tailored for the general – undecidable – case. 

As mentioned, a major challenge is the identification of repeated behaviour 
that forces reaching a given state. Most approaches rely on one of two basic 
techniques: either refine an abstraction based on a mismatch in the application 
of a transition between concrete and abstract representations, or compute a 
representation of the set of immediate successors/predecessors of a given set of 
states. Both have limited effectiveness due to the termination challenge. Indeed, 
in many interesting cases, such approaches attempt at enumerating paths of 
unbounded length. For example, this is what happens to approaches relying on 
refinement [ 14,22], which is sound but often cannot terminate. It follows that 
reasoning about the effect of repeated behaviour is crucial. 

We know of two attempts at such reasoning. temos [ 8] identifies single-action 
loops that terminate in a desired state, but cannot generalise to more challeng-
ing cases, e.g., where the environment may momentarily interrupt the loop, and 
moreover it cannot supply unrealisability verdicts. By contrast, rpgsolve [ 18] 
summarises terminating sub-games via acceleration lemmas to construct an
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argument for realisability, relying on quantifier elimination with uninterpreted 
functions. However, this approach is limited to at most deterministic Büchi 
objectives, and is practically more effective for realisability than for synthe-
sis due to the challenges of quantifier elimination. Its extension rpg-STeLA [ 34] 
attempts to identify acceleration lemmas that apply to multiple regions and thus 
solves games compositionally, but only supports realisability. 

Fig. 1. Workflow of our approach. 

In this paper we address the limitations described above, generalising infinite-
state reactive synthesis to more expressive objectives. In particular, we consider 
LTL objectives over infinite-state arenas, without imposing any limit on tempo-
ral nesting. Similar to others, our atoms may include quantifier-free first-order 
formulas. However, we do not restrict the LTL formulas. Furthermore, our app-
roach does not distinguish between realisability and synthesis, and can synthesise 
both controllers and counterstrategies. As shown in Fig. 1, our approach is based 
on CEGAR [ 21], heavily adapted for synthesis. Our main contributions are: 

1. An efficient binary encoding of predicates. This reduces complexity, in terms 
of predicates, of abstraction building/size from exponential to polynomial, 
and of finite synthesis over abstractions from doubly to singly exponential. 

2. A method to check counterstrategy concretisability through invariant check-
ing, that finds minimal counterexamples to concretisability. 

3. Two new kinds of liveness refinements: Structural refinement, which monitors 
for terminating concrete loops in the abstract system, and enforces eventual 
exit; and Ranking refinement that relies on the binary encoding, which ensures 
the well-foundedness of terms relevant to the game in the abstraction. 

4. An implementation of the above contributions for LIA problems. 
5. The most extensive experimental comparison of infinite-state LIA realisabil-

ity and synthesis tools in literature. This shows our tool substantially out-
performing all others, making it the new state-of-the-art. 

6. Separately, we enrich the dataset of existing benchmarks, which currently 
include at most weak fairness requirements, with a selection of problems 
incorporating strong fairness. 

For the reader’s convenience we present the approach informally in Sect. 3, 
before formalising it in detail (Sects. 4, 5, 6). Then we describe our techniques 
to improve its efficiency (Sect. 7), present and evaluate our tool (Sect. 8), and 
conclude while also discussing related and future work (Sects. 9–10). Given space 
constraints here, more technical details and information about the evaluation can 
be found in the extended version [ 2].



Full LTL Synthesis over Infinite-State Arenas 277

2 Background 

We use the following notation throughout: for sets . S and . T such that .S ⊆ T , we  
write .

∧∧
T S for .

∧
S ∧

∧
s∈T\S ¬s. We omit set . T when clear from the context. 

.B(S) is the set of Boolean combinations of a set . S of Boolean variables. 
Linear Temporal Logic, LTL(AP), is the language over a set of propositions 

.AP, defined as follows, 1 where .p ∈ AP: . φ def= tt | ff | p | ¬φ | φ ∧ φ | φ ∨ φ | Xφ |
φUφ. 

For .w ∈ (2AP)ω, we write .w |= φ or .w ∈ L(φ), when .w satisfies . φ. A  Moore 
machine is .C = 〈S, s0, Σin, Σout,→, out〉, where . S is the set of states, .s0 the 
initial state, .Σin the set of input events, .Σout the set of output events, . →:
S×2Σin 	→ S the complete deterministic transition function, and . out : S 	→ 2Σout

the labelling of each state with a set of output events. For .(s, I, s′) ∈→, where 
.out(s) = O we write .s I/O−−→ s′. 

A Mealy machine is .C = 〈S, s0, Σin, Σout,→〉, where . S, . s0, .Σin, and  . Σout

are as before and .→: S ×2Σin 	→ 2Σout ×S the complete deterministic transition 
function. For .(s, I,O, s′) ∈→ we write .s I/O−−→ s′. 

Unless mentioned explicitly, both Mealy and Moore machines can have an 
infinite number of states. A run of a machine .C is .r = s0, s1, . . . such that for 
every .i ≥ 0 we have .si

Ii/Oi−−−→ si+1 for some .Ii and . Oi. Run  . r produces the word 
.w = σ0, σ1, . . ., where .σi = Ii ∪ Oi. A machine .C produces the word .w if there 
is a run . r producing . w. Let  .L(C) denote the set of all words produced by . C. 
We cast our synthesis problem into the LTL reactive synthesis problem, which  
calls for finding a Mealy machine that satisfies a given specification over input 
and output variables . E and . C. 

Definition 1 (LTL Synthesis). A specification . φ over .E ∪ C is said to be 
realisable if and only if there is a Mealy machine . C, with input  .2E and output 
. 2C, such that for every .w ∈ L(C) we have .w |= φ. We call  .C a controller for . φ. 

A specification . φ is said to be unrealisable if there is a Moore machine .Cs, 
with input .2C and output . 2E, such that for every .w ∈ L(Cs) we have that .w |= ¬φ. 
We call .Cs a counterstrategy for . φ. 

The problem of synthesis is to construct . C or .Cs, exactly one of which exists. 

Note that the duality between the existence of a strategy and counterstrategy 
follows from the determinacy of turn-based two-player .ω-regular games [ 24]. We 
know that finite-state machines suffice for synthesis from LTL specifications [ 29]. 

To be able to represent infinite synthesis problems succinctly we consider 
formulas in a theory. A theory consists of a set of terms and predicates over these. 
Atomic terms are constant values (. C) or variables. Terms can be constructed with 
operators over other terms, with a fixed interpretation. The set .T (V ) denotes 
the terms of the theory, with free variables in . V . For .t ∈ T (V ), we write .tprev for 
the term where variables . v appearing in . t are replaced by fresh variables .vprev.

1 See [28] for the standard semantics. 
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Fig. 2. Elevator example. 

We use .ST (V ) to denote the set of state predicates, i.e., predicates over 
.T (V ), and  .T R(V ) to denote the set of transition predicates, i.e., predicates over 
.T (V ∪ Vprev), where .vprev ∈ Vprev iff .v ∈ V . Then, we denote by .Pr(V ) the set 
of all predicates .ST (V ) ∪ T R(V ). We also define the set of updates .U(V ) of a 
variable set . V . Each  .U ∈ U(V ) is a function .V 	→ T (V ). 

We define the set of valuations over a set of variables .V as .Val(V ) = V 	→ C, 
using .val ∈ Val(V ) for valuations. For a valuation .val ∈ Val(V ), we write .val |= s, 
for .s ∈ ST (V ) when .val is a model of . s. We write .t(val) for . t grounded on the 
valuation .val. Given valuations .val, val′ ∈ Val(V ), we write .(val, val′) |= t, for  
.t ∈ T R(V ), when .valprev ∪val′ is a model of . t, where .valprev(vprev) = val(v) and 
.dom(valprev) = Vprev. We say a formula (a Boolean combination of predicates) 
is satisfiable when there is a valuation that models it. To simplify presentation, 
we assume .val �|= t for any .val that does not give values to all the variables of . t. 

3 Informal Overview 

We give a simple instructive LIA example (Fig. 2) to illustrate our approach. 
Despite its simplicity, we stress that no other existing approach can solve it (see 
Sect. 8): since the environment can delay progress by the controller, the resulting 
objectives are too rich to be expressed by deterministic Büchi automata. 

On the right is an automaton representing a partial design for an elevator, our 
arena (see Sect. 4). A transition labelled .g 	→ U is taken when the guard . g holds 
and it performs the update . U . Unmentioned variables maintain their previous 
value. On the left, we identify input (. E) and output (. C) Boolean variables. 
When guards include these variables, the environment and controller’s moves 
can affect which transitions are possible and which one is taken. The updates 
determine how to change the values of other variables (. V), which could range over 
infinite domains. Thus, the updates of the variables in . V are determined by the 
interaction between the environment and the controller. The desired controller 
must have a strategy such that, for every possible choice of inputs, it will set 
the output variables so that the resulting computation satisfies a given LTL
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objective, encoded on the left as .(
∧

i Ai) =⇒ (
∧

j Gj). LTL formulas can 
include quantifier-free first-order formulas over infinite-domain variables (e.g., 
.floor = target). Notice that this objective includes environment fairness, making 
this synthesis problem impossible to encode as a deterministic Büchi game. 

In our elevator, at state .s0 the environment can set a target by controlling 
variables in . E to increase or decrease target. Once a target is set, the environment 
closes the elevator door (door open), and the arena transitions to . s1. At  . s1, the  
system can force the elevator to go up or down one floor, or remain at the same 
floor. This is not a useful elevator: it may never reach the target floor, and it may 
move with the door open. We desire to control it so that the target is reached 
infinitely often (G1), and the latter never occurs (G2). We also assume aspects 
of the elevator not in our control to behave as expected, i.e., that the door is 
not broken, and thus it opens and closes infinitely often (A1–2). 

Predicate Abstraction (Definition 5) First, we soundly abstract the arena . A
in terms of the predicates in the specification .(A1 ∧ A2) =⇒ (G1 ∧ G2), and  
the predicates, and Boolean variables of the arena (here, the states in the 
automaton). That is, 2 .Pr = {floor ≤ target, target ≤ floor, s0, s1}. This abstrac-
tion considers all possible combinations of input and output variables and .Pr, 
and gives a set of possible predicates holding in the next state (according 
to the corresponding updates). For example, consider the propositional state 
.p = s1 ∧ up ∧ ¬down ∧ floor < target. In the automaton, this activates the 
transition that increments floor. Then, satisfiability checking tells us that the 
successor state is either .p′

1 := s1 ∧ floor = target or .p′
2 := s1 ∧ floor < target. 

We encode the arena abstraction as an LTL formula .α(A,Pr) of the form 
.init ∧G(

∨
a∈abtrans a), where .abtrans is a set of abstract transitions (e.g., . p∧Xp′

1

and .p ∧ Xp′
2 are in .abtrans), and .init is the initial state, i.e., .s0 ∧ floor=target . 

Abstract Synthesis. From this sound abstraction, we create the abstract formula 
.α(A,Pr) =⇒ φ and treat predicates as fresh input Booleans. If this formula 
were realisable, a controller for it would also work concretely, but it is not: at 
the abstract state . p, the environment can always force negation of .floor = target. 

Counterstrategy Concretisability (Definition 6). For an unrealisable abstract 
problem we will find an abstract counterstrategy.Cs. To check whether it is spu-
rious, we model-check if .A composed with .Cs violates the invariant that the 
predicate guesses of .Cs are correct in the arena. Here, .Cs admits a finite coun-
terexample .ce where the environment initially increments target, then moves to 
. s1, and the controller increments floor, but .Cs wrongly maintains .floor < target. 

Safety Refinement (Sect. 6.1). By applying interpolation [ 25] on  .ce we discover 
new predicates, e.g., .target − floor ≤ 1, by which we refine the abstraction to 
exclude . ce. If we were to continue using safety refinement, we would be attempt-
ing to enumerate the whole space, which causes a state-space explosion, given 
the exponential complexity of predicate abstraction, and the doubly exponential 
complexity of synthesis.

2 LIA predicates are normalised to a form using only . ≤; other relations are macros. 
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Efficient Encoding (Sect. 7). We manage state-space explosion through a binary 
encoding of predicates. Note each predicate on a term corresponds to an inter-
val on the reals. For the term .t = floor − target, .floor ≤ target represents 
.t ∈ (−∞, 0]. .target ≤ floor represents .t ∈ [0,∞), and  .floor − target ≤ 1 rep-
resents .t ∈ (−∞, 1]. These may overlap, but instead we can define formulas 
whose intervals partition the line . R. Here, we get formulas for each interval: 
.(−∞,−1], (−1, 0], (0, 1], (1,∞). Binary-encoding these reduces the complexity 
of abstraction and synthesis by an exponential, w.r.t. arithmetic predicates. 
Liveness Refinements (Sect. 6.2). Enumeration is not enough here, given the 
infinite domain of the variables. Liveness refinements are necessary. Note, once 
.Cs guesses that .floor < target , it remains in states where .floor < target is true. 
Essentially, we discover a .ce in which .Cs exercises the loop while(floor . ¡ target) 
floor := floor + 1, and the environment believes it is non-terminating. Using 
known methods to determine the loop is terminating, we construct a monitor 
for the loop in the abstraction, with extra variables and assumptions. Then a 
strong fairness constraint that forces the abstraction to eventually exit the loop 
monitor captures its termination. We term this structural loop refinement. Note 
that this is not tied to a specific region in the arena. This allows us to encode 
more sophisticated loops, beyond what current tools for LTL objectives can do. 

With a new synthesis attempt on the refined abstraction, a fresh terminating 
loop is learned, while (target . ¡ floor) floor := floor - 1. Refining accordingly allows 
us to find a controller and thus solve the problem on the next attempt. 
Acceleration (Sect. 7). The described partitions of the values of a term have a 
natural well-founded ordering which we can exploit to identify that the controller 
can force the abstraction to move left or right across the intervals. Consider that 
if the term . t is currently in the interval .(1,∞), and the controller can force 
strict decrements of . t, then the value of the . t must necessarily eventually move 
to an interval to the left (unless we have reached the left-most interval). Thus, 
strict decrements force the value of . t to move towards the left of the partition, 
while strict increments force move towards the right of the partition. Only when 
the environment can match these increments (decrements) with corresponding 
decrements (increments) then can this behaviour be prevented. 

By adding LTL fairness constraints to represent the described behaviour we 
can immediately identify a controller, with no further refinements needed. 

4 Synthesis Setting 

One of our contributions is our special setting that combines arenas and LTL 
objectives, unlike existing LTL approaches which start immediately from LTL-
modulo-theories formulas [ 8,14,22]. We assume a theory, with an associated set 
of predicates .Pr(V ) and updates .U(V ) over a set of variables . V . We also assume 
two disjoint sets of Boolean inputs and outputs . E and . C, respectively controlled 
by the environment and the controller. Then our specifications are LTL formulas 
over these variables, .φ ∈ LTL(E ∪ C ∪ Prφ), where .Prφ ⊆ Pr(V ). LTL  formu-
las talk about an arena whose state is captured by the value of . V , and which
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modifies its state depending on environment and controller behaviour. Arenas 
are deterministic; we model (demonic) non-determinism with additional environ-
ment variables. This allows us to encode concretisability checking as invariant 
checking, rather than the significantly more complex CTL. 

∗ model checking. 

Definition 2 (Arena). An arena .A over .V is a tuple .〈V, val0, δ〉, where  .V is 
a finite set of variables, .val0 ∈ Val(V ) is the initial valuation, and . δ : B(E ∪
C ∪ Pr(V )) 	→ U(V ) is a partial function with finite domain, such that for all 
.val ∈ Val(V ) and for every .E ⊆ E and .C ⊆ C there is always a single . f ∈ dom(δ)
such that .(val, E ∪ C) |= f . An arena is finite when every .v ∈ V is finite. 

Notice that due to the finite domain of . δ, an arena .A defines a finite set of 
predicates .Pr ⊆ Pr(V ) and a finite set of updates .U ⊆ U(V ) that appear in . δ. 
We use the sets .Pr and .U when clear from the context. 

An infinite concrete word .w ∈ (Val(V ) × 2E∪C)ω is a model of .A iff . w(0) =
(val0, E ∪ C) (for some .E and . C), and for every .i ≥ 0, .w(i) = (vali, Ei ∪ Ci), 
then for the unique .fi ∈ dom(δ) such that .(vali, Ei ∪ Ci) |= fi we have . vali+1 =
(δ(fi))(vali). We write .L(A) for the set of all models of . A. 

During our workflow, the words of our abstract synthesis problem may have 
a different domain than those of the arena. We define these as abstract words, 
and identify when they are concretisable in the arena. Then, we can define the 
meaning of (un)realisability modulo an arena in terms of concretisability. 

Definition 3 (Abstract Words and Concretisability). For a finite set of 
predicates .Pr ⊆ Pr(V ), and a set of Boolean variables . E′, such that .E ⊆ E

′, 
an abstract word . a is a word over .2E′∪C∪Pr. Abstract word . a abstracts concrete 
word . w, with letters from .Val(V )×2E∪C, when for every . i, if  .a(i) = Ei∪Ci∪Pri, 
then .w(i) = (vali, (Ei ∩ E) ∪ Ci) for some .Pri ⊆ Pr, .val0 |=

∧∧
Pr Pr0, and  for  

.i > 0 then .(vali−1, vali) |=
∧∧

Pr Pri. We write .γ(a) for the set of concrete words 
that . a abstracts. We say abstract word . a is concretisable in an arena .A when 
.L(A) ∩ γ(a) is non-empty. 

Definition 4 (Realisability modulo an Arena). A formula . φ in . LTL(E ∪
C ∪ Prφ) is said to be realisable modulo an arena . A, when there is a controller 
as a Mealy Machine .MM with input .Σin = 2E∪Prφ and output .Σout = 2C such 
that every abstract trace . t of MM that is concretisable in .A also satisfies . φ. 

A counterstrategy to the realisability of . φ modulo an arena .A is a Moore 
Machine Cs with output .Σout = 2E∪Prφ and input .Σin = 2C such that every 
abstract trace . t of Cs is concretisable in .A and violates . φ. 

5 Abstract to Concrete Synthesis 

We attack the presented synthesis problem through an abstraction-refinement 
loop. We soundly abstract the arena as an LTL formula that may include fresh 
predicates and inputs. We fix the set of predicates that appear in the objective 
. φ as .Prφ, and the set of predicates and inputs in the abstraction, respectively, 
as .Pr and . E′, always such that .Prφ ⊆ Pr and .E ⊆ E

′.
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Definition 5 (Abstraction). Formula .α(A,Pr) in .LTL(E′ ∪C∪Pr) abstracts 
arena .A if for every .w ∈ L(A) there is .a ∈ L(α(A,Pr)) such that .w ∈ γ(a). 

.α(A,Pr) is a standard predicate abstraction [ 16]. Given the lack of novelty, 
we refer to Appendix B.1 of [ 2] for the full details. Note, .α(A,Pr) can be non-
deterministic, unlike . A. Constructing it is essentially an ALLSAT problem: given 
a transition, we identify sets from .2Pr that can be true before the transition 
and, for each of these, sets of .2Pr that can hold after the transition. However, 
we construct these sets incrementally, adding predicates as we discover them; 
and improve on the space/time complexity with a binary encoding (Sect. 7). 

Given abstraction .α(A,Pr), we construct a corresponding sound LTL synthe-
sis problem, .α(A,Pr) =⇒ φ, giving the environment control of the predicates 
in .α(A,Pr). We get three possible outcomes from attempting synthesis of this: 
(1) it is realisable, and thus the concrete problem is realisable; (2) it is unreal-
isable and the counterstrategy is concretisable; or (3) the counterstrategy is not 
concretisable. We prove theorems and technical machinery essential to allow us 
to determine realisability (1) and unrealisability (2). In case (3) we refine the 
abstraction to make the counterstrategy unviable in the new abstract problem. 

Theorem 1 (Reduction to LTL Realisability). For . φ in . LTL(E∪C∪Prφ)
and an abstraction .α(A,Pr) of .A in .LTL(E′ ∪ C ∪ Pr), if  .α(A,Pr) =⇒ φ is 
realisable over inputs .E′ ∪ Pr and outputs . C, then . φ is realisable modulo . A. 

However, an abstract counterstrategy.Cs may contain unconcretisable traces, 
since abstractions are sound but not complete. To analyse .Cs for concretisability, 
we define a simulation relation between states of the concrete arena and states of 
.Cs, capturing whether each word of .Cs is concretisable. Recall, a set of predicates 
.Pr is the union of a set of state predicates, .ST (describing one state), and 
transition predicates, .TR (relating two states), which require different treatment. 

Definition 6 (Counterstrategy Concretisability). Consider a counter-
strategy as a Moore Machine .Cs = 〈S, s0, Σin, Σout,→, out〉, and an arena . A, 
where .Σin = 2C and .Σout = 2E

′∪Pr. 
Concretisability is defined through the simulation relation .�A ⊆ Val × S: 
For every valuation .val that is simulated by a state . s, .val �A s, where  . out(s) =
E ∪ ST ∪ TR, it holds that: 

1. the valuation satisfies the state predicates of . s: .val |=
∧∧

ST , and  
2. for every possible controller output .C ⊆ C: let  .valC = δ(val, (E ∩E)∪C), . sC

be s.t. .s C−→ sC , and  .TRC be the transition predicates in .out(sC), then 
(a) the transition predicates of .sC are satisfied by the transition . (val, valC) |=∧∧

TRC , and  
(b) the valuation after the transition simulates the .Cs state after the transi-

tion: .valC �A sC . 

Cs is concretisable w.r.t. .A when .val0 �A s0, for  . A’s initial valuation .val0.
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With concretisability defined, we then have a method to verify whether an 
abstract counterstrategy is also a concrete counterstrategy. 

Theorem 2 (Reduction to LTL Unrealisability). Given arena abstraction 
.α(A,Pr), if  .α(A,Pr) =⇒ φ is unrealisable with a counterstrategy Cs and Cs 
is concretisable w.r.t. . A, then . φ is unrealisable modulo . A. 

In practice, we encode counterstrategy concretisability as a model checking 
problem on the composition of the counterstrategy and the arena, with the 
required invariant that predicate values chosen by the counterstrategy hold on 
the arena. Conveniently, this also gives witnesses of unconcretisability as finite 
counterexamples (rather than infinite traces), which we use as the basis for 
refinement. Crucially, this depends on the choices of the environment/controller 
being finite, which also gives us semi-decidability of finding non-concretisability. 

Proposition 1. Counterstrategy concretisability is encodable as invariant 
checking, and terminates for finite problems and non-concretisable counterstrate-
gies. 

Proposition 2. A non concretisable counterstrategy induces a finite counterex-
ample .a0, . . . , ak ∈ (2E∪C∪Pr)∗ and concretisability fails locally only on . ak. 

Synthesis Semi-Algorithm. Alg. 1 shows our high-level approach. Taking an arena 
. A and an LTL  formula . φ, it maintains a set of predicates .Pr and an LTL  formula  
. ψ. When the abstract problem (in terms of .Pr) is realisable, a controller is 
returned (line 5); otherwise, if the counterstrategy is concretisable, it is returned 
(line 7). If the counterstrategy is not concretisable, we refine the abstraction to 
exclude it (line 8), and extend .Pr with the learned predicates, and . ψ with the 
new LTL constraints (line 9). Alg. 1 diverges unless it finds a (counter)strategy. 

Algorithm 1: Synthesis algorithm based on abstraction refinement. 
1 Function synthesise(A, φ): 
2 Pr, ψ := Prφ, true 
3 while true do 

4 φA 
α := (α(A, Pr) ∧ ψ) =⇒ φ 

5 if realisable(φA 
α , E ∪ Pr, C) then return (true, strategy(φA 

α , E ∪ Pr, C)) 
6 Cs := counter strategy(φA 

α , E ∪ Pr, C) 
7 if concretisable(φ, A, Cs) then return (false, Cs) 

8 Pr′, ψ′ := refinement(A, Cs) 

9 Pr, ψ := Pr ∪ Pr′, ψ  ∧ ψ′
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6 Refinement 

We now present the two refinements on which our iterative approach relies, based 
on an analysis of a discovered counterstrategy. These refinements soundly refine 
the abstraction with predicates and/or new LTL constraints such that similar 
counterexamples will not be re-encountered in the next iteration. 3

6.1 Safety Refinement 

Consider a counterstrategy Cs and a counterexample .ce = a0, a1, . . . , ak. The  
transition from .ak−1 to .ak induces a mismatch between the concrete arena 
state and Cs’s desired predicate state. It is well known that interpolation 
can determine sufficient state predicates to make Cs non-viable in the fresh 
abstract problem; we give a brief description for the reader’s convenience. Let 
.pi =

∧∧
Pr(ai ∩ Pr), with each variable . v replaced by a fresh variable . vi, and each 

variable .vprev by .vi−1. Similarly, let .gi and .ui be respectively the corresponding 
symbolic transition guard and update (i.e., .δ(gi) = ui), such that all updates 
.v := t are rewritten as .vi+1 = ti, where term .ti corresponds to . t with every 
variable . v replaced by . vi. 

In order to characterize the mismatch between the arena and its abstraction, 
we construct the following formulas. Let .f0 = val0 ∧ p0 ∧ g0 ∧ u0, where we 
abuse notation and refer to .val0 as a Boolean formula. For .1 ≤ i < k, let  . fi =
pi∧gi∧ui, while .fk = pk. Then .

∧k
i=0 fi is unsatisfiable. Following McMillan [ 25], 

we construct the corresponding set of sequence interpolants .I0, ..., Ik−1, where 
.f0 =⇒ I1, .∀1 ≤ i < k.Ii ∧ fi =⇒ Ii+1, .Ik−1 ∧ fk is unsatisfiable, as all 
the variables of .Ii are shared by both .fi−1 and . fi. From these we obtain a set 
of state predicates .I(ce) by removing the introduced indices in each . Ii. Adding 
.I(ce) to the abstraction refines it to make the counterstrategy unviable. 

6.2 Liveness Refinement 

Relying solely on safety refinement results in non-termination for interesting 
problems (e.g., Fig. 2). To overcome this limitation, we propose liveness refine-
ment. Our main insight is that if the counterexample exposes a spurious lasso in 
the counterstrategy, then we can encode its termination as a liveness property. 

Fig. 3. .ce loop. 

Lassos and Loops. A counterexample . ce = a0, . . . , ak

induces a lasso in Cs when it corresponds to a path 
.s0, . . . , sk in Cs, where .sk = sj for some .0 ≤ j < k. 
We focus on the last such . j. Here, for simplicity, we 
require that concretisation failed due to a wrong state 
predicate guess. We split the counterexample into two 
parts: a stem .a0, . . . , aj−1, and a loop .aj , . . . , ak−1. 
Let .gj 	→ Uj , . . . , gk−1 	→ Uk−1 be the corresponding 
applications of . δ and let .valj be the arena state at step . j.

3 We prove a progress theorem for each refinement in Appendix C of [ 2]. 
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The counterexample proves that the while-program in Fig. 3 terminates (in 
one iteration). To strengthen the refinement, we try to weaken the loop (e.g., 
expand the precondition) such that it still accepts the loop part of .ce while 
terminating. We formalise loops to be able to formalise this weakening. 

Definition 7 (Loops). A loop is a tuple .l = 〈V, pre, iter cond, body〉, where  . pre
and .iter cond are Boolean combinations of predicates over variables . V , and  . body
is a finite sequence of pairs .(gi, Ui), where  .gi ∈ Pr(V ) and .Ui ∈ U(V ). 

A finite/infinite sequence of valuations .vals = val0, val1, . . . is an execution 
of . l, .vals ∈ L(l), iff  .val0 |= pre, for all . i such that .0 ≤ i < |vals|, where  
.n = |body|, then .vali |= gi mod n, .vali+1 = Ui mod n(vali) and if .i mod n = 0 then 
.vali |= iter cond. We say  a loop is  terminating if all of its executions are finite. 
Definition 8 (Weakening). Loop .l1 = 〈V1, pre1, ic1, body1〉 is weaker than 
.l2 = 〈V2, pre2, ic2, body2〉 when: 1. .V1 ⊆ V2; 2.  .pre2 =⇒ pre1 and .ic2 =⇒ ic1; 
3. .|body1| = |body2|; 4. for  .w2 ∈ L(l2) there is .w1 ∈ L(l1) such that .w2 and . w1

agree on . V1. A weakening is proper if both .l1 and .l2 terminate. 

Heuristics. We attempt to find loop weakenings heuristically. In all cases we 
reduce .iter cond to focus on predicates in .ak that affect concretisability. We also 
remove variables from the domain of the loop that are not within the cone-of-
influence [ 10] of .iter cond. We then attempt two weaker pre-conditions: (1) true; 
and (2) the predicate state before the loop is entered in the ce. We check these two 
loops, in the order above, successively for termination (using an external tool). 
The first loop proved terminating (.l(ce)) is used as the basis of the refinements. 

Structural Loop Refinement. We present a refinement that monitors for execution 
of the loop and enforces its termination. 

We define some predicates useful to our definition. For each transition in the 
loop we define a formula that captures when it is triggered: . cond0

def= iter cond∧g0
and .condi

def= gi for all other . i. For each update . Ui, we define a conjunction 
of transition predicates that captures when it occurs: recall .Ui is of the form 
.v0 := t0, . . . , vj := tj , then we define .pi as .v0 = t0prev ∧ . . . ∧ vj = tjprev. This 
sets the value of variable .vk to the value of term .tk in the previous state. We 
further define a formula that captures the arena stuttering modulo the loop, 
.st

def=
∧

v∈Vl
v = vprev, where .Vl is the set of variables of the loop. A technical 

detail is that we require updates in the loop .l(ce) to not stutter, i.e., . U(val) �= val
for all .val. Any loop with stuttering can be reduced to one without, for the kinds 
of loops we consider. Thus, here .pi ∧ st is contradictory, for all . i. 

Definition 9 (Structural Loop Refinement). Let . l be a terminating loop, 
and .condi, . pi, and  .st (for .0 ≤ i < n) be as defined above. Assume fresh 
variables corresponding to each step in the loop .inloop0, . . . , inloopn−1, and  
.inloop = inloop0 ∨ . . . ∨ inloopn−1. 

The structural loop abstraction .αloop(A, l) is the conjunction of the following: 

1. Initially we are not in the loop, and we can never be in multiple loop steps 
at the same time: .¬inloop ∧

∧
i G(inloopi =⇒ ¬

∨
j 	=i(inloopj));
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2. The loop is entered when .pre holds and the first transition is executed: 
.G(¬inloop =⇒ ((pre ∧ cond0 ∧ X(p0)) ⇐⇒ X(inloop1))); 

3. At each step, while the step condition holds, the correct update causes the 
loop to step forward, stuttering leaves it in place, otherwise we exit: 

. 
∧

0≤i<n G

⎛

⎝(inloopi ∧ condi) =⇒ X

⎛

⎝
(pi =⇒ inloopi+1%n)∧
(st =⇒ inloopi)∧
(¬(st ∨ pi) ⇐⇒ ¬inloop)

⎞

⎠

⎞

⎠ ;

4. At each step, if the expected step condition does not hold, we exit: 
.
∧

0≤i<n G((inloopi ∧ ¬condi) =⇒ X¬inloop); and  
5. The loop always terminates, or stutters: .GF (¬inloop)∨

∨
i FG(sti∧inloopi). 

Note the fresh propositions (.inloopi) are controlled by the environment. The 
LTL formulas 1–4 monitor for the loop, exiting if a transition not in the loop 
occurs, and progressing or stuttering in the loop otherwise. LTL formula 5 
enforces that the loop is exited infinitely often, or that the execution stutters 
in the loop forever. This ensures that the abstract counterstrategy is no longer 
viable. 

7 Efficient Encoding and Acceleration 

The problem we tackle is undecidable, but we rely on decidable sub-routines of 
varying complexity: predicate abstraction (exponential in the number of pred-
icates) and finite synthesis (doubly exponential in the number of propositions, 
of which predicates are a subset). Here we present an efficient binary encoding 
of predicates of similar forms that (1) reduces the size of and the satisfiabil-
ity checks needed to compute the abstraction from exponential to polynomial, 
and (2) reduces complexity of abstract synthesis from doubly to singly exponen-
tial, when restricted to predicates. Moreover, this encoding allows us to identify 
fairness assumptions refining the abstraction, which significantly accelerate syn-
thesis. Computing this encoding only involves simple arithmetic, but we have 
not encountered previous uses of it in literature. 

We collect all the known predicates over the same term, giving a finite set 
of predicates .Pt = {t 
� c0, ..., t 
� cn}, where . t is a term only over variables, 
.
�∈ {<,≤} and each . ci is a value. W.l.g. we assume .t 
� ci =⇒ t 
� ci+1 for all . i. 
Thus, .t < c appears before any other predicate .t 
� c+α for .α ≥ 0. For simplicity, 
let us assume that . t is a single variable. To enable a binary representation we find 
disjoint intervals representing the same constraints on variable values. Namely, 
replace the predicates in .Pt with (1) .t 
� c0, (2) for .0 < i ≤ n the predicate 
.¬(t 
� ci−1) ∧ t 
� ci, and finally, (3) .¬(t 
� cn). Effectively, forming a partition 
of the real line . R. 

Let .part(Pt) = {t 
� c0,¬(t 
� ci−1) ∧ t 
� ci,¬(t 
� cn) | 0 < i ≤ n}. We  
call the left- and right-most partitions the border partitions since they capture 
the left and right intervals to infinity. The other formulas define non-intersecting 
bounded intervals/partitions along . R. Figure 4 illustrates these partitions: this
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set of formulas covers the whole line, i.e. for each point .t = c, there is a formula . f
in .part(Pt) such that .(t = c) |= f . Further, note how each two distinct formulas 
.f1, f2 ∈ part(Pt) are mutually exclusive. Namely, .f1∧f2 ≡ ⊥. Given this mutual 
exclusivity, it is easy to construct a representation to reduce the number of 
binary variables in the predicate abstraction. The complexity of computing these 
partitions is only the complexity of sorting .Pt in ascending order based on values. 

In a standard predicate abstraction approach, the number of predicates is 
.
∑

t∈terms|Pt|. With this encoding, they shrink to .
∑

t∈terms�|log2(|Pt| + 1)|�. 
Moreover, this enables a more efficient predicate abstraction computation: given 
we know each formula in .part(Pt) is mutually exclusive, we can consider each 
formula separately. Then, for each . t instead of performing .22×|Pt| satisfiability 
checks we just need .(|Pt| + 1)2, giving a polynomial time complexity in terms 
of predicates, .(

∏
t∈terms(|Pt| + 1))2, instead of the exponential .22×∑

t∈terms|Pt|. 
The complexity of synthesis improves very significantly in terms of predicates, 
to .2

∏
t∈terms|Pt|+1, instead of .22

∑
t∈terms|Pt|

. 

Fig. 4. Partitions for binary encoding. 

Note that, to get the full view of time complexity for both abstraction and 
synthesis, the complexity described must be respectively multiplied by . |dom(δ)|×
2|B| and .22

|B|
, where . B is the set of Boolean propositions in the concrete problem. 

As an optimisation, if both terms . t and .−t are part of the abstraction, we 
transform predicates over .−t to predicates over . t: .−t ≤ c becomes .t ≥ −c, which  
becomes .¬(t < −c). We note the approach described applies to both LIA and 
LRA, and might have applications beyond our approach. 

Acceleration. The partitioning optimises the encoding of predicates extracted 
from the problem and learned from safety refinements. Moreover, it allows to 
identify liveness properties relevant to the infinite-state arena. 

Consider that an abstract execution is within the leftmost partition, e.g., 
within .t ≤ 0. An increment in . t in the arena leads to an environment choice in 
the abstraction of whether to stay within .t ≤ 0 or move to the next partition. 
Suppose the controller can repeatedly increment . t with a value bounded from . 0. 

In the abstraction, the environment can still force an abstract execution 
satisfying .t ≤ 0 forever. The same is true for every partition, unless its size is
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smaller than the increment, e.g., a partition with one element. This abstract 
behaviour is not concretisable. That is, for every concrete value of . t and every . c, 
after a finite number of increments bounded from . 0, the predicate .t 
� c becomes 
false. Similarly for any other partition. The dual is true for decrements. We note 
that in LIA, every increment or decrement is bounded from . 0. 

We encode this fact using fairness assumptions that rely on detecting 
increases and decreases of a term’s value with transition predicates. If for a 
term . t we identify that all changes of . t in .A are at least . ε, we define the tran-
sition predicates .tinc := tprev ≤ t − ε and .tdec := t ≤ tprev − ε, refining the 
abstraction by a memory of when transitions increase or decrease the value of . t. 
Notice that as changes to . t are at least . ε, when both .tdec and .tinc are false . t does 
not change. We then add the fairness assumptions: . (GFtdec) =⇒ GF (tinc ∨ fl)
and .(GFtinc) =⇒ GF (tdec ∨ fr), where .fl (. fr) is  . t’s left-(right-)most partitions. 

The first (second) assumption enforces every abstract execution where . t
strictly decreases (increases) and does not increase (decrease), to make progress 
towards the left-(right-)most partition. Thus, the environment cannot block the 
controller from exiting a partition, if they can repeatedly force a bounded from 0 
decrease (increase) without increases (decreases). For each term, we can then 
add these two corresponding fairness LTL assumptions to the abstraction. If the 
left- and right-most partitions are updated during safety refinement, we update 
the predicates inside these fairness assumptions with the new border partitions, 
ensuring we only ever have at most two such assumptions per term. In our imple-
mentation for LIA .ε = 1, and to optimise we leave out these assumptions if we 
cannot identify increases or decreases bounded from . 0 in the arena. 

8 Evaluation 

We implemented this approach in a tool 4 targeting discrete synthesis prob-
lems. State-of-the-art tools are used as sub-routines: Strix [ 26] (LTL synthesis), 
nuXmv [ 7] (invariant checking), MathSAT [ 9] (interpolation and SMT checking), 
and CPAchecker [ 6] (termination checking). As a further optimisation, the tool 
performs also a binary encoding of the states variables of the arena, given they 
are mutually exclusive. 

We compare our tool against 5 tools from literature raboniel [ 22], temos [ 8], 
rpgsolve [ 18], rpg-STeLA [ 34], and tslmt2rpg (+rpgsolve) [  19]. We consider also 
a purely lazy version of our tool, with acceleration turned off to evaluate its 
utility. We do not compare against other tools fully outperformed by the rpg 
tools [ 33,35], limited to safety/reachability [ 3,13,27], and another we could not 
acquire [ 23]. All experiments ran on a Linux workstation equipped with 32 GiB of 
memory and an Intel i7-5820K CPU, under a time limit of 20 min and a memory 
limit of 16 GiB. We show cumulative synthesis times in Fig. 5a for tools that 
support synthesis, and cumulative realisability times for other tools compared 
with our tools’ cumulative synthesis times in Fig. 5b.
4 https://github.com/shaunazzopardi/sweap. An artifact for this paper is avail-

able [11]. 

https://github.com/shaunazzopardi/sweap
https://github.com/shaunazzopardi/sweap
https://github.com/shaunazzopardi/sweap
https://github.com/shaunazzopardi/sweap
https://github.com/shaunazzopardi/sweap
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Fig. 5. Time comparison. 

Benchmarks. We collect 80 LIA benchmarks from the literature. Most encode 
practical problems, such as robotic mission control, job scheduling, sorting, or 
data buffering. They are defined in TSL [ 14] or as deterministic games, and may 
include arbitrary integers as input, which we equivalently encode with extra 
steps that let the environment set variables to any finite value (see Sect. 9). All 
these benchmarks consist of problems encodable as deterministic Büchi games. 
Some benchmarks [ 34] compose multiple such games together, for added dif-
ficulty. Following others, we ignore problems [ 8,14] that are trivial. We only 
introduce one novel reachability game to these benchmarks, robot-tasks, 5 that 
we crafted to highlight the limitations of previous approaches compared to our 
own. Some of the problems from [ 34] are not available in TSL format. We test 
those on neither raboniel nor temos but we expect they would both fail, as their 
techniques are insufficient for Büchi goals (see Sect. 9), and for tslmt2rpg we 
simply consider the time taken by rpgsolve on the corresponding RPG problem. 

Results (comparative evaluation). 6 It is clear from Fig. 5a that the eager ver-
sion of our tool solves almost double more synthesis problems than the best 
competitor, and faster. The lazy version is comparable to the best competitor. 
For realisability, Fig. 5b shows our tool with acceleration scaling and performing 
much better on synthesis than the other tools do on realisability. However, the 
lazy version is outperformed by the rpg tools. Table 1a summarises the evalua-
tion; for each tool we report the number of solved problems (out of 81), the ones 
it solved in the shortest time, and those no other tool was able to solve. Our 
tool is the clear winner in each category. If we consider synthesis, even without 
acceleration we are comparable to the state of the art: our tools solve 61 (eager) 
and 31 (lazy) problems, while the best competitor tslmt2rpg solves 36. When

5 Appendix D.1 of [ 2] has more details about this new benchmark. 
6 Appendix D.2 of [ 2] has additional experimental data, and an extended discussion. 
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looking closely at the behaviour on the easiest instances (see Fig. 6 in [ 2]), we 
see that our tool has an initialization overhead of a few seconds while other tools 
can solve simple problems in under 1 s. However, our tool scales better. We also 
ran our lazy tool without the binary encoding, and measured noticeably worse 
performances: it times out on two more problems, and takes on average 10% 
more time (see Fig. 7 in [ 2]). 

Table 1. Experimental results. 

(a) Comparative evaluation of 
Raboniel, Temos, RPGsolve, 
Tslmt2Rpg, Rpg-SteLa, and our 
Synthesis tool, with and without 
acceleration. 
Synthesis Rab Tem RPG T2R Sacc S 
solved 12 0 15 36 61 31 
best 5 0 11 13 43 4 
unique 0 0 1 11 27 0 
Realisability RPG RSt T2R Sacc S 
solved 37 31 54 61 31 
best 21 0 13 37 7 
unique 0 0 11 9 0 

(b) LTL benchmarks. 

Name U 
Time (s) 
Sacc S 

arbiter 2.77 4.90 
arbiter-failure 2.04 1.98 

elevator 2.53 15.92 
infinite-race 1.98 4.38 
infinite-race-u • – – 

infinite-race-unequal-1 6.50 – 
infinite-race-unequal-2 – – 

reversible-lane-r 7.39 17.53 
reversible-lane-u • 18.70 4.54 
rep-reach-obst-1d 2.47 9.04 
rep-reach-obst-2d 3.85 38.51 
rep-reach-obst-6d – – 
robot-collect-v4 16.51 – 
taxi-service 39.26 68.02 
taxi-service-u • 4.14 3.50 

Evaluation on Novel LTL Benchmarks. We contribute 15 benchmarks with LTL 
objectives unencodable as deterministic Büchi objectives, i.e., they are theoret-
ically out of scope for other tools. For sanity checking we attempted them on 
the other tools and validated their inability to decide these problems. We do not 
include them with the previous benchmarks to ensure a fairer evaluation. Three 
of these benchmarks could be solved by other tools if infinite-range inputs are 
used (arbiter, infinite-race, and  infinite-race-u), but they fail since incrementing 
and decrementing requires environment fairness constraints. 

These benchmarks involve control of cyber-physical systems such as the eleva-
tor from Fig. 2, variations thereof, a reversible traffic lane, and robotic missions, 
some of which are extensions of literature benchmarks. They also include strong 
fairness and/or let the environment delay progress for the controller. 7 Table 1b 
7 These benchmarks are also described in detail in Appendix D.1 of [ 2]. 
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reports how both configurations of our tool handle our novel benchmarks. Col-
umn U marks unrealisable problems. The lazy approach outperforms the eager 
one on just 3 benchmarks out of 15. On 11 problems, acceleration enriches the 
first abstraction enough to lead immediately to a verdict. We note that solving 
infinite-race-unequal-1 requires structural refinement, as it allows infinite amount 
of increments and decrements, but of unequal value, while for literature bench-
marks acceleration is enough. 

Failure Analysis. Lastly, we discuss four limitations in our approach exposed 
by our experiments. Section 9 contains more detail on when and why the other 
tools fail. The first is inherent to synthesis: the Boolean synthesis problem may 
become big enough to exceed machine resources. A bespoke finite-state synthesis 
procedure could mitigate this, by relying on the underlying parity game rather 
than creating fresh problems. 

The second is that some unrealisable problems admit no finite counterstrate-
gies in our setting. robot-repair, which no tool solves, is the only such exam-
ple from literature (we also designed infinite-race-u to be of this kind). Briefly, 
this involves two stages: a losing loop for which the controller controls exit and 
(after the loop) a state wherein the goal is unreachable. The environment can-
not universally quantify over all predicates (since it controls them), hence no 
finite counterstrategy exists. But if we construct the dual problem, by swapping 
objectives between the environment and controller, we do find a strategy for the 
original environment goal. We are working on automating this dualisation. 

The third is that our requirements for when to apply structural refinement 
may be too strong, and thus some loops go undiscovered. Instead of looking for 
loops solely in the counterexample prefix, one may instead consider the strongly 
connected components of the counterstrategy. 

Lastly, there are pathological counterexamples, irrelevant to the problem, 
that involve the controller causing an incompatibility by going to a partition 
and the environment not being able to determine exactly when dec/increments 
should force an exit from this partition. This is the main cause of failure for our 
lazy approach. Modifications to concretisability checking might avoid this issue. 

9 Related Work 

Before discussing related synthesis approaches, we note that Balaban, Pnueli, 
and Zuck describe a similar CEGAR approach for infinite-state model check-
ing [ 4]. From counterexamples they discover ranking functions for terminating 
loops, and encode their well-foundedness in the underlying fair discrete system, 
similar to how we encode well-foundedness during acceleration. Our structural 
refinement is instead more localised to specific loops. We may benefit from the 
more general ranking abstraction, but it is often easier to prove termination of 
loops through loop variants rather than ranking functions, which do not admit 
the same encoding. Interestingly, their approach is relatively complete, i.e. given 
the right ranking functions and state predicates the LTL property can be ver-
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ified. We cannot say the same about our approach, given, as mentioned in the 
previous section, there are some unrealisable problems we cannot terminate on. 

We discuss the exact differences between our setting and that of TSL synthe-
sis [ 14] and  RPG [  18]. We then discuss infinite-state synthesis more generally. 

TSL and RPG Compared to our Approach. We start by noting that, in the con-
text of linear integer arithmetic, for every possible synthesis problem in TSL or 
RPG, we can effectively construct an equi-realisable problem in our setting (see 
Appendix E.1 of [ 2] for the full details). In both TSL and RPG, variables are 
partitioned between inputs and outputs. At each step of the game, the environ-
ment sets values for all inputs (so, choosing among potentially infinitely-many 
or continuously-many candidate values in one step) and the controller responds 
by choosing among a finite set of deterministic updates to its own variables. 
The environment also initialises all variables. Dually, in our setting, players only 
own Boolean variables and have only a finite set of choices. Then, infinite-range 
variables are updated based on the joint choice. For all three, repeating single 
interactions ad-infinitum leads to traces that are either checked to satisfy an 
LTL formula (TSL and our setting) or to satisfy safety, reachability, or repeated 
reachability w.r.t. certain locations in the arena/program (RPG). The restriction 
to finite-range updates hinders the applicability of our approach to linear real 
arithmetic, given the necessity of repeated uncountable choices there. However, 
we expect the more novel parts of our approach (liveness refinements and accel-
eration) to still be applicable in this richer theory. Indeed, we define acceleration 
in a way that it is also applicable for LRA in Sect. 7. 

Infinite-state Arenas. Due to space restrictions, we refer to other work [ 13,18] for  
a general overview of existing symbolic synthesis methods, and leave out infinite-
state methods restricted to decidable settings, such as pushdown games [ 37], 
Petri-net games [ 15], or restrictions of FO-LTL such as those mentioned in the 
introduction [ 30– 32]. Such approaches tend to apply very different techniques. 
We instead discuss methods that take on the undecidable setting, and how they 
acquire/encode liveness information. We find three classes of such approaches: 

Fixpoint Solving. These extend standard fixpoint approaches to symbolic game 
solving. GenSys-LTL [ 33] uses quantifier elimination to compute the control-
lable predecessor of a given set, terminating only if a finite number of steps is 
sufficient. A similar approach limits itself to the GR(1) setting [ 23], showing its 
efficiency also in the infinite setting. rpgsolve [ 18] takes this further by finding 
so-called acceleration lemmas. It attempts to find linear ranking functions with 
invariants to prove that loops in the game terminate, and thus it may find fix-
points that GenSys-LTL cannot. This information is however only used in a 
particular game region. In problems such as robot-tasks, this requires an infinite 
number of accelerations, leading to divergence. The reliance on identifying one 
location in a game where a ranking function decreases is also problematic when 
the choice of where to exit a region is part of the game-playing, or when the rank-
ing needs to decrease differently based on the play’s history. The latter would 
be required in order to scale their approach to objectives beyond Büchi and co-
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Büchi. The realisability solver rpg-STeLA tries to bypass the locality limitation by 
using game templates to identify lemmas that can be used in multiple regions. It 
does well on benchmarks that were designed for it in a compositional way, but in 
many other cases, the extra work required to identify templates adds significant 
overhead. For example, it causes divergence in robot-tasks. As a bridge between 
program specifications in TSL and the rpg tools, tslmt2rpg [ 19] translates TSL 
specifications to RPG while adding semantic information about infinite-range 
variables that allows it to simplify regions in games. As for rpg-STeLA the anal-
ysis of the semantic information often causes a time overhead. Crucial here is 
the underlying solver, which often times out on quantifier elimination. 
Abstraction. Other methods, including ours, attempt synthesis on an explicit 
abstraction of the problem. A failure witness may be used to refine the 
abstraction and make another attempt. Some of these methods target games 
directly [ 1,20,36]; others work at the level of the specification [ 8,14,22]. Many of 
these focus on refining states in the abstraction, a kind of safety refinement, as 
in the case of the tool raboniel [ 22]. As far as we know, only temos [ 8] adds some 
form of liveness information of the underlying infinite domain. It attempts to 
construct an abstraction of an LTL (over theories) specification by adding consis-
tency invariants, and transitions. It also uses syntax-guided synthesis to generate 
sequences of updates that force a certain state change. Interestingly, it can also 
identify liveness constraints that abstract the effects in the limit of repeating an 
update . u, adding constraints of the form .G(pre∧(uW post) =⇒ F post). However, 
it can only deal with one update of one variable at a time, and fails when the 
environment can delay . u. Moreover, it does not engage in a CEGAR-loop, giving 
up if the first such abstraction is not realisable. 
Constraint Solving. One may encode the synthesis problem into constrained Horn 
clauses (CHC), and synthesise ranking functions to prove termination of parts 
of a program. Consynth [ 5] solves general LTL and .ω-regular infinite-state games 
with constraint solving. However, it needs a controller template: essentially a 
partial solution to the problem. This may require synthesising ranking functions, 
and (unlike our approach) makes unrealisability verdicts limited to the given 
template and thus not generalisable. MuVal [ 35] can encode realisability checking 
of LTL games as validity checking in a fixpoint logic that extends CHC. It also 
requires encoding the automaton corresponding to the LTL formula directly in 
the input formula, and discovers ranking functions based on templates to enforce 
bounded unfolding of recursive calls. Contrastingly, we do not rely on templates 
but can handle any argument for termination. 

10 Conclusions 

We have presented a specialised CEGAR approach for LTL synthesis beyond 
the Boolean domain. In our evaluation our implementation significantly out-
performs other available synthesis tools, often synthesising a (counter-)strategy 
before other tools finish checking for realisability. Key to this approach are live-
ness refinements, which forgo the need for a large or infinite number of safety 
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refinements. We carefully designed our framework so it can encode spuriousness 
checking of abstract counterstrategies as simple invariant checking, using loops 
in counterexamples to find liveness refinements. Another main contribution is 
the reduction of the complexity of predicate abstraction and synthesis by an 
exponential, through a binary encoding of related predicates. This also allows 
to identify well-foundedness constraints of the arena, which we encode in the 
abstraction through LTL fairness requirements. 

Future Work. We believe that symbolic approaches for LTL synthesis and syn-
thesis for LTL over structured arenas [ 12,17], could significantly benefit our 
technique. In these, determinisation for LTL properties would have to be applied 
only to the objective, and not to the arena abstraction. Tool support for these 
is not yet mature or available. For one such tool [ 12], we sometimes observed 
considerable speedup for realisability; however, it does not supply strategies. 

Other directions include dealing with identified limitations (see Sect. 8), 
extending the tool beyond LIA, dealing with infinite inputs automatedly, and 
applying other methods to manage the size of predicate abstractions, e.g., [ 21], 
data-flow analysis, and implicit abstraction, and to make it more informative. 
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