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Abstract—Digital predistortion (DPD) is used to reduce nonlin-
ear and memory effects in power amplifiers (PAs). Practical DPD
algorithms use variants of Volterra series by opportunistically
removing terms to reduce hardware complexity with minimal loss
in linearization performance. Although current DPD algorithms
can reduce the number of computations in terms of floating-
point operations, precision requirements have not been analyzed
in depth. With the motivation to reduce hardware complexity,
many shorter floating-point formats have recently emerged in
response to new application domains, such as machine learning.
To study the trade-off between linearization performance and
floating-point dynamic range and precision, we implement the
basis-propagating selection (BAPS) model in digital hardware.
We consider two use-case scenarios for PA models with different
memory effects, and find that the requirements on exponent and
mantissa resolution can be significantly relaxed from a default
single-precision 32-bit format, without any substantial loss in
linearization performance.

I. INTRODUCTION

The rapid evolution of wireless communication systems,
particularly 5G networks and emerging 6G technologies, de-
mands increasingly higher data rates and spectral efficiency
while maintaining symbol fidelity [1]. The problem is that
these wideband signals, which are characterized by high
peak-to-average power ratios (PAPRs) and complex envelope
variations, lead to significant spectral regrowth and adjacent
channel interference in the inherently nonlinear power am-
plifier (PA) [2]. Digital predistortion (DPD) has emerged as
a critical solution for handling these nonlinearities to enable
PAs to operate in regions of high efficiency [3].

Recent advances in DPD algorithms have focused on
Volterra-based approaches, with the basis-propagating selec-
tion (BAPS) model demonstrating good performance in terms
of modeling accuracy and computational efficiency [4]. Unlike
traditional models, such as memory polynomial (MP) and
generalized memory polynomial (GMP), BAPS constructs
basis functions through iterative reuse of previously computed
terms, significantly reducing the number of floating-point
operations (FLOPs), while maintaining good linearization per-
formance. However, with the exception of [5] which stud-
ies energy-efficient composition of basis functions, existing
BAPS implementations target software platforms with stan-
dard floating-point precisions (binary32 or binary64), limiting
their optimization potential for power-constrained hardware
systems where custom-precision implementations could offer
significant advantages.

While hardware implementations of DPD algorithms prefer-
ably employ fixed-point arithmetic [6], modern FPGA and

ASIC platforms provide flexible floating-point IP cores that
support custom precisions with short exponent and mantissa
widths. However, the precision requirements for maintain-
ing satisfactory DPD performance in floating-point hardware
implementations remain largely unexplored, particularly for
computationally intensive algorithms like BAPS. Here we
investigate the impact of custom floating-point formats on
DPD systems, addressing the critical design trade-off between
computational precision and linearization performance.

II. BAPS-BASED DPD SYSTEMS

Digital predistortion compensates for nonlinearities by ap-
plying an inverse PA model upstream of the PA itself. Tradi-
tional Volterra-based models suffer from high computational
complexity, making hardware implementation challenging [7].
The BAPS model addresses this through a sequential com-
putational approach that constructs basis functions iteratively.
Starting with the input signal, ϕ1 = x(n), the model sequen-
tially constructs each subsequent basis function ϕr by applying
either a so-called Type I or Type II operation.

Type I operations generate delayed versions of previously
computed basis functions

ϕr = q−mϕi, i < r, (1)

where q−1 is the unit delay operator and m represents the
memory delay step. Type II operations create nonlinear com-
binations according to

ϕr = ϕiϕjϕ
∗
k, i, j, k < r, (2)

where ∗ denotes complex conjugation. The final DPD model
output is computed as

y(n) =

R∑
r=1

θrϕr(n), (3)

where θr are the model coefficients and R is the total number
of basis functions.

As demonstrated in [4], a greedy search algorithm can
iteratively select optimal basis functions offline by evalu-
ating all potential candidates from those already generated
and choosing those yielding maximum error reduction. This
predetermined computational structure makes the BAPS model
well-suited for hardware architectures.



III. FLOATING-POINT ARITHMETIC

The IEEE-754 standard [8] defines a floating-point repre-
sentation comprising a sign bit (S), a w-bit exponent (E), and
a t-bit mantissa (M), with the numerical value given by

Value = (−1)S · 2(E−Bias) · (1 + M) (4)

for normalized numbers, where Bias equals 2(w−1) − 1.
While IEEE-754 defines standard formats, application-

specific requirements have driven development of custom-
precision configurations. Table I summarizes industry-standard
formats, reflecting different design priorities: machine learn-
ing applications favor reduced precision for higher through-
put, while graphics and DSP applications require balanced
precision-range trade-offs.

TABLE I
EXAMPLES OF CUSTOM FLOATING-POINT FORMATS

Format Sign Exponent Mantissa Total
IEEE FP32 1 8 23 32
AMD FP24 1 7 16 24

Pixar PXR24 1 8 15 24
NVIDIA TF32 [9] 1 8 10 19

IEEE FP16 1 5 10 16
Google bfloat16 [10] 1 8 7 16
IBM DLFloat [11] 1 6 9 16

This demonstrates that precision optimization is a recog-
nized strategy across multiple domains, with each format
targeting specific computational requirements. For instance,
DLFloat uses 6 exponent bits and 9 mantissa bits optimized
for deep learning applications [11], while bfloat16 maintains
the same exponent width as FP32 but reduces mantissa width
for improved throughput [10]. This flexibility in exponent and
mantissa allocation enables fine-grained control over dynamic
range and numerical precision, making custom formats par-
ticularly attractive for specialized applications, of which DPD
systems are an example.

Hardware floating-point arithmetic can be implemented us-
ing different methodologies, each suited for different optimiza-
tion objectives and constraints. FPGA platforms offer rapid
prototyping capabilities through vendor IP cores such as Xilinx
LogiCORE [12] and Intel FPGA IP, supporting both standard
IEEE formats and parameterizable precisions. Commercial
EDA vendors for ASICs provide synthesis-ready floating-
point IP libraries, such as Synopsys DesignWare and Cadence
ChipWare [13], which provide parameterizable floating-point
units supporting custom-precision configurations.

IV. EXPLORATION PLATFORM IMPLEMENTATION

Our exploration platform adopts a modular architecture con-
sisting of three modules: the BAPS basis function builder, the
DPD computation engine, and a coordinating wrapper module,
as illustrated in Figure 1. We evaluate two BAPS configu-
rations (BAPS8-mem1, BAPS8-mem5) with the same basis
function count of eight but capturing different PA memory
effect characteristics, where mem1 and mem5 refer to memory
depth parameters used during the greedy search algorithm.

These configurations result in different combinations of Type
I and Type II operations, enabling assessment of precision re-
quirements across different computational complexity profiles.
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Fig. 1. Block diagram of the explored BAPS hardware implementation with
a configuration for eight basis functions.

The basis function construction module implements sequen-
tial computation through a finite state machine that computes
basis functions ϕ1 through ϕr according to predetermined
Type I or Type II operations. Type I delay operations are im-
plemented using configurable shift register arrays, while Type
II operations require custom floating-point complex multipliers
to compute the nonlinear terms as defined in Eq. (2).

The computed basis function values are transferred to the
DPD computation module, where parallel complex multipliers
simultaneously compute θi ·ϕi products using prestored coef-
ficients θ. The weighted summation is then calculated using
custom floating-point complex adders arranged in a balanced
tree structure to minimize accumulation latency. All floating-
point arithmetic operations utilize the same custom-precision
configuration (w, t).

The custom floating-point arithmetic units utilize
Cadence ChipWare IP components (CW_fp_mult and
CW_fp_addsub) with parameterizable field widths, while
maintaining IEEE-754 compliance where applicable. All units
operate in round-to-nearest mode with configurable precision
propagated through VHDL generics. Both minimum exponent
and mantissa widths are constrained to 5 bits by the IP
licensing limitations.

The wrapper module manages data flow between the basis
function construction and DPD computation modules, coor-
dinating the sequential basis function generation with the
parallel DPD calculation. The architecture enables pipelined
operation where the next input sample x(n + 1) can begin
basis function computation while the current sample com-
pletes DPD computation. The overall design, together with
parameterizable precision support, makes it a useful platform
for systematic evaluation of floating-point precision effects
in DPD implementations. However, this architecture was not
developed for high-throughput scenarios where more parallel
solutions would be required.

V. EXPLORATION METHODOLOGY

We systematically evaluate 40 floating-point configurations
through the combination of ten mantissa field widths (t =



5, 6, 7, 8, 9, 10, 11, 15, 19, 23) and four exponent field widths
(w = 5, 6, 7, 8). This extensive parameter space enables the
characterization of precision-performance trade-offs across a
wide range of hardware complexity levels, from short 11-bit
(5,5) to standard 32-bit (8,23) configurations.

Custom Matlab functions are used to convert decimal values
to custom floating-point binary strings and vice versa. These
functions ensure correspondence between software and hard-
ware domains, enabling precision analysis that reflects actual
hardware arithmetic behavior.

A total of 79,280 complex baseband samples are generated
using a multi-carrier signal with PAPR of 10.39 dB, representa-
tive of practical communication waveforms. The input signals
are processed with single-precision Matlab implementations
of the BAPS algorithm and DPD computation to establish
reference results.

Each test vector passes through a complete Matlab–RTL–
Matlab verification flow. The input vectors are converted to
the target custom floating-point formats using custom con-
version functions in Matlab and applied to the synthesized
netlist through a behavioral VHDL testbench. Post-synthesis
simulation outputs are then converted back to Matlab decimal
numbers using inverse functions, enabling direct numerical
comparison with the reference.

Both the software reference and hardware-generated predis-
torted signals are further evaluated using a remote PA (RF We-
blab [14]), ensuring that the assessment reflects overall DPD
performance rather than numerical accuracy alone. The lin-
earized PA outputs are measured using two key DPD metrics:
normalized mean square error (NMSE) and adjacent channel
power ratio (ACPR). NMSE quantifies the deviation between
the desired and actual PA outputs, indicating linearization
accuracy. ACPR measures spectral regrowth suppression, re-
flecting compliance with regulatory emission requirements.

VI. RESULTS

The accuracy of the implemented BAPS system is vali-
dated through direct comparison with the Matlab reference
model using single precision (8,23). Figure 2 demonstrates
the spectral overlap between hardware and software (Matlab)
implementations for the predistorted signal. Figure 3 shows
that the final linearized PA output maintains this high level of
correspondence, confirming that our hardware implementation
preserves the DPD algorithm’s effectiveness without introduc-
ing significant numerical artifacts.

The ensuing precision analysis evaluates performance degra-
dation using normalized metrics referenced to single precision.
Positive values indicate performance degradation, while nega-
tive values indicate performance improvement:

∆NMSE = NMSE(w, t)−NMSE(8, 23) (5)

∆ACPR = ACPR(w, t)−ACPR(8, 23) (6)
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Fig. 2. Predistorted signal comparison
between software reference and hard-
ware implementation.
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Fig. 3. Predistorted PA output com-
parison between software reference
and hardware implementation.

A. Mantissa Width Analysis

BAPS8-mem1 Configuration: Table II presents NMSE
and ACPR for several different precisions. The table reveals
that there is a region where performance remains constant with
precision: From 23 to 9 mantissa bits, performance degradation
remains minor (less than 0.15 dB), indicating robust operation
across this precision range. But then there is a transition region
at 8–7 mantissa bits with modest degradation. Below 7 bits,
degradation becomes critical, with noticeable performance loss
at 6 bits and severe degradation at 5 bits (∆NMSE = 4.17 dB,
∆ACPR = 3.34 dB).

TABLE II
NMSE AND ACPR RESULTS FOR BAPS8-MEM1 CONFIGURATION

FP precision NMSE ACPR
Exp Mant Total dB ∆dB dB ∆dB

8 23 32 -38.18 0.00 -43.69 0.00
8 19 28 -38.05 0.13 -43.68 0.01
8 15 24 -38.10 0.08 -43.68 0.01
8 11 20 -38.07 0.10 -43.60 0.09
8 10 19 -38.05 0.13 -43.60 0.08
8 9 18 -38.09 0.08 -43.63 0.05
8 8 17 -37.95 0.23 -43.52 0.17
8 7 16 -37.79 0.38 -43.41 0.28
8 6 15 -36.50 1.68 -42.35 1.33
8 5 14 -34.01 4.17 -40.35 3.34

Figure 4 visualizes the spectral performance degradation
caused by mantissa width reduction from 8 to 5 bits, high-
lighting the emergence of spectral regrowth as precision de-
creases. Comparisons with the nonlinearized output and single-
precision reference linearized output are also shown. The
critical threshold at 6–7 mantissa bits reflects that in this region
the accumulated errors in repeated complex multiplications
begin to compromise the algorithm’s effectiveness.

BAPS8-mem5 Configuration: Table III demonstrates that
precision requirements remain consistent across BAPS con-
figurations. Despite the increased memory depth, the criti-
cal degradation threshold remains at 6–7 mantissa bits. The
configuration of mem5 shows slightly reduced sensitivity to
reduced precision, likely due to its different composition of
Type I and Type II operations, but the overall precision
requirements remain unchanged.
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Fig. 4. Predistorted PA output: mantissa width sweep.

TABLE III
NMSE AND ACPR RESULTS FOR BAPS8-MEM5 CONFIGURATION

FP precision NMSE ACPR
Exp Mant Total dB ∆dB dB ∆dB

8 23 32 -37.96 0.00 -43.39 0.00
8 19 28 -37.96 0.00 -43.31 0.08
8 15 24 -37.96 -0.01 -43.36 0.03
8 11 20 -37.95 0.00 -43.27 0.12
8 10 19 -37.92 0.03 -43.28 0.11
8 9 18 -37.97 -0.02 -43.26 0.13
8 8 17 -37.89 0.07 -43.20 0.19
8 7 16 -37.64 0.31 -43.00 0.39
8 6 15 -36.69 1.27 -42.30 1.09
8 5 14 -34.14 3.81 -40.14 3.25

B. Exponent Width Analysis

The reduction in exponent width exhibits fundamentally
different behavior compared to mantissa width reductions.
Figures 5 and 6 demonstrate that exponent width reduction
has minimal impact on DPD performance for typical signal
levels. Even aggressive reduction to 5 exponent bits yields
negligible performance degradation below 0.1 dB, indicating
that exponent width is not a limiting factor for typical DPD
signal levels.

This behavior stems from the nature of floating-point arith-
metic: the mantissa determines computational precision, while
the exponent determines the representable dynamic range.
Since DPD signals typically operate within a constrained
amplitude range, reducing the number of exponent bits has
negligible impact on algorithm effectiveness.

C. Hardware Complexity Analysis

Figure 7 presents the synthesized area results for a single
Type II nonlinear computational module under a 5-ns timing
constraint, using Cadence Genus with the ASAP7 7-nm Fin-
FET process design kit [15]. The area scales approximately
linearly with total bitwidth, with the mantissa bits dominating
the complexity.

This scaling relationship enables predictable complexity-
performance trade-offs: decreasing the number of mantissa bits
from 23 to 7 leads to an 80 % area saving at a performance
level that remains within 0.4 dB of single precision.
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Fig. 5. PA output with varying expo-
nent bits (23 mantissa bits).
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Fig. 6. PA output with varying
exponent bits (6 mantissa bits).

5 10 15 20 25

Mantissa bits

0

0.2

0.4

0.6

0.8

1

1.2

A
re

a
 (

1
0

3
 

m
2
)

exp bits=8

exp bits=7

exp bits=6

exp bits=5

Fig. 7. Synthesized area of Type II module for different floating-point
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VII. CONCLUSION

This work presents a systematic exploration of floating-point
precision requirements for hardware-based BAPS digital pre-
distortion systems. Using a parameterizable VHDL framework
with configurable arithmetic IP components, we evaluated a
wide range of custom floating-point formats and quantified
their impact on linearization performance using NMSE and
ACPR metrics on RF Weblab outputs. The consistent precision
requirements observed across the tested BAPS configurations
suggest that the findings may extend to other Volterra-based
DPD implementations that involve similar complex multipli-
cation and accumulation operations.

The results show that mantissa width is the critical factor
for accuracy, with performance stable down to 7–8 bits but
degrading rapidly below 6 bits. In contrast, exponent width has
negligible effect, with as few as 5 bits proving to be sufficient
across all cases. These findings point to useful precision-
performance trade-offs where reductions in mantissa width can
yield an 80 % area reduction, while maintaining performance
within 0.4 dB of single precision. Additionally, as we can
establish there are limited requirements on dynamic range,
our evaluations show that fixed-point representations may be
sufficient for implementation of DPD systems.
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