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“Science is magic that works.”
- Kurt Vonnegut
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Abstract

Scientific discovery has a lot to gain from advances in artificial intelligence
and machine learning, and where progress can have major societal impact.
These techniques can help scientists uncover patterns in large datasets, generate
new hypotheses, and guide experimental design. Combined with robotic systems
they can also greatly increase the number of performed experiments. This thesis
investigates how structured knowledge representations can support scientific
discovery in systems biology, with a particular focus on the model organism
Saccharomyces cerevisiae (baker’s yeast).

The work introduces two ontologies designed as semantic schemas for
research databases. The first captures metadata and results from µ-chemostat
experiments, accommodating multiple measurement modalities. The second
ontology formalises revisions to computational models, with a focus on domains
where mechanistic models are updated iteratively and it is important to record
what was changed and why.

In the third contribution, information about S. cerevisiae from public data-
bases is integrated into a knowledge graph with well-defined class hierarchies.
Graph neural networks, in combination with box embeddings representing the
hierarchical structure, are used to predict growth outcomes of double gene
deletions. Furthermore, explainability techniques are applied to identify can-
didate biological interactions, forming hypotheses about traits in S. cerevisiae.
One such hypothesis is experimentally validated, illustrating how structured
representations can aid data-driven discovery from publicly available resources.

Taken together, this work introduces knowledge representations for emerging
domains, designed as tools to support scientific discovery, while also demon-
strating how rich, structured representations can enhance the interpretation of
existing data.
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Chapter 1

Introduction

The scientific process has been of immense importance for our understanding
of the world and the technological advancements which shape the way we live.
Science involves the formulation of hypotheses, the design and execution of
experiments, the analysis of results, and the iterative refinement of theories.
This cycle, while powerful, is limited by human cognitive and perceptual
capacities, as well as by the time and resources available to researchers. As
scientific disciplines grow increasingly data-rich and complex, interest is rising
in computational systems that can augment or automate elements of scientific
reasoning and discovery.

This thesis focuses on the scientific domain of yeast (Saccharomyces
cerevisiae) systems biology. The field aims to understand and predict the
behaviour of S. cerevisiae as an integrated biological system, both to inform
our understanding of higher eukaryotes, such as humans, [1] and to support its
many applications in biotechnology, including biofuel production [2].

Within this context, the thesis explores the role knowledge representations
play for automated scientific discovery in systems biology. Since the early days
of artificial intelligence how to represent knowledge has been a central problem.
According to Davis et al. (1993),

a knowledge representation is most fundamentally a surrogate, a
substitute for the thing itself, that is used to enable an entity to
determine consequences by thinking rather than acting, that is, by
reasoning about the world rather than taking action in it [3].

In other words, knowledge representations provide a structured way of encoding
information so that machines can use and reason about it. They can be
expressed in formal languages, based on logic. These symbolic representations
make facts verifiable and can provide a common grounding for human users
and computer systems, providing interpretability to the system.

Representations can also be learned from data, for example in the form of
trained model weights or dense vector representations. These sub-symbolic or
neural representations have proved successful for tasks such as computer vision
and natural language processing where vast amounts of data are available.

3



4 CHAPTER 1. INTRODUCTION

However, providing guarantees or explanations regarding their behaviour is
generally difficult. The field of neurosymbolic AI tries to combine neural and
symbolic techniques in various ways. This thesis contributes to the branch of
neurosymbolic AI covering the integration of symbolic knowledge representa-
tions with neural vector representations and models.

The papers appended to this thesis highlight the important role of formal
knowledge representations in enabling automated scientific discovery. Fig. 1.1
shows which parts of the scientific cycle in systems biology are covered in
each paper. Papers I and II present ontologies designed as semantic schemas
for describing µ-chemostat (microscale continuous cell cultivation systems)
experiments and revisions to computational models, respectively. These rep-
resentations provide structured, machine-readable descriptions that ground
experimental and modelling data in shared conceptual frameworks. The se-
mantic grounding supports both human understanding and automated reason-
ing, facilitating reproducibility, integration, and interpretation of data across
research contexts. This grounding proves especially valuable for data sharing
and reuse, a theme that culminates in Paper III. Here, data from public
biological databases is integrated in a knowledge graph. This representation of
knowledge allows for modelling and prediction of phenotypic outcomes of gene
knockouts in S. cerevisiae. The constructed model is used to generate a testable
hypothesis, which is tested and validated in a wet-lab experiment. This work
demonstrates how neurosymbolic methods can integrate both symbolic struc-
tures and quantitative measurements, as well as guide discoveries. Together,
the three papers demonstrate how knowledge representations are essential tools
for enabling automated scientific discovery, promoting the sharing of findings,
and supporting the interpretation of data.

Biological
knowledge

Computational
modelling

Paper II
Paper III

Hypothesis
generation

Paper I
Paper III

Wet-lab
experiments

Paper III

Paper III

(1)

(2)

(3)

(4)

Figure 1.1: An illustration of the scientific cycle in systems biology. Available
knowledge (1) is used to construct computational models (2). The models
inform the generation of hypotheses about new knowledge (3). These hypotheses
are tested experimentally (4). The resulting information is integrated with
existing knowledge. The cycle is adopted from [4]. Indicated is which parts of
the cycle are covered in each of the appended papers.
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This thesis has the following structure. Chapter 2 gives a brief background
to relevant topics, Chapter 3 gives a summary of the appended papers, and
in Chapter 4 the findings in these papers and future research directions are
discussed. The three papers are also appended to this thesis in Part II.
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Chapter 2

Background

2.1 Automated Scientific Discovery

Automated scientific discovery refers to the use of algorithms and artificial
intelligence (AI) to perform tasks traditionally associated with human sci-
entists, including hypothesis generation, experimental design, and knowledge
synthesis. Early work in this area, such as DENDRAL [5], analysed mass
spectrometry data, while the BACON system [6] demonstrated that computers
could rediscover physical laws. More recently, the most successful application
of AI in natural sciences has likely been the protein structure predictions by
AlphaFold [7], awarded the 2024 Nobel Prize in Chemistry. However, a central
aspect to scientific discovery not addressed in the aforementioned systems is
the generation of new experimental data from the physical world.

Robot Scientists

A robot scientist is a physically implemented AI system, combining com-
putational and experimental capabilities. Through this they are capable of
performing automated cycles of experiments, by iteratively generating hypo-
theses, designing and executing experiments, and analysing the results [8]. The
first such system, Adam, studied functional genomics in S. cerevisiae [9]. The
next iteration, Eve, was designed for early-stage drug development [10], and
is the laboratory automation hardware used to perform the experiments in
Paper III. Similar systems have also been applied in other domains, such as a
mobile robotic chemist searching for photocatalysts for hydrogen production
[11].

One of the main advantages of robot scientists is their ability to dramatic-
ally scale up the number of experiments and hypotheses that can be tested.
Traditional experimental approaches are often constrained by human time and
labour, whereas robot scientists can operate continuously, perform experiments
with high precision, and systematically explore large experimental spaces. This
scalability is a key focus of the next-generation robot scientist developed in
our lab, Genesis, intended for yeast systems biology. Genesis integrates a large

7



8 CHAPTER 2. BACKGROUND

number of µ-chemostats1, enabling the parallel execution of many experiments
while measuring the metabolome through mass spectrometry, the transcriptome
via RNA sequencing, and organism growth by monitoring optical density [12].
Paper I presents an ontology for a graph database designed to store both the
conditions and results of such µ-chemostat experiments.

One of the intended use cases for Genesis is closed-loop model improvement
in systems biology, where computational models are used to guide experiment
selection and the experimental results are used to improve the models, without
(or with minimal) human intervention. Improving systems biology models
has been described as a ‘Grand Challenge’ in science [13] and robot scientists
performing closed-loop model improvements have previously proved to be a
promising approach [14]. Paper II presents an ontology describing revisions
to computational models, allowing large numbers of iterations to be saved.

The scientific community has increasingly acknowledged a reproducibility
crisis, both regarding experiments in natural sciences [15], and computational
sciences [16]. Robot scientists record experimental procedures, parameters,
and results in a precise and structured manner, for example using methods
suggested in Paper I. This reduces ambiguity and facilitates accurate replica-
tion of experiments. While scientific communication through natural language
remains essential for human understanding, it is often too imprecise and incom-
plete to fully capture complex experimental workflows. By contrast, formal,
machine-readable representations, such as structured databases, ontologies, and
executable protocols, enable findings to be recorded and communicated in a
way that supports both reproducibility and automation [8]. As a result, robot
scientists not only accelerate the pace of discovery but can also contribute
to making scientific knowledge more reliable and systematically accessible.
Similarly, structured recording of computational model development, as is
proposed in Paper II, has the potential to increase reproducibility and foster
community trust by improving transparency in the development process.

2.2 Systems Biology

Systems biology is an interdisciplinary field that aims to understand how
interactions among genes, proteins, metabolites, and other cellular components
give rise to the emergent behaviour of biological systems. [17]. In contrast
to reductionist approaches that examine isolated parts of a system, systems
biology emphasises a holistic perspective, integrating data from multiple levels
of biological organisation to build comprehensive models of living systems [18].

One of the central goals of systems biology is to connect genotype (the
genetic makeup of an organism) to phenotype (the observable characteristics
of an organism). This idea is rooted in Crick’s “Central Dogma” of molecular
biology, which states that genetic information flows from DNA to RNA to
proteins, which in turn are responsible for most cellular functions [19]. This flow

1A chemostat is a bioreactor with a constant flow of growth media, allowing to carefully
control the conditions under which an organism grows. The prefix µ indicates the small
volume of these cultivation chambers.
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of information is illustrated in Fig. 2.1. Modern biology recognises that cellular
processes are highly complex, and that information flow is often neither strictly
unidirectional nor isolated. These processes are influenced by intricate feedback
loops, post-translational modifications, and additional molecular actors such
as metabolites and signalling molecules [20].

Genome

"What can
happen"

Transcriptome

"What appears to
be happening"

Proteome

"What makes
it happen"

Metabolome

"What has happened
and is happening"

Genomics Transcriptomics Proteomics Metabolomics

Phenotype

Created by jc
from the Noun Project

Figure 2.1: The “Omics-cascade” depicts the flow of information across dif-
ferent biological layers in a cell. Genetic variation influences RNA expression
(transcriptomics), which affects protein abundance and activity (proteomics),
and subsequently alters metabolite levels (metabolomics). These molecular
changes collectively shape observable cellular traits and behaviors (phenotypes).
The cascade highlights how data from multiple omics layers can be integrated
to understand complex biological systems. Adopted from [21].

To investigate these complexities, systems biology integrates experimental
and computational approaches. Large-scale biological datasets are gener-
ated using high-throughput technologies such as genomics (study of DNA),
transcriptomics (RNA expression), proteomics (proteins), and metabolomics
(small-molecules). These datasets capture complementary layers of cellular
information, collectively referred to as the “Omics-cascade”, which again can
be seen in Fig. 2.1. By linking information across these levels, the “Omics-
cascade” provides a framework for understanding how changes at the genetic
level propagate to proteins, metabolites, and ultimately phenotypes. These
data are used to construct and refine computational models that aim to both
describe and predict system behaviour under various perturbations, such as
gene knockouts or drug treatments, which can help for example personalised
healthcare or drug-development [22].

Among the models used in systems biology, genome-scale metabolic models
(GEMs) are particularly important for linking different omics data to meta-
bolism. They provide a holistic representation of an organism’s metabolism
as a network of biochemical reactions. Genes are linked to the enzymes and
reactions they encode through gene-protein-reaction (GPR) rules: genes code
for enzymes (proteins), which in turn catalyse particular reactions. In the
model, these relationships are often expressed using Boolean logic, for example
indicating whether alternative gene products can catalyse the same reaction
(an “OR” relationship), or whether multiple gene products must act together
as subunits of a protein complex (an “AND” relationship). The reactions
themselves are organised into a stoichiometric network, where each reaction
is described by a balanced equation that specifies the number of molecules of
each metabolite consumed and produced. This structure ensures that mass
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and energy are conserved and allows the full metabolic capacity of the cell to
be represented as a single, interconnected system [23]. Such a network can be
analysed using computational methods like flux balance analysis (FBA), which
applies linear optimisation under the assumption of steady state to predict the
distribution of fluxes through the network under given conditions [24]. Paper
II demonstrates the proposed data model on revisions of such a GEM.

Over the years, increasingly refined GEMs of S. cerevisiae have been de-
veloped, with Yeast9 representing the most recent consensus model, integrating
updates in reaction coverage, gene-reaction associations, and extensive experi-
mental validation [25].

Important for the developments in systems biology, and many other fields,
has been the sharing of scientific discoveries and data. In addition to sharing
findings in literature, there are several databases containing curated informa-
tion. Reactome [26], KEGG [27], and BioCyc [28] are examples of databases
aggregating information about reactions and pathways in different organisms.
MetaboLights [29] and PRIDE [30] are databases containing mass-spectrometry
based metabolomics and proteomics data. There are also databases which
aggregate gene annotations from publications about various organisms, for
example Saccharomyces Genome Database (SGD) [31] for yeast (S. cerevisiae).
Information from such public databases provides curated data which can be
used by machine learning systems in these domains. Annotations of S. cerevisiae
genes from SGD have for example been used to predict protein abundances
[32]. In Paper III data from BioCyc and SGD are combined in a knowledge
graph.

Systems biology has played an important role both for our understanding of
biology and for industrial applications [33]. Robot scientists show great promise
in further advancing the field as they can both increase experiment throughput,
while also providing superhuman capabilities when analysing experimental
results [34]. An example of this is how Coutant et al. performed closed-loop
cycles of experiments on an autonomous lab robotic system to improve a GEM
of yeast [14].

The model organism Saccharomyces cerevisiae

When the direct study of the organism of interest is impractical, for example
due to ethical, financial, or logistical reasons, a model organism can be used
instead. A model organism shares key biological characteristics with the target
species, making it a suitable proxy for investigation while being more amenable
to experimental manipulation. Common examples include the fruit fly, mouse,
and yeast [35].

Baker’s yeast (S. cerevisiae) is a single-celled eukaryote which has been used
for food production and beverage fermentation by humans for thousands of
years [36]. In addition, S. cerevisiae is interesting for the scientific community
due to its ease of cultivation, robustness, and shared fundamental biological
processes with higher organisms. For example, Roger Kornberg received the
2006 Nobel Prize in Chemistry for discoveries about eukaryotic transcription,
found by studying yeast [37]. Additionally, its biology is highly amenable to
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genetic modification, for example through homologous recombination (a DNA
exchange process) [38], and it was the first eukaryote to be fully sequenced
[39]. Although years of research on S. cerevisiae have produced a wealth of
knowledge, the organism is still far from fully understood [40]. One way to
accelerate further discoveries is to make greater use of computational resources
and robot scientists. To fully exploit existing knowledge in this context, it
must first be represented in a form accessible to computers.

2.3 Formal Knowledge Representations

Propositional and First-order logic

Propositional logic is a formal system where statements (propositions) are either
true or false and are combined using logical connectives such as conjunction
(“AND”, ∧), disjunction (“OR”, ∨), and negation (“NOT”, ¬). It allows
reasoning about the truth of whole statements but does not handle, meaning
each statement must refer to a specific, fully specified case rather than a general
or unknown element.

First-order logic (FOL) extends propositional logic by introducing quantifi-
ers, such as for all (∀) and exists (∃), constants, and predicates, which can have
different arity (numbers of arguments). The unary predicate Person(alice) states
that the constant alice is a person and the binary predicate ParentOf(alice, bob)
indicates a relationship, where the alice is the parent of bob. FOL also allows for
predicates with more arguments, for example Gives(alice, catch22, bob) stating
that alice gives catch22 to bob. These extensions make FOL more expressive
and capable of representing complex and generalised relations between sets.

Description logic

Description logics (DLs) are a family of formal knowledge representation
languages, and (in most cases) decidable fragments of first-order logic, for
example only allowing unary and binary predicates, balancing expressivity and
computational tractability. In DL, knowledge about a domain is represented
using concepts, roles, and individuals. Concepts correspond approximately to
unary predicates in first-order logic, roles to binary predicates, and individuals
to constants. A DL knowledge base typically consists of two parts: the TBox
and the ABox2. The TBox (terminological box) contains general knowledge
about the domain using concepts and roles, while the ABox (assertional box)
contains facts about specific individuals. In a database setting, the TBox can
be viewed as the schema and the ABox corresponds to the instances [41]. A
term often used interchangeably with the TBox and ABox is ontology, defined
by Gruber as “an explicit specification of a conceptualisation” [42].

The following is a simple example of a knowledge base in DL:

2For more more expressive DLs there can also be a third part, the RBox (role box), with
axioms about roles, for example defining symmetric roles or role inclusion.
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Parent ⊑ Person

Child ⊑ Person

Parent ≡ Person ⊓ ∃hasChild.Person
Child ≡ Person ⊓ ∃hasParent.Person

 TBox

alice : Person

bob : Person

(alice, bob) : hasChild

(bob, alice) : hasParent

 ABox

The symbol ⊑ denotes concept inclusion (i.e., subclassing), while ≡ and ⊓
represent concept equivalence and conjunction, respectively. The existential
restriction, e.g., ∃hasChild.Person, states that there exists a Person filling
the hasChild-role. This example also demonstrates how we can reason about
knowledge expressed in DL. The definitions of Parent and Child, together with
the asserted facts about alice and bob, entails that alice is a Parent and
bob is a Child. Typical reasoning tasks are checking for consistency between
TBox and ABox, subsumption (determining whether one class is more specific
than another), and query answering [41].

An important feature in the DL semantics is the open world assumption
(OWA) under which, the absence of a fact in the knowledge base does not imply
that the fact is false, it simply means that this information is not known yet.
This contrasts with the Closed World Assumption (CWA) commonly used in
databases, where any fact not present is assumed to be false [43]. The OWA
aligns well with the view on knowledge in science, where unknown facts are yet
to be discovered.

Basic description logics operate on a symbolic level, describing relationships
between concepts. However, in many applications we want to be able to refer
to concrete domains, such as numbers or strings. Considering the example
above we might want to be able to record and reason about someone’s age. To
represent this we can introduce age as a concrete feature of the concrete domain
non-negative numbers, and for example define Adult ≡ Person⊓∃hasAge.≥18,
with hasAge being a data type role [44]. The possibility of recording data types,
through concrete domains, allows DL based databases also for quantitative
data. This is important for the ontologies developed in Paper I and Paper II,
which are intended to record data about biological experiments and metadata
about computational models.

The Semantic Web was launched as an extension to the World Wide Web
to give its content semantic meaning and make it machine-readable. DLs and
ontologies are defining concepts at the core of the semantic web [45]. Even if the
original vision is not realised [46], the Semantic Web has still been important
for the development of, for example, Resource Description Framework (RDF) to
represent directed edge-labelled graphs, the query language SPARQL to query
RDF graphs, and the Web Ontology Language (OWL). The second version of
OWL, OWL 2, is the World Wide Web Consortium (W3C) standard language
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for ontologies based on DL [41].
Different languages from the description logics family allow for different

balance between expressivity and computational efficiency, and are denoted by
combinations of letters. The DL AL can be seen as a base language allowing
top and bottom classes, concept intersection, universal restrictions, limited
existential quantification, and atomic negation. This can be extended to allow
for example inverse roles (I), role hierarchies (H), concept union (U), or data
types ((D)) [47]. The standard OWL 2 language corresponds to the expressive
DL SROIQ(D). S extends AL with concept negation, disjunction, existential
restriction, and transitive roles. ROIQ allows for an RBox with for example
role inclusions and reflexivity, nominals (enumerated individuals in the TBox),
inverse roles, and number restrictions. To allow for efficient reasoning, OWL 2
has three profiles: EL, QL, and RL. OWL 2 EL is based on the more restricted
EL++ description logic. EL++ supports conjunction, existential restriction,
and the top concept as concept constructors, as well as transitive roles and
nominals, while still allowing for reasoning in polynomial time [48]. As a
result, several large-scale and widely used ontologies in systems biology, such
as GO [49] and ChEBI [50], are fully or to a large extent compatible with the
OWL 2 EL profile. The knowledge graph in Paper III is expressed in EL++,
as are the ontologies in Paper I and II, extended with support for data types.

Ontologies

There exist a large number of ontologies describing different aspects of the
biomedical domain. Here the ones most relevant for this work will be introduced.
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Figure 2.2: Simplified overview of the class structure in APO, GO, and ChEBI.

Ascomycete Phenotype Ontology (APO)

The Ascomycete Phenotype Ontology [51] is an ontology describing mutant
phenotypes in S. cerevisiae and was developed for representing this informa-
tion in SGD. It provides a structured vocabulary for describing observable

characteristics such as growth and stress responses, together with qualifiers

that specifies how these traits are affected, for example decreased, delayed, or
absent. In addition, APO includes classes for mutant type (e.g., null mutant)
and experiment type (e.g., competitive growth), which give context to the
observed phenotype. This structured representation enables consistent annota-
tion and comparison of phenotypes across studies. In this thesis, APO is used
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in Paper II and III. The overall class structure, with selected examples, is
shown in Fig. 2.2a.

Gene Ontology (GO)

The Gene Ontology [49] provides a controlled vocabulary to describe the roles
of gene products across species in terms of their molecular functions (what a
protein does, such as ATP binding), biological processes (the larger tasks it
contributes to, such as cell division), and cellular components (where in the
cell it acts, such as mitochondrion). GO enables functional annotation of genes
in a standardised way, making it possible to compare results across experiments
and organisms. In high-throughput transcriptomics or proteomics studies, GO
terms are often used to identify groups of genes that are over-represented in
a condition. For example, they can reveal that stress-related pathways are
activated after heat shock, or that metabolic processes are downregulated
during nutrient limitation. GO is used in Paper II and III, and an overview
of parts of the ontology can be seen in Fig. 2.2b.

Chemical Entities of Biological Interest (ChEBI)

ChEBI [50] provides a controlled vocabulary for molecular entities, with a focus
on small chemical compounds. It organises compounds in a class hierarchy
based on their chemical structures and further describes their biological roles,
such as metabolite or inhibitor, through defined relations. ChEBI enables
standardised annotation of chemical information, supporting applications such
as metabolic modelling, chemical annotation of biological assays, and semantic
integration across databases like SGD. This consistent representation makes it
possible to compare and integrate chemical knowledge across studies. In this
thesis, ChEBI is used in Paper I, II, and III. Parts of the ontology are shown
in Fig. 2.2c.

Ontology for Biomedical Investigations (OBI)

OBI [52] provides a formal framework for describing experimental investigations,
including study design, protocols, and used materials. It has been used to
standardise metadata and annotations in databases, for example by specifying
how terms from different ontologies relate to each other. OBI is used to describe
terms in Paper I.

COmputational MOdels DIffer (COMODI)

COMODI [53] describes updates to biological models expressed in XML format
by annotating changes in the XML tree, along with Changes and Reasons. By
doing this the traceability and reusability in computational biology can be
improved. Paper II was inspired by, and uses terms from, COMODI.
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2.4 Knowledge graphs

A knowledge graph (KG) is a flexible and semantically rich knowledge repres-
entation, defined by Hogan et al. (2021) as

a graph of data intended to accumulate and convey knowledge of
the real world, whose nodes represent entities of interest and whose
edges represent relations between these entities [54].

KGs can be seen as graph implementations of description logic knowledge bases.
One of the distinguishing features of KGs is their grounding in ontological
schemas which defines the entities in the graph and allows for symbolic reasoning.
The underlying graph model of a KG can vary depending on the use case and
implementation. One common representation is a directed edge-labelled graph,
where nodes represent entities and directed, labelled edges represent binary
relations between them. The simple description logic knowledge base introduced
in Section 2.3 can be expressed in this form, as illustrated in Fig. 2.3(a). This
model underlies RDF, where knowledge is represented as triples of the form
(subject, predicate, object). Another widely used model is the heterogeneous
graph, which extends the directed edge-labelled graph by associating each node,
in addition to the edges, with a specific type, illustrated in Fig. 2.3(b). A
further extension is the property graph, which allows properties to be assigned
to triples [54], and is the graph model is used in many graph databases, such
as Neo4j3.

Person

type

hasChild
alice bob

type

hasParent

hasChildalice :
Person

bob :
Person

hasParent

(a) Directed edge-labelled graph

Person

type

hasChild
alice bob

type

hasParent

hasChildalice :
Person

bob :
Person

hasParent

(b) Heterogeneous graph

Figure 2.3: The knowledge base presented in Section 2.3 as knowledge graphs,
in a as a directed edge-labelled graph and in b as a heterogeneous graph.

Learning and reasoning

Typical knowledge graph reasoning tasks can often be categorised as deductive
or inductive. Deductive reasoning involves drawing logically valid conclusions
from known facts or axioms, while inductive reasoning aims to infer generalisa-
tions from observed data and patterns. The example involving alice being

3https://neo4j.com/

https://neo4j.com/
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a Parent and bob a Child in Section 2.3 illustrates an example of deductive
reasoning. By contrast, had there been a link, isSupporterOf, between alice

and bob, and the football team bkHäcken, an example of inductive reasoning
would be inferring a rule saying that children support the same football teams
as their parents,

∀A∀B∀C(hasChild(A,B)∧ isSupporterOf(A,C)) → isSupporterOf(B,C).

Symbolic approaches based on for example inductive logic programming
(ILP) [55] can be used for pattern mining in KGs, however special care might
have to be taken to the open world assumption [56]. Connectionist or neural
approaches have been applied to learn embeddings; dense, low-dimensional
vector representations of KGs, that capture the graph’s structural and semantic
properties. These embeddings can be used for downstream tasks such as
link prediction, entity classification, or as features in other machine learning
models. Studies have shown that embeddings of symbolic features can be useful,
especially when the knowledge used to generate the features is deemed to be
insufficient for the task [57].

Knowledge graph embedding (KGE) methods often interpret individuals as
points and relations as geometric operations on the involved entities. TransE
is an example of this, where edges are interpreted as translations of points
in embedding space [58]. Concepts are often interpreted as convex sets, e.g.,
spheres [59], cones [60], or boxes [61–63]. Box embeddings, where entities are
represented as Cartesian products of closed intervals,

Box =

n∏
i=1

[zi, Zi], (2.1)

have grown increasingly popular due to their trade-off between expressiveness
and computational efficiency [64]. These representations enable the natural
interpretation of transitive relations, such as subClassOf relation, by encod-
ing hierarchical structure through set containment. Fig. 2.4 illustrates class
hierarchies can be represented by box embeddings. It should be noted that
box embeddings are simplified views of ontologies, and even simple examples
of some EL++ ontologies cannot be properly represented [64].

In addition to the embedding-based models mentioned, graph neural net-
works (GNNs) have emerged as a powerful class of models to learn represent-
ations of nodes in knowledge graphs. GNNs operate by “passing messages”
between neighbouring nodes, allowing each node to aggregate information and
update its features based on its local neighbourhood. By stacking multiple
message-passing layers, GNNs can learn node representation that capture multi-
hop relational dependencies across the graph. For example, GraphSAGE [65],

used in Paper III, calculates node embedding h
(k)
v for node v at depth k in

the network via

h(k)
v = f (k)

(
W (k) AGG

u∈N (v)
[h(k−1)

u ] + B(k)h(k−1)
v

)
, (2.2)
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A B C A BA B

A

B
B

C

A

BA

Figure 2.4: Illustration of how different class constructions are represented as
boxes in box embeddings. A ⊑ B is saying that A is a subclass of B, A ⊑ B ⊓
C means that A is a subclass of the intersection of B and C, and A ⊓ B ⊑ ⊥
states that A and B are disjoint.

where f is a learnable and possibly non-linear function, W and B are
learnable weights, and AGG is an aggregation function applied to the neighbours
of v. The aggregation function can for example be fixed (e.g. mean) or learnt.

In Paper III box embeddings are used as node features, as a way of
encoding the hierarchical class structure, used together with a GNN to make
node predictions from a KG.
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Chapter 3

Summary of Included
Papers

3.1 Paper I: Genesis-DB: a database for
autonomous laboratory systems

In this paper we present an ontology for data and metadata from small-volume
chemostat cultivation experiments, as well as an Apache Jena based RDF-store.

Problem

As described in Section 2.1 a robot scientist platform, Genesis, with small-
volume chemostats and multiple measurement modalities, able of performing
a large number of parallel experiments, is under development. One central
aspect for autonomous agents using such experimental hardware is a data
storage system capable of handling the amounts of data generated, as well as
representing it such that machines can reason about it.

Approach and Contributions

We develop an ontology for an RDF database describing the µ-chemostat cultiv-
ation conditions, as well as the measurement modalities; growth, metabolomics,
and transcriptomics. The ontology follows the OBI [52] structure and reuses
terms from OBO Foundry [66] ontologies where possible, to simplify integration
with other knowledge bases.

An experiment consists of a sequence of cell culturing regimes specify-
ing the controllable experimental conditions for that part of the experiment,
together with the yeast strain used. Beside these conditions, measurements
from the different modalities are recorded, along with sampling meta-data,
such as the sample volume and sampling times.

A simple experiment selection demonstration was used to show how this
database could be used. Previously published experimental data, including

19
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both experimental conditions and results, were saved. Having this in the same
database simplified the analysis and suggestion of interesting experiments to
perform. Along with the ontology we also provide an easily deployed Apache
Jena based database implementation.

Author contributions

The conceptualisation of the project was done by Ross D. King, Larisa N.
Soldatova, Gabriel K. Reder, Alexander H. Gower, and Filip Kronström.
The implementation of the database system was done by Vinay Mahamuni,
Rushikesh Halle, Amit Patel, and Harshal Hayatnagarkar. The ontology was
written by: R.H., V.M., F.K., and A.H.G. F.K., A.H.G., G.K.R., V.M.,
and R.H. conducted the investigation into the database and ontology. The
manuscript was written by A.H.G., F.K., R.H., V.M., G.K.R., H.H., and L.N.S.
The figures and visualisations were realised by F.K., A.H.G., R.H., V.M., and
G.K.R. The project was supervised by R.D.K., L.N.S., G.K.R., A.P., and H.H.
The data were prepared and curated by A.H.G., F.K., G.K.R., V.M., and R.H.
The project was administered by L.N.S., R.D.K., G.K.R., A.P. The funding for
the project was acquired by R.D.K.
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3.2 Paper II: RIMBO - An Ontology for Model
Revision Databases

In this paper we present RIMBO (Revisions for Improvements of Models in
Biology Ontology), an ontology to systematically describe changes to computa-
tional biology models, intended as the foundation for a database containing
iteratively revised models.

Problem

Computational models are fundamental across several scientific domains, includ-
ing biology. Such models are not static, instead they evolve as new knowledge
is discovered and this evolution is typically iterative. This process of refining
models is often poorly documented and multiple smaller changes are bundled
together in larger releases, making it impossible to reason about the impact of
individual changes.

As discussed in Section 2.1, autonomous agents with access to knowledge
and physical laboratories are a promising way forward for scientific discovery.
In the domain of systems biology a common representation of knowledge is
computational models, and thus, improving them is of great scientific interest. If
this is done autonomously, the recording of the revisions, along with descriptions
and reasons for them, is central, since it facilitates reasoning about previous
changes and can help in communicating the results.

Furthermore, the difficulty of reproducing results across various scientific
disciplines is a well-recognised challenge. One contributing factor is the lack
of structured documentation of the research process. Maintaining a detailed
record of a model’s origin, the modifications made to it, and the rationale
behind those changes could significantly improve transparency and traceability.
This holds true even when models are developed through traditional means by
human researchers, rather than through automated systems.

Approach and Contributions

RIMBO combines classes from several ontologies to describe changes made to a
model, as can be seen in Fig. 3.1. Classes from the Gene Ontology [49] describe
what is modelled, and PROV-O [67] and REPRODUCE-ME [68] specifies
important metadata for the update. Classes from COMODI [53] and SBO
[69] describes the mechanistic part of the model being revised, and COMODI
together with APO [51] gives the reason for a revision.

As models in biology often are expressed in text- or XML-based formats
RIMBO allows to specify the revision as the diff-patch to reduce the storage
footprint, allowing for large numbers of revisions to be saved.

We demonstrate how RIMBO can be used by modelling chains of revisions
to the genome-scale metabolic model (GEM) Yeast 8 [70]. Initially we model
parts of the community update from v8.4.1 to v8.4.2. We also include an
update suggested by an autonomous agent through abductive reasoning [71],
as well as thousands of random revisions.
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Figure 3.1: Overview of RIMBO showing classes, how they are connected, and
which ontologies they are from. Under the boxes are examples of subclasses to
describe model revisions. Red boxes denotes domain-specific classes that would
need replacing if the ontology is applied to another domain. Blue denotes
classes from other foundational scientific ontologies and the white boxes are
classes introduced in RIMBO.

Conclusion

With RIMBO we propose a method to systematically describe revisions of
computational models in a semantically meaningful way. We believe this adds
value to both traditional and automated labs through the improved traceability
and transparency in model development.

Author contributions

The conceptualisation of the project was done by Ross D. King, Filip Kron-
ström, and Alexander H. Gower. The ontology was designed and curated by
F.K. Code to implement RIMBO was also developed and tested by F.K. The
experiments to demonstrate revisions on the Yeast8 GEM were designed and
executed by A.H.G. and F.K. The scalability experiments were designed and
executed by F.K. The data were prepared and curated by F.K. and A.H.G.
Figures were designed and prepared by F.K. The manuscript was written by
F.K. The project was supervised by R.D.K., and Ievgeniia A. Tiukova and
the funding for the project was acquired by R.D.K
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3.3 Paper III - Ontology-based box embeddings
and knowledge graphs for predicting phen-
otypic traits in Saccharomyces cerevisiae

In this paper we construct a KG describing genes in S. cerevisiae using terms
from several ontologies. Box embeddings are found for the class hierarchies and
used together with GNNs to predict digenic gene deletion fitness from the KG.
Using interpretability techniques we identify combinations of edges important
for fitness. This finding is validated by a biological experiment showing an
association between inositol utilization and osmotic stress resistance.

Problem

S. cerevisiae is very well-studied, serving as a model eukaryote helping us
understand other organisms. Decades of research have generated a vast amount
of knowledge, some of which is systematically curated in databases like the
Saccharomyces Genome Database (SGD) [31] and BioCyc [28]. These resources
contain detailed information about genes, phenotypes, biochemical pathways,
and genetic interactions, providing a rich foundation for computational models.

Much of this knowledge is structured using ontologies, such as the Gene
Ontology (GO) [49] for molecular functions, Ascomycete Phenotype Ontology
(APO) [51] for phenotypic traits, and ChEBI [50] for chemical compounds.
These ontologies capture hierarchical relationships and domain knowledge,
making them valuable for machine learning approaches.

Despite this wealth of information, many gene functions and interactions
remain unknown. Computational methods that leverage existing knowledge
can help prioritise hypotheses and guide experimental efforts, reducing the
need for exhaustive laboratory testing. By integrating structured knowledge
from ontologies into predictive models, we can better utilise existing biological
data to uncover new insights.

Approach and Contributions

Information from SGD and BioCyc is integrated in a KG describing genes
in S. cerevisiae, using terms defined in various ontologies. The KG contains
information about for example processes, functions, and phenotypes the genes
are associated with, reactions catalysed by genes, and where in the cell the
gene product is located. An overview of the graph can be seen in Fig. 3.2a.

To demonstrate the utility of the knowledge graph, we use a heterogeneous
graph neural network to predict digenic deletion fitness, i.e., the impact of
pairwise gene deletions on growth, based on data from Costanzo et al. [72]. We
represent the nodes in the graph by Gumbel box embeddings [73] of the class
hierarchies in the ontologies. The nodes are divided into the eight domains
seen in Fig. 3.2b for which separate embeddings are found.

The performance for the GNN with box embeddings is compared to a
GNN with shallow node embeddings learnt for the prediction task, as well as a
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Figure 3.2: An overview of the different types of classes and how they are
connected in the knowledge graph is shown in a. The color of the nodes specifies
in which ontology the classes are defined. b shows examples of how the classes
in each domain is organised according to hierarchies from the ontologies.

LightGBM model predicting from instantiations of the phenotype information
in the graph. This comparison can be seen in Table 3.1.

The training of the GNN can be viewed as a way of distilling the biolo-
gically relevant information in the KG. Applying explainability techniques
(input×gradient [74]) to the predictions assigned importance values to indi-
vidual edges, as well as co-occurring edge pairs important across all predictions.
These pairs are interpreted as hypotheses about potentially interacting traits.
Wanting to verify this in a biological experiment, we filter the edge-pairs for
edge-types corresponding to experiments we feasibly and safely can perform
given our lab setup. This resulted in nutrient utilisation of inositol (vitamin
B8) and stress resistance to NaCl (table salt) being the highest ranked pair
and the hypothesis being that these traits have an interacting effect. The
hypothesis was tested by cultivating an ∆ino1 mutant, which cannot synthesise
inositol, in varying inositol and NaCl concentrations. This experiment sup-
ported our hypothesis, showing a significant interaction effect. A summary
of the feature selection and experimental results can be seen in Fig. 3.3. The
literature suggests a likely mechanistic explanation: inositol, being involved in
the biosynthesis and maintenance of cell membrane integrity [75], may exert
a mitigating effect on the osmotic stress induced by NaCl. Importantly, this
information was not present in the KG and thereby not “known” to the model
when suggesting the hypothesis.
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Table 3.1: Results from 10-fold cross-validation of digenic deletion fitness. Both
GNN models share the same architecture but differ in class representations:
one uses box embeddings for ontology hierarchies, while the other employs
task-specific shallow embeddings. The instantiation model uses a sparse feature
matrix with non-zero entries for phenotype annotations from the KG.

Model Mean R2 SD
GNN with box embeddings 0.360 0.043
GNN without box embeddings 0.329 0.043
Instantiations + LightGBM 0.211 0.022
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Figure 3.3: An overview of the selection and results of the experiment we
performed. (a) shows the highest ranked importances of edge-pairs and the
pair selected for the experiment, nutrient utilisation of inositol and stress
resistance to NaCl, is highlighted in red. f0 and f1, which have a higher
assigned weight, are discarded due to safety and lab constraints as it involves
the chemical bleomycin. (b) Box plot showing the distribution of AUC for all
of the experimental conditions tested. Inositol supplementation significantly
impacts growth dynamics in high doses (p < 0.05). NaCl stress changes the
impact of inositol in a dose dependent manner, suggesting an interactive effect
(p < 0.05).

Conclusion

With this work, we demonstrate how KGs can be used to represent heterogen-
eous, qualitative information in a way that enables the prediction of quantitative
data. Furthermore, we show that ontologies contain valuable domain knowledge
that can be effectively captured through box embeddings. Finally, we leverage
the model not only for prediction but also for hypothesis generation, identify-
ing a potential interaction between phenotypic traits that was subsequently
supported by a biological experiment.
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Author contributions
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Chapter 4

Discussion and Future
Work

This thesis presents three papers related to knowledge representation and
scientific discovery. Papers I and II present ontologies to describe µ-chemostat
experiments and revisions to biological models. Paper III illustrates how
ontologies can be used together with publicly available data for prediction of
traits in S. cerevisiae, as well as generation of hypothesis about new knowledge.
This demonstrates that task-specific ontologies may need to be developed
for certain applications, but existing ontologies can also provide valuable
information that can be effectively leveraged.

Paper I is particularly relevant for the robot scientist Genesis, as it provides
a structured experiment record. Such a record is essential not only for enabling
the robot scientist to reason about past experimental conditions and outcomes
but also for effectively communicating experimental results. The Genesis
platform is unique due to its combination of cultivation capabilities and diverse
measurement modalities. As a result, a custom ontology was developed, both
a key contribution and a limitation of the work. While the ontology is tailored
to this rather specific experimental setup, the semantic annotation of data
facilitates data sharing, even if reproducing the experiments exactly may require
specialised hardware. Although semantic annotation introduces a slight storage
overhead, it enables integration with other knowledge sources, which is valuable
in the context of a robot scientist system. It is also worth noting that the
Genesis hardware is still under development; therefore, the ontology has not yet
been fully validated for its intended use and may undergo further refinement.

The ontology in Paper II is developed for closed-loop model improvement
and any research context where (particularly mechanistic) models undergo
iterative revision. It provides a structured record of model changes, which is
essential for autonomous agents engaged in reasoning and decision making,
and it also enhances transparency and reproducibility for human researchers.
The ontology can be interpreted as a formal representation of a specific type of
hypothesis: proposed updates to computational models. However, the current
framework does not capture the testing or validation of these hypotheses.

27
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For example, it lacks mechanisms to associate model changes with statistical
evaluations or comparisons to experimental data, an essential component in
determining the impact of a revision. In a closed-loop modelling setup, such
evaluation steps should be explicitly tracked. While the paper focuses on
systems biology applications, the ontology itself is largely domain agnostic.
With only minor adaptations, such as substituting a few domain specific terms,
it can be applied to model revision workflows in other scientific fields.

Paper III demonstrates how combining hierarchical knowledge from onto-
logies with factual data from biological databases can enhance the prediction of
quantitative traits in S. cerevisiae. By incorporating symbolic knowledge into
neural models, specifically through box embeddings of ontology hierarchies, the
study shows improved predictive performance compared to models that learn
task-specific class representations from scratch. This is particularly noteworthy
because hierarchical embeddings provide a rather simple representation of a
domain, and they are more feasible for domain experts to construct than more
complex, high-dimensional representations.

The model exhibited promising generalisation: although trained on digenic
gene deletion fitness data, it also performed reasonably well on predicting
trigenic deletion fitness, with the caveat that this was tested on a smaller and
more limited dataset. This raises the question of whether the gene embeddings
learned from one task can be effectively transferred to other, more distinct
tasks.

Beyond trait prediction, the model was used to generate hypotheses about
potential interactions between traits by identifying important co-occurring
edges in the knowledge graph. One such hypothesis, suggesting an interaction
between inositol utilisation and NaCl stress resistance, was supported by follow-
up experiments in an autonomous laboratory. While this interaction may not
be novel from a biological perspective, it was not explicitly encoded in the
knowledge graph, and therefore represented a discovery from the model’s point
of view. Importantly, the process of selecting testable hypotheses involved
filtering based on the constraints of the available laboratory setup. Modifying
this filtering process could lead to the generation of more scientifically interesting
or unexpected hypotheses. In the context of robot scientist systems this
approach provides a promising strategy for incorporating background knowledge
into automated hypothesis generation.

Together, the three presented papers illustrate how semantically precise
knowledge representations can help at different stages of scientific discovery.
Both for organisation and to facilitate sharing of generated data, as well as to
make sense of and make new discoveries from already known information.

Future work

Looking ahead, several promising directions for future work emerge, particularly
in relation to Paper III. First, as discussed above, the hypotheses generated
by the current system are not always of high biological interest. Exploring
ways to improve the scientific relevance of these hypotheses would be valuable.
One possible avenue is the incorporation of large language models (LLMs),



29

which could assist in ranking or refining hypotheses based on broader biological
knowledge or literature context.

Another extension concerns the embeddings generated by the model. While
the input to the network includes box embeddings that capture hierarchical
information, this structure is not preserved in the embeddings generated by
the GNN. Introducing mechanisms to propagate the hierarchical structure,
such as using a semantic loss function [76], could help ensure that the final
representations remain grounded in domain knowledge.

Finally, a natural continuation of the work in Paper II involves the
representation of more general forms of hypotheses. By integrating known
information, e.g., through embedding-based approaches like those explored in
Paper III, this could allow for estimation of the prior support for hypotheses.
This capability is particularly important for scaling up hypothesis generation
and testing in autonomous systems, where the space of possible hypotheses far
exceeds what can be practically tested in the laboratory.





Bibliography

[1] D. Botstein, S. A. Chervitz and M. Cherry, ‘Yeast as a model organism,’
Science, vol. 277, no. 5330, pp. 1259–1260, 29th Aug. 1997, Publisher:
American Association for the Advancement of Science. doi: 10.1126/
science.277.5330.1259 (cit. on p. 3).

[2] E. Nevoigt, ‘Progress in metabolic engineering of saccharomyces
cerevisiae,’ Microbiology and Molecular Biology Reviews, vol. 72, no. 3,
pp. 379–412, Sep. 2008, Publisher: American Society for Microbiology.
doi: 10.1128/mmbr.00025-07 (cit. on p. 3).

[3] R. Davis, H. Shrobe and P. Szolovits, ‘What is a knowledge representa-
tion?’ AI Mag., vol. 14, no. 1, pp. 17–33, 1st Mar. 1993, issn: 0738-4602.
doi: 10.1609/aimag.v14i1.1029. Accessed: 24th Apr. 2025. [Online].
Available: https://doi.org/10.1609/aimag.v14i1.1029 (cit. on p. 3).

[4] D. Brunns̊aker, ‘Automating hypothesis generation and testing: Towards
self-driving biology,’ ISBN: 9789181032970, Ph.D. dissertation, Chalmers
University of Technology, 2025. doi: 10.63959/chalmers.dt/5755 (cit.
on p. 4).

[5] B. G. Buchanan and E. A. Feigenbaum, ‘Dendral and meta-dendral:
Their applications dimension,’ Artificial Intelligence, Applications to the
Sciences and Medicine, vol. 11, no. 1, pp. 5–24, 1st Aug. 1978, issn:
0004-3702. doi: 10.1016/0004-3702(78)90010-3 (cit. on p. 7).

[6] P. W. Langley, ‘BACON: A production system that discovers empirical
laws,’ in Proceedings of the 5th international joint conference on Artificial
intelligence - Volume 1, ser. IJCAI’77, San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 22nd Aug. 1977, p. 344 (cit. on p. 7).

[7] J. Jumper et al., ‘Highly accurate protein structure prediction with
AlphaFold,’ Nature, vol. 596, no. 7873, pp. 583–589, Aug. 2021, Publisher:
Nature Publishing Group, issn: 1476-4687. doi: 10.1038/s41586-021-
03819-2 (cit. on p. 7).

[8] R. D. King et al., ‘The automation of science,’ Science, vol. 324, no. 5923,
pp. 85–89, 3rd Apr. 2009, Publisher: American Association for the Ad-
vancement of Science. doi: 10.1126/science.1165620 (cit. on pp. 7,
8).

31

https://doi.org/10.1126/science.277.5330.1259
https://doi.org/10.1126/science.277.5330.1259
https://doi.org/10.1128/mmbr.00025-07
https://doi.org/10.1609/aimag.v14i1.1029
https://doi.org/10.1609/aimag.v14i1.1029
https://doi.org/10.63959/chalmers.dt/5755
https://doi.org/10.1016/0004-3702(78)90010-3
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1126/science.1165620


32 BIBLIOGRAPHY

[9] R. D. King et al., ‘Functional genomic hypothesis generation and ex-
perimentation by a robot scientist,’ Nature, vol. 427, no. 6971, pp. 247–
252, Jan. 2004, Number: 6971 Publisher: Nature Publishing Group, issn:
1476-4687. doi: 10.1038/nature02236 (cit. on p. 7).

[10] K. Williams et al., ‘Cheaper faster drug development validated by the
repositioning of drugs against neglected tropical diseases,’ Journal of The
Royal Society Interface, vol. 12, no. 104, p. 20 141 289, 6th Mar. 2015,
Publisher: Royal Society. doi: 10.1098/rsif.2014.1289 (cit. on p. 7).

[11] B. Burger et al., ‘A mobile robotic chemist,’ Nature, vol. 583, no. 7815,
pp. 237–241, Jul. 2020, Number: 7815 Publisher: Nature Publishing
Group, issn: 1476-4687. doi: 10.1038/s41586-020-2442-2. Accessed:
7th Jun. 2023 (cit. on p. 7).

[12] I. A. Tiukova et al., Genesis: Towards the automation of systems biology
research, 4th Sep. 2024. doi: 10.48550/arXiv.2408.10689. arXiv:
2408.10689[cs] (cit. on p. 8).

[13] G. S. Omenn, ‘Grand challenges and great opportunities in science,
technology, and public policy,’ Science, vol. 314, no. 5806, pp. 1696–1704,
15th Dec. 2006, Publisher: American Association for the Advancement of
Science. doi: 10.1126/science.1135003 (cit. on p. 8).

[14] A. Coutant et al., ‘Closed-loop cycles of experiment design, execution,
and learning accelerate systems biology model development in yeast,’ Pro-
ceedings of the National Academy of Sciences, vol. 116, no. 36, pp. 18 142–
18 147, 3rd Sep. 2019, Publisher: Proceedings of the National Academy
of Sciences. doi: 10.1073/pnas.1900548116 (cit. on pp. 8, 10).

[15] K. Roper et al., ‘Testing the reproducibility and robustness of the cancer
biology literature by robot,’ Journal of The Royal Society Interface,
vol. 19, no. 189, p. 20 210 821, 6th Apr. 2022, Publisher: Royal Society.
doi: 10.1098/rsif.2021.0821. Accessed: 26th Feb. 2025 (cit. on p. 8).

[16] P. Ivie and D. Thain, ‘Reproducibility in scientific computing,’ ACM
Comput. Surv., vol. 51, no. 3, 63:1–63:36, 16th Jul. 2018, issn: 0360-0300.
doi: 10.1145/3186266 (cit. on p. 8).

[17] P Kohl, E. J. Crampin, T. A. Quinn and D Noble, ‘Sys-
tems biology: An approach,’ Clinical Pharmacology &
Therapeutics, vol. 88, no. 1, pp. 25–33, 2010, eprint: ht-
tps://onlinelibrary.wiley.com/doi/pdf/10.1038/clpt.2010.92, issn:
1532-6535. doi: 10.1038/clpt.2010.92 (cit. on p. 8).

[18] M. H. V. V. Regenmortel, ‘Reductionism and complexity in molecular
biology,’ EMBO reports, vol. 5, no. 11, pp. 1016–1020, Nov. 2004, Num
Pages: 1020 Publisher: John Wiley & Sons, Ltd, issn: 1469-221X. doi:
10.1038/sj.embor.7400284 (cit. on p. 8).

[19] F. Crick, ‘Central dogma of molecular biology,’ Nature, vol. 227, no. 5258,
pp. 561–563, Aug. 1970, Publisher: Nature Publishing Group, issn: 1476-
4687. doi: 10.1038/227561a0 (cit. on p. 8).

https://doi.org/10.1038/nature02236
https://doi.org/10.1098/rsif.2014.1289
https://doi.org/10.1038/s41586-020-2442-2
https://doi.org/10.48550/arXiv.2408.10689
https://arxiv.org/abs/2408.10689 [cs]
https://doi.org/10.1126/science.1135003
https://doi.org/10.1073/pnas.1900548116
https://doi.org/10.1098/rsif.2021.0821
https://doi.org/10.1145/3186266
https://doi.org/10.1038/clpt.2010.92
https://doi.org/10.1038/sj.embor.7400284
https://doi.org/10.1038/227561a0


BIBLIOGRAPHY 33

[20] H. Kitano, ‘Systems biology: A brief overview,’ Science, vol. 295, no. 5560,
pp. 1662–1664, Mar. 2002, Publisher: American Association for the Ad-
vancement of Science. doi: 10.1126/science.1069492 (cit. on p. 9).

[21] K. Dettmer, P. A. Aronov and B. D. Hammock, ‘Mass spectrometry-based
metabolomics,’ Mass Spectrometry Reviews, vol. 26, no. 1, pp. 51–78,
2007, issn: 1098-2787. doi: 10.1002/mas.20108. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/mas.20108

(cit. on p. 9).

[22] I. Tavassoly, J. Goldfarb and R. Iyengar, ‘Systems biology primer: The
basic methods and approaches,’ Essays in Biochemistry, vol. 62, no. 4,
pp. 487–500, 4th Oct. 2018, issn: 0071-1365. doi: 10.1042/EBC20180003.
Accessed: 16th Apr. 2025 (cit. on p. 9).

[23] M. L. Mo, B. Ø. Palsson and M. J. Herrg̊ard, ‘Connecting extracellular
metabolomic measurements to intracellular flux states in yeast,’ BMC
Systems Biology, vol. 3, no. 1, p. 37, 25th Mar. 2009, issn: 1752-0509.
doi: 10.1186/1752-0509-3-37 (cit. on p. 10).

[24] J. D. Orth, I. Thiele and B. Ø. Palsson, ‘What is flux balance analysis?’
Nature Biotechnology, vol. 28, no. 3, pp. 245–248, Mar. 2010, Publisher:
Nature Publishing Group, issn: 1546-1696. doi: 10.1038/nbt.1614
(cit. on p. 10).

[25] C. Zhang et al., ‘Yeast9: A consensus genome-scale metabolic model
for s. cerevisiae curated by the community,’ Molecular Systems Biology,
vol. 20, no. 10, pp. 1134–1150, 12th Aug. 2024, issn: 1744-4292. doi:
10.1038/s44320-024-00060-7 (cit. on p. 10).

[26] M. Gillespie et al., ‘The reactome pathway knowledgebase 2022,’ Nucleic
Acids Research, vol. 50, pp. D687–D692, D1 7th Jan. 2022, issn: 0305-1048.
doi: 10.1093/nar/gkab1028 (cit. on p. 10).

[27] M. Kanehisa and S. Goto, ‘KEGG: Kyoto encyclopedia of genes and
genomes,’ Nucleic Acids Research, vol. 28, no. 1, pp. 27–30, 1st Jan. 2000,
issn: 0305-1048. doi: 10.1093/nar/28.1.27 (cit. on p. 10).

[28] P. D. Karp et al., ‘The BioCyc collection of microbial genomes and
metabolic pathways,’ Briefings in Bioinformatics, vol. 20, no. 4, pp. 1085–
1093, 19th Jul. 2019, issn: 1477-4054. doi: 10.1093/bib/bbx085 (cit. on
pp. 10, 23).

[29] O. Yurekten et al., ‘MetaboLights: Open data repository for metabolom-
ics,’ Nucleic Acids Research, vol. 52, pp. D640–D646, D1 5th Jan. 2024,
issn: 0305-1048. doi: 10.1093/nar/gkad1045 (cit. on p. 10).

[30] Y. Perez-Riverol et al., ‘The PRIDE database resources in 2022: A
hub for mass spectrometry-based proteomics evidences,’ Nucleic Acids
Research, vol. 50, pp. D543–D552, D1 7th Jan. 2022, issn: 0305-1048.
doi: 10.1093/nar/gkab1038 (cit. on p. 10).

https://doi.org/10.1126/science.1069492
https://doi.org/10.1002/mas.20108
https://onlinelibrary.wiley.com/doi/abs/10.1002/mas.20108
https://doi.org/10.1042/EBC20180003
https://doi.org/10.1186/1752-0509-3-37
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1038/s44320-024-00060-7
https://doi.org/10.1093/nar/gkab1028
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/bib/bbx085
https://doi.org/10.1093/nar/gkad1045
https://doi.org/10.1093/nar/gkab1038


34 BIBLIOGRAPHY

[31] S. R. Engel et al., ‘Saccharomyces genome database: Advances in gen-
ome annotation, expanded biochemical pathways, and other key en-
hancements,’ Genetics, iyae185, 12th Nov. 2024, issn: 1943-2631. doi:
10.1093/genetics/iyae185 (cit. on pp. 10, 23).

[32] D. Brunns̊aker, F. Kronström, I. A. Tiukova and R. D. King, ‘Interpret-
ing protein abundance in saccharomyces cerevisiae through relational
learning,’ Bioinformatics, vol. 40, no. 2, btae050, 1st Feb. 2024, issn:
1367-4811. doi: 10.1093/bioinformatics/btae050. Accessed: 17th Feb.
2025 (cit. on p. 10).

[33] J. Nielsen and M. C. Jewett, ‘Impact of systems biology on metabolic
engineering of saccharomyces cerevisiae,’ FEMS Yeast Research, vol. 8,
no. 1, pp. 122–131, 1st Feb. 2008, issn: 1567-1356. doi: 10.1111/j.1567-
1364.2007.00302.x (cit. on p. 10).

[34] A. H. Gower et al., The use of AI-robotic systems for scientific dis-
covery, 25th Jun. 2024. doi: 10.48550/arXiv.2406.17835. arXiv:
2406.17835[cs]. Accessed: 16th Apr. 2025 (cit. on p. 10).

[35] M. R. Dietrich, R. A. Ankeny and P. M. Chen, ‘Publication trends in
model organism research,’ Genetics, vol. 198, no. 3, pp. 787–794, Nov.
2014, issn: 0016-6731. doi: 10.1534/genetics.114.169714 (cit. on
p. 10).

[36] S.-F. Duan et al., ‘The origin and adaptive evolution of domesticated
populations of yeast from far east asia,’ Nature Communications, vol. 9,
no. 1, p. 2690, 12th Jul. 2018, Publisher: Nature Publishing Group, issn:
2041-1723. doi: 10.1038/s41467-018-05106-7 (cit. on p. 10).

[37] L. Vanderwaeren, R. Dok, K. Voordeckers, S. Nuyts and K. J. Verstrepen,
‘Saccharomyces cerevisiae as a model system for eukaryotic cell biology,
from cell cycle control to DNA damage response,’ International Journal
of Molecular Sciences, vol. 23, no. 19, p. 11 665, 1st Oct. 2022, issn:
1422-0067. doi: 10.3390/ijms231911665 (cit. on p. 10).

[38] Z. Yang and M. Blenner, ‘Genome editing systems across yeast species,’
Current Opinion in Biotechnology, vol. 66, pp. 255–266, Dec. 2020, issn:
1879-0429. doi: 10.1016/j.copbio.2020.08.011 (cit. on p. 11).

[39] A. Goffeau et al., ‘Life with 6000 genes,’ Science, vol. 274, no. 5287,
pp. 546–567, 25th Oct. 1996, Publisher: American Association for the
Advancement of Science. doi: 10.1126/science.274.5287.546 (cit. on
p. 11).

[40] V. Wood, A. Lock, M. A. Harris, K. Rutherford, J. Bähler and S. G.
Oliver, ‘Hidden in plain sight: What remains to be discovered in the
eukaryotic proteome?’ Open Biology, vol. 9, no. 2, p. 180 241, 20th Feb.
2019, issn: 2046-2441. doi: 10.1098/rsob.180241. Accessed: 11th Feb.
2025 (cit. on p. 11).

https://doi.org/10.1093/genetics/iyae185
https://doi.org/10.1093/bioinformatics/btae050
https://doi.org/10.1111/j.1567-1364.2007.00302.x
https://doi.org/10.1111/j.1567-1364.2007.00302.x
https://doi.org/10.48550/arXiv.2406.17835
https://arxiv.org/abs/2406.17835 [cs]
https://doi.org/10.1534/genetics.114.169714
https://doi.org/10.1038/s41467-018-05106-7
https://doi.org/10.3390/ijms231911665
https://doi.org/10.1016/j.copbio.2020.08.011
https://doi.org/10.1126/science.274.5287.546
https://doi.org/10.1098/rsob.180241


BIBLIOGRAPHY 35

[41] F. Baader, I. Horrocks, C. Lutz and U. Sattler, An Introduction to
Description Logic. Cambridge: Cambridge University Press, 2017, isbn:
978-0-521-87361-1. doi: 10.1017/9781139025355. Accessed: 8th Apr.
2025 (cit. on pp. 11–13).

[42] T. R. Gruber, ‘A translation approach to portable ontology specifications,’
Knowledge Acquisition, vol. 5, no. 2, pp. 199–220, 1st Jun. 1993, issn:
1042-8143. doi: 10.1006/knac.1993.1008 (cit. on p. 11).

[43] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi and P. F. Patel-
Schneider, Eds., The Description Logic Handbook: Theory, Implementa-
tion and Applications, 2nd ed. Cambridge: Cambridge University Press,
2007, isbn: 978-0-521-15011-8. doi: 10.1017/CBO9780511711787. Ac-
cessed: 11th Apr. 2025 (cit. on p. 12).

[44] F. Baader and P. Hanschke, ‘A scheme for integrating concrete domains
into concept languages,’ in Proceedings of the 12th international joint
conference on Artificial intelligence - Volume 1, ser. IJCAI’91, San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc., 24th Aug. 1991,
pp. 452–457, isbn: 978-1-55860-160-4. Accessed: 14th Apr. 2025 (cit. on
p. 12).

[45] I. Horrocks, ‘Ontologies and the semantic web,’ Commun. ACM, vol. 51,
no. 12, pp. 58–67, 1st Dec. 2008, issn: 0001-0782. doi: 10.1145/1409360.
1409377. Accessed: 14th Apr. 2025 (cit. on p. 12).

[46] A. Hogan, ‘The semantic web: Two decades on,’ Semantic Web, vol. 11,
no. 1, pp. 169–185, 31st Jan. 2020, Publisher: SAGE Publications, issn:
1570-0844. doi: 10.3233/SW-190387. Accessed: 14th Apr. 2025 (cit. on
p. 12).

[47] L. F. Sikos, ‘Description logics: Formal foundation for web ontology
engineering,’ in Description Logics in Multimedia Reasoning, L. F. Sikos,
Ed., Cham: Springer International Publishing, 2017, pp. 67–120, isbn:
978-3-319-54066-5. doi: 10.1007/978-3-319-54066-5_4. Accessed:
15th Apr. 2025 (cit. on p. 13).

[48] F. Baader, S. Brandt and C. Lutz, ‘Pushing the EL envelope,’ in Proceed-
ings of the 19th international joint conference on Artificial intelligence,
ser. IJCAI’05, San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 30th Jul. 2005, pp. 364–369 (cit. on p. 13).

[49] M. Ashburner et al., ‘Gene ontology: Tool for the unification of biology,’
Nature Genetics, vol. 25, no. 1, pp. 25–29, May 2000, Number: 1 Publisher:
Nature Publishing Group, issn: 1546-1718. doi: 10.1038/75556 (cit. on
pp. 13, 14, 21, 23).

[50] J. Hastings et al., ‘ChEBI in 2016: Improved services and an expanding
collection of metabolites,’ Nucleic acids research, vol. 44, pp. D1214–9,
D1 1st Jan. 2016, issn: 1362-4962. doi: 10.1093/nar/gkv1031. Accessed:
29th Jan. 2025 (cit. on pp. 13, 14, 23).

https://doi.org/10.1017/9781139025355
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.1017/CBO9780511711787
https://doi.org/10.1145/1409360.1409377
https://doi.org/10.1145/1409360.1409377
https://doi.org/10.3233/SW-190387
https://doi.org/10.1007/978-3-319-54066-5_4
https://doi.org/10.1038/75556
https://doi.org/10.1093/nar/gkv1031


36 BIBLIOGRAPHY

[51] M. C. Costanzo et al., ‘New mutant phenotype data curation system in
the saccharomyces genome database,’ Database: The Journal of Biological
Databases and Curation, vol. 2009, bap001, 2009, issn: 1758-0463. doi:
10.1093/database/bap001 (cit. on pp. 13, 21, 23).

[52] A. Bandrowski et al., ‘The ontology for biomedical investigations,’ PLoS
ONE, vol. 11, no. 4, e0154556, 29th Apr. 2016, issn: 1932-6203. doi:
10.1371/journal.pone.0154556. Accessed: 4th Apr. 2025 (cit. on
pp. 14, 19).

[53] M. Scharm, D. Waltemath, P. Mendes and O. Wolkenhauer, ‘COMODI:
An ontology to characterise differences in versions of computational
models in biology,’ Journal of Biomedical Semantics, vol. 7, no. 1, p. 46,
11th Jul. 2016, issn: 2041-1480. doi: 10.1186/s13326-016-0080-2
(cit. on pp. 14, 21).

[54] A. Hogan et al., Knowledge Graphs (Synthesis Lectures on Data,
Semantics, and Knowledge 22), English. Springer, 2021, isbn:
9783031007903. doi: 10.2200/S01125ED1V01Y202109DSK022. [Online].
Available: https://kgbook.org/ (cit. on p. 15).

[55] L. D. Raedt, Ed., Logical and Relational Learning, Cognitive Technologies,
ISSN: 1611-2482, Berlin, Heidelberg: Springer, 2008, isbn: 978-3-540-
20040-6 978-3-540-68856-3. doi: 10.1007/978-3-540-68856-3 (cit. on
p. 16).
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