
Full LTL Synthesis over Infinite-State Arenas

Downloaded from: https://research.chalmers.se, 2025-10-17 16:31 UTC

Citation for the original published paper (version of record):
Azzopardi, S., Di Stefano, L., Piterman, N. et al (2025). Full LTL Synthesis over Infinite-State
Arenas. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 15934 LNCS: 274-297.
http://dx.doi.org/10.1007/978-3-031-98685-7_13

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Full LTL Synthesis over Infinite-State
Arenas

Shaun Azzopardi3(B) , Luca Di Stefano2 , Nir Piterman1 ,
and Gerardo Schneider1

1 University of Gothenburg and Chalmers University
of Technology, Gothenburg, Sweden

2 TU Wien, Institute of Computer Engineering,
Treitlstraße 3, 1040 Vienna, Austria

3 Dedaub, San Gwann, Malta
shaun.a@dedaub.com

Abstract. Recently, interest has increased in applying reactive synthe-
sis to richer-than-Boolean domains. A major (undecidable) challenge in
this area is to establish when certain repeating behaviour terminates
in a desired state when the number of steps is unbounded. Existing
approaches struggle with this problem, or can handle at most deter-
ministic games with Büchi goals. This work goes beyond by contribut-
ing the first effectual approach to synthesis with full LTL objectives,
based on Boolean abstractions that encode both safety and liveness prop-
erties of the underlying infinite arena. We take a CEGAR approach:
attempting synthesis on the Boolean abstraction, checking spuriousness
of abstract counterstrategies through invariant checking, and refining the
abstraction based on counterexamples. We reduce the complexity, when
restricted to predicates, of abstracting and synthesising by an exponen-
tial through an efficient binary encoding. This also allows us to eagerly
identify useful fairness properties. Our discrete synthesis tool outper-
forms the state-of-the-art on linear integer arithmetic (LIA) benchmarks
from literature, solving almost double as many syntesis problems as the
current state-of-the-art. It also solves slightly more problems than the
second-best realisability checker, in one-third of the time. We also intro-
duce benchmarks with richer objectives that other approaches cannot
handle, and evaluate our tool on them.

Keywords: Infinite-state synthesis · Liveness refinement · CEGAR

1 Introduction

Reactive synthesis provides a way to synthesise controllers that ensure satisfac-
tion of high-level Linear Temporal Logic (LTL) specifications, against uncon-
trolled environment behaviour. Classically, synthesis was suggested and applied

This work is funded by the ERC consolidator grant D-SynMA (No. 772459) and the
Swedish research council project (No. 2020-04963).
c© The Author(s) 2025
R. Piskac and Z. Rakamarić (Eds.): CAV 2025, LNCS 15934, pp. 274–297, 2025.
https://doi.org/10.1007/978-3-031-98685-7_13

https://doi.org/10.5281/zenodo.15129663
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-98685-7_13&domain=pdf
http://orcid.org/0000-0002-2165-3698
http://orcid.org/0000-0003-1922-3151
http://orcid.org/0000-0002-8242-5357
http://orcid.org/0000-0003-0629-6853
https://doi.org/10.1007/978-3-031-98685-7_13

Full LTL Synthesis over Infinite-State Arenas 275

in the Boolean (or finite-range) variable setting [29]. Interest in the infinite-
range variable setting was soon to follow. Some of the milestones include the
adaptation of the theory of CEGAR to infinite-state games [20] and the early
adoption of SMT for symbolic representation of infinite-sized sets of game config-
urations [5]. However, in recent years, success of synthesis in the finite domain as
well as maturity of SMT solvers has led to sharply growing interest in synthesis
in the context of infinite-range variables, with several tools becoming available
that tackle this problem. We highlight the two different (but related) approaches
taken by the community: (a) application of infinite-state reactive synthesis from
extensions of LTL where atoms include quantifier-free first-order formulas over
infinite-range variables [8,14,22,23] and (b) direct applications to the solution
of games with an infinite number of configurations [3,18,19,34]. Two notable
examples of the two approaches from the last two years include: (a) the iden-
tification of a fragment of LTL with first-order atoms that allows for a decid-
able synthesis framework [30– 32] and (b) the introduction of so-called accelera-
tion lemmas [18,19,34] targeting the general undecidable infinite-state synthesis
problem. The latter directly attacks a core issue of the problem’s undecidability:
identify whether certain repeated behaviour can eventually force the interaction
to a certain state. Thus, solving the (alternating) termination problem.

Infinite-state reactive synthesis aims at producing a system that manipulates
variables with infinite domains and reacts to input variables controlled by an
adversarial environment. Given an LTL objective, the realisability problem is
to determine whether a system may exist that enforces the objective. Then, the
synthesis problem is to construct such a system, or a counterstrategy by which the
environment may enforce the negation of the objective. While in the finite-state
domain realisability and synthesis are tightly connected, this is not the case in the
infinite-state domain and many approaches struggle to (practically) scale from
realisability to synthesis. In this paper we focus on the more challenging synthesis
problem, rather than mere realisability, to be able to construct implementations.
Furthermore, our approach is tailored for the general – undecidable – case.

As mentioned, a major challenge is the identification of repeated behaviour
that forces reaching a given state. Most approaches rely on one of two basic
techniques: either refine an abstraction based on a mismatch in the application
of a transition between concrete and abstract representations, or compute a
representation of the set of immediate successors/predecessors of a given set of
states. Both have limited effectiveness due to the termination challenge. Indeed,
in many interesting cases, such approaches attempt at enumerating paths of
unbounded length. For example, this is what happens to approaches relying on
refinement [14,22], which is sound but often cannot terminate. It follows that
reasoning about the effect of repeated behaviour is crucial.

We know of two attempts at such reasoning. temos [8] identifies single-action
loops that terminate in a desired state, but cannot generalise to more challeng-
ing cases, e.g., where the environment may momentarily interrupt the loop, and
moreover it cannot supply unrealisability verdicts. By contrast, rpgsolve [18]
summarises terminating sub-games via acceleration lemmas to construct an

276 S. Azzopardi et al.

argument for realisability, relying on quantifier elimination with uninterpreted
functions. However, this approach is limited to at most deterministic Büchi
objectives, and is practically more effective for realisability than for synthe-
sis due to the challenges of quantifier elimination. Its extension rpg-STeLA [34]
attempts to identify acceleration lemmas that apply to multiple regions and thus
solves games compositionally, but only supports realisability.

Fig. 1. Workflow of our approach.

In this paper we address the limitations described above, generalising infinite-
state reactive synthesis to more expressive objectives. In particular, we consider
LTL objectives over infinite-state arenas, without imposing any limit on tempo-
ral nesting. Similar to others, our atoms may include quantifier-free first-order
formulas. However, we do not restrict the LTL formulas. Furthermore, our app-
roach does not distinguish between realisability and synthesis, and can synthesise
both controllers and counterstrategies. As shown in Fig. 1, our approach is based
on CEGAR [21], heavily adapted for synthesis. Our main contributions are:

1. An efficient binary encoding of predicates. This reduces complexity, in terms
of predicates, of abstraction building/size from exponential to polynomial,
and of finite synthesis over abstractions from doubly to singly exponential.

2. A method to check counterstrategy concretisability through invariant check-
ing, that finds minimal counterexamples to concretisability.

3. Two new kinds of liveness refinements: Structural refinement, which monitors
for terminating concrete loops in the abstract system, and enforces eventual
exit; and Ranking refinement that relies on the binary encoding, which ensures
the well-foundedness of terms relevant to the game in the abstraction.

4. An implementation of the above contributions for LIA problems.
5. The most extensive experimental comparison of infinite-state LIA realisabil-

ity and synthesis tools in literature. This shows our tool substantially out-
performing all others, making it the new state-of-the-art.

6. Separately, we enrich the dataset of existing benchmarks, which currently
include at most weak fairness requirements, with a selection of problems
incorporating strong fairness.

For the reader’s convenience we present the approach informally in Sect. 3,
before formalising it in detail (Sects. 4, 5, 6). Then we describe our techniques
to improve its efficiency (Sect. 7), present and evaluate our tool (Sect. 8), and
conclude while also discussing related and future work (Sects. 9–10). Given space
constraints here, more technical details and information about the evaluation can
be found in the extended version [2].

Full LTL Synthesis over Infinite-State Arenas 277

2 Background

We use the following notation throughout: for sets . S and . T such that .S ⊆ T , we
write .

∧∧
T S for .

∧
S ∧

∧
s∈T\S ¬s. We omit set . T when clear from the context.

.B(S) is the set of Boolean combinations of a set . S of Boolean variables.
Linear Temporal Logic, LTL(AP), is the language over a set of propositions

.AP, defined as follows, 1 where .p ∈ AP: . φ def= tt | ff | p | ¬φ | φ ∧ φ | φ ∨ φ | Xφ |
φUφ.

For .w ∈ (2AP)ω, we write .w |= φ or .w ∈ L(φ), when .w satisfies . φ. A Moore
machine is .C = 〈S, s0, Σin, Σout,→, out〉, where . S is the set of states, .s0 the
initial state, .Σin the set of input events, .Σout the set of output events, . →:
S×2Σin 	→ S the complete deterministic transition function, and . out : S 	→ 2Σout

the labelling of each state with a set of output events. For .(s, I, s′) ∈→, where
.out(s) = O we write .s I/O−−→ s′.

A Mealy machine is .C = 〈S, s0, Σin, Σout,→〉, where . S, . s0, .Σin, and . Σout

are as before and .→: S ×2Σin 	→ 2Σout ×S the complete deterministic transition
function. For .(s, I,O, s′) ∈→ we write .s I/O−−→ s′.

Unless mentioned explicitly, both Mealy and Moore machines can have an
infinite number of states. A run of a machine .C is .r = s0, s1, . . . such that for
every .i ≥ 0 we have .si

Ii/Oi−−−→ si+1 for some .Ii and . Oi. Run . r produces the word
.w = σ0, σ1, . . ., where .σi = Ii ∪ Oi. A machine .C produces the word .w if there
is a run . r producing . w. Let .L(C) denote the set of all words produced by . C.
We cast our synthesis problem into the LTL reactive synthesis problem, which
calls for finding a Mealy machine that satisfies a given specification over input
and output variables . E and . C.

Definition 1 (LTL Synthesis). A specification . φ over .E ∪ C is said to be
realisable if and only if there is a Mealy machine . C, with input .2E and output
. 2C, such that for every .w ∈ L(C) we have .w |= φ. We call .C a controller for . φ.

A specification . φ is said to be unrealisable if there is a Moore machine .Cs,
with input .2C and output . 2E, such that for every .w ∈ L(Cs) we have that .w |= ¬φ.
We call .Cs a counterstrategy for . φ.

The problem of synthesis is to construct . C or .Cs, exactly one of which exists.

Note that the duality between the existence of a strategy and counterstrategy
follows from the determinacy of turn-based two-player .ω-regular games [24]. We
know that finite-state machines suffice for synthesis from LTL specifications [29].

To be able to represent infinite synthesis problems succinctly we consider
formulas in a theory. A theory consists of a set of terms and predicates over these.
Atomic terms are constant values (. C) or variables. Terms can be constructed with
operators over other terms, with a fixed interpretation. The set .T (V) denotes
the terms of the theory, with free variables in . V . For .t ∈ T (V), we write .tprev for
the term where variables . v appearing in . t are replaced by fresh variables .vprev.

1 See [28] for the standard semantics.

278 S. Azzopardi et al.

Fig. 2. Elevator example.

We use .ST (V) to denote the set of state predicates, i.e., predicates over
.T (V), and .T R(V) to denote the set of transition predicates, i.e., predicates over
.T (V ∪ Vprev), where .vprev ∈ Vprev iff .v ∈ V . Then, we denote by .Pr(V) the set
of all predicates .ST (V) ∪ T R(V). We also define the set of updates .U(V) of a
variable set . V . Each .U ∈ U(V) is a function .V 	→ T (V).

We define the set of valuations over a set of variables .V as .Val(V) = V 	→ C,
using .val ∈ Val(V) for valuations. For a valuation .val ∈ Val(V), we write .val |= s,
for .s ∈ ST (V) when .val is a model of . s. We write .t(val) for . t grounded on the
valuation .val. Given valuations .val, val′ ∈ Val(V), we write .(val, val′) |= t, for
.t ∈ T R(V), when .valprev ∪val′ is a model of . t, where .valprev(vprev) = val(v) and
.dom(valprev) = Vprev. We say a formula (a Boolean combination of predicates)
is satisfiable when there is a valuation that models it. To simplify presentation,
we assume .val �|= t for any .val that does not give values to all the variables of . t.

3 Informal Overview

We give a simple instructive LIA example (Fig. 2) to illustrate our approach.
Despite its simplicity, we stress that no other existing approach can solve it (see
Sect. 8): since the environment can delay progress by the controller, the resulting
objectives are too rich to be expressed by deterministic Büchi automata.

On the right is an automaton representing a partial design for an elevator, our
arena (see Sect. 4). A transition labelled .g 	→ U is taken when the guard . g holds
and it performs the update . U . Unmentioned variables maintain their previous
value. On the left, we identify input (. E) and output (. C) Boolean variables.
When guards include these variables, the environment and controller’s moves
can affect which transitions are possible and which one is taken. The updates
determine how to change the values of other variables (. V), which could range over
infinite domains. Thus, the updates of the variables in . V are determined by the
interaction between the environment and the controller. The desired controller
must have a strategy such that, for every possible choice of inputs, it will set
the output variables so that the resulting computation satisfies a given LTL

Full LTL Synthesis over Infinite-State Arenas 279

objective, encoded on the left as .(
∧

i Ai) =⇒ (
∧

j Gj). LTL formulas can
include quantifier-free first-order formulas over infinite-domain variables (e.g.,
.floor = target). Notice that this objective includes environment fairness, making
this synthesis problem impossible to encode as a deterministic Büchi game.

In our elevator, at state .s0 the environment can set a target by controlling
variables in . E to increase or decrease target. Once a target is set, the environment
closes the elevator door (door open), and the arena transitions to . s1. At . s1, the
system can force the elevator to go up or down one floor, or remain at the same
floor. This is not a useful elevator: it may never reach the target floor, and it may
move with the door open. We desire to control it so that the target is reached
infinitely often (G1), and the latter never occurs (G2). We also assume aspects
of the elevator not in our control to behave as expected, i.e., that the door is
not broken, and thus it opens and closes infinitely often (A1–2).

Predicate Abstraction (Definition 5) First, we soundly abstract the arena . A
in terms of the predicates in the specification .(A1 ∧ A2) =⇒ (G1 ∧ G2), and
the predicates, and Boolean variables of the arena (here, the states in the
automaton). That is, 2 .Pr = {floor ≤ target, target ≤ floor, s0, s1}. This abstrac-
tion considers all possible combinations of input and output variables and .Pr,
and gives a set of possible predicates holding in the next state (according
to the corresponding updates). For example, consider the propositional state
.p = s1 ∧ up ∧ ¬down ∧ floor < target. In the automaton, this activates the
transition that increments floor. Then, satisfiability checking tells us that the
successor state is either .p′

1 := s1 ∧ floor = target or .p′
2 := s1 ∧ floor < target.

We encode the arena abstraction as an LTL formula .α(A,Pr) of the form
.init ∧G(

∨
a∈abtrans a), where .abtrans is a set of abstract transitions (e.g., . p∧Xp′

1

and .p ∧ Xp′
2 are in .abtrans), and .init is the initial state, i.e., .s0 ∧ floor=target .

Abstract Synthesis. From this sound abstraction, we create the abstract formula
.α(A,Pr) =⇒ φ and treat predicates as fresh input Booleans. If this formula
were realisable, a controller for it would also work concretely, but it is not: at
the abstract state . p, the environment can always force negation of .floor = target.

Counterstrategy Concretisability (Definition 6). For an unrealisable abstract
problem we will find an abstract counterstrategy.Cs. To check whether it is spu-
rious, we model-check if .A composed with .Cs violates the invariant that the
predicate guesses of .Cs are correct in the arena. Here, .Cs admits a finite coun-
terexample .ce where the environment initially increments target, then moves to
. s1, and the controller increments floor, but .Cs wrongly maintains .floor < target.

Safety Refinement (Sect. 6.1). By applying interpolation [25] on .ce we discover
new predicates, e.g., .target − floor ≤ 1, by which we refine the abstraction to
exclude . ce. If we were to continue using safety refinement, we would be attempt-
ing to enumerate the whole space, which causes a state-space explosion, given
the exponential complexity of predicate abstraction, and the doubly exponential
complexity of synthesis.

2 LIA predicates are normalised to a form using only . ≤; other relations are macros.

280 S. Azzopardi et al.

Efficient Encoding (Sect. 7). We manage state-space explosion through a binary
encoding of predicates. Note each predicate on a term corresponds to an inter-
val on the reals. For the term .t = floor − target, .floor ≤ target represents
.t ∈ (−∞, 0]. .target ≤ floor represents .t ∈ [0,∞), and .floor − target ≤ 1 rep-
resents .t ∈ (−∞, 1]. These may overlap, but instead we can define formulas
whose intervals partition the line . R. Here, we get formulas for each interval:
.(−∞,−1], (−1, 0], (0, 1], (1,∞). Binary-encoding these reduces the complexity
of abstraction and synthesis by an exponential, w.r.t. arithmetic predicates.
Liveness Refinements (Sect. 6.2). Enumeration is not enough here, given the
infinite domain of the variables. Liveness refinements are necessary. Note, once
.Cs guesses that .floor < target , it remains in states where .floor < target is true.
Essentially, we discover a .ce in which .Cs exercises the loop while(floor . ¡ target)
floor := floor + 1, and the environment believes it is non-terminating. Using
known methods to determine the loop is terminating, we construct a monitor
for the loop in the abstraction, with extra variables and assumptions. Then a
strong fairness constraint that forces the abstraction to eventually exit the loop
monitor captures its termination. We term this structural loop refinement. Note
that this is not tied to a specific region in the arena. This allows us to encode
more sophisticated loops, beyond what current tools for LTL objectives can do.

With a new synthesis attempt on the refined abstraction, a fresh terminating
loop is learned, while (target . ¡ floor) floor := floor - 1. Refining accordingly allows
us to find a controller and thus solve the problem on the next attempt.
Acceleration (Sect. 7). The described partitions of the values of a term have a
natural well-founded ordering which we can exploit to identify that the controller
can force the abstraction to move left or right across the intervals. Consider that
if the term . t is currently in the interval .(1,∞), and the controller can force
strict decrements of . t, then the value of the . t must necessarily eventually move
to an interval to the left (unless we have reached the left-most interval). Thus,
strict decrements force the value of . t to move towards the left of the partition,
while strict increments force move towards the right of the partition. Only when
the environment can match these increments (decrements) with corresponding
decrements (increments) then can this behaviour be prevented.

By adding LTL fairness constraints to represent the described behaviour we
can immediately identify a controller, with no further refinements needed.

4 Synthesis Setting

One of our contributions is our special setting that combines arenas and LTL
objectives, unlike existing LTL approaches which start immediately from LTL-
modulo-theories formulas [8,14,22]. We assume a theory, with an associated set
of predicates .Pr(V) and updates .U(V) over a set of variables . V . We also assume
two disjoint sets of Boolean inputs and outputs . E and . C, respectively controlled
by the environment and the controller. Then our specifications are LTL formulas
over these variables, .φ ∈ LTL(E ∪ C ∪ Prφ), where .Prφ ⊆ Pr(V). LTL formu-
las talk about an arena whose state is captured by the value of . V , and which

Full LTL Synthesis over Infinite-State Arenas 281

modifies its state depending on environment and controller behaviour. Arenas
are deterministic; we model (demonic) non-determinism with additional environ-
ment variables. This allows us to encode concretisability checking as invariant
checking, rather than the significantly more complex CTL.

∗ model checking.

Definition 2 (Arena). An arena .A over .V is a tuple .〈V, val0, δ〉, where .V is
a finite set of variables, .val0 ∈ Val(V) is the initial valuation, and . δ : B(E ∪
C ∪ Pr(V)) 	→ U(V) is a partial function with finite domain, such that for all
.val ∈ Val(V) and for every .E ⊆ E and .C ⊆ C there is always a single . f ∈ dom(δ)
such that .(val, E ∪ C) |= f . An arena is finite when every .v ∈ V is finite.

Notice that due to the finite domain of . δ, an arena .A defines a finite set of
predicates .Pr ⊆ Pr(V) and a finite set of updates .U ⊆ U(V) that appear in . δ.
We use the sets .Pr and .U when clear from the context.

An infinite concrete word .w ∈ (Val(V) × 2E∪C)ω is a model of .A iff . w(0) =
(val0, E ∪ C) (for some .E and . C), and for every .i ≥ 0, .w(i) = (vali, Ei ∪ Ci),
then for the unique .fi ∈ dom(δ) such that .(vali, Ei ∪ Ci) |= fi we have . vali+1 =
(δ(fi))(vali). We write .L(A) for the set of all models of . A.

During our workflow, the words of our abstract synthesis problem may have
a different domain than those of the arena. We define these as abstract words,
and identify when they are concretisable in the arena. Then, we can define the
meaning of (un)realisability modulo an arena in terms of concretisability.

Definition 3 (Abstract Words and Concretisability). For a finite set of
predicates .Pr ⊆ Pr(V), and a set of Boolean variables . E′, such that .E ⊆ E

′,
an abstract word . a is a word over .2E′∪C∪Pr. Abstract word . a abstracts concrete
word . w, with letters from .Val(V)×2E∪C, when for every . i, if .a(i) = Ei∪Ci∪Pri,
then .w(i) = (vali, (Ei ∩ E) ∪ Ci) for some .Pri ⊆ Pr, .val0 |=

∧∧
Pr Pr0, and for

.i > 0 then .(vali−1, vali) |=
∧∧

Pr Pri. We write .γ(a) for the set of concrete words
that . a abstracts. We say abstract word . a is concretisable in an arena .A when
.L(A) ∩ γ(a) is non-empty.

Definition 4 (Realisability modulo an Arena). A formula . φ in . LTL(E ∪
C ∪ Prφ) is said to be realisable modulo an arena . A, when there is a controller
as a Mealy Machine .MM with input .Σin = 2E∪Prφ and output .Σout = 2C such
that every abstract trace . t of MM that is concretisable in .A also satisfies . φ.

A counterstrategy to the realisability of . φ modulo an arena .A is a Moore
Machine Cs with output .Σout = 2E∪Prφ and input .Σin = 2C such that every
abstract trace . t of Cs is concretisable in .A and violates . φ.

5 Abstract to Concrete Synthesis

We attack the presented synthesis problem through an abstraction-refinement
loop. We soundly abstract the arena as an LTL formula that may include fresh
predicates and inputs. We fix the set of predicates that appear in the objective
. φ as .Prφ, and the set of predicates and inputs in the abstraction, respectively,
as .Pr and . E′, always such that .Prφ ⊆ Pr and .E ⊆ E

′.

282 S. Azzopardi et al.

Definition 5 (Abstraction). Formula .α(A,Pr) in .LTL(E′ ∪C∪Pr) abstracts
arena .A if for every .w ∈ L(A) there is .a ∈ L(α(A,Pr)) such that .w ∈ γ(a).

.α(A,Pr) is a standard predicate abstraction [16]. Given the lack of novelty,
we refer to Appendix B.1 of [2] for the full details. Note, .α(A,Pr) can be non-
deterministic, unlike . A. Constructing it is essentially an ALLSAT problem: given
a transition, we identify sets from .2Pr that can be true before the transition
and, for each of these, sets of .2Pr that can hold after the transition. However,
we construct these sets incrementally, adding predicates as we discover them;
and improve on the space/time complexity with a binary encoding (Sect. 7).

Given abstraction .α(A,Pr), we construct a corresponding sound LTL synthe-
sis problem, .α(A,Pr) =⇒ φ, giving the environment control of the predicates
in .α(A,Pr). We get three possible outcomes from attempting synthesis of this:
(1) it is realisable, and thus the concrete problem is realisable; (2) it is unreal-
isable and the counterstrategy is concretisable; or (3) the counterstrategy is not
concretisable. We prove theorems and technical machinery essential to allow us
to determine realisability (1) and unrealisability (2). In case (3) we refine the
abstraction to make the counterstrategy unviable in the new abstract problem.

Theorem 1 (Reduction to LTL Realisability). For . φ in . LTL(E∪C∪Prφ)
and an abstraction .α(A,Pr) of .A in .LTL(E′ ∪ C ∪ Pr), if .α(A,Pr) =⇒ φ is
realisable over inputs .E′ ∪ Pr and outputs . C, then . φ is realisable modulo . A.

However, an abstract counterstrategy.Cs may contain unconcretisable traces,
since abstractions are sound but not complete. To analyse .Cs for concretisability,
we define a simulation relation between states of the concrete arena and states of
.Cs, capturing whether each word of .Cs is concretisable. Recall, a set of predicates
.Pr is the union of a set of state predicates, .ST (describing one state), and
transition predicates, .TR (relating two states), which require different treatment.

Definition 6 (Counterstrategy Concretisability). Consider a counter-
strategy as a Moore Machine .Cs = 〈S, s0, Σin, Σout,→, out〉, and an arena . A,
where .Σin = 2C and .Σout = 2E

′∪Pr.
Concretisability is defined through the simulation relation .�A ⊆ Val × S:
For every valuation .val that is simulated by a state . s, .val �A s, where . out(s) =
E ∪ ST ∪ TR, it holds that:

1. the valuation satisfies the state predicates of . s: .val |=
∧∧

ST , and
2. for every possible controller output .C ⊆ C: let .valC = δ(val, (E ∩E)∪C), . sC

be s.t. .s C−→ sC , and .TRC be the transition predicates in .out(sC), then
(a) the transition predicates of .sC are satisfied by the transition . (val, valC) |=∧∧

TRC , and
(b) the valuation after the transition simulates the .Cs state after the transi-

tion: .valC �A sC .

Cs is concretisable w.r.t. .A when .val0 �A s0, for . A’s initial valuation .val0.

Full LTL Synthesis over Infinite-State Arenas 283

With concretisability defined, we then have a method to verify whether an
abstract counterstrategy is also a concrete counterstrategy.

Theorem 2 (Reduction to LTL Unrealisability). Given arena abstraction
.α(A,Pr), if .α(A,Pr) =⇒ φ is unrealisable with a counterstrategy Cs and Cs
is concretisable w.r.t. . A, then . φ is unrealisable modulo . A.

In practice, we encode counterstrategy concretisability as a model checking
problem on the composition of the counterstrategy and the arena, with the
required invariant that predicate values chosen by the counterstrategy hold on
the arena. Conveniently, this also gives witnesses of unconcretisability as finite
counterexamples (rather than infinite traces), which we use as the basis for
refinement. Crucially, this depends on the choices of the environment/controller
being finite, which also gives us semi-decidability of finding non-concretisability.

Proposition 1. Counterstrategy concretisability is encodable as invariant
checking, and terminates for finite problems and non-concretisable counterstrate-
gies.

Proposition 2. A non concretisable counterstrategy induces a finite counterex-
ample .a0, . . . , ak ∈ (2E∪C∪Pr)∗ and concretisability fails locally only on . ak.

Synthesis Semi-Algorithm. Alg. 1 shows our high-level approach. Taking an arena
. A and an LTL formula . φ, it maintains a set of predicates .Pr and an LTL formula
. ψ. When the abstract problem (in terms of .Pr) is realisable, a controller is
returned (line 5); otherwise, if the counterstrategy is concretisable, it is returned
(line 7). If the counterstrategy is not concretisable, we refine the abstraction to
exclude it (line 8), and extend .Pr with the learned predicates, and . ψ with the
new LTL constraints (line 9). Alg. 1 diverges unless it finds a (counter)strategy.

Algorithm 1: Synthesis algorithm based on abstraction refinement.
1 Function synthesise(A, φ):
2 Pr, ψ := Prφ, true
3 while true do

4 φA
α := (α(A, Pr) ∧ ψ) =⇒ φ

5 if realisable(φA
α , E ∪ Pr, C) then return (true, strategy(φA

α , E ∪ Pr, C))
6 Cs := counter strategy(φA

α , E ∪ Pr, C)
7 if concretisable(φ, A, Cs) then return (false, Cs)

8 Pr′, ψ′ := refinement(A, Cs)

9 Pr, ψ := Pr ∪ Pr′, ψ ∧ ψ′

284 S. Azzopardi et al.

6 Refinement

We now present the two refinements on which our iterative approach relies, based
on an analysis of a discovered counterstrategy. These refinements soundly refine
the abstraction with predicates and/or new LTL constraints such that similar
counterexamples will not be re-encountered in the next iteration. 3

6.1 Safety Refinement

Consider a counterstrategy Cs and a counterexample .ce = a0, a1, . . . , ak. The
transition from .ak−1 to .ak induces a mismatch between the concrete arena
state and Cs’s desired predicate state. It is well known that interpolation
can determine sufficient state predicates to make Cs non-viable in the fresh
abstract problem; we give a brief description for the reader’s convenience. Let
.pi =

∧∧
Pr(ai ∩ Pr), with each variable . v replaced by a fresh variable . vi, and each

variable .vprev by .vi−1. Similarly, let .gi and .ui be respectively the corresponding
symbolic transition guard and update (i.e., .δ(gi) = ui), such that all updates
.v := t are rewritten as .vi+1 = ti, where term .ti corresponds to . t with every
variable . v replaced by . vi.

In order to characterize the mismatch between the arena and its abstraction,
we construct the following formulas. Let .f0 = val0 ∧ p0 ∧ g0 ∧ u0, where we
abuse notation and refer to .val0 as a Boolean formula. For .1 ≤ i < k, let . fi =
pi∧gi∧ui, while .fk = pk. Then .

∧k
i=0 fi is unsatisfiable. Following McMillan [25],

we construct the corresponding set of sequence interpolants .I0, ..., Ik−1, where
.f0 =⇒ I1, .∀1 ≤ i < k.Ii ∧ fi =⇒ Ii+1, .Ik−1 ∧ fk is unsatisfiable, as all
the variables of .Ii are shared by both .fi−1 and . fi. From these we obtain a set
of state predicates .I(ce) by removing the introduced indices in each . Ii. Adding
.I(ce) to the abstraction refines it to make the counterstrategy unviable.

6.2 Liveness Refinement

Relying solely on safety refinement results in non-termination for interesting
problems (e.g., Fig. 2). To overcome this limitation, we propose liveness refine-
ment. Our main insight is that if the counterexample exposes a spurious lasso in
the counterstrategy, then we can encode its termination as a liveness property.

Fig. 3. .ce loop.

Lassos and Loops. A counterexample . ce = a0, . . . , ak

induces a lasso in Cs when it corresponds to a path
.s0, . . . , sk in Cs, where .sk = sj for some .0 ≤ j < k.
We focus on the last such . j. Here, for simplicity, we
require that concretisation failed due to a wrong state
predicate guess. We split the counterexample into two
parts: a stem .a0, . . . , aj−1, and a loop .aj , . . . , ak−1.
Let .gj 	→ Uj , . . . , gk−1 	→ Uk−1 be the corresponding
applications of . δ and let .valj be the arena state at step . j.

3 We prove a progress theorem for each refinement in Appendix C of [2].

Full LTL Synthesis over Infinite-State Arenas 285

The counterexample proves that the while-program in Fig. 3 terminates (in
one iteration). To strengthen the refinement, we try to weaken the loop (e.g.,
expand the precondition) such that it still accepts the loop part of .ce while
terminating. We formalise loops to be able to formalise this weakening.

Definition 7 (Loops). A loop is a tuple .l = 〈V, pre, iter cond, body〉, where . pre
and .iter cond are Boolean combinations of predicates over variables . V , and . body
is a finite sequence of pairs .(gi, Ui), where .gi ∈ Pr(V) and .Ui ∈ U(V).

A finite/infinite sequence of valuations .vals = val0, val1, . . . is an execution
of . l, .vals ∈ L(l), iff .val0 |= pre, for all . i such that .0 ≤ i < |vals|, where
.n = |body|, then .vali |= gi mod n, .vali+1 = Ui mod n(vali) and if .i mod n = 0 then
.vali |= iter cond. We say a loop is terminating if all of its executions are finite.
Definition 8 (Weakening). Loop .l1 = 〈V1, pre1, ic1, body1〉 is weaker than
.l2 = 〈V2, pre2, ic2, body2〉 when: 1. .V1 ⊆ V2; 2. .pre2 =⇒ pre1 and .ic2 =⇒ ic1;
3. .|body1| = |body2|; 4. for .w2 ∈ L(l2) there is .w1 ∈ L(l1) such that .w2 and . w1

agree on . V1. A weakening is proper if both .l1 and .l2 terminate.

Heuristics. We attempt to find loop weakenings heuristically. In all cases we
reduce .iter cond to focus on predicates in .ak that affect concretisability. We also
remove variables from the domain of the loop that are not within the cone-of-
influence [10] of .iter cond. We then attempt two weaker pre-conditions: (1) true;
and (2) the predicate state before the loop is entered in the ce. We check these two
loops, in the order above, successively for termination (using an external tool).
The first loop proved terminating (.l(ce)) is used as the basis of the refinements.

Structural Loop Refinement. We present a refinement that monitors for execution
of the loop and enforces its termination.

We define some predicates useful to our definition. For each transition in the
loop we define a formula that captures when it is triggered: . cond0

def= iter cond∧g0
and .condi

def= gi for all other . i. For each update . Ui, we define a conjunction
of transition predicates that captures when it occurs: recall .Ui is of the form
.v0 := t0, . . . , vj := tj , then we define .pi as .v0 = t0prev ∧ . . . ∧ vj = tjprev. This
sets the value of variable .vk to the value of term .tk in the previous state. We
further define a formula that captures the arena stuttering modulo the loop,
.st

def=
∧

v∈Vl
v = vprev, where .Vl is the set of variables of the loop. A technical

detail is that we require updates in the loop .l(ce) to not stutter, i.e., . U(val) �= val
for all .val. Any loop with stuttering can be reduced to one without, for the kinds
of loops we consider. Thus, here .pi ∧ st is contradictory, for all . i.

Definition 9 (Structural Loop Refinement). Let . l be a terminating loop,
and .condi, . pi, and .st (for .0 ≤ i < n) be as defined above. Assume fresh
variables corresponding to each step in the loop .inloop0, . . . , inloopn−1, and
.inloop = inloop0 ∨ . . . ∨ inloopn−1.

The structural loop abstraction .αloop(A, l) is the conjunction of the following:

1. Initially we are not in the loop, and we can never be in multiple loop steps
at the same time: .¬inloop ∧

∧
i G(inloopi =⇒ ¬

∨
j 	=i(inloopj));

286 S. Azzopardi et al.

2. The loop is entered when .pre holds and the first transition is executed:
.G(¬inloop =⇒ ((pre ∧ cond0 ∧ X(p0)) ⇐⇒ X(inloop1)));

3. At each step, while the step condition holds, the correct update causes the
loop to step forward, stuttering leaves it in place, otherwise we exit:

.
∧

0≤i<n G

⎛

⎝(inloopi ∧ condi) =⇒ X

⎛

⎝
(pi =⇒ inloopi+1%n)∧
(st =⇒ inloopi)∧
(¬(st ∨ pi) ⇐⇒ ¬inloop)

⎞

⎠

⎞

⎠ ;

4. At each step, if the expected step condition does not hold, we exit:
.
∧

0≤i<n G((inloopi ∧ ¬condi) =⇒ X¬inloop); and
5. The loop always terminates, or stutters: .GF (¬inloop)∨

∨
i FG(sti∧inloopi).

Note the fresh propositions (.inloopi) are controlled by the environment. The
LTL formulas 1–4 monitor for the loop, exiting if a transition not in the loop
occurs, and progressing or stuttering in the loop otherwise. LTL formula 5
enforces that the loop is exited infinitely often, or that the execution stutters
in the loop forever. This ensures that the abstract counterstrategy is no longer
viable.

7 Efficient Encoding and Acceleration

The problem we tackle is undecidable, but we rely on decidable sub-routines of
varying complexity: predicate abstraction (exponential in the number of pred-
icates) and finite synthesis (doubly exponential in the number of propositions,
of which predicates are a subset). Here we present an efficient binary encoding
of predicates of similar forms that (1) reduces the size of and the satisfiabil-
ity checks needed to compute the abstraction from exponential to polynomial,
and (2) reduces complexity of abstract synthesis from doubly to singly exponen-
tial, when restricted to predicates. Moreover, this encoding allows us to identify
fairness assumptions refining the abstraction, which significantly accelerate syn-
thesis. Computing this encoding only involves simple arithmetic, but we have
not encountered previous uses of it in literature.

We collect all the known predicates over the same term, giving a finite set
of predicates .Pt = {t
� c0, ..., t
� cn}, where . t is a term only over variables,
.
�∈ {<,≤} and each . ci is a value. W.l.g. we assume .t
� ci =⇒ t
� ci+1 for all . i.
Thus, .t < c appears before any other predicate .t
� c+α for .α ≥ 0. For simplicity,
let us assume that . t is a single variable. To enable a binary representation we find
disjoint intervals representing the same constraints on variable values. Namely,
replace the predicates in .Pt with (1) .t
� c0, (2) for .0 < i ≤ n the predicate
.¬(t
� ci−1) ∧ t
� ci, and finally, (3) .¬(t
� cn). Effectively, forming a partition
of the real line . R.

Let .part(Pt) = {t
� c0,¬(t
� ci−1) ∧ t
� ci,¬(t
� cn) | 0 < i ≤ n}. We
call the left- and right-most partitions the border partitions since they capture
the left and right intervals to infinity. The other formulas define non-intersecting
bounded intervals/partitions along . R. Figure 4 illustrates these partitions: this

Full LTL Synthesis over Infinite-State Arenas 287

set of formulas covers the whole line, i.e. for each point .t = c, there is a formula . f
in .part(Pt) such that .(t = c) |= f . Further, note how each two distinct formulas
.f1, f2 ∈ part(Pt) are mutually exclusive. Namely, .f1∧f2 ≡ ⊥. Given this mutual
exclusivity, it is easy to construct a representation to reduce the number of
binary variables in the predicate abstraction. The complexity of computing these
partitions is only the complexity of sorting .Pt in ascending order based on values.

In a standard predicate abstraction approach, the number of predicates is
.
∑

t∈terms|Pt|. With this encoding, they shrink to .
∑

t∈terms�|log2(|Pt| + 1)|�.
Moreover, this enables a more efficient predicate abstraction computation: given
we know each formula in .part(Pt) is mutually exclusive, we can consider each
formula separately. Then, for each . t instead of performing .22×|Pt| satisfiability
checks we just need .(|Pt| + 1)2, giving a polynomial time complexity in terms
of predicates, .(

∏
t∈terms(|Pt| + 1))2, instead of the exponential .22×∑

t∈terms|Pt|.
The complexity of synthesis improves very significantly in terms of predicates,
to .2

∏
t∈terms|Pt|+1, instead of .22

∑
t∈terms|Pt|

.

Fig. 4. Partitions for binary encoding.

Note that, to get the full view of time complexity for both abstraction and
synthesis, the complexity described must be respectively multiplied by . |dom(δ)|×
2|B| and .22

|B|
, where . B is the set of Boolean propositions in the concrete problem.

As an optimisation, if both terms . t and .−t are part of the abstraction, we
transform predicates over .−t to predicates over . t: .−t ≤ c becomes .t ≥ −c, which
becomes .¬(t < −c). We note the approach described applies to both LIA and
LRA, and might have applications beyond our approach.

Acceleration. The partitioning optimises the encoding of predicates extracted
from the problem and learned from safety refinements. Moreover, it allows to
identify liveness properties relevant to the infinite-state arena.

Consider that an abstract execution is within the leftmost partition, e.g.,
within .t ≤ 0. An increment in . t in the arena leads to an environment choice in
the abstraction of whether to stay within .t ≤ 0 or move to the next partition.
Suppose the controller can repeatedly increment . t with a value bounded from . 0.

In the abstraction, the environment can still force an abstract execution
satisfying .t ≤ 0 forever. The same is true for every partition, unless its size is

288 S. Azzopardi et al.

smaller than the increment, e.g., a partition with one element. This abstract
behaviour is not concretisable. That is, for every concrete value of . t and every . c,
after a finite number of increments bounded from . 0, the predicate .t
� c becomes
false. Similarly for any other partition. The dual is true for decrements. We note
that in LIA, every increment or decrement is bounded from . 0.

We encode this fact using fairness assumptions that rely on detecting
increases and decreases of a term’s value with transition predicates. If for a
term . t we identify that all changes of . t in .A are at least . ε, we define the tran-
sition predicates .tinc := tprev ≤ t − ε and .tdec := t ≤ tprev − ε, refining the
abstraction by a memory of when transitions increase or decrease the value of . t.
Notice that as changes to . t are at least . ε, when both .tdec and .tinc are false . t does
not change. We then add the fairness assumptions: . (GFtdec) =⇒ GF (tinc ∨ fl)
and .(GFtinc) =⇒ GF (tdec ∨ fr), where .fl (. fr) is . t’s left-(right-)most partitions.

The first (second) assumption enforces every abstract execution where . t
strictly decreases (increases) and does not increase (decrease), to make progress
towards the left-(right-)most partition. Thus, the environment cannot block the
controller from exiting a partition, if they can repeatedly force a bounded from 0
decrease (increase) without increases (decreases). For each term, we can then
add these two corresponding fairness LTL assumptions to the abstraction. If the
left- and right-most partitions are updated during safety refinement, we update
the predicates inside these fairness assumptions with the new border partitions,
ensuring we only ever have at most two such assumptions per term. In our imple-
mentation for LIA .ε = 1, and to optimise we leave out these assumptions if we
cannot identify increases or decreases bounded from . 0 in the arena.

8 Evaluation

We implemented this approach in a tool 4 targeting discrete synthesis prob-
lems. State-of-the-art tools are used as sub-routines: Strix [26] (LTL synthesis),
nuXmv [7] (invariant checking), MathSAT [9] (interpolation and SMT checking),
and CPAchecker [6] (termination checking). As a further optimisation, the tool
performs also a binary encoding of the states variables of the arena, given they
are mutually exclusive.

We compare our tool against 5 tools from literature raboniel [22], temos [8],
rpgsolve [18], rpg-STeLA [34], and tslmt2rpg (+rpgsolve) [19]. We consider also
a purely lazy version of our tool, with acceleration turned off to evaluate its
utility. We do not compare against other tools fully outperformed by the rpg
tools [33,35], limited to safety/reachability [3,13,27], and another we could not
acquire [23]. All experiments ran on a Linux workstation equipped with 32 GiB of
memory and an Intel i7-5820K CPU, under a time limit of 20 min and a memory
limit of 16 GiB. We show cumulative synthesis times in Fig. 5a for tools that
support synthesis, and cumulative realisability times for other tools compared
with our tools’ cumulative synthesis times in Fig. 5b.
4 https://github.com/shaunazzopardi/sweap. An artifact for this paper is avail-

able [11].

https://github.com/shaunazzopardi/sweap
https://github.com/shaunazzopardi/sweap
https://github.com/shaunazzopardi/sweap
https://github.com/shaunazzopardi/sweap
https://github.com/shaunazzopardi/sweap

Full LTL Synthesis over Infinite-State Arenas 289

Fig. 5. Time comparison.

Benchmarks. We collect 80 LIA benchmarks from the literature. Most encode
practical problems, such as robotic mission control, job scheduling, sorting, or
data buffering. They are defined in TSL [14] or as deterministic games, and may
include arbitrary integers as input, which we equivalently encode with extra
steps that let the environment set variables to any finite value (see Sect. 9). All
these benchmarks consist of problems encodable as deterministic Büchi games.
Some benchmarks [34] compose multiple such games together, for added dif-
ficulty. Following others, we ignore problems [8,14] that are trivial. We only
introduce one novel reachability game to these benchmarks, robot-tasks, 5 that
we crafted to highlight the limitations of previous approaches compared to our
own. Some of the problems from [34] are not available in TSL format. We test
those on neither raboniel nor temos but we expect they would both fail, as their
techniques are insufficient for Büchi goals (see Sect. 9), and for tslmt2rpg we
simply consider the time taken by rpgsolve on the corresponding RPG problem.

Results (comparative evaluation). 6 It is clear from Fig. 5a that the eager ver-
sion of our tool solves almost double more synthesis problems than the best
competitor, and faster. The lazy version is comparable to the best competitor.
For realisability, Fig. 5b shows our tool with acceleration scaling and performing
much better on synthesis than the other tools do on realisability. However, the
lazy version is outperformed by the rpg tools. Table 1a summarises the evalua-
tion; for each tool we report the number of solved problems (out of 81), the ones
it solved in the shortest time, and those no other tool was able to solve. Our
tool is the clear winner in each category. If we consider synthesis, even without
acceleration we are comparable to the state of the art: our tools solve 61 (eager)
and 31 (lazy) problems, while the best competitor tslmt2rpg solves 36. When

5 Appendix D.1 of [2] has more details about this new benchmark.
6 Appendix D.2 of [2] has additional experimental data, and an extended discussion.

290 S. Azzopardi et al.

looking closely at the behaviour on the easiest instances (see Fig. 6 in [2]), we
see that our tool has an initialization overhead of a few seconds while other tools
can solve simple problems in under 1 s. However, our tool scales better. We also
ran our lazy tool without the binary encoding, and measured noticeably worse
performances: it times out on two more problems, and takes on average 10%
more time (see Fig. 7 in [2]).

Table 1. Experimental results.

(a) Comparative evaluation of
Raboniel, Temos, RPGsolve,
Tslmt2Rpg, Rpg-SteLa, and our
Synthesis tool, with and without
acceleration.
Synthesis Rab Tem RPG T2R Sacc S
solved 12 0 15 36 61 31
best 5 0 11 13 43 4
unique 0 0 1 11 27 0
Realisability RPG RSt T2R Sacc S
solved 37 31 54 61 31
best 21 0 13 37 7
unique 0 0 11 9 0

(b) LTL benchmarks.

Name U
Time (s)
Sacc S

arbiter 2.77 4.90
arbiter-failure 2.04 1.98

elevator 2.53 15.92
infinite-race 1.98 4.38
infinite-race-u • – –

infinite-race-unequal-1 6.50 –
infinite-race-unequal-2 – –

reversible-lane-r 7.39 17.53
reversible-lane-u • 18.70 4.54
rep-reach-obst-1d 2.47 9.04
rep-reach-obst-2d 3.85 38.51
rep-reach-obst-6d – –
robot-collect-v4 16.51 –
taxi-service 39.26 68.02
taxi-service-u • 4.14 3.50

Evaluation on Novel LTL Benchmarks. We contribute 15 benchmarks with LTL
objectives unencodable as deterministic Büchi objectives, i.e., they are theoret-
ically out of scope for other tools. For sanity checking we attempted them on
the other tools and validated their inability to decide these problems. We do not
include them with the previous benchmarks to ensure a fairer evaluation. Three
of these benchmarks could be solved by other tools if infinite-range inputs are
used (arbiter, infinite-race, and infinite-race-u), but they fail since incrementing
and decrementing requires environment fairness constraints.

These benchmarks involve control of cyber-physical systems such as the eleva-
tor from Fig. 2, variations thereof, a reversible traffic lane, and robotic missions,
some of which are extensions of literature benchmarks. They also include strong
fairness and/or let the environment delay progress for the controller. 7 Table 1b
7 These benchmarks are also described in detail in Appendix D.1 of [2].

Full LTL Synthesis over Infinite-State Arenas 291

reports how both configurations of our tool handle our novel benchmarks. Col-
umn U marks unrealisable problems. The lazy approach outperforms the eager
one on just 3 benchmarks out of 15. On 11 problems, acceleration enriches the
first abstraction enough to lead immediately to a verdict. We note that solving
infinite-race-unequal-1 requires structural refinement, as it allows infinite amount
of increments and decrements, but of unequal value, while for literature bench-
marks acceleration is enough.

Failure Analysis. Lastly, we discuss four limitations in our approach exposed
by our experiments. Section 9 contains more detail on when and why the other
tools fail. The first is inherent to synthesis: the Boolean synthesis problem may
become big enough to exceed machine resources. A bespoke finite-state synthesis
procedure could mitigate this, by relying on the underlying parity game rather
than creating fresh problems.

The second is that some unrealisable problems admit no finite counterstrate-
gies in our setting. robot-repair, which no tool solves, is the only such exam-
ple from literature (we also designed infinite-race-u to be of this kind). Briefly,
this involves two stages: a losing loop for which the controller controls exit and
(after the loop) a state wherein the goal is unreachable. The environment can-
not universally quantify over all predicates (since it controls them), hence no
finite counterstrategy exists. But if we construct the dual problem, by swapping
objectives between the environment and controller, we do find a strategy for the
original environment goal. We are working on automating this dualisation.

The third is that our requirements for when to apply structural refinement
may be too strong, and thus some loops go undiscovered. Instead of looking for
loops solely in the counterexample prefix, one may instead consider the strongly
connected components of the counterstrategy.

Lastly, there are pathological counterexamples, irrelevant to the problem,
that involve the controller causing an incompatibility by going to a partition
and the environment not being able to determine exactly when dec/increments
should force an exit from this partition. This is the main cause of failure for our
lazy approach. Modifications to concretisability checking might avoid this issue.

9 Related Work

Before discussing related synthesis approaches, we note that Balaban, Pnueli,
and Zuck describe a similar CEGAR approach for infinite-state model check-
ing [4]. From counterexamples they discover ranking functions for terminating
loops, and encode their well-foundedness in the underlying fair discrete system,
similar to how we encode well-foundedness during acceleration. Our structural
refinement is instead more localised to specific loops. We may benefit from the
more general ranking abstraction, but it is often easier to prove termination of
loops through loop variants rather than ranking functions, which do not admit
the same encoding. Interestingly, their approach is relatively complete, i.e. given
the right ranking functions and state predicates the LTL property can be ver-

292 S. Azzopardi et al.

ified. We cannot say the same about our approach, given, as mentioned in the
previous section, there are some unrealisable problems we cannot terminate on.

We discuss the exact differences between our setting and that of TSL synthe-
sis [14] and RPG [18]. We then discuss infinite-state synthesis more generally.

TSL and RPG Compared to our Approach. We start by noting that, in the con-
text of linear integer arithmetic, for every possible synthesis problem in TSL or
RPG, we can effectively construct an equi-realisable problem in our setting (see
Appendix E.1 of [2] for the full details). In both TSL and RPG, variables are
partitioned between inputs and outputs. At each step of the game, the environ-
ment sets values for all inputs (so, choosing among potentially infinitely-many
or continuously-many candidate values in one step) and the controller responds
by choosing among a finite set of deterministic updates to its own variables.
The environment also initialises all variables. Dually, in our setting, players only
own Boolean variables and have only a finite set of choices. Then, infinite-range
variables are updated based on the joint choice. For all three, repeating single
interactions ad-infinitum leads to traces that are either checked to satisfy an
LTL formula (TSL and our setting) or to satisfy safety, reachability, or repeated
reachability w.r.t. certain locations in the arena/program (RPG). The restriction
to finite-range updates hinders the applicability of our approach to linear real
arithmetic, given the necessity of repeated uncountable choices there. However,
we expect the more novel parts of our approach (liveness refinements and accel-
eration) to still be applicable in this richer theory. Indeed, we define acceleration
in a way that it is also applicable for LRA in Sect. 7.

Infinite-state Arenas. Due to space restrictions, we refer to other work [13,18] for
a general overview of existing symbolic synthesis methods, and leave out infinite-
state methods restricted to decidable settings, such as pushdown games [37],
Petri-net games [15], or restrictions of FO-LTL such as those mentioned in the
introduction [30– 32]. Such approaches tend to apply very different techniques.
We instead discuss methods that take on the undecidable setting, and how they
acquire/encode liveness information. We find three classes of such approaches:

Fixpoint Solving. These extend standard fixpoint approaches to symbolic game
solving. GenSys-LTL [33] uses quantifier elimination to compute the control-
lable predecessor of a given set, terminating only if a finite number of steps is
sufficient. A similar approach limits itself to the GR(1) setting [23], showing its
efficiency also in the infinite setting. rpgsolve [18] takes this further by finding
so-called acceleration lemmas. It attempts to find linear ranking functions with
invariants to prove that loops in the game terminate, and thus it may find fix-
points that GenSys-LTL cannot. This information is however only used in a
particular game region. In problems such as robot-tasks, this requires an infinite
number of accelerations, leading to divergence. The reliance on identifying one
location in a game where a ranking function decreases is also problematic when
the choice of where to exit a region is part of the game-playing, or when the rank-
ing needs to decrease differently based on the play’s history. The latter would
be required in order to scale their approach to objectives beyond Büchi and co-

Full LTL Synthesis over Infinite-State Arenas 293

Büchi. The realisability solver rpg-STeLA tries to bypass the locality limitation by
using game templates to identify lemmas that can be used in multiple regions. It
does well on benchmarks that were designed for it in a compositional way, but in
many other cases, the extra work required to identify templates adds significant
overhead. For example, it causes divergence in robot-tasks. As a bridge between
program specifications in TSL and the rpg tools, tslmt2rpg [19] translates TSL
specifications to RPG while adding semantic information about infinite-range
variables that allows it to simplify regions in games. As for rpg-STeLA the anal-
ysis of the semantic information often causes a time overhead. Crucial here is
the underlying solver, which often times out on quantifier elimination.
Abstraction. Other methods, including ours, attempt synthesis on an explicit
abstraction of the problem. A failure witness may be used to refine the
abstraction and make another attempt. Some of these methods target games
directly [1,20,36]; others work at the level of the specification [8,14,22]. Many of
these focus on refining states in the abstraction, a kind of safety refinement, as
in the case of the tool raboniel [22]. As far as we know, only temos [8] adds some
form of liveness information of the underlying infinite domain. It attempts to
construct an abstraction of an LTL (over theories) specification by adding consis-
tency invariants, and transitions. It also uses syntax-guided synthesis to generate
sequences of updates that force a certain state change. Interestingly, it can also
identify liveness constraints that abstract the effects in the limit of repeating an
update . u, adding constraints of the form .G(pre∧(uW post) =⇒ F post). However,
it can only deal with one update of one variable at a time, and fails when the
environment can delay . u. Moreover, it does not engage in a CEGAR-loop, giving
up if the first such abstraction is not realisable.
Constraint Solving. One may encode the synthesis problem into constrained Horn
clauses (CHC), and synthesise ranking functions to prove termination of parts
of a program. Consynth [5] solves general LTL and .ω-regular infinite-state games
with constraint solving. However, it needs a controller template: essentially a
partial solution to the problem. This may require synthesising ranking functions,
and (unlike our approach) makes unrealisability verdicts limited to the given
template and thus not generalisable. MuVal [35] can encode realisability checking
of LTL games as validity checking in a fixpoint logic that extends CHC. It also
requires encoding the automaton corresponding to the LTL formula directly in
the input formula, and discovers ranking functions based on templates to enforce
bounded unfolding of recursive calls. Contrastingly, we do not rely on templates
but can handle any argument for termination.

10 Conclusions

We have presented a specialised CEGAR approach for LTL synthesis beyond
the Boolean domain. In our evaluation our implementation significantly out-
performs other available synthesis tools, often synthesising a (counter-)strategy
before other tools finish checking for realisability. Key to this approach are live-
ness refinements, which forgo the need for a large or infinite number of safety

294 S. Azzopardi et al.

refinements. We carefully designed our framework so it can encode spuriousness
checking of abstract counterstrategies as simple invariant checking, using loops
in counterexamples to find liveness refinements. Another main contribution is
the reduction of the complexity of predicate abstraction and synthesis by an
exponential, through a binary encoding of related predicates. This also allows
to identify well-foundedness constraints of the arena, which we encode in the
abstraction through LTL fairness requirements.

Future Work. We believe that symbolic approaches for LTL synthesis and syn-
thesis for LTL over structured arenas [12,17], could significantly benefit our
technique. In these, determinisation for LTL properties would have to be applied
only to the objective, and not to the arena abstraction. Tool support for these
is not yet mature or available. For one such tool [12], we sometimes observed
considerable speedup for realisability; however, it does not supply strategies.

Other directions include dealing with identified limitations (see Sect. 8),
extending the tool beyond LIA, dealing with infinite inputs automatedly, and
applying other methods to manage the size of predicate abstractions, e.g., [21],
data-flow analysis, and implicit abstraction, and to make it more informative.

References

1. de Alfaro, L., Roy, P.: Solving games via three-valued abstraction refinement. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 74–89.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8 6

2. Azzopardi, S., Piterman, N., Stefano, L.D., Schneider, G.: Full LTL synthesis over
infinite-state arenas (2025). https://arxiv.org/abs/2307.09776

3. Baier, C., Coenen, N., Finkbeiner, B., Funke, F., Jantsch, S., Siber, J.: Causality-
based game solving. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol.
12759, pp. 894–917. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
81685-8 42

4. Balaban, I., Pnueli, A., Zuck, L.D.: Ranking abstraction as companion to predicate
abstraction. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 1–12. Springer,
Heidelberg (2005). https://doi.org/10.1007/11562436 1

5. Beyene, T.A., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based
approach to solving games on infinite graphs. In: 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 221–234. ACM (2014)

6. Beyer, D., Keremoglu, M.E.: Cpachecker: A tool for configurable software ver-
ification. In: Computer Aided Verification - 23rd International Conference, CAV
2011. LNCS, vol. 6806, pp. 184–190. Springer (2011). https://doi.org/10.1007/978-
3-642-22110-1 16

7. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuxmv symbolic model checker. In:
Computer Aided Verification - 26th International Conference, CAV 2014. LNCS,
vol. 8559, pp. 334–342. Springer (2014). https://doi.org/10.1007/978-3-319-08867-
9 22

https://doi.org/10.1007/978-3-540-74407-8_6
https://doi.org/10.1007/978-3-540-74407-8_6
https://doi.org/10.1007/978-3-540-74407-8_6
https://doi.org/10.1007/978-3-540-74407-8_6
https://doi.org/10.1007/978-3-540-74407-8_6
https://doi.org/10.1007/978-3-540-74407-8_6
https://doi.org/10.1007/978-3-540-74407-8_6
https://doi.org/10.1007/978-3-540-74407-8_6
https://doi.org/10.1007/978-3-540-74407-8_6
https://doi.org/10.1007/978-3-540-74407-8_6
https://arxiv.org/abs/2307.09776
https://arxiv.org/abs/2307.09776
https://arxiv.org/abs/2307.09776
https://arxiv.org/abs/2307.09776
https://arxiv.org/abs/2307.09776
https://arxiv.org/abs/2307.09776
https://doi.org/10.1007/978-3-030-81685-8_42
https://doi.org/10.1007/978-3-030-81685-8_42
https://doi.org/10.1007/978-3-030-81685-8_42
https://doi.org/10.1007/978-3-030-81685-8_42
https://doi.org/10.1007/978-3-030-81685-8_42
https://doi.org/10.1007/978-3-030-81685-8_42
https://doi.org/10.1007/978-3-030-81685-8_42
https://doi.org/10.1007/978-3-030-81685-8_42
https://doi.org/10.1007/978-3-030-81685-8_42
https://doi.org/10.1007/978-3-030-81685-8_42
https://doi.org/10.1007/11562436_1
https://doi.org/10.1007/11562436_1
https://doi.org/10.1007/11562436_1
https://doi.org/10.1007/11562436_1
https://doi.org/10.1007/11562436_1
https://doi.org/10.1007/11562436_1
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22

Full LTL Synthesis over Infinite-State Arenas 295

8. Choi, W., Finkbeiner, B., Piskac, R., Santolucito, M.: Can reactive synthesis and
syntax-guided synthesis be friends? In: Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation,
pp. 229–243. PLDI 2022, Association for Computing Machinery, New York, NY,
USA (2022). https://doi.org/10.1145/3519939.3523429

9. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathsat5 SMT
solver. In: Tools and Algorithms for the Construction and Analysis of Systems -
19th International Conference, TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer
(2013). https://doi.org/10.1007/978-3-642-36742-7 7

10. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, London,
Cambridge (1999)

11. Di Stefano, L., Azzopardi, S., Piterman, N., Schneider, G.: Software artifact for
“full LTL synthesis over infinite-state arenas” (2025). https://doi.org/10.5281/
zenodo.15189175

12. Ehlers, R., Khalimov, A.: Fully generalized reactivity(1) synthesis. In: Finkbeiner,
B., Kovács, L. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems - 30th International Conference, TACAS 2024. LNCS, vol. 14570, pp.
83–102. Springer (2024). https://doi.org/10.1007/978-3-031-57246-3 6

13. Farzan, A., Kincaid, Z.: Strategy synthesis for linear arithmetic games. Proc. ACM
Program. Lang. 2(POPL) (2017). https://doi.org/10.1145/3158149

14. Finkbeiner, B., Klein, F., Piskac, R., Santolucito, M.: Temporal stream logic: syn-
thesis beyond the bools. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 609–629. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 35

15. Finkbeiner, B., Olderog, E.: Ten years of petri games. In: Jansen, N., Junges,
S., Kaminski, B.L., Matheja, C., Noll, T., Quatmann, T., Stoelinga, M., Volk,
M. (eds.) Principles of Verification: Cycling the Probabilistic Landscape - Essays
Dedicated to Joost-Pieter Katoen on the Occasion of His 60th Birthday, Part III.
LNCS, vol. 15262, pp. 399–422. Springer (2025). https://doi.org/10.1007/978-3-
031-75778-5 19

16. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: CAV 1997.
LNCS, vol. 1254, pp. 72–83. Springer (1997). https://doi.org/10.1007/3-540-63166-
6 10

17. Hausmann, D., Lehaut, M., Piterman, N.: Symbolic solution of Emerson-Lei games
for reactive synthesis. In: Foundations of Software Science and Computation Struc-
tures - 27th International Conference, FoSSaCS 2024. LNCS, vol. 14574, pp. 55–78.
Springer (2024). https://doi.org/10.1007/978-3-031-57228-9 4

18. Heim, P., Dimitrova, R.: Solving infinite-state games via acceleration. Proc. ACM
Program. Lang. 8(POPL) (2024). https://doi.org/10.1145/3632899

19. Heim, P., Dimitrova, R.: Translation of temporal logic for efficient infinite-state
reactive synthesis. Proc. ACM Program. Lang. 9(POPL) (2025)

20. Henzinger, T.A., Jhala, R., Majumdar, R.: Counterexample-guided control. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 886–902. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-45061-0 69

21. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Con-
ference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, Portland, OR, USA, 16-18 January 2002, pp.
58–70. ACM (2002). https://doi.org/10.1145/503272.503279

https://doi.org/10.1145/3519939.3523429
https://doi.org/10.1145/3519939.3523429
https://doi.org/10.1145/3519939.3523429
https://doi.org/10.1145/3519939.3523429
https://doi.org/10.1145/3519939.3523429
https://doi.org/10.1145/3519939.3523429
https://doi.org/10.1145/3519939.3523429
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.5281/zenodo.15189175
https://doi.org/10.5281/zenodo.15189175
https://doi.org/10.5281/zenodo.15189175
https://doi.org/10.5281/zenodo.15189175
https://doi.org/10.5281/zenodo.15189175
https://doi.org/10.5281/zenodo.15189175
https://doi.org/10.5281/zenodo.15189175
https://doi.org/10.1007/978-3-031-57246-3_6
https://doi.org/10.1007/978-3-031-57246-3_6
https://doi.org/10.1007/978-3-031-57246-3_6
https://doi.org/10.1007/978-3-031-57246-3_6
https://doi.org/10.1007/978-3-031-57246-3_6
https://doi.org/10.1007/978-3-031-57246-3_6
https://doi.org/10.1007/978-3-031-57246-3_6
https://doi.org/10.1007/978-3-031-57246-3_6
https://doi.org/10.1007/978-3-031-57246-3_6
https://doi.org/10.1007/978-3-031-57246-3_6
https://doi.org/10.1145/3158149
https://doi.org/10.1145/3158149
https://doi.org/10.1145/3158149
https://doi.org/10.1145/3158149
https://doi.org/10.1145/3158149
https://doi.org/10.1145/3158149
https://doi.org/10.1007/978-3-030-25540-4_35
https://doi.org/10.1007/978-3-030-25540-4_35
https://doi.org/10.1007/978-3-030-25540-4_35
https://doi.org/10.1007/978-3-030-25540-4_35
https://doi.org/10.1007/978-3-030-25540-4_35
https://doi.org/10.1007/978-3-030-25540-4_35
https://doi.org/10.1007/978-3-030-25540-4_35
https://doi.org/10.1007/978-3-030-25540-4_35
https://doi.org/10.1007/978-3-030-25540-4_35
https://doi.org/10.1007/978-3-030-25540-4_35
https://doi.org/10.1007/978-3-031-75778-5_19
https://doi.org/10.1007/978-3-031-75778-5_19
https://doi.org/10.1007/978-3-031-75778-5_19
https://doi.org/10.1007/978-3-031-75778-5_19
https://doi.org/10.1007/978-3-031-75778-5_19
https://doi.org/10.1007/978-3-031-75778-5_19
https://doi.org/10.1007/978-3-031-75778-5_19
https://doi.org/10.1007/978-3-031-75778-5_19
https://doi.org/10.1007/978-3-031-75778-5_19
https://doi.org/10.1007/978-3-031-75778-5_19
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/978-3-031-57228-9_4
https://doi.org/10.1007/978-3-031-57228-9_4
https://doi.org/10.1007/978-3-031-57228-9_4
https://doi.org/10.1007/978-3-031-57228-9_4
https://doi.org/10.1007/978-3-031-57228-9_4
https://doi.org/10.1007/978-3-031-57228-9_4
https://doi.org/10.1007/978-3-031-57228-9_4
https://doi.org/10.1007/978-3-031-57228-9_4
https://doi.org/10.1007/978-3-031-57228-9_4
https://doi.org/10.1007/978-3-031-57228-9_4
https://doi.org/10.1145/3632899
https://doi.org/10.1145/3632899
https://doi.org/10.1145/3632899
https://doi.org/10.1145/3632899
https://doi.org/10.1145/3632899
https://doi.org/10.1145/3632899
https://doi.org/10.1007/3-540-45061-0_69
https://doi.org/10.1007/3-540-45061-0_69
https://doi.org/10.1007/3-540-45061-0_69
https://doi.org/10.1007/3-540-45061-0_69
https://doi.org/10.1007/3-540-45061-0_69
https://doi.org/10.1007/3-540-45061-0_69
https://doi.org/10.1007/3-540-45061-0_69
https://doi.org/10.1007/3-540-45061-0_69
https://doi.org/10.1007/3-540-45061-0_69
https://doi.org/10.1145/503272.503279
https://doi.org/10.1145/503272.503279
https://doi.org/10.1145/503272.503279
https://doi.org/10.1145/503272.503279
https://doi.org/10.1145/503272.503279
https://doi.org/10.1145/503272.503279
https://doi.org/10.1145/503272.503279

296 S. Azzopardi et al.

22. Maderbacher, B., Bloem, R.: Reactive synthesis modulo theories using abstraction
refinement. In: 22nd Conference on Formal Methods in Computer-Aided Design,
FMCAD 2022, pp. 315–324. TU Wien Academic Press (2022). https://doi.org/10.
34727/2022/isbn.978-3-85448-053-2 38

23. Maderbacher, B., Windisch, F., Bloem, R.: Synthesis from infinite-state gener-
alized reactivity(1) specifications. In: Margaria, T., Steffen, B. (eds.) Leveraging
Applications of Formal Methods, Verification and Validation. Software Engineering
Methodologies - 12th International Symposium, ISoLA 2024, Crete, Greece, 27-31
October 2024, Proceedings, Part IV. LNCS, vol. 15222, pp. 281–301. Springer
(2024). https://doi.org/10.1007/978-3-031-75387-9 17

24. Martin, D.A.: Borel determinacy. Ann. Math. 102(2), 363–371 (1975). http://
www.jstor.org/stable/1971035

25. McMillan, K.L.: Lazy abstraction with interpolants. In: Computer Aided Verifi-
cation, 18th International Conference, CAV 2006. LNCS, vol. 4144, pp. 123–136.
Springer (2006). https://doi.org/10.1007/11817963 14

26. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: explicit reactive synthesis strikes
back! In: Computer Aided Verification - 30th International Conference, CAV 2018.
LNCS, vol. 10981, pp. 578–586. Springer (2018). https://doi.org/10.1007/978-3-
319-96145-3 31

27. Neider, D., Markgraf, O.: Learning-based synthesis of safety controllers. In: 2019
Formal Methods in Computer Aided Design (FMCAD), pp. 120–128. IEEE (2019).
https://doi.org/10.23919/FMCAD.2019.8894254

28. Piterman, N., Pnueli, A.: Temporal logic and fair discrete systems. In: Handbook
of Model Checking, pp. 27–73. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-10575-8 2

29. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–
190. ACM Press (1989)

30. Rodŕıguez, A., Sánchez, C.: Boolean abstractions for realizability modulo theo-
ries. In: Enea, C., Lal, A. (eds.) Computer Aided Verification - 35th International
Conference, CAV 2023, Paris, France, 17-22 July 2023, Proceedings, Part III.
LNCS, vol. 13966, pp. 305–328. Springer (2023). https://doi.org/10.1007/978-3-
031-37709-9 15

31. Rodŕıguez, A., Sánchez, C.: Adaptive reactive synthesis for LTL and LTLF mod-
ulo theories. In: Wooldridge, M.J., Dy, J.G., Natarajan, S. (eds.) Thirty-Eighth
AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference
on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Sympo-
sium on Educational Advances in Artificial Intelligence, EAAI 2014, 20-27 February
2024, Vancouver, Canada, pp. 10679–10686. AAAI Press (2024). https://doi.org/
10.1609/AAAI.V38I9.28939

32. Rodŕıguez, A., Sánchez, C.: Realizability modulo theories. J. Log. Algebraic Meth-
ods Program. 140, 100971 (2024). https://doi.org/10.1016/J.JLAMP.2024.100971

33. Samuel, S., D’Souza, D., Komondoor, R.: Symbolic fixpoint algorithms for log-
ical LTL games. In: 2023 38th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE) pp. 698–709 (2023). https://doi.org/10.1109/
ASE56229.2023.00212

34. Schmuck, A.K., Heim, P., Dimitrova, R., Nayak, S.P.: Localized attractor compu-
tations for infinite-state games. In: Gurfinkel, A., Ganesh, V. (eds.) 36th Interna-
tional Conference on Computer Aided Verification (CAV). LNCS, vol. 14683, pp.
135–158. Springer, Montreal, QC, Canada (2024). https://doi.org/10.1007/978-3-
031-65633-0 7

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_38
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_38
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_38
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_38
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_38
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_38
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_38
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_38
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_38
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_38
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_38
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_38
https://doi.org/10.1007/978-3-031-75387-9_17
https://doi.org/10.1007/978-3-031-75387-9_17
https://doi.org/10.1007/978-3-031-75387-9_17
https://doi.org/10.1007/978-3-031-75387-9_17
https://doi.org/10.1007/978-3-031-75387-9_17
https://doi.org/10.1007/978-3-031-75387-9_17
https://doi.org/10.1007/978-3-031-75387-9_17
https://doi.org/10.1007/978-3-031-75387-9_17
https://doi.org/10.1007/978-3-031-75387-9_17
https://doi.org/10.1007/978-3-031-75387-9_17
http://www.jstor.org/stable/1971035
http://www.jstor.org/stable/1971035
http://www.jstor.org/stable/1971035
http://www.jstor.org/stable/1971035
http://www.jstor.org/stable/1971035
http://www.jstor.org/stable/1971035
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.23919/FMCAD.2019.8894254
https://doi.org/10.23919/FMCAD.2019.8894254
https://doi.org/10.23919/FMCAD.2019.8894254
https://doi.org/10.23919/FMCAD.2019.8894254
https://doi.org/10.23919/FMCAD.2019.8894254
https://doi.org/10.23919/FMCAD.2019.8894254
https://doi.org/10.23919/FMCAD.2019.8894254
https://doi.org/10.23919/FMCAD.2019.8894254
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-031-37709-9_15
https://doi.org/10.1007/978-3-031-37709-9_15
https://doi.org/10.1007/978-3-031-37709-9_15
https://doi.org/10.1007/978-3-031-37709-9_15
https://doi.org/10.1007/978-3-031-37709-9_15
https://doi.org/10.1007/978-3-031-37709-9_15
https://doi.org/10.1007/978-3-031-37709-9_15
https://doi.org/10.1007/978-3-031-37709-9_15
https://doi.org/10.1007/978-3-031-37709-9_15
https://doi.org/10.1007/978-3-031-37709-9_15
https://doi.org/10.1609/AAAI.V38I9.28939
https://doi.org/10.1609/AAAI.V38I9.28939
https://doi.org/10.1609/AAAI.V38I9.28939
https://doi.org/10.1609/AAAI.V38I9.28939
https://doi.org/10.1609/AAAI.V38I9.28939
https://doi.org/10.1609/AAAI.V38I9.28939
https://doi.org/10.1609/AAAI.V38I9.28939
https://doi.org/10.1609/AAAI.V38I9.28939
https://doi.org/10.1016/J.JLAMP.2024.100971
https://doi.org/10.1016/J.JLAMP.2024.100971
https://doi.org/10.1016/J.JLAMP.2024.100971
https://doi.org/10.1016/J.JLAMP.2024.100971
https://doi.org/10.1016/J.JLAMP.2024.100971
https://doi.org/10.1016/J.JLAMP.2024.100971
https://doi.org/10.1016/J.JLAMP.2024.100971
https://doi.org/10.1016/J.JLAMP.2024.100971
https://doi.org/10.1016/J.JLAMP.2024.100971
https://doi.org/10.1109/ASE56229.2023.00212
https://doi.org/10.1109/ASE56229.2023.00212
https://doi.org/10.1109/ASE56229.2023.00212
https://doi.org/10.1109/ASE56229.2023.00212
https://doi.org/10.1109/ASE56229.2023.00212
https://doi.org/10.1109/ASE56229.2023.00212
https://doi.org/10.1109/ASE56229.2023.00212
https://doi.org/10.1109/ASE56229.2023.00212
https://doi.org/10.1007/978-3-031-65633-0_7
https://doi.org/10.1007/978-3-031-65633-0_7
https://doi.org/10.1007/978-3-031-65633-0_7
https://doi.org/10.1007/978-3-031-65633-0_7
https://doi.org/10.1007/978-3-031-65633-0_7
https://doi.org/10.1007/978-3-031-65633-0_7
https://doi.org/10.1007/978-3-031-65633-0_7
https://doi.org/10.1007/978-3-031-65633-0_7
https://doi.org/10.1007/978-3-031-65633-0_7
https://doi.org/10.1007/978-3-031-65633-0_7

Full LTL Synthesis over Infinite-State Arenas 297

35. Unno, H., Satake, Y., Terauchi, T., Koskinen, E.: Program verification via predicate
constraint satisfiability modulo theories. CoRR abs/2007.03656 (2020). https://
arxiv.org/abs/2007.03656

36. Walker, A., Ryzhyk, L.: Predicate abstraction for reactive synthesis. In: 2014 For-
mal Methods in Computer-Aided Design (FMCAD), pp. 219–226 (2014). https://
doi.org/10.1109/FMCAD.2014.6987617

37. Walukiewicz, I.: Pushdown processes: games and model-checking. Inf. Comput.
164(2), 234–263 (2001). https://doi.org/10.1006/INCO.2000.2894

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://arxiv.org/abs/2007.03656
https://arxiv.org/abs/2007.03656
https://arxiv.org/abs/2007.03656
https://arxiv.org/abs/2007.03656
https://arxiv.org/abs/2007.03656
https://arxiv.org/abs/2007.03656
https://doi.org/10.1109/FMCAD.2014.6987617
https://doi.org/10.1109/FMCAD.2014.6987617
https://doi.org/10.1109/FMCAD.2014.6987617
https://doi.org/10.1109/FMCAD.2014.6987617
https://doi.org/10.1109/FMCAD.2014.6987617
https://doi.org/10.1109/FMCAD.2014.6987617
https://doi.org/10.1109/FMCAD.2014.6987617
https://doi.org/10.1109/FMCAD.2014.6987617
https://doi.org/10.1006/INCO.2000.2894
https://doi.org/10.1006/INCO.2000.2894
https://doi.org/10.1006/INCO.2000.2894
https://doi.org/10.1006/INCO.2000.2894
https://doi.org/10.1006/INCO.2000.2894
https://doi.org/10.1006/INCO.2000.2894
https://doi.org/10.1006/INCO.2000.2894
https://doi.org/10.1006/INCO.2000.2894
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Full LTL Synthesis over Infinite-State Arenas
	1 Introduction
	2 Background
	3 Informal Overview
	4 Synthesis Setting
	5 Abstract to Concrete Synthesis
	6 Refinement
	6.1 Safety Refinement
	6.2 Liveness Refinement

	7 Efficient Encoding and Acceleration
	8 Evaluation
	9 Related Work
	10 Conclusions
	References

