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A B S T R A C T

Transit agencies that operate battery-electric buses must carefully manage fast-charging infrastructure to extend 
daily bus range without degrading on-time performance. To support this need, we propose a mixed-integer linear 
programming model to schedule opportunity charging that minimizes the amount of departure delay in all trips 
served by electric buses. Our novel approach directly tracks queuing at chargers in order to set and propagate 
departure delays. Allowing but minimizing delays makes it possible to optimize performance when delays due to 
traffic conditions and charging needs are inevitable, in contrast with existing methods that require charging to 
occur during scheduled layover time. To solve the model, we develop two algorithms based on decomposition. 
The first is an exact solution method based on combinatorial Benders (CB) decomposition, which avoids directly 
enumerating the model’s logic-based “big M” constraints and their inevitable computational challenges. The 
second, inspired by the CB approach but more efficient, is a polynomial-time heuristic based on linear pro
gramming that we call Select–Sequence–Schedule (3S). Computational experiments on both a simple notional 
transit network and the real bus system of King County, Washington, USA demonstrate the performance of both 
methods. The 3S method appears particularly promising for creating good charging schedules quickly at real- 
world scale.

1. Introduction

Battery-electric buses (BEBs) make up a significant and growing 
share of the global transit vehicle fleet (Peng et al., 2021; Tingstad 
Jacobsen et al., 2023; Wu et al., 2021; Zhou et al., 2025). Over 60,000 
such vehicles were sold worldwide in 2022, about 5% of global bus sales 
(IEA, 2023). While China has been the world leader in electric bus 
adoption for many years, BEBs are beginning to see greater usage 
worldwide. In USA, the Bipartisan Infrastructure Law of 2021 allocated 
over US $5 billion to help agencies purchase low-emissions transit ve
hicles and charging infrastructure (Federal Transit Administration, 
2022). Worldwide, BloombergNEF projects that 50% of buses will be 
battery-powered by 2032, a milestone passenger cars are not expected to 
reach for a further ten years (Stock, 2023).

Compared to conventional transit buses, BEBs create new manage
ment challenges for transit agencies because of their limited driving 
range and lengthy recharging times, which may be handled with a few 
different strategies. The preferred approach for many agencies is to rely 
primarily on low-power overnight charging at bus bases (known as 
depot charging), which mimics traditional bus operating patterns in 

which refueling is not a significant concern. However, many agencies 
also plan to use high-power chargers during the day to effectively extend 
bus ranges without utilizing a larger battery (King County Metro Transit, 
2022; Los Angeles County Metropolitan Transportation Authority, 2021; 
Massachusetts Bay Transportation Authority, 2021). This approach is 
commonly referred to as opportunity charging and sometimes on-route 
or layover charging. Throughout this work, we focus on these agencies 
that plan to use depot charging as much as possible, but extend vehicle 
range using opportunity charging where necessary.

Fig. 1 displays how the charging scheduling problem addressed in 
this study fits with the overall transit planning and operations process. 
Network design, timetabling, vehicle scheduling, and operator sched
uling are interrelated problems that are typically solved sequentially 
rather than jointly because of their complexity (Ceder, 2007; Desaul
niers and Hickman, 2007). BEBs complicate this process by introducing 
decisions about vehicle fleet composition (including fuel types and 
battery sizes, if applicable) and charging infrastructure (such as the 
number, power output, and location of chargers), but also by increasing 
the complexity of existing decisions. For example, the BEB vehicle 
scheduling problem should incorporate new features, such as vehicle 
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range limitations and opportunity charging, that were not relevant for 
diesel buses (Perumal et al., 2022).

In this study, we view charging scheduling as an independent 
problem that should be solved each day in response to updated pre
dictions of weather, traffic, ridership, and other factors that impact 
vehicle energy consumption and on-time performance. These daily 
variations can be predicted much more accurately on a given day of 
service than they can when vehicle schedules are produced (typically 
months in advance), and their values significantly impact the optimal 
decisions about when and for how long each BEB should charge during 
the service day. Although daily adjustments to upstream decisions such 
as vehicle schedules could potentially result in even better performance, 
these are typically fixed well in advance and cannot be revised 
frequently because of complex labor agreements with drivers. For 
example, the current labor contract between King County Metro and the 
Amalgamated Transit Union (Amalgamated Transit Union, Local 587, 
2022) stipulates that operator duties will be selected twice per year. 
Because vehicle schedules (blocks) are an important input to this pro
cess, it follows that they must be determined about six months in 
advance.

Designing charging schedules for each day necessitates a flexible 
approach that can handle a wide variety of operating conditions. In the 
current literature on opportunity charging scheduling, a ubiquitous 
assumption is that trips must run according to schedule (Abdelwahed 
et al., 2020; Bao et al., 2023; Liu et al., 2022), so opportunity charging 
must take place during scheduled layover time in between passenger 
trips. This assumption is appropriate for long-term planning, but 
inconsistent with real daily operations in which delays are pervasive; for 
example, Washington Metropolitan Area Transit Authority (WMATA) in 
Washington, D.C. and Maryland Transport Authority (MTA) in Maryland 
both report bus on-time performance well under 80% (Maryland Transit 
Administration, 2024; Washington Metropolitan Area Transit Authority, 
2024). Agencies that wish to employ data-driven planning based on 
historical operating conditions rather than published schedules will find 
such models inappropriate, since a solution in which even a single trip is 
delayed a single instant would be considered infeasible. A more flexible 
approach would enable planning for such conditions and other unfa
vorable scenarios, such as when chargers are out of service or buses 

consume an unusually large amount of energy.
This work proposes a novel modeling approach to opportunity 

charging scheduling that allows, but tracks and minimizes, departure 
delays across all trips. We do this by explicitly modeling the queuing 
process at charging stations to track exactly when each bus is ready to 
start each of its trips. Our model also propagates any delays across trips 
served by the same bus, ensuring their cascading impacts are captured 
accurately. Second, our focus on accurate delay tracking makes the 
model applicable to a wide range of operating conditions, including 
worst-case scenarios. Rather than constraining all trips to leave on time, 
our model handles scenarios where zero delay is not achievable—for 
example, when delays are inevitable due to traffic conditions, or when 
buses consume enough energy that scheduled layover time is not suffi
cient to keep their batteries charged. It produces actionable results 
regardless of the ultimate delay and extends naturally to stochastic ap
plications where energy consumption and traffic conditions can make 
on-time departures impossible.

Our precise modeling approach produces some computational chal
lenges. In particular, the mixed-integer linear programming model in
cludes many binary variables and “big M” constraints. To mitigate this 
issue, we develop both an exact solution method and a polynomial-time 
heuristic algorithm. Both approaches decompose the complete problem 
into a series of easier-to-solve problems with easily interpretable struc
ture. The exact method uses combinatorial Benders (CB) decomposition 
to split the problem into a master problem that contains all binary 
variables and a subproblem with all continuous variables, which reduces 
the burden of the big M constraints. This restructuring is natural for our 
problem: The binary variables reflect high-level decisions about the 
ordering of charging throughout the day, whereas the continuous vari
ables track the exact timing of events, including charging times and trip 
departures. The CB approach exploits this structure in an iterative 
framework.

Our Select–Sequence–Schedule (3S) heuristic algorithm was inspired 
by the CB approach and is based on a similarly explainable decompo
sition. As in CB, we make binary decisions first and continuous decisions 
second. To expedite this process, 3S initially relaxes the queue tracking 
constraints that link different buses to each other, so that we can select 
when charging occurs with a separate linear program for each bus. We 

Fig. 1. Relationship between charging scheduling and the complete transit planning and operations process.
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then establish the sequence in which buses visit each charger with a 
simple sorting operation and finally schedule the exact charger plugin 
times, charging durations, and delays with the same approach as in the 
CB subproblem. The 3S method has polynomial-time complexity in the 
worst case, so it can be used to solve real-world instances quickly. Our 
experiments show that despite its lack of a performance guarantee, 3S 
reliably identifies good feasible solutions (and often optimal solutions) 
much faster than exact approaches do.

In summary, the main contributions of this study are as follows: 

1) A mixed-integer linear programming model for recharging sched
uling that exactly tracks queuing behavior at chargers, propagates 
delays across trips completed by the same bus, and minimizes the 
total delay;

2) An exact solution method based on CB decomposition to solve this 
computationally demanding model;

3) A polynomial-time heuristic method, motivated by the exact solution 
method, which generates good solutions quickly for complex real- 
world transit networks.

The remainder of this paper is organized as follows. Section 2 pro
vides a review of relevant literature. Section 3 describes our method
ology and mixed-integer programming formulation. Section 4 describes 
our exact solution method based on CB decomposition, while Section 5
documents the related heuristic. Section 6 applies our methods to both a 
simple notional transit network and the real Seattle-area bus network. 
Section 7 summarizes findings and concludes the study.

2. Literature review

2.1. Recharging scheduling for BEBs

Recharging scheduling for BEBs connects to a larger transit planning 
process that designs routes, timetables, and vehicle and driver sched
ules. In traditional transit planning with diesel buses, these problems are 
addressed sequentially rather than simultaneously, as each step is 
already complex to optimize (Ceder, 2007). Replacing diesel buses with 
BEBs further complicates the traditional transit planning process by 
introducing new challenges related to capital investments in buses and 
chargers, location of chargers, possible schedule revisions, and charging 
scheduling (Perumal et al., 2022). Because these various stages of the 
BEB planning process have significant overlap, opportunity charging 
scheduling has been studied as a standalone problem as well as through 
its integration with other decisions.

One common context in which researchers have modeled opportu
nity charging scheduling is when designing blocks for BEBs, which for 
diesel buses is classically addressed with the vehicle scheduling problem 
(VSP). Although the basic single-depot VSP can be solved easily for 
conventional buses, extensions including multiple depots, battery range 
limitations, multiple vehicle types, and recharging planning make VSP 
modifications for BEBs quite difficult to model and solve. Because of this 
complexity, when charging scheduling is incorporated into a BEB VSP 
model, significant assumptions are usually made that limit the appli
cability for day-to-day scheduling. For example, Tang et al. (2019) and 
Wu et al. (2022) assumed charging always takes a fixed amount of time. 
Bie et al. (2021) took a more flexible approach that calculates and 
minimizes departure delays, but is focused on scheduling buses that 
serve only a single route, not a complete BEB system.

The comprehensive review of BEB VSP publications provided by 
Perumal et al. (2022) further highlights the difficulty of incorporating 
detailed charging scheduling models into vehicle scheduling. For 
example, among the 23 publications reviewed in Perumal et al. (2022), 
none simultaneously considered multiple vehicle types and partial 
recharging of batteries. Both of these attributes are essential for daily 
recharging scheduling—many transit agencies operate both 
standard-length and articulated buses, for example, and partial 

recharging is a natural strategy for large batteries—but present major 
computational challenges to incorporate in a model that also designs 
blocks.

Similar limitations are seen in the many publications that focus on 
designing opportunity charging infrastructure and incorporate a charge 
scheduling element. For example, Esmaeilnejad et al. (2023) proposed a 
stochastic optimization model to determine both charger locations and 
recharging schedules along a single bus route, where charging may take 
place at intermediate stops but is penalized based on passenger waiting 
costs. However, this model assumes buses will always charge to 100% 
state of charge between a pair of consecutive trips, which is only 
appropriate for buses with small battery capacities. McCabe and Ban 
(2023) developed a deterministic model for simultaneously locating 
chargers and scheduling charger usage. Charger capacity is accounted 
for with predetermined “conflict sets” based on posted timetables, which 
could result in unexpected queuing at chargers if buses are delayed. 
Gairola and Nezamuddin (2023) proposed a comprehensive robust 
model to minimize the costs of converting to BEBs by optimizing battery 
sizes, charging infrastructure, and charging schedules. Their model 
allowed recharging at terminals during scheduled layover time and 
handled capacity by discretizing time into unit-length intervals and 
ensuring the number of buses charging at a terminal did not exceed the 
number of chargers there, similar to McCabe and Ban (2023). However, 
neither of these approaches extends well to daily operations where un
usually high energy demand or exogenous delays might make it 
impossible for buses to stay on schedule and charge only within 
scheduled layover time.

On the other hand, developing charging schedules for each day of 
operations after vehicle schedules and charging infrastructure are fixed 
allows for a more detailed and flexible approach. This strategy also al
lows transit agencies to adapt to daily variations that impact energy 
consumption and travel times, including weather and traffic conditions, 
passenger load, and unplanned disruptions such as charger downtime. 
However, many notable charge scheduling models from the literature 
still make restrictive assumptions, while others simply take an approach 
not appropriate for our problem setting. Many works including Abdel
wahed et al. (2020), Bao et al. (2023), Liu et al. (2022), and Zeng et al. 
(2022) still constrained charging to occur during scheduled layover 
times that are treated as fixed. He et al. (2023) was even more restric
tive, requiring each bus to charge every 3 trips regardless of the route 
served rather than tracking battery state of charge. He et al. (2020) did 
disregard the number of available charging stations. Authors assumed 
that each bus route had its own dedicated charger with sufficient plugs 
always available for charging.

Other charging scheduling research is tailored to different applica
tions than our intended setting. For example, Lacombe et al. (2024)
studied an optimal control problem intended to minimize both energy 
costs and schedule deviations, where the bus schedule is encoded as a 
route-specific headway rather than a timetable. They developed a 
decomposition strategy based on Lagrangian relaxation and local heu
ristics to apply the method in practice. This approach is much more 
flexible than restricting charging to scheduled layover time, but is only 
appropriate for systems where maintaining a target headway is more 
important than matching an advertised schedule. Finally, we note that 
there are various works such as Brinkel et al. (2023) and Manzolli et al. 
(2022) that focused exclusively on optimizing depot charging. This is a 
fundamentally different challenge from our setting that is focused on 
opportunity charging at terminals (possibly including, but not limited 
to, depots), so we do not review those in detail here.

2.2. CB decomposition

Most approaches to optimal charge scheduling result in a mixed- 
integer programming problem, making them difficult to solve. We 
handle this challenge using a tailored version of Benders decomposition, 
a classical algorithm for mixed-integer programming that was first 
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proposed over 60 years ago (Benders, 1962). The central idea of this 
approach is to separate the problem into a master problem (MP) con
taining integer variables and a subproblem (SP) containing continuous 
variables. In each iteration, the MP is solved to obtain candidate values 
of all integer variables. These fixed values are an input to the SP, which 
verifies the feasibility and potential optimality of the candidate solution. 
If the SP determines that the current candidate solution cannot be an 
optimal solution, one or more Benders cuts are generated and added to 
the MP to exclude it (along with, ideally, many other solutions), then the 
MP is solved again. The procedure repeats until an optimal solution is 
found (Rahmaniani et al., 2017).

Benders decomposition is often used in stochastic programming ap
plications, where after fixing a limited number of first-stage variables, 
the second-stage problem decomposes into several independent prob
lems that can be solved quickly. However, in the last two decades, re
searchers have identified additional classes of problems where the 
approach can outperform standard branch-and-bound or branch-and-cut 
algorithms. Hooker and Ottosson (2003) introduced the idea of 
logic-based Benders decomposition, wherein cuts are generated not 
based on the linear programming dual of the subproblem but a so-called 
“inference dual” that generalizes LP duality. Their approach has been 
applied successfully to a variety of problems but appears especially 
effective in cases where specialized constraint programming methods 
can be applied to the subproblem, including some types of scheduling 
problems (Hooker, 2007).

Codato and Fischetti (2006) soon after developed the idea of CB cuts 
for a specific class of mixed-integer linear programs with logical con
straints. Their approach largely follows Hooker and Ottosson (2003), 
but they derived a tailored method for finding cuts for their particular 
problem class and demonstrated its performance benefits on some 
example problems. A major selling point of this method is that it elim
inates the computational problems caused by big M constraints; once 
variable values have been set by the MP, the corresponding logical 
constraints are either included or excluded from the SP. As such, the CB 
approach can avoid the usual problem of big M values giving a poor 
linear programming relaxation and resulting bounds.

It should be noted that a direct application of the Benders (standard 
or combinatorial) algorithm can have poor performance for a variety of 
reasons. These issues and strategies to mitigate them are reviewed 
thoroughly in Rahmaniani et al. (2017). The keys to a successful Benders 
implementation include initializing the MP with a set of strong cuts to 
aid in finding feasible solutions; using heuristics to generate good so
lutions and strong Benders cuts; and embedding Benders cuts within a 
branch-and-cut algorithm to reduce redundant computations. These 
strategies were essential in making the CB approach competitive with an 
off-the-shelf solver.

2.3. Summary

The worldwide growth of BEBs has produced a significant body of 
literature on charging scheduling. However, most of these approaches 
are more suited to long-range planning than day-to-day or real-time 
scheduling. When charging scheduling is embedded within a model 
primarily focused on designing a charging infrastructure network or 
vehicle blocks, it tends to be simplified and restrictive. Even models 
focused purely on charge scheduling such as Abdelwahed et al. (2020)
and Liu et al. (2022) are only applicable under ideal conditions, since 
they assume buses run on schedule and charging can take place within 
scheduled layover time. There is a need for models that can provide 
useful output even under challenging conditions when avoiding depar
ture delays is impossible, so that bus operators are provided with 
actionable instructions rather than being told a problem instance is 
infeasible. Such models should be accompanied with efficient algo
rithms so they can be run repeatedly as conditions evolve or forecasts of 
ridership, traffic, and weather conditions improve.

Based on this research gap, we propose one such model for charging 

scheduling. Our approach permits but penalizes departure delays, so 
that buses can recharge as much as necessary whenever they reach a 
charger. Like existing models, our approach is applicable to ideal situ
ations in which buses stay on schedule, but also generalizes to more 
difficult real-world conditions—for example, when buses’ energy de
mands are unusually high, traffic conditions create exogenous delays, or 
charging stations are out of service and queues form at available char
gers. We enable this flexibility by precisely quantifying queue delays at 
chargers and propagating delays across trips. The optimization model 
and solution methods are presented in Sections 3–5.

3. Mathematical programming formulation

3.1. Problem setting, assumptions, and modeling approach

We consider a general setting in which fast chargers with pre
determined power outputs have already been installed at some terminals 
of a BEB system. Fig. 2 shows a simple illustration of the type of transit 
network considered in this study. In this basic example, two bus routes 
(𝔸 and 𝔹 where 𝔸;𝔹 ∈ ℙ, i.e. they belong to a set of routes ℙ) operate 
across two terminals and each terminal has a single charger installed. A 
bus may recharge at either of the two charging sites when out of service 
in between trips, as long as the bus is at the corresponding terminal and 
the charger is not already occupied. Note that in our approach, a single 
bus may serve more than one route (referred to as interlining) and/or 
use multiple different chargers during a day. A single charger also may 
serve buses on any number of different routes, so that infrastructure is 
shared as efficiently as possible. Bus trips may take place on a one-way 
route between distinct terminals (i.e., Route 𝔸) or a loop route that 
starts and ends at the same terminal (i.e., Route 𝔹).

Our approach relies on the following assumptions: 

1) Buses rely on slow overnight charging at the depot in addition to fast 
charging during the day. Each bus has a known state of charge when 
it enters service at the start of the day. A minimum state of charge is 
also required to return to the depot at the end of the day.

2) Charger locations, trip schedules, and vehicle blocks have been 
determined in advance and cannot be altered. The agency’s primary 
goal is to adhere to the posted schedule as much as possible, i.e., to 
minimize delays.

3) Buses may only charge at terminals when passengers are not on
board, never at intermediate stops.

4) Deadheading to chargers does not require significant time or energy. 
Buses may only use chargers that are sufficiently close to a trip ter
minal that the driving distance and time can be neglected.

5) All buses in the network have enough battery capacity to complete 
all trips between charges.

6) Charging behavior is linear, proportional to the maximum power 
output of each charger.

Assumption 1 acknowledges the different technologies, time scales, 
and constraints faced by transit agencies during depot versus opportu
nity charging. Agencies can be expected to have different priorities for 
charging scheduling in these different environments. When buses use 
opportunity chargers during the service day, maintaining schedule 
adherence is the greatest priority, whereas overnight charging should 

Fig. 2. Simple example of the type of BEB system considered in this study.
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allow more time to optimize for other objectives such as energy costs 
and battery health. Bus bases are also less likely to be subject to queuing 
for chargers due to the much lower cost of lower-power chargers.

Assumption 2 reflects our intended problem setting as described in 
Section 1. Assumption 3 ensures that the current passenger level of 
service is maintained. Assumption 4 is common in the recharging liter
ature and simplifies the model by making cumulative energy con
sumption independent of any charging decisions and their 
corresponding binary decision variables. Its implications for using the 
model in practice are discussed further in Section 7.

The last two assumptions concern battery range and charging 
behavior. Assumption 5 is necessary to ensure operations are always 
feasible with fast chargers; any such infeasible blocks can be discarded 
from the analysis. Assumption 6 is another common assumption made to 
limit computational complexity. It can provide a good enough approx
imation even if the real charging behavior is nonlinear, since charging is 
typically linear until the state of charge exceeds about 80% when power 
must be reduced to protect the battery (Montoya et al., 2017).

Following these assumptions, suppose we are given a set of BEBs V, 
each of which is scheduled to complete a specific set of trips; that is, 
every vehicle has been assigned to a predetermined block. We represent 
each trip as a tuple i = (bi, ni), where bi is the bus ID and ni is the trip 
number; i.e., bus A completes trips (A, 1), (A, 2), (A, 3), etc. Let T be the 
set of all trips completed by any bus. We will use the shorthand indices i 
and j ∈ T throughout this formulation to limit indices, but keep in mind 
that each of these refer to a specific trip completed by a specific bus as 
part of a predetermined block. For each trip i ∈ T , the timetable pro
vides a scheduled departure time σi and scheduled duration τi (so that 
the scheduled end time is σi + τi). If a trip i has an immediate predecessor 
in its block, that predecessor is denoted i− ; likewise, the next trip in its 
block is denoted i+. Let θ(i) be the set of trips completed by the same bus 
prior to i (i.e., all of its predecessor trips).

Fig. 3 illustrates a simple example of how to interpret these param
eters on a timeline for two buses labeled A and B. The colored segments 
of the timeline represent times when the buses are scheduled to be in 
service and unavailable to charge. Considering the trips served by bus B 
in this example, we have θ((B, 3)) = {(B, 1), (B, 2)}, θ((B, 2)) = {(B, 1)}, 
and θ((B, 1)) = ∅. Likewise, (B,3)− = (B, 2) and (B,1)+ = (B, 2).

Our approach to charging scheduling focuses on accurately tracking 
trip departure delays, which is challenging because of the underlying 
queuing behavior. To address this challenge, we define multiple 
continuous decision variables for each trip that track the time of certain 
events. For each trip i, let di be the departure delay, so that the actual 
start time of the passenger trip is di + σi. Let pi be the time that charging 
begins after trip i, i.e., the “plugin” time when bus bi connects to a 
charger. Note that pi may be equal to the end time of i if bus bi can plug in 
immediately, or may be later if bi must queue. By convention, if there is 
no charging after trip i, we set the value of pi to be the completion time of 
trip i, i.e., pi = di + σi + τi. For every trip i and every charger l in the set of 
chargers C, let tl

i be the amount of time spent charging after trip i at 
charger l.

To summarize, each trip is scheduled to begin at σi, actually starts at 
time di + σi, ends at time di + σi + τi, begins charging at time pi, and 
finishes charging at time pi +

∑
l∈Ctl

i, at which point the next trip can 

begin.
Fig. 4 further illustrates the relationship between the problem vari

ables and parameters, continuing the example established in Fig. 3. 
Suppose that, following the routes from Fig. 2, Bus A completes a block 
consisting of one-way trips between the terminals that host chargers l1 
and l2. The first trip starts at l1 and ends at l2, the second starts at l2 and 
ends at l1, and so on. Bus B serves a loop route in which each trip starts 
and ends at l1.

Buses A and B each complete their initial trips according to schedule. 
Bus A uses charger l2 immediately after trip (A, 1), shown in green on its 
timeline, charging from time pA1 = σA1 + τA1 until pA1 + tl2

A1. It then 
begins trip (A, 2) on time. Likewise, Bus B plugs in at charger l1 imme
diately after trip (B, 1). After trip (A, 2), bus A also uses charger l1, but 
cannot begin charging until bus B is finished at time pA2 = σB2. Trip (A, 
3) starts later than scheduled because of the time spent queuing and 
charging, incurring the departure delay dA3 = pA2 + tl1

A2 − σA3 shown on 
Bus A’s timeline.

Table 1 compiles all the set, parameter, and decision variable defi
nitions used in this work. Sections 3.2–3.7 next describe the formulation 
of the mixed-integer linear program we developed for recharging 
scheduling, including the objective function and the constraints that 
track queuing, delays, and battery levels.

3.2. Objective function

min
di ;pi ;tli ; xl

i ;y
l
ij

∑

i∈T

di (1) 

The objective (1) is to minimize the total amount of departure delay 
across all trips i ∈ T served by BEBs. While the objective is straightfor
ward, setting the appropriate value of di for each trip i requires carefully 
formulated constraints, as described in Sections 3.3–3.6.

3.3. Queue tracking and delay propagation

In order to accurately track departure delays for each trip so that 
their sum can be minimized in objective (1), our model needs to 
correctly capture the relationships between plugin time, charging time, 
and delay that were illustrated in Fig. 4. Setting each of these variables’ 
values correctly ensures that queuing effects are captured and delays for 
each trip are properly quantified and propagated across trips.

First, consider the plugin time pi for each trip i. Recall our convention 
that if bus bi does not visit a charger after trip i, then pi should be equal to 
the time that passenger trip i is completed. Likewise, if bi uses a charger 
after trip i, the earliest it can start charging is the completion time of trip 
i. Constraints (2) use the fact that trip i ends at time di + σi + τi to 
establish this lower bound on the plugin time: 

pi ≥ di + σi + τi ∀i ∈ T (2) 

The plugin time pi should exceed the trip end time di + σi + τi if bus bi 
has to queue at the charger. To handle these queuing relationships, we 
must introduce some auxiliary binary variables and related constraints. 
Let C be the set of all chargers that are installed. We say that a charger l ∈
C serves a trip i ∈ T if bi uses l after finishing trip i. Let yl

ij be a binary 

Fig. 3. Timeline of passenger service for two example buses and relationship to trip time parameters.
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decision variable that equals 1 if charger l serves trip j immediately after 
trip i and 0 otherwise. By “immediately”, we mean only that trips i and j 
are served successively by charger l and no other trips are served in 
between these two; there may be a large gap between the charging 
completion time for trip i and the plugin time of trip j. Finally, let A be 
the set of all “arcs” (l, i, j) connecting trips i and j that may be served 
sequentially by charger l. These arcs are discussed in more detail in 
Section 3.4.

If yl
ij = 1 for some arc (l, i, j), then bus bj cannot start charging until bi 

has finished, since the charger can serve only a single bus at a time. This 
relationship can be stated with the conditional logic of constraint (3): 

yl
ij = 1 ⟹ pj ≥ pi + ti ∀(l; i; j) ∈ A (3) 

The logical relationship in constraint (3) can be linearized using the 
common big M method (where M is some large constant), yielding 
constraints (4): 

pj ≥ pi + tl
i − M(1 − yl

ij) ∀(l; i; j) ∈ A (4) 

With the plugin time values controlled by constraints (2) and (4), it is 
straightforward to set the delay for each trip. After each trip i, bus bi has 

finished charging and is ready to start its next trip at time pi + maxl∈C
{
tl
i

}
. 

Note that this is true whether or not any charging is done. The delay of 
the following trip i+ is the (nonnegative) difference between this actual 
start time and the scheduled start time σi+ , which leads to constraints (5) 
and (6): 

di+ ≥ pi + tl
i − σi+ ∀l ∈ C; i ∈ T : ni ≤ nmax

i − 1 (5) 

di ≥ 0 ∀i ∈ T (6) 

Together, constraints (2) and (4)–(6) make sure all plugin time and 
delay relationships are captured accurately. They also propagate delays 
across trips—the delay of each trip di impacts its plugin time pi, which 
impacts the delay of the following trip, di+ .

3.4. Charger sequencing

The binary variables yl
ij explicitly track the sequence of trips that are 

served by each charger in the network. Our model therefore includes 
constraints to ensure that the optimal values of yl

ij encode a valid 
sequence connecting all trips served by each charger. By a valid 
sequence, we mean that (1) any time a charger is used (i.e., xl

i = 1), that 
trip appears somewhere in the sequence, and (2) every trip i served by 
charger l has exactly one trip before and one trip after it in the sequence.

To formulate these constraints, we model the charging sequence for 
each charger l as a path through a network in which each node corre
sponds to a trip (a charging opportunity) and arcs represent feasible 
charging connections. That is, if trip j can be served by the charger 
immediately after trip i, then arc (l, i, j) is included in the network. In 
general, a directed arc joins every pair of edges for the same bus (since 
we can’t travel back in time to charge at, say, trip 1 after trip 3). On the 
other hand, an undirected edge joins any pair of trips completed by 
different buses, because we do not know a priori which order these trips 
will be optimally served in. For instance, it could be optimal to use arc (l, 
i, j) in the solution even if trip j is scheduled to end before trip i, because 
trip j is delayed in the optimal solution.

We also introduce two dummy nodes to model the initial (node s) and 
final (node t) idle state of each charger. These nodes are necessary 
because the first and last trips to be served by each charger have no 
predecessor and successor trip, respectively, so they require slightly 
different constraints. Moreover, there is no way to know a priori which 
trips will be first and last, so we instead construct dummy nodes to 
handle these special cases. Now, a feasible sequence for charger l cor
responds to a path through this virtual network from s to t. Note that this 
network model is similar to and inspired by those used in vehicle 
scheduling approaches (e.g., the maximum flow formulation of the VSP 
(Ceder, 2007)).

Fig. 5 illustrates our network model for the simple example of two 
buses and two chargers previously depicted in Figs. 3 and 4. Fig. 5a and c 
displays the network structure for each charger, including the trip and 
dummy nodes for each charger as well as the arc set A. Arrows indicate 
directed arcs and lines indicate undirected edges. Fig. 5b and d highlight 
the paths corresponding to the charging decisions from Fig. 4, in which 

Fig. 4. Illustration of variable meanings for di, tl
i, and pi with their relation to schedule parameters σi and τi. The dashed green line segment represents charging at l2, 

solid green segments indicate charging at l1, and other segments show passenger trips.

Table 1 
Notation definition.

Set

V Buses
T Trips
C All chargers
C(i) Chargers that can be used after trip i
A Arcs
ℙ Route

Decision variable

xl
i

Binary variable indicating whether the bus on trip i uses charger l afterwards

yl
ij

Binary variable indicating whether charging arc (l, i, j) is used

di Delay at start of trip i
pi Plugin time of charging after trip i
tli Charging duration at l after completion of trip i

Parameter

bi ID of bus that completes trip i
ni Trip number of trip i
nmax

i Total number of trips served by bus bi

ρl Power output of charger l
tli

Maximum charging duration at site l after trip i

σi Scheduled start time of trip i
τi Scheduled duration of trip i
δi Energy consumed during trip i
ϵi Battery capacity of bus serving trip i
η0

i Initial state of charge of bus serving trip i
ηmin

i Minimum feasible state of charge of bus serving trip i
ηmax

i Maximum feasible state of charge of bus serving trip i
M “Big M”, arbitrary large number
cl

ij
CB master problem objective coefficient

ϕ CB subproblem solution improvement tolerance
αl

i
Random cost coefficient in 3S heuristic
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bus A uses charger l2 after trip (A, 1), bus B uses l1 after trip (B, 2), and 
bus A charges at l1 after trip (A, 2). These charging decisions correspond 
to arc variable values of yl1

sB1 = yl1
B1A2 = yl1

A2t = yl2
sA1 = yl2

A1t = 1, and 
yl

ij = 0 for all other arcs.
Following this network representation, a feasible sequence for each 

charger can be enforced using the familiar network flow constraints (7)– 
(9): 
∑

i∈T

yl
si = 1 ∀l ∈ C (7) 

∑

i∈T

yl
it = 1 ∀l ∈ C (8) 

∑

j:(l;j;i)∈A

yl
ji −

∑

j:(l;i;j)∈A

yl
ij = 0 ∀l ∈ C;∀i ∈ T (9) 

Constraints (7) and (8) ensure that exactly one arc leaves the source 
dummy node and exactly one arc arrives at the sink dummy node, 
respectively, for each charger. Constraint (9) ensure connectivity of the 
charging sequence; the number of arcs entering and leaving each trip 
node must be equal. Notably, the network flow constraints (7)–(9) do 
not preclude the existence of subtours in paths through the network. It is 
not necessary to include subtour elimination constraints because any 
solution containing a subtour cannot possibly be optimal for our prob
lem; in fact, it would result in unbounded delay due to constraints (4) 
and (5).

3.5. Charging logic

If multiple chargers are located close to the end of trip i, then each 
bus must be restricted to only use one charger at a time. Let xl

i = 1 if 
charger l serves trip i and 0 otherwise. Then this condition is simple to 
enforce with constraint (10): 
∑

l∈C

xl
i ≤ 1 ∀i ∈ T (10) 

For constraint (10) to be applied as intended, the logical relationship 
between the xl

i and yl
ij variables also needs to be enforced. Charging after 

trip i corresponds to visiting its trip node in Fig. 5, meaning one arc 
leaves (or, equivalently, enters) that node, giving constraint (11): 

xl
i =

∑

j:(l;i;j)∈A

yl
ij ∀l ∈ C; i ∈ T (11) 

3.6. State of charge management

Finally, the model needs constraints that track charging throughout 
the service day to make sure that each bus maintains a feasible state of 
charge (SOC). Let ϵi be the full battery capacity in kWh of bus bi that 

serves trip i. Suppose we are also given lower and upper bounds ηmin
i and 

ηmax
i on bi’s battery state of charge, e.g., ηmin

i = 0:2 and ηmax
i = 0:95, 

which may be imposed to protect the battery or provide reserve ca
pacity. Let η0

i be the initial SOC of bus bi at the start of its first trip.
The SOC of each bus throughout the day depends on its energy 

consumption in service as well as recharging decisions. Let δi be the 
amount of energy consumed by bus bi during trip i, in kWh. Let ρl be the 
power output in kW of charger l. Then, the cumulative energy con
sumption of bus bi at the end of trip i is δi +

∑
j∈θ(i)δj and the cumulative 

amount of energy gained is 
∑

j∈θ(i)
∑

l∈Cρltlj. Constraint (12) then enforce 
that bi is above the minimum SOC at the end of each trip i: 

η0
i ϵi +

∑

j∈θ(i)

(
∑

l∈C

ρltl
j − δj

)

− δi ≥ ηmin
i ϵi ∀i ∈ T (12) 

The left-hand side of constraint (12) gives the battery level in kWh at 
the time trip i is finished, while the right-hand side gives the minimum 
required battery level in kWh. Likewise, the similar constraint (13) en
sures that the maximum battery SOC is not exceeded. Note that the left- 
hand side of constraint (13) gives the battery level immediately after any 
charging that follows trip i. 

η0
i ϵi +

∑

j∈θ(i)

∑

l∈C

(
ρltl

j − δj

)
− δi +

∑

l∈C

ρl
it

l
i ≤ ηmax

i ϵi ∀i ∈ T (13) 

The continuous charging duration variables tl
i also must follow the 

correct logical connection to the binary variables xl
i used in constraints 

(10) and (11): tl
i must be forced to zero if xl

i = 0; otherwise, it can take 
any feasible value. Let tl

i be the maximum possible charging time at 
charger l after trip i. Then, the charging time tl

i is restricted by constraint 
(14): 

0 ≤ tl
i ≤ tl

ix
l
i ∀l ∈ C; i ∈ T (14) 

The charging time upper bound tl
i should reflect the access to charger 

l as well as the maximum charging duration, which could be set to a 
constant by a transit agency policy or limited only by the maximum time 
it could take to fully charge the battery. This work sets the charging time 
based on Eq. (15): 

tl
i =

{
ϵi
(
ηmax

i − ηmin
i

)/
ρl if ​ trip ​ i ends ​ at ​ l

0 otherwise
∀l ∈ C; i ∈ T

(15) 

Equation (15) reflects that bus bi can only use charger l if trip i ends at 
l. If l is accessible to bi after trip i, then the maximum charging duration is 
given by the time it would take to recharge the battery’s full feasible 
state of charge at the rated power of charger l.

Fig. 5. Network representations and feasible paths through them for example of two chargers serving two buses, as in Fig. 4.
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3.7. Complete MILP formulation

Compiling the objective function and full set of constraints devel
oped in Sections 3.2–3.6, the complete mixed-integer linear program
ming problem for opportunity charging scheduling is given below as 
optimization problem (P): 

min
di ;pi ;tli ;x

l
i ;y

l
ij

Total ​ delay ​ (1)

s:t: Plugin ​ time ​ constraints ​ (2) ​ and ​ (4)
Delay ​ tracking ​ constraints ​ (5) ​ and ​ (6)
Charger ​ sequencing ​ constraints ​ (7)–(9)
Charging ​ logic ​ constraints ​ (10) ​ and ​ (11)
State ​ of ​ charge ​ management ​ constraints ​ (12)–(14)
xl

i ∈ {0; 1} ∀l ∈ C; i ∈ T
yl

ij ∈ {0; 1} ∀(l; i; j) ∈ A

(P) 

4. Exact solution method: CB decomposition

The optimization problem (P) is difficult to solve for large instances, 
largely due to the binary variables yl

ij and the corresponding big M 
constraint (4). Because the number of y variables and big M constraints 
scales with the square of the number of trips, solving the problem with 
an off-the-shelf MIP solver is not possible for many large instances. We 
develop two strategies to deal with this computational challenge. In this 
section, we describe an exact solution approach based on CB decom
position, which circumvents the typical issues of weak linear program
ming relaxations caused by big M constraints. Section 5 later describes a 

polynomial-time heuristic with randomization that can generate a large 
number of good solutions quickly. The heuristic helps accelerate the 
convergence of the CB algorithm on smaller problems and also shows 
good performance as a standalone method for difficult problems on real 
networks where exact algorithms are unacceptably slow.

4.1. Overview of CB decomposition

Fig. 6 shows a high-level overview of the CB algorithm we imple
mented. We begin by using a randomized heuristic (described in detail 
in Section 5) to generate a set of feasible charging schedules. The best 
solutions are used to create initial CB cuts to restrict the MP’s feasible 
region and we further strengthen the MP by adding cuts derived from the 
state-of-charge constraint (12). Following this initialization step, the 
main CB loop begins. In each iteration, we first solve the MP to get a 
candidate solution in terms of the binary x and y variables only. 
Assuming we obtain one, we solve the subproblem, which aims to find a 
solution that outperforms the current incumbent. If the SP is infeasible, 
indicating that this solution cannot outperform the incumbent, we use 
the CB cut generation procedure to exclude it. If it is feasible, our current 
MP solution becomes the new incumbent. We update it as such, then re- 
solve the SP and add CB cuts.

Sections 4.2–4.4 next describe the individual steps of our CB 
implementation in detail, including the MP and SP formulations as well 
as cut generation.

4.2. Master problem

The CB master problem formulation includes all constraints on the 

Fig. 6. Overview of CB solution process.
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binary variables xl
i and yl

ij from the complete formulation. Let cl
ij be an 

objective function cost coefficient, which is discussed in more detail 
later in this section. Then the MP is given by 

min
xl

i ;y
l
ij

∑

(l;i;j)∈A

cl
ijy

l
ij (16) 

s:t: Charger ​ sequencing ​ constraints ​ (7)–(9)

Charging ​ logic ​ constraints ​ (10) ​ and ​ (11)
∑

(i;j)∈A(S)

yl
ij ≤ |S| − 1 ∀S⊂T : |S| ≥ 2

(17) 

xl
i ∈ {0; 1} ∀l ∈ C; i ∈ T

yl
ij ∈ {0; 1} ∀(l; i; j) ∈ A

Note that the MP introduces new constraint (17), which ensures that 
the MP solution does not contain any subtours. In constraint (17), A(S)
denotes the set of arcs contained in the trip subset S, i.e., 

A(S) = {(l; i; j) ∈A : i∈ S; j∈ S} (18) 

Subtour elimination constraints were not necessary in the complete 
problem formulation (P) because any subtour would produce un
bounded delay. However, in the CB framework, delay calculation is 
delegated to the subproblem, so the master problem will frequently 
generate solutions with subtours if constraint (17) is omitted. We 
generate these constraints “lazily” within a branch-and-cut framework 
by checking for subtours and adding constraints only when subtours are 
detected, but having to handle these constraints directly in the MP is still 
a disadvantage of the CB method for our problem.

Because the full problem objective function (1) is not dependent on 
the binary variables, the MP essentially has a constant objective. In 
practice, this means that we may select any objective we wish, so we use 
a heuristic objective function to encourage the MP to generate integer 
solutions that are more likely to result in optimal delays as calculated by 
the subproblem. To do so, we define cost coefficients cl

ij for all arcs (l; i; j)
∈ A as the lower bound on delay that would result from using that arc.

This lower bound is derived from the queuing and delay constraints. 
Recall that j+ is the successor trip of j on the same block served by bus j. 
If arc (l, i, j) is used, then trip j + might be delayed due to bus bj queuing 
while bi charges. Specifically, pj ≥ pi by (4) and because tl

i ≥ 0. Ac
counting for constraint (2), we have pj ≥ σi + τi, and then dj+ ≥ σi + τi −

σj+ . So, we set the MP cost for most arcs according to Eq. (19): 

cl
ij = max

{
0; σi + τi − σj+

}
(19) 

All dummy arcs (Fig. 5) and any arcs (l, i, j) for which j has no suc
cessor trip are assigned a cost of 0. Setting the costs with Eq. (19) dis
incentivizes the solver from setting yl

ij = 1 when doing so is guaranteed 
to delay trip j+. In our experiments, this objective function gave better 
performance than a constant objective that essentially chose feasible 
solutions at random.

4.2.1. Master problem cuts
When initializing the MP, we also add some cuts to strengthen its 

formulation. Adding cuts helps to generate MP solutions that are more 
likely to be feasible for the SP, which decreases the total number of it
erations that must be performed.

We generate MP cuts based on the minimum state-of-charge 
constraint (12), using them to derive lower bounds on the total num
ber of times each bus must charge. Essentially, we convert constraint 
(12) to restrict the MP decision variables xl

i rather than the continuous 
variables tl

i, which are now delegated to the subproblem. These cuts are 
based in large part on valid inequality (20): 

ρltl
i ≤ ϵi

(
ηmax

i − ηmin
i

)
xl

i ∀i ∈ T ; l ∈ C (20) 

Inequalities (20) are based on the fact that whenever a bus bi uses a 
charger, the total amount of energy gained is bounded above by its 
useable battery capacity (the full battery size ϵi, adjusted for the mini
mum and maximum SOC values ηmax

i and ηmin
i ), coupled with constraint 

(14) that establish the relationship between tl
i and xl

i.
Next, for any trip i, let C(i) denote the set of chargers that could be 

used by bi after i, i.e., C(i) =
{
l ∈ C : tli > 0

}
. Note that C(i) may be empty 

if trip i does not end close to any chargers. Substituting inequalities (20) 
into constraints (12) and restricting the summation to feasible charging 
opportunities only, we obtain valid inequalities (21): 
∑

j∈θ(i)

∑

l∈C(i)

ϵi
(
ηmax

i − ηmin
i

)
xl

j ≥
∑

j∈θ(i)

δj + δi + ϵi
(
ηmin

i − η0
i

)
∀i ∈ T

(21) 

Dividing the inequalities (21) by the useable battery capacity and 
adding the ceiling operator to the right-hand side gives the final form of 
the master problem cuts: 

∑

j∈θ(i)

∑

l∈C(i)

xl
j ≥ ⌈

∑
j∈θ(i)δj + δi + ϵi

(
ηmin

i − η0
i

)

ϵi(ηmax
i − ηmin

i )
⌉ ∀i ∈ T (22) 

Here, the ceiling of the right-hand side can be taken because the left- 
hand side of (22) is a summation of binary variables and therefore al
ways integer. Inequalities (22) yields one MP cut for every trip in the 
problem instance. In practice, we do not need to add all of these to the 
MP. Rather, we create these cuts by proceeding through each block in 
order of trip sequence and calculating the value of the right-hand side. 
Each additional trip adds variables 

∑
l∈C(i)xl

i to the left-hand side and may 
or may not increase the right-hand side, since the total energy con
sumption is nondecreasing as we progress through a block. We therefore 
add a new cut to the MP each time the right-hand side increases to a new 
integer value; if it does not increase, then the cut for trip i is dominated 
by the cut for i− and does not improve the MP formulation.

4.3. Subproblem

Solving the CB master problem provides a candidate solution in 
terms of the x and y variable values. The subproblem’s role is then to 
check whether it could be an optimal solution to the complete problem 
by verifying both that it is a feasible choice of integer variable values and 
that it can minimize delay. This optimality criterion is evaluated by 
tracking an incumbent solution and its total delay value, denoted z*, as 
described in Codato and Fischetti (2006).

For a given MP iteration k, let A(k)
1 be the set of arcs used in the so

lution, i.e., (l; i; j) ∈ A(k)
1 if yl(k)

ij = 1, where the variable superscript (k) 

denotes the optimal value in the kth iteration. Likewise, let T (k)
0 be the 

set of trip-charger pairs for which charging is skipped, i.e., (l; i) ∈ T (k) if 
xl(k)

i = 0. Then the SP for iteration k is 

min
di ;pi ;tli

Total ​ delay ​ (1)

s:t:
∑

i∈T

di ≤ z* − ϕ
(23) 

pj ≥ pi + tl
i ∀(l; i; j) ∈ A(k)

1 (24) 

tl
i = 0 ∀(l; i) ∈ T (k)

0 (25) 

Plugin ​ time ​ lower ​ bound ​ (2)
Delay ​ tracking ​ constraints ​ (5) ​ and ​ (6)
State ​ of ​ charge ​ management ​ constraints ​ (12)–(14)

The CB subproblem aims to minimize the delay based on the binary 
decisions from the MP. Constraint (23) requires that the subproblem 
solution must improve the current incumbent objective value z* by some 
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small tolerance ϕ, which ensures that when the MP is found to be 
infeasible, the current incumbent is optimal. It should be a small positive 
number that can be thought of as an optimality gap, since the sub
problem checks whether the incumbent objective can be improved by at 
least ϕ. In our experiments, ϕ is set to 1 min, which should be an 
insignificant amount of total delay across the full transit network. A 
larger value of ϕ could be appropriate if a large amount of total delay is 
anticipated, which would reduce computational time. Constraints (24) 
and (25) replace the corresponding big M constraints from the full 
problem, enforcing bounds on plugin time pi and charging time tl

i only as 
needed based on the current MP solution. The remaining SP constraints 
are identical to those from the complete formulation in Section 3.7.

4.4. CB cuts

As shown in Fig. 6, when the SP is infeasible, we add CB cuts to 
exclude the incumbent MP solution. The key to creating these cuts is to 
identify a minimal infeasible subsystem (MIS), also called an irreducible 
infeasible subsystem (IIS) of the infeasible SP instance. An MIS is an 
inclusion-minimal set of rows of the SP constraint matrix, where “in
clusion-minimal” means that if any single constraint is removed, the 
resulting subsystem of constraints admits a feasible solution. Codato and 
Fischetti (2006) described an algorithm to generate multiple such MISs 
for any MP solution that yields an infeasible SP.

An MIS of the subproblem identifies a set of MP varia
bles—corresponding to the instances of the conditional constraints (24) 
and (25) included in the MIS—that have forced the problem to be 
infeasible. To make sure that the MP does not produce a solution with 
this same set of variables again, we add a CB cut to exclude it. For this 
purpose, we can represent the MIS as two sets of indices: one set Mx 
corresponding to constraints (24) and another My corresponding to 

constraints (25). That is, Mx =
{(

l; i) ∈M : xl
i = 0

}
and My =

{(
l; i; j)

∈M : yl
ij = 1

}
. Given such an MIS, a CB cut is formed by the simple 

inequality (26): 
∑

(l;i)∈Mx

xl
i +

∑

(l;i;j)∈My

(1 − yl
ij) ≥ 0 (26) 

Equation (26) enforce that at least one of the binary variables xl
i and 

yl
ij included in the MIS must change its value in order to obtain a feasible 

solution.

4.5. Implementation details

We implemented the CB algorithm using Python and the Gurobi 
solver via the gurobipy package. Following Fig. 6, we begin by 
initializing the master problem and adding CB cuts for heuristic solu
tions. In our experiments, we generate cuts for any heuristic solution 
with an objective value within 50% of the best identified objective. Once 
the MP is initialized, we run the CB algorithm within a branch-and-cut 
framework using Gurobi’s callback capabilities. When a new optimal 
solution to the MP is detected, we first check if it contains any subtours. 
If it does, we cut off any such subtours by adding constraint (17) as lazy 
constraints. If it does not, we progress to solving the subproblem and 
generating CB cuts. To generate an MIS each time that the SP is infea
sible, we use Gurobi’s compute IIS() function, which identifies a 
single MIS out of many possibilities. Identifying multiple MISs (and 
consequently multiple cuts) can help the algorithm converge faster, so 
each time an MIS is found, we remove one constraint from that MIS at 
random, verify that the relaxed SP model is still infeasible, and run 
computeIIS() again to find a new unique MIS. We repeat this pro
cedure until the relaxed SP model is feasible, which typically results in 
finding several MISs per CB iteration.

5. Heuristic solution method: 3S

Deriving the CB algorithm for our charge scheduling problem (P) 
inspired a heuristic algorithm that follows a similar pattern, but with 
much faster convergence. The heuristic design is based on a few key 
insights presented by the decomposition approach. First, most of the 
problem’s complexity comes from the two interconnected decisions of 
selecting which trips include charging (the values of xl

i) and the 
sequence in which these trips are served by each charger (the values of 
yl

ij). Once these values are set, it is easy to determine the optimal 
charging durations and complete schedule of plugin/departure/delay 
times with the subproblem, which is just an LP. Additionally, the 
problem of selecting the order in which to serve trips may not be too 
difficult in practice once the charging trips have been selected. We can 
expect that the optimal charging order is unlikely to differ too much 
from simple first-in, first-out priority.

Based on this logic, we devised a heuristic algorithm based on 
relaxing and separating the MIP formulation (P). We relax the compli
cating queue constraint (4) and restructure the problem into three 
phases we call selection, sequencing, and scheduling, together forming 
what we call the 3S algorithm.

Fig. 7 gives an overview of the 3S heuristic algorithm. The first step is 
to initialize some random cost parameters αl

i, which help the algorithm 
explore a wider range of feasible solutions. Then, in the selection phase, 
we solve a separate LP for each bus to select a set of trips when it will 
charge. This is equivalent to setting the values of xl

i or populating the set 
T

(k)
0 in the CB approach. In the sequencing phase, we perform a simple 

sorting operation for each charger to set the order in which it serves 
trips. The sequencing phase is analogous to setting the yl

ij variable values 

or the set A(k)
1 from the CB master problem. In the final scheduling phase, 

we solve one more LP to optimize charging durations and the resulting 
delay given the selection and sequence decisions. This final LP is iden
tical to the CB subproblem with the incumbent bound constraint (23) 
removed. The final output of any run of the 3S heuristic is a feasible 
solution to problem (P) and its corresponding objective value. Sections 
5.1–5.3 next describe each of the three phases in detail.

5.1. Phase 1: Trip selection

The purpose of Phase 1 is to set feasible values of the binary charging 
decisions xl

i for all trips i and chargers l. To do this, we relax constraint 

Fig. 7. Flowchart of 3S heuristic solution procedure.
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(4), which is used to accurately calculate the plugin times and delays. 
Note, the relaxation does not influence feasibility with respect to state of 
charge. As a result, the plugin time variables pi are controlled only by 
constraint (2), so that pi = di + σi + τi for all trips i, and pi can be removed 
from the formulation. The binary variables yl

ij are also no longer needed 
when constraint (4) are removed from the MIP formulation (P), since 
they have no impact on the objective function.

One more simplification is needed to eliminate the binary variables 
xl

i and make the Phase 1 problem a linear program, noted for brevity as 
Phase 1 LP in the sequel. Rather than including constraint (10) that rely 
on xl

i and ensure each bus uses only one charger after each trip, we select 
the charger to be used at random from the set C(i) of accessible chargers 
for each trip i. Let l̂i be the randomly chosen charger for trip i. Then we 
ensure only one charger is used by defining a new upper bound on the 
charging time with Eq. (27): 

t̂l
i =

{
tl
i if ​ l = l̂i

0 otherwise
(27) 

With the single-charger limit handled as such, the binary variables xl
i 

can be excluded, yielding the Phase 1 LP (28)–(30): 

min
di ;tli

∑

i∈T

[

di +
∑

l∈C

αl
it

l
i

]

(28) 

s:t: di ≥ σi− + di− + τi− + ti− − σi ∀i ∈ T : ni ≥ 2 (29) 

Delay ​ nonnegativity ​ (6)
State ​ of ​ charge ​ constraints ​ (12) ​ and ​ (13)

0 ≤ tl
i ≤ t̂l

i ∀i ∈ T ; l ∈ C

(30) 

The Phase 1 LP, the objective function (28) includes a randomization 
term 

∑
i∈T ;l∈Cαl

itl
i, where αl

i is randomly sampled from a suitable distri
bution. This term helps to generate a variety of feasible solutions 
through repeated runs of the 3S algorithm. Since there will often be 
many different charging patterns that result in the same optimal delay in 
Phase 1 (especially if the minimum total delay is zero), adding this 
random coefficient to the charging times helps 3S to consider a greater 
variety of potentially good first-stage solutions. A distribution should be 
chosen so that αl

i takes on a variety of both positive and negative values. 
Negative values of αl

i are useful to produce results in which a bus dis
tributes its charging over a greater number of trips, which may help to 
reduce queuing. It is also important that the values of αl

i are not so large 
that the randomization term dominates the delay term in the objective 
function, which could result in poor performance. In our experiments, 
we sample the values of αl

i from a normal distribution with mean 0 and 
standard deviation 0.5.

The Phase 1 LP is separable across all buses in the system, since the 
conditional plugin time constraint (4) that linked trips on different 
blocks have been removed. Phase 1 therefore consists of Nb independent 
linear programs, where Nb is the number of buses serving the trips T . 
Note that since the number of variables only scales with the number of 
trips served by a single vehicle, each LP is quite small.

Solving the Phase 1 LP yields first-stage charging durations tli and 
delays di for all trips i and chargers l. We convert the charging durations 
to their equivalent binary values xl

i, i.e., xl
i = 1 if tl

i > 0 and xl
i = 0 

otherwise. These binary decisions also correspond to the set of non- 
charging trips T (k)

0 from the CB master problem. Each trip i for which 
∑

l∈Cxl
i = 1 is also assigned a first-stage plugin time pi = di + σi + τi when 

it is expected to start charging. These form the inputs to Phase 2.

5.2. Phase 2: Charger sequencing

In Phase 2, we process the charging decisions from Phase 1 into a 

sequence for every charger that is used. For each charger l, we simply 
sort all trips i for which xl

i = 1 by their first-stage plugin times pi. Sorting 
these trips gives us a simple mapping to a feasible set of charging arcs 
A

(k)
1 : For any consecutive pair of trips i and j, we add arc (l, i, j) to A(k)

1 . 
For each charger we also add arcs connecting to the initial and final 
dummy nodes, respectively. That is, if i is the first and j is the last trip 
served by charger l, we add the arcs (l, s, i) and (l, j, t).

5.3. Phase 3: Event scheduling

Phase 3 takes the results obtained from Phases 1 and 2—essentially, 
all the binary decisions of the complete MIP formulation—and uses them 
to define an exact charging schedule to minimize delays. Since the first 
two phases populated the sets T (k)

0 and A(k)
1 , we have all the inputs 

necessary to construct an instance of the subproblem, though we need to 
either set the incumbent delay value z* to an arbitrarily high value or 
remove constraint (23) entirely. Since the SP is a linear program whose 
number of variables and constraints scales roughly with the number of 
trips in an instance, it can generally be solved quite quickly. Solving the 
SP yields final values of charging duration and delay for each trip that 
account for queuing. Note that in Phase 3 we allow for changing the 
charging durations originally output by Phase 1; The purpose of Phase 1 
is to make the binary decisions of when and where to charge, but we 
relax the problem to an LP for efficiency. Also note that including the 
charging time constraint (30) in the Phase 1 LP for each bus ensures that 
Phase 3 is always feasible; the purpose of Phase 3 is to optimize charging 
durations to exactly determine the minimum possible delay for the given 
set of charging trips and sequence for each charger.

6. Case studies

We constructed a variety of instances in order to analyze the per
formance of the CB method and 3S heuristic. These instances were based 
on two different transportation networks. The first, described in Section 
6.1, is a small notional network consisting of two bus routes served by a 
single shared charger. The small network allows us to evaluate the 
performance (in terms of solution time and optimality gap) of both our 
methods in comparison to directly solving the model with Gurobi. The 
second network, described in Section 6.2, is based on the actual transit 
system operated by King County Metro in the greater Seattle area. The 
instances on this larger network are too difficult to be solved to opti
mality by either the CB method or an off-the-shelf solver, but show how 
the 3S heuristic can support transit operations at a real-world scale.

6.1. Simple notional network

To test the CB method and assess the performance of the 3S heuristic, 
we used a small test network originally presented in Appendix B of 
McCabe and Ban (2023). That original network was further simplified to 
include only two of the routes (𝔸 and ℂ) and a single charger at their 
shared terminal, as sketched in Fig. 8. Route 𝔸’s headway was decreased 
from 20 to 30 min to limit the number of vehicles in the case study, but 
all other parameter values remained the same as reported in McCabe and 
Ban (2023). All buses have 500 kWh of battery capacity (ϵi), lower and 
upper state-of-charge bounds ηmin

i = 0:1 and ηmax
i = 0:9, and enter ser

vice with batteries at the maximum state of charge (i.e., η0
i = 0:9). The 

energy consumption δi for each trip is calculated based on a rate of 3 
kWh/mi (1.86 kWh/km) and we test a variety of charger power levels ρl 

from 300 to 500 kW. The CB algorithm improvement tolerance ϕ is set to 
1 min and the 3S objective function parameters αl

i are sampled randomly 
in each iteration from a normal distribution with mean 0 and standard 
deviation 0.5.

Table 2 documents the schedule and distance parameters of each 
route. With such a schedule, the network consists of 8 buses that com
plete 84 total trips. All 8 buses must use opportunity charging in order to 
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maintain sufficiently charged batteries throughout the day.

6.2. King county metro network

The second test network is based on the transit system of South King 
County, WA, USA. We use this network to study the performance of the 
3S heuristic, as it is too large to be solved to optimality by either Gurobi 
or our CB method. The case study includes some of the busiest routes 
planned for electrification in the near future: the RapidRide lines F and 
H as well as routes 131, 132, 150, 153, 161, and 165. We collected 
relevant data including trip schedules (corresponding to σi and τi values) 
and distances as well as block sequences from the Metro GTFS feed (King 
County Metro, 2024b) that was posted in March 2024. We used 
Wednesday, April 3, 2024 as a test date.

6.2.1. Data collection
To filter down the GTFS data to the scope of our case study, we first 

identified all service_id values active on the case study date and all 
blocks and trips active for these service IDs. We then filtered down these 
blocks to only include those that serve the specified routes exclusively. 
We assumed each bus had a battery capacity ϵ of 525 kWh, consistent 
with the current King County Metro fleet (King County Metro, 2024a), 
the SOC of each bus must be kept between ηmin

i = 15% and ηmax
i = 90%, 

and each bus enters service with η0
i = 0:9. The energy consumption of 

each trip δi was set based on its distance as calculated from GTFS, 
multiplied by an average energy consumption rate of 3.19 kWh/mi (1.98 
kWh/km), which was the reported average for Metro’s 60-foot BEBs in 
March 2024 in McCabe (2024). The first and last trips of each block also 
had increased energy demand due to pull-out and pull-in trips from/to 
the depot. We assumed all buses were kept overnight at Metro’s South 
Base and calculated pull-out/pull-in distances based on driving di
rections between the base and all relevant terminal locations, as calcu
lated by the Openrouteservice API (Openrouteservice, 2024). To set the 
upper bound on charging time tli for all trips and chargers, we identified 
the final stop coordinates of each trip and calculated the driving distance 
to each charger (again using Openrouteservice) and assumed buses were 
able to use a charger if the distance to it was less than 0.25 mi (0.4 km). 
As in the simple case study, the CB algorithm improvement tolerance ϕ is 
set to 1 min, and the 3S objective function parameters αl

i are sampled 
randomly in each iteration from a normal distribution with mean 0 and 
standard deviation 0.5.

The case study includes all blocks that serve trips on the RapidRide F 
Line and H Line as well as routes 131, 132, 150, 153, 161, and 165. Buses 
on these routes are served by two chargers at the Burien Transit Center 

(which serves the F Line, H Line, 131, 132, 161, and 165) as well as one 
charger each at Renton Landing (the eastern terminal of the F Line) and 
Kent Station (the southern terminal of routes 150, 153, and 161). We 
assumed all chargers had an identical power output of 220 kW in each 
test case, based on the maximum accepted power of King County Metro’s 
BEBs (King County Metro, 2024a). Fig. 9 maps all trips included in this 
scope as well as the three charger locations considered.

In total, the King County network we analyze includes 34 buses that 
need to use opportunity chargers at some point during the day. A further 
73 blocks that serve these routes are excluded because they can be 
completed with depot charging alone. The 34 fast-charging buses com
plete a total of 342 trips on the test date.

6.2.2. Case study scenarios
The King County case study includes two scenarios to highlight the 

flexibility of our modeling approach and the 3S algorithm. In Scenario A, 
a charging schedule is designed for the baseline instance described 
above, with two chargers located at the Burien Transit Center and one 
each at the other two sites. In Scenario B, we suppose that one of the 
chargers at the Burien Transit Center is broken and out of service for the 
day, making charging operations much more constrained. In such a 
scenario, King County Metro would need to determine whether this 
reduced capacity was sufficient to meet all opportunity charging needs 
for the day and, if so, what level of performance could be expected. The 
results in Section 6.3 show that in the scenario considered, a moderate 
amount of delay is still present when only one charger is available in 
Burien, but our model can effectively plan charging to limit delays so 
that service is still acceptable.

6.3. Results

6.3.1. Simple network
We solved the model for the simple network of Section 6.1 at a va

riety of different charger power levels from 300 to 500 kW. The two 
exact methods were subject to a time limit of 1 h for each instance; the 
3S heuristic was run 500 times for each case, though it was terminated as 
soon as a solution with zero delay was found, if applicable. The results 
are summarized in Table 3. For each method, we report the objective 
value of the best solution obtained, the time to find the first solution 
with that best objective value, and the total solution time. A dash is used 
to indicate that the algorithm timed out.

In Table 3, we see that optimal delay decreases and eventually rea
ches zero as the power level increases. For these small instances 
involving only 8 buses, Gurobi solved the problem to optimality in 4 out 
of 5 cases. The comparative performance of the heuristic and CB 
methods varied depending on the instance. At the two lower power 
levels which represent more difficult instances, the Benders algorithm 
failed to prove optimality within the time limit, though in the 350 kW 
case it did successfully identify an optimal solution with 71.4 min of 
delay. With 400 kW chargers, the CB method outperforms the direct 
solution via Gurobi. As intended, the 3S algorithm quickly identifies an 
optimal solution with 5 min of total delay and the CB procedure proves 
its optimality in 47 s, whereas directly solving the problem took 66 s. For 
the 450 and 500 kW cases, the direct solution approach struggles to find 
a good solution, whereas 3S identifies a zero-delay solution very quickly 
and the entire CB procedure can be skipped because total delay can 
never be negative.

To illustrate the results in more detail, Fig. 10 shows the complete 
timeline of activities for all buses in the 400 kW instance. Gray blocks on 
the timeline indicate that a bus is completing a passenger service trip 
that departed on time; delayed trips are shown in orange. A blue block in 
a bus’s timeline indicates that it is plugged in at the charger. Looking at 
block CF1 for example, which completes 7 trips on Route ℂ, we can see 
that it charges after trips 1, 3, and 5, and all trips are on time. Blocks AR1 
and AR2, which both complete more trips and require more charging, 
each have one trip that departs a few minutes late. We can see that this 

Fig. 8. Simple case study network.

Table 2 
Basic parameters for notional routes used in simple case study.

Route 𝔸 ℂ

Distance (m) 15 15
Time (min) 40 45
Layover time (min) 20 15
Headway (min) 30 60
One-way distance 15 mi (24 km) 15 mi (24 km)
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optimal solution involves frequent short charges—in fact, all eight buses 
plug in whenever they are able to (every other trip).

These results highlight both the benefits and limitations of our 
methods. First, we note that the 3S heuristic identifies a near-optimal 
(often optimal) solution very quickly in all cases. Its worst perfor
mance was for the 300 kW case, when the best solution it identified had 
only 7.8% more delay than the best one found by Gurobi. One key 
advantage of the 3S method is that its solution time does not depend 
significantly on the difficulty of the instance being solved; while neither 
of the exact methods converged within the time limit for the 300 kW 

instance, the heuristic produced good feasible solutions just as quickly as 
it did for other instances.

CB produced mixed results on our instances. We see that for the 400 
kW instance, the CB method converges more quickly than solving 
directly, but it is much slower than Gurobi for the two harder instances. 
In the 350 kW case, it is notable that CB is able to improve the incumbent 
solution supplied by the heuristic, but it still does not terminate before 
the time limit. With a 450 or 500 kW charger, integrating Benders with 
the 3S approach means that we can avoid running the Benders process 
entirely, since 0 is the best possible feasible delay.

Fig. 9. Map showing trips, terminals, and charger locations for the King County case.

Table 3 
Summary of results on simple case study instances. BO: best objective value (min of total delay). T-BO: time to find solution with best objective (s), T-T: total solution 
time (s). A dash indicates that the algorithm did not terminate.

Direct solve 3S Heuristic Benders

Power BO T-BO T-T BO T-BO T-T BO T-BO T-T

300 kW 704.0 133.0 – 759.0 0.70 12.0 759 N/A –
350 kW 71.4 15 57 73.7 0.05 9.0 71.4 1463.0 –
400 kW 5.0 56 66 5.0 0.70 10.0 5 0.7 47
450 kW 0.0 55 55 0.0 0.10 0.1 N/A N/A N/A
500 kW 0.0 138 138 0.0 0.40 0.4 N/A N/A N/A
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There are a few likely reasons for the limited benefits of the CB 
approach for our charge scheduling model. First, delegating all sched
uling and delay calculation to the subproblem limits the information 
that is available to the master problem, which limits Gurobi’s ability to 
speed up the solution process via presolve methods and cuts. Based on 
our results, it seems that the cuts generated by the CB approach are not 
particularly strong compared to the cuts Gurobi generates on its own 
when provided with the complete formulation. Second, the CB method is 
primarily used for problems in which the objective depends only on the 
integer variables. While we followed the recommendations from Codato 
and Fischetti (2006) on adapting the method to a problem where the 
objective depends instead on continuous variables, we found that the 
approach is not as well suited to this type of problem. For one, 
convergence is inevitably slower compared to the typical CB application 
because it usually requires a large number of CB cuts to determine that 
the MP is infeasible and terminate the algorithm. Additionally, because 
the MP objective has no real meaning for the complete problem, we do 
not get any information on the optimality gap. Whereas in the typical CB 
application the Benders cuts are embedded within a branch-and-cut 
procedure and the search process continually improves upper and 
lower bounds on the optimal objective value, in our case we have an 
upper bound from the incumbent solution, but do not obtain any lower 
bound until the MP is infeasible and optimality is proven.

6.3.2. King County Metro network
Table 4 documents the key results from applying the 3S heuristic to 

the King County network for the two scenarios. In Scenario A, the total 
delay is only about 6.5 min, split across two trips. Evidently, there are 
two blocks where the scheduled layover time is not sufficient to 
accommodate all daily charging needs with a power output of 220 kW. 
Although no zero-delay solution can be found, the 3S algorithm iden
tifies its best solution to the problem in about half a second, while 
running 500 iterations with different randomized objective coefficients 
takes just over 80 s.

In Scenario B, when only one charger at the Burien Transit Center is 
available, the total delay is unsurprisingly greater, totaling just under 4 
h spread across 18 of the 342 total trips. It takes just under 1 min to run 
all 500 iterations of the 3S algorithm for this instance and the best so
lution is identified close to the end of that time. However, we note that a 
comparable solution with objective value 234 was identified after 2.4 s, 
so good solutions were still generated quickly. That said, running the 
algorithm for longer with various values of the randomization parame
ters αl

i did yield some improvements.
Further analysis reveals the impact that reducing the number of 

available chargers in Burien has on the solution. Table 5 records the total 

amount of time all buses spend connected to each charger in the two 
scenarios. In Scenario A, the two identical chargers located at the Burien 
Transit Center are used about equally, both more heavily than the 
chargers at the other two locations. When only one of these Burien 
chargers is available in Scenario B, it serves almost all of the charging 
demand originally met by the two chargers in Scenario A; however, 
about 100 min of charging time is shifted away from Burien to Renton, 
which is less heavily utilized. Some buses visit both of these trip ter
minals, and in Scenario B it becomes beneficial for them to charge in 
Renton rather than Burien as much as possible. Note that the total 
amount of time spent charging—which is dictated by the energy con
sumption, battery sizes, and charger power level—is exactly the same in 
both scenarios.

Fig. 11 plots a timeline of charger utilization for Scenario B in the 
same style as Fig. 10, showing only the charger at the Burien Transit 
Center because it is the most heavily used and the source of most delays. 
As before, gray blocks on the timeline represent on-time service trips, 
orange blocks represent delayed trips, and blue blocks indicate charging 
in Burien. Because only one charger is available, it appears that some 
delays are inevitable on this day, and our model attempts to fit in 
necessary charging activities in a way that minimizes the resulting de
lays. Fig. 11 shows that 3S effectively exploits layover time in the 
schedule to limit delay propagation. Block number 7157064 (just below 
the middle of Fig. 11), which charges four times in Burien, provides a 
useful example. Though two of its trips are delayed due to charging, both 
of these trips have a comparatively large amount of layover time prior to 
the next trip, allowing the bus to catch back up to schedule for the trips 
that follow. In the two other cases, the bus serving this block charges for 
a short enough duration between trips that no delays are incurred. 
Fig. 11 also shows that our approach accurately propagates delays across 
trips—for example, the final trip on block 7157058 is delayed about 6 
min because the scheduled layover time prior to it is not sufficient to 
fully eliminate the 38-min delay of its penultimate trip.

One more notable trend in Fig. 11 is that delays are concentrated 
towards the end of the service day. It is unsurprising that this is an 
effective way to limit total delays—if there are not many trips remaining 
after one that is delayed, then there are not many opportunities for 

Fig. 10. Optimized timeline of operations for the simple network with 400 kW chargers, showing all charging activities, passenger trips, and on-time status.

Table 4 
Summary of results on King County Metro network. BO: best objective value 
(min of total delay). T-BO: time to find solution with best objective (s). T-T: total 
solution time (s). ND: number of delayed trips.

Scenario BO T-BO T-T ND

A 6.6 0.5 81.7 2
B 230.1 54.2 59.4 18

D. McCabe et al. Communications in Transportation Research 5 (2025) 100209

14 



delays to propagate forward. However, it should be noted that this 
approach results in a lower quality of service late at night compared to 
the rest of the day, which might not be desired by transit agencies. If it 
were a significant concern, this effect could be mitigated by adjusting 
the objective function, for example, by adding a larger coefficient to the 
delay of these trips later in the day. Of course, doing so could have the 
unintended consequence of significantly increasing total delay in favor 
of more consistent service.

Finally, note that there are several charger visits seen in Fig. 11 with 
short durations (i.e., only a few minutes in length). These events are 
possible because the formulation (P) does not include a lower bound on 
charging behavior. If a minimum charging time must be enforced, 
constraints (14) can be updated to include a lower bound, e.g., 5xl

i ≤ tl
i ≤

tl
ixl

i ∀l ∈ C; i ∈ T to enforce a minimum charge duration of 5 min. 
Incorporating this new lower bound into the 3S algorithm introduces 
some new complications, but simply adding the lower bound constraint 
to the Phase 3 LP should work in most cases, despite a slight risk of 
feasibility issues (e.g., when charging for 5 min would cause the battery 
capacity to be exceeded).

7. Conclusions

This study developed a novel model for scheduling within-day 
electric bus fleet recharging as well as exact and heuristic methods for 
its solution. Our method takes a unique approach to opportunity 
charging scheduling for BEBs: we precisely track queuing at chargers to 
set the start and end times of each bus’s daily activities, including pas
senger trips and charger visits. Rather than constraining charging to 
always occur during scheduled layover time, we carefully track the 
departure delay of each trip and propagate these delays across trips 
completed by the same vehicle. The resulting model is a mixed-integer 
linear program that seeks to minimize total delay for the full BEB 
network.

Because this flexible scheduling model allows but minimizes delays, 
it still produces actionable results when operating conditions such as 
traffic delays, high energy consumption, or charger malfunctions make 
it impossible to meet charging needs without delaying any trips. Our 
approach stands out compared to prior methods from the literature, 
which typically constrain charging to take place during scheduled 
layover time and are not naturally extendable to scenarios where 
insufficient time is available. For the same reason, our approach should 
also be a good fit for stochastic extensions that recognize real-world 
variations in travel time—rather than labeling a problem instance 
infeasible because it results in delays, a solution to our model calculates 
how good or bad the transit network’s performance is in terms of the 
complete system delay.

Our exact solution method based on CB decomposition outperforms a 
state-of-the-art commercial solver on some instances. However, our re
sults show that this approach is still not efficient enough to be suitable 
for large real-world transit networks under demanding conditions. 
Although this method can provide a proof of optimality for some in
stances that provides theoretical value, it has considerable limitations. 
In particular, our usage of CB for a problem in which the objective value 
is set solely by the subproblem is not ideal. Further improvements to the 
CB approach may be possible by, for example, using a more tailored 
procedure to find a minimal infeasible subsystem as described in Codato 
and Fischetti (2006). However, given the algorithm’s mixed 

performance and the inherent scalability limits of any exact method for a 
mixed-integer program, the benefits may still be limited.

However, our 3S heuristic algorithm that was inspired by the CB 
approach shows excellent results on our test instances. On our smaller 
test network instances in Section 6.1, the 3S method found good feasible 
solutions orders of magnitude faster than exact methods and its opti
mality gap was always below 8%. The two test scenarios on the King 
County Metro network from Section 6.2 demonstrated how the heuristic 
could quickly find a solution with nearly zero delay under favorable 
conditions, as well as its ability to respond to unfavorable conditions and 
produce a solution that keeps most trips running on time just as quickly.

The scheduling model and solution algorithms carry some notable 
limitations, primarily due to some of the key assumptions. For instance, 
we assume that chargers can only be used if they are located close to the 
terminals of trips, so that an insignificant amount of deadheading (in 
terms of both time and energy consumption) is required to access them. 
Consequently, our model is not a direct fit for agencies that plan to 
locate opportunity chargers away from trip terminals. However, if op
portunity chargers are located close enough to trip terminals that the 
time and energy required to access them is within a reasonable margin of 
error, our approach can still be useful. Additionally, it would be 
straightforward to extend the energy consumption constraints (12) and 
(13) and plugin time constraints (2) to include deadhead energy and 
time concerns by multiplying the charging decision variables xl

i by 
appropriate parameters. Assumption 6, which states that battery 
charging is linear with respect to time, also has significant implications 
for our model’s applicability. If buses recharge close to their full state of 
charge during the day, when the charging power must be reduced to 
protect the battery, then this linear approximation may not be suffi
ciently accurate. For relatively short charging durations with a moderate 
state of charge, as can be expected for opportunity charging, assuming a 
linear process should be sufficiently accurate (Montoya et al., 2017). 
Our numerical results also show that short charging durations are 
typical in real-world operations (see Fig. 11), further justifying this 
assumption.

Although our model is intended to be realistic, agencies would still 
likely face some challenges in implementing our proposed opportunity 
charging schedules. Communicating detailed daily charging schedules 
to bus operators could be a challenge, especially if opportunity charging 
plans were revised at all during the service day. Labor regulations would 
also likely play a role—for example, drivers might not be considered to 
be on a break when responsible for charging buses, which could impact 
the permissibility of their work schedules. Similar challenges are likely 
to arise with any opportunity charging scheme.

This work also suggests various directions for further research. These 
future research ideas are centered on improvements to and extensions of 
the 3S algorithm. First, further improvements to 3S might be possi
ble—for example, by incorporating more feedback between the three 
phases, taking advantage of opportunities for parallelism, and investi
gating theoretical bounds on the optimality gap. Additionally, given the 
3S algorithm’s already strong performance in finding good feasible so
lutions, future work could explore a dynamic application in which 
charging schedules are continually re-optimized throughout the day 
based on updated observations and predictions of energy consumption 
and on-time performance. With this approach, buses’ planned charging 
amounts could be increased or decreased in accordance with their cu
mulative energy consumption and the timing of charger visits could be 
better aligned with projected schedule adherence. Another promising 
research direction, as mentioned earlier in this section, is to develop a 
stochastic version of our charging scheduling model. Such a model 
could, for example, minimize the expected delays across a wide range of 
realistic scenarios, rather than treating energy consumption and travel 
times as deterministic. The 3S method’s ability to generate good solu
tions quickly could help enable this extension.

Table 5 
Total amount of time (min) each charger was used across the two real-world case 
study scenarios.

Scenario Burien 1 Burien 2 Renton Kent

A 536 668 174 92
B 1104 0 274 92
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Replication and data sharing

The complete source code and data required to run our analysis and 
replicate the two case studies is publicly available as a GitHub repository 
at https://github.com/dan-mccabe/min-delay-charging.
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