
Energy-Efficient Computation of TensorFloat32 Numbers on an FP32
Multiplier

Downloaded from: https://research.chalmers.se, 2025-10-15 01:51 UTC

Citation for the original published paper (version of record):
Larsson-Edefors, P. (2025). Energy-Efficient Computation of TensorFloat32 Numbers on an FP32
Multiplier. IEEE/IFIP International Conference on VLSI and System-on-Chip, VLSI-SoC

N.B. When citing this work, cite the original published paper.

© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)



Energy-Efficient Computation of
TensorFloat32 Numbers on an FP32 Multiplier

Per Larsson-Edefors
Chalmers University of Technology, Gothenburg, Sweden

Email: perla@chalmers.se

Abstract—Several new shorter floating-point formats have
been proposed to match requirements of emerging application
workloads. To simplify hardware development in the presence of
an increasing number of formats, one practical design option is to
use as much as possible preexisting hardware, such as standard
32-bit IEEE-754 (FP32) floating-point units, to handle emerging,
less complex formats. We evaluate the case where we use an
FP32 multiplier to run Nvidia TensorFloat32 data. While the
FP32 multiplier area is not as small as a dedicated TensorFloat32
multiplier, we show that energy per operation scales well with
the mantissa width reduction and that smart pin assignment can
leverage uneven input vector switching activities to significantly
decrease energy for reduced precisions.

I. INTRODUCTION

Machine learning is but one example of important appli-
cations that fuel a trend towards floating-point formats with
reduced computing precision. The key rationale behind this
trend is that shorter formats lead to less complex compute and
memory circuits and less interconnects linking them. Choice of
format and precision of data representations has a direct impact
on resource and energy usage of floating-point units. A case in
point is the integer multiplier—a core component of floating-
point units—whose complexity decreases quadratically as the
precision is reduced.

A number of floating-point formats with reduced precision
and/or dynamic range have recently been proposed: IEEE-
754 half-precision format (binary16 or FP16), IBM’s DLFloat,
AMD’s fp24, Google’s bfloat16, and Nvidia’s TensorFloat32
(TF32) are examples of formats which relax the demands on
the hardware in comparison to a IEEE-754 single-precision
(binary32 or FP32) solution. Requirements on precision and
dynamic range vary not only across application domains, but
also between workload phases of some applications. Thus,
processor floating-point units that can handle mixed-precision
workloads, which can be found in machine learning and signal
processing, have been proposed [1]–[3].

A circuit implementation customized to one reduced-
precision format clearly will perform more efficiently than
standard FP32 hardware, which is bound to have higher circuit
complexity and area. But the latter one-size-fits-all hardware
solution is practical as it can handle many types of formats, as
long as they are not more complex than FP32. As we will show
in this work, the energy dissipation of FP32 when executing
shorter formats can be reduced substantially, to levels closer to
FP16 operation than to FP32. We will specifically investigate
how TF32 [4], [5] multiplications can be efficiently run on a
standard FP32 multiplier.

II. BACKGROUND

The IEEE-754 standard for floating-point arithmetic [6]
defines a number as (−1)S 2exponent−bias 1.mantissa, where
S (the sign bit) indicates the sign, exponent represents the
w-bit exponent, and mantissa represents the t-bit mantissa
(significand). For normalized numbers, the resulting exponent
is defined as the subtraction of the coded exponent and a
bias which depends on the format: 2(w−1) − 1. Additionally,
there exists an implicit 1 which is leading the mantissa bits
and makes the resulting p-bit mantissa, where p = t+1, take
on numbers in an interval of [1, 2). The IEEE-754 standard
supports also denormalized numbers, in which case an implicit
0 leads the mantissa bits and the exponent is set to 0.

As shown in Fig. 1, IEEE-754’s FP32 format uses three
different fields with 23 mantissa bits, 8 exponent bits, and one
sign bit. It turns out that the half-precision FP16 format, with
its 10 mantissa bits and 5 exponent bits, provides sufficient
precision for many workloads. The TF32 format proposed by
Nvidia is a compromise between FP16 and FP32 [4], [5]: It
has the same 10-bit mantissa field as FP16, but shares the 8-bit
exponent field of FP32, thus offering the same dynamic range
as FP32, with the precision of FP16.

S

S

23b mantissa

8b exponent

10b mantissa5b exp

FP32

TensorFloat32

FP16

10b mantissa

S 8b exponent

Fig. 1: Floating-point formats under consideration.

As a baseline we also consider fixed-point arithmetic, which
is often based on two’s complement numbers. Here, an n-bit
number is defined as −xn−12

n−1+
∑n−2

i=0 xi2
i. We can scale

this number any way we prefer, using an implicit binary point.
This is in contrast to floating point, where the mantissa bits
are directly trailing an implicit 0 and 1 for denormalized and
normalized numbers, respectively.

III. EVALUATION METHOD

Floating-point multipliers are implemented for different
formats: FP32, FP16, and TF32. We also implement 24-bit and
11-bit fixed-point multipliers as comparison baselines for FP32
and FP16. Their precisions consequently should mirror those
of their floating-point counterparts; thus, we let n = p = t+1.



Fig. 2: Area of an FP32 multiplier vs a 24-bit fixed-point multiplier,
as function of timing constraint.

We use Cadence Genus [7] to synthesize the HDL code
under different timing constraints. We use regular-VT cells
from the open-source ASAP7 library [8], which was developed
by Arizona State University and ARM Ltd. to represent
a predictive 7-nm FinFET process technology. In general,
ASIC logic synthesis strives to optimize area under a timing
constraint. Thus, as the timing target is gradually reduced, the
area starts to grow when the synthesizer struggles to handle the
longest logic paths of the circuit. To make the results as general
as possible, we choose to make all circuits combinational.

The implementation metric of area is retrieved after syn-
thesis, but the metric of energy per operation requires more
evaluation steps: We generate in Matlab input vector sets for
all number formats. For floating point, each set is made up
of 10,000 random IEEE-754-compliant numbers, representing
normals and denormals, but not NaNs. The three different
floating-point fields are created independently and concate-
nated at the bit level. The fixed-point inputs are more straight-
forward to generate as there is only one single n-bit field.
Additionally, the results of reference multiplications performed
in Matlab are stored in output vector sets, for fixed-point
and IEEE-754-compliant floating-point multiplications, in all
formats. All gate netlists are verified for logic functionality
using Cadence Xcelium [9], which compares the netlist outputs
to the ground-truth reference of the stored output vector sets.

During the above netlist verification, we save switching data
for each circuit node and backannotate this to the netlist. Using
the system clock rate f as reference, we define αi as the per
node switching activity. This is the fraction of clock cycles
when a circuit node i with capacitance Ci switches from
0 to 1. Assuming N nodes, the switching power is defined
as Psw = f VDD

2 ∑N
i=1(Ci αi), where VDD = 0.7V is the

supply voltage of the cell library. For all energy evaluations,
we assume a constant f = 200MHz which corresponds to
a relaxed system operating point that satisfies every timing
constraint used in our evaluations.

While the use of random input data will overestimate
the power dissipation that we can expect in most practical
scenarios, in which signal switching is significantly lower, this
assumption works here: We focus on comparing energy per
operation for multipliers that have the same input switching

Fig. 3: Area of IEEE754-compliant TF32 and FP16 floating-point
multipliers vs non-IEEE-compliant TF32 and 11-bit fixed-point mul-
tipliers, as function of timing constraint.

activity profile. Energy per operation is calculated as Ptot/f ,
in which Ptot includes an insignificant level of static power.

IV. IMPLEMENTATION AREA

Fig. 2 contrasts the area of an FP32 multiplier with that of
a 24-bit fixed-point multiplier, which has the same precision
as FP32. As expected, the fixed-point multiplier has a smaller
area and it can meet tighter timing constraints. Fig. 3 shows the
area of the multiplier implementations of the TensorFloat32
and IEEE’s FP16 formats. As comparison we include the
area of an 11-bit fixed-point multiplier. The lowest timing
constraint of the TF32 multiplier is longer than that of the
FP16 multiplier. This is due to TF32’s exponent field being
wider than FP16. The wider exponent field is also the reason
the TF32 multiplier is slightly larger than the FP16 multiplier.
The graphs show that the delay overhead of using floating-
point over fixed-point for multipliers is close to 2X.

We consider multipliers which are compliant with IEEE-
754. But as shorter floating-point formats are being pursued,
some features in conventional formats may be removed to
reduce hardware complexity. For example, in bfloat16 [10]
denormals are not supported but input and output numbers are
flushed to zero. To illustrate this option, we include in Fig. 3
also a variant of TF32 which is not compliant with IEEE-754,
but lacks leading zero anticipation and normalization features.

V. ENERGY PER OPERATION

The previous section showed area results for several multi-
plier implementations. A widespread assumption is that power
dissipation scales linearly with area, but there are several
caveats to this simplified view. For example, glitching power,
due to unwanted spurious signal transitions in gates with un-
balanced input arrival times, will make total switching power
depend also on logic functions and computing workload.

XOR-intensive arithmetic circuits are known to have ex-
cessive glitching power dissipation. As shown in [11], the
glitching power can constitute more than half the total power
of a 16-bit fixed-point complex-valued multiplier. Adding
pipeline registers to an arithmetic circuit is a known remedy
to glitches as this stops them from propagating [12]. However,



Fig. 4: Energy per operation of FP32 and 24-bit fixed-point multipli-
ers, as function of timing constraint.

using an extra pipeline stage is not straightforward in latency-
restricted architectures and systems using feedback loops.

Fig. 4 shows the energy per operation for an FP32 multiplier
operating on FP32 numbers and a 24-bit fixed-point multiplier
operating on 24-bit two’s complement numbers. As shown
in this figure, the energy per operation decreases for tighter
timing constraints, before the area begins to grow fast (Fig. 2).
The reason we observe the decreasing energy dissipation is
because for tighter timing constraints, the logic paths become
more balanced in terms of timing: In logic gates where inputs
arrive simultaneously, the generation of glitches is inhibited.

Fig. 5 shows the energy per operation for two floating-
point multipliers (TF32 and FP16) and an 11-bit fixed-point
multiplier. Here, TF32 operates on TensorFloat32 numbers, the
FP16 multiplier on FP16 data, and the fixed-point multiplier on
11-bit two’s complement numbers. There is a small but clear
area difference between TF32 and FP16 in Fig. 3. However,
except for the tightest timing constraints, their energy per
operation is almost identical. This is because in floating-point
multipliers, the exponent computation is less complex and less
power dissipating than the mantissa computation [13].

VI. USING REDUCED-PRECISION WORKLOAD DATA

We will again perform an energy evaluation, but now we
will include cases where we apply data with shorter floating-
point formats to an FP32 multiplier. Fig. 6 shows the energy
per operation for an FP32 multiplier operating on TF32 and
FP16 data, respectively. We have also included two curves
from previous graphs, viz. FP32 running FP32 data from Fig. 4
and TF32 running TF32 data from Fig. 5.

Clearly input data with lower precision (mantissa) and
dynamic range (exponent) leads to significantly lower energy
dissipation. As shown in Fig. 1, TF32 numbers have a narrower
mantissa field than FP32 numbers, whereas FP16 numbers
have both narrower mantissa and exponent fields. Since the
two cases where FP32 is running shorter formats yield almost
the same energy per operation, we can make a useful observa-
tion when using workloads with shorter floating-point formats:
Reducing the number of mantissa bits in the input data has a
greater effect on energy dissipation than reducing the number

Fig. 5: Energy per operation of TF32 and FP16 floating-point
multipliers and an 11-bit fixed-point multiplier.

of exponent bits. This is because the exponent bias changes,
which impacts the bit information in this field.

Fig. 6: Energy per operation strongly depends on input data precision.

A. Pin Assignment for Reduced-Activity Data
It is well known that when input data to fixed-point mul-

tipliers have different dynamic ranges, the power dissipation
can be reduced if we assign data to the ’right’ input pins. As
shown previously [14], [15], a lower dynamic integer range
(which leads to longer strings of consecutive ‘0’ or ‘1’ in the
most significant bit positions) can be exploited in fixed-point
multipliers where Booth recoding of bit patterns like ‘000’
and ‘111’ lead to partial products which are evaluated to zero.
Since they are implemented in a different way, floating-point
multipliers cannot exploit dynamic range reductions the same
way fixed-point multipliers can. But as shown in Fig. 6, a
reduced mantissa precision, which implies consecutive ‘0’ in
the least significant bit positions of the mantissa integer, leads
to reduced energy.

In many applications, multiplications are performed on data
input vectors which are different in how frequently their bits
switch. This is often the case where weights or coefficients
are changing more slowly than the data they operate on.
This difference in switching activities has been previously
used for low-power design of multipliers [16], FIR filters [17]



Fig. 7: Energy per operation depends on input switching activity.

Fig. 8: Impact of pin assignment on energy per operation for
performance-oriented implementations with strict timing targets.

and FFTs [18]. In [19], we unify the two approaches of pin
assignment—using dynamic range and switching activity—for
fixed-point multipliers for complex numbers.

The effect of pin assignment on an FP32 multiplier running
TF32 data is shown in Fig. 7. We show as references (top and
bottom) the previous curves (Fig. 6) for the FP32 multiplier
running FP32 data and the TF32 multiplier running TF32 data.
In addition, we show as baseline the energy per operation for
the FP32 multiplier as it operates on TF32 (Fig. 6). Then
we add two curves which show the effect of reducing the
switching activity of one of the input data vectors by 4X:
We assign this reduced-activity data to, in the first simulation,
multiplier pin A. In the subsequent simulation run, we swap
the inputs so that the reduced-activity data goes to pin B. As
shown, we substantially reduce energy per operation when the
slowly changing data is assigned to pin B.

Pin assignment can also be applied to the reference cases.
Fig. 8 includes the result of pin assignments also for the FP32
multiplier running FP32 data and the TF32 multiplier running
TF32 data. Optimal pin assignment has a favorable impact on
energy, but the gain is the largest when we reduce precision,
making an FP32 multiplier running TF32 data approach the
energy efficiency of a dedicated TF32 multiplier.

VII. CONCLUSION

We evaluate using standard FP32 floating-point multipli-
ers for TensorFloat32 workloads which use less precision
than the FP32 format. While using a one-size-fits-all FP32
multiplier also for numbers with less complex floating-point
representations comes with an area overhead, we show that
energy per operation substantially decreases with a reduced
mantissa precision in the workload. Additionally, we show that
optimally assigning input data that have different switching
activities to the input pins has a large impact on energy
dissipation when the precision of the workload is reduced.

ACKNOWLEDGEMENT

This project is financially supported by the Swedish Foun-
dation for Strategic Research (SSF).

REFERENCES

[1] J. Lee, J. Lee, D. Han, J. Lee, G. Park, and H.-J. Yoo, “LNPU:
a 25.3TFLOPS/W sparse deep-neural-network learning processor with
fine-grained mixed precision of FP8-FP16,” in IEEE Int. Solid-State
Circuits Conf. (ISSCC), 2019, pp. 142–144.

[2] A. Nannarelli, “Variable precision 16-bit floating-point vector unit
for embedded processors,” in IEEE 27th Symp. Computer Arithmetic
(ARITH), 2020, pp. 96–102.

[3] H. Tan, G. Tong, L. Huang, L. Xiao, and N. Xiao, “Multiple-mode-
supporting floating-point FMA unit for deep learning processors,” IEEE
Trans. Very Large Scale Integration (VLSI) Systems, vol. 31, no. 2, pp.
253–266, 2023.

[4] J. Choquette, W. Gandhi, O. Giroux, N. Stam, and R. Krashinsky,
“NVIDIA A100 tensor core GPU: Performance and innovation,” IEEE
Micro, vol. 41, no. 2, pp. 29–35, 2021.

[5] D. Stosic and P. Micikevicius, “Accelerating AI training with TF32
tensor cores,” https://developer.nvidia.com/blog/accelerating-ai-training-
with-tf32-tensor-cores/, Nvidia.com, 2021, Accessed Aug. 27, 2025.

[6] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2019
(Revision of IEEE 754-2008), pp. 1–84, 2019.

[7] Cadence® Genus®, v. 18.14, Cadence Design Systems, Inc., 2019.
[8] V. Vashishtha, M. Vangala, and L. T. Clark, “ASAP7 predictive de-

sign kit development and cell design technology co-optimization,” in
IEEE/ACM Int. Conf. Computer-Aided Design, Nov. 2017, pp. 992–998.

[9] Cadence® Xcelium®, v. 22.09, Cadence Design Systems, Inc., 2023.
[10] BFLOAT16 — Hardware Numerics Definition White Paper,

https://software.intel.com/sites/default/files/managed/40/8b/bf16-
hardware-numerics-definition-white-paper.pdf, Intel Corp., 2018.

[11] P. Larsson-Edefors and E. Börjeson, “Implementation evaluation of
fixed-point multipliers for complex numbers,” in IEEE 32nd Symp.
Computer Arithmetic (ARITH), 2025, pp. 81–84.

[12] A. Chandrakasan and R. Brodersen, “Minimizing power consumption in
digital CMOS circuits,” Proc. IEEE, vol. 83, no. 4, pp. 498–523, 1995.

[13] L. Bertaccini, G. Paulin, T. Fischer, S. Mach, and L. Benini, “MiniFloat-
NN and ExSdotp: An ISA extension and a modular open hardware
unit for low-precision training on RISC-V cores,” in IEEE 29th Symp.
Computer Arithmetic (ARITH), 2022, pp. 1–8.

[14] P.-M. Seidel, “Dynamic operand modification for reduced power multi-
plication,” in Asilomar Conf. on Signals, Systems and Computers, vol. 1,
2002, pp. 52–56.

[15] N.-Y. Shen and O.-C. Chen, “Low-power multipliers by minimizing
switching activities of partial products,” in IEEE Int. Symp. Circuits
and Systems, vol. 4, 2002, pp. 93–96.

[16] P. Larsson-Edefors and E. Börjeson, “Activity-based input operand
assignment for reduced multiplier power dissipation,” in IEEE Latin
American Symp. Circuits and Systems (LASCAS), 2025.

[17] C. J. Nicol and P. Larsson, “Low power multiplication for FIR filters,”
in Int. Symp. Low Power Electronics and Design, 1997, pp. 76–79.

[18] O. Meteer and M. J. G. Bekooij, “Low-power Booth multiplication
without dynamic range detection in FFTs for FMCW radar signal pro-
cessing,” in Asia-Pacific Signal and Information Processing Association
Annual Summit and Conf., 2021, pp. 44–48.

[19] P. Larsson-Edefors and E. Börjeson, “Low-power complex multiplier pin
assignment based on spatial and temporal signal properties,” in IEEE Int.
Symp. Circuits and Systems (ISCAS), 2025.


