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Abstract—This paper presents an investigation into the hard-
ware implementation of a pruned Volterra series based pre-
distorter using floating-point arithmetic. Reduced-complexity
pruned Volterra series have been shown to deliver good lin-
earization performance for Digital Predistortion (DPD) in RF
Power Amplifiers (PAs). However, this performance has been
demonstrated mostly in software applications such as Matlab.
In contrast, we explore DSP hardware design tradeoffs where
we balance system performance and DPD power consumption.
Our investigation is centered on the BAsis Propagating Selec-
tion (BAPS) algorithm that has been shown to deliver better
performance compared to other pruned Volterra algorithms,
such as memory polynomial or generalized memory polynomial,
with fewer parameters. We develop a DPD processor prototype
and perform a comparison for different sets of BAPS basis
functions to study their effect on both DPD power consumption
and performance in terms of PA linearization expressed as
Adjacent Channel Power Ratio (ACPR). We present a set of basis
functions with 37 % lower power consumption and less than 2 dB
performance loss compared to BAPS baseline solution.

Index Terms—Linearization Techniques, Digital Predistortion,
Power Amplifiers, Energy Efficiency, Digital Signal Processing

I. INTRODUCTION

Modern wireless communication systems rely on high-
bandwidth signals to meet increasing data-rate demands, lead-
ing to non-negligible memory effects in the output of the
RF Power Amplifiers (PAs). Moreover, the need to improve
RF PA efficiency, by increasing output power, results in
nonlinear effects. Digital Predistortion (DPD) is a technique
used to linearize the PA’s output and to minimize mem-
ory effects [1]. PA nonlinearity and memory effects can be
modeled using Volterra series [2]. Increasing the nonlinearity
order or memory depth of the Volterra model results in a
better approximation of the RF PA behavior [3]. However,
when the full Volterra series expands to higher nonlinearity or
memory orders, it rapidly becomes complex and computation-
ally infeasible for real-time DPD algorithm implementation.
Thus, to reduce model dimensionality, a common solution for
practical Volterra series based DPD algorithm implementation
is pruning the series to maintain high accuracy, in terms
of Normalized Mean Square Error (NMSE) and Adjacent
Channel Power Ratio (ACPR), while reducing computational
complexity expressed in floating point operations (FLOPs) [4].

Measuring the complexity of DPD algorithms by mainly
using the FLOP metric may poorly estimate the power con-
sumption of the DPD algorithm hardware implementation.
For example, it may not take into account potential energy-
efficiency improvements, which could reduce the overall num-

ber of operations necessary for a particular result. There are
assumptions on how computationally expensive multiply and
accumulate (MAC) operations are [5]. However, the overall
computational cost is intricately linked to the final hardware
implementation [6]. This is because logic synthesis tools
perform numerous optimizations to remove redundancies and
share resources, and because signal and clock gating creates a
nonlinear mapping of algorithm to circuit power dissipation.

In this work, we implement a low-complexity DPD proces-
sor as a baseline case and use it to evaluate power consumption
for different sets of Volterra series bases. The choice of
design for the predistorter is a floating-point serial archi-
tecture because it eases the identification of the parameters
that impact accuracy and power. The design also greatly
reduces computational resources by recursively calculating
basis functions. A Matlab script generates the basis functions’
dictionary and coefficients for each basis function. The synthe-
sized predistorter calculates the bases at runtime and performs
the filtering. Parameter identification is performed using the
indirect learning architecture (ILA) [7], [8]. Both NMSE and
ACPR measurements are performed on the output from RF
Weblab [9] PA to evaluate performance.

II. PRUNED VOLTERRA SERIES

A pruned Volterra model like the one shown in equation
(1) consists of a set of basis functions denoted ¢, and
corresponding coefficients 6,:

R
y(n) =" 0,0, (n) (1)
r=1

There are numerous examples of pruned Volterra series in
literature, e.g., the memory polynomial (MP) [10], the general-
ized memory polynomial (GMP) [11], and BAsis Propagating
Selection (BAPS) [12]. In this paper, we will use BAPS for
our predistorter, but the implementation of the predistorter is
such that any other pruned Volterra series can be used.

A. BAsis Propagating Selection (BAPS)

The BAPS model described in [12] is an iterative greedy
search algorithm that generates an optimized set of basis
functions. measured by least NMSE. The complexity in basis
calculation is reduced by reusing previously generated basis
functions, meaning that the algorithm is inherently serial.
Furthermore, the complexity in filtering is reduced as BAPS



needs less bases to meet the desired NMSE and ACPR
compared to many other pruned Volterra series [12].

B. Constructing Volterra series basis recursively

As demonstrated in [12], any Volterra series basis function
can be represented recursively using two types of operations:
type I and type II. A type 1 operation entails a delay of a
previous basis function, while a type II operation involves
a multiplication of three previous basis functions. The input
sample x(n) is the first basis function ¢ (n) = x(n), in iteration
r = 1. For subsequent iterations r, the basis function generation
operations are given by equation (2)

Type I: ¢.(n) =q "¢i(n)
Type Il : ¢, (n) = ¢pi(n)¢;(n)dy(n)

where, for type I operations; m denotes the delay of a
basis function from previous iterations i, while for type II
operations; ¢;¢; ¢, denotes the product of basis functions from
previous iterations 7, j, and k < r, and * denotes the complex
conjugate.

A dictionary can be used to encode the construction of basis
functions [12]. Then each entry in the dictionary represents an
iteration and contains three fields. For type II operations, the
fields are the indices 7, j, and k, whereas for type I operations,
the fields are index i, the delay m and O.
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III. DPD PROCESSOR DESIGN

The 32-bit floating-point prototype of the predistorter pro-
cessor takes as inputs: a complex-valued signal, a list of
complex coefficients, and a basis function construction dictio-
nary. Then it outputs a complex predistorted signal. The basis
function construction dictionary is referred to as an indices
table, simply because the iteration at which a basis function
occurs is taken as its index in the dictionary.

A. Architecture and Operation

The DPD processor decodes the indices table to iteratively
reconstruct basis functions using operations of type I and
type II as shown by equation (2), then performs a MAC
operation on the coefficients and constructed basis functions
as shown by equation (1). In [12], type I operations can
comprise both causal and non-causal terms, i.e., positive and
negative time delays, respectively. However, for simplicity, this
prototype design only supports causal terms. Figure 1 shows
the major design blocks and general operation.

1) Operation: At runtime, the user sets the
SAMPLE READY bit when an input sample is available,
and subsequently the design raises the REQUEST SAMPLE
flag when the output is available. The REQUEST SAMPLE
flag is lowered when an input sample has been registered
for processing. This request-acknowledge process continues
until halted by the user when the SAMPLE READY bit is
left unset. The Next Entry control signal reads an entry
from the indices table and sets a corresponding coefficient to
the MAC block. The Set Operation Type configures
the type of operation to be evaluated by the Basis Function
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Fig. 1. General design and operation. The dotted lines show control opera-
tions, solid lines show data flow, and the thick solid lines are the blocks. The
superscript numbers show the order of operations. Operations labeled 3a and
3b show the basis function generation iterations.

Generator (BFG) block. The controller continues this process
until the last basis function is generated, then the final output
is produced by the MAC block.

2) Timing: The design uses parallel 32-bit floating-point
adders and multipliers, therefore, only one cycle is required
to complete an addition or multiplication operation, i.e., one
cycle is used by type II operations for a non-register access
operation. Due to sequential retrieval of data from three
memory addresses to perform double multiplication, type II
operations require two more memory accesses than type I and
three more cycles to complete.

The MAC operation always takes two cycles. Similarly,
additional pipelining registers in the design always require a
constant number of cycles to complete processing of every
input sample. Therefore, the time it takes to process an input
sample will vary depending on the operations in the indices
table, but can be easily estimated from the type of operations
in the indices table.

B. Basis Function Generation

Calculated basis functions are stored in a shift register file
that is a two-dimensional memory; with rows representing the
number of basis functions, and columns the memory depth.
The first column stores the basis functions that are being
constructed for the input sample that is being processed.
Unlike pruned Volterra series such as GMP, the unconstrained
BAPS does not allow for predetermining the type of operation
at a given iteration. This is why we have two-dimensional
memory even though several basis functions may not be
type 1. Depending on the indices table, registers not storing
memory terms are dynamically clock gated to reduce power
consumption. Figure 2 shows the BFG block in more detail,
showing memory registers to construct six basis functions



and a memory depth of two; the first basis function is the
input sample itself, and its construction is denoted as a type 0
operation. Memory terms are stored by shifting each column
by one step before a new input sample is read.
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Fig. 2. General design and operation of the BFG block with a 3-input
multiplier with one of the inputs conjugated, and a 3-column memory showing
six rows. The construction of basis functions 5 (type I) and 6 (type II)
are shown. The superscript on the memory registers denotes the column or
memory delay (see equation (2)). Clock-gated registers for the other two
memory columns (M1, M) are not shown for brevity. Control signals are
shown by dotted lines.

IV. RESULTS

The predistorter processor design is synthesized using Ca-
dence Genus [13] in the predictive ASAP7 cell library [14]
for a 220-MHz clock rate. Logic design validation and netlist
power simulation are performed using Cadence Xcelium [15],
based on a data trace from measurements on a fabricated RF
PA using the RF Weblab interface [9]. The Weblab system
allows a user to upload input signal samples to a remote PA,
and receive the amplified signal. While Weblab has a class
AB configured PA operating under stable conditions, the PA’s
transfer function may drift slightly between characterizations.

A. Power Simulation

Power consumption is determined by not only the indices
table operation types, but also operation dependencies, input
data, coefficients, and actual implementation of operation
execution blocks.

We analyze power consumption by extracting dynamic
power, focusing on the BFG block. Table I shows the per-
centage average dynamic power consumption of the major
design blocks; dynamic power is obtained by taking an average
from simulation with 27 different sets of basis functions, each
of which represents a possible architectural design. The BFG
block includes type II complex multiplication and registers that
store memory terms for type I operations. The BFG block’s
dynamic power dominate overall dynamic power consumption,
with approx. 95 % of its power being consumed by type II
operation product. Power analysis begins when the rest of

the system power is in a steady state. The steady state is
reached several cycles after initialization, when data fills up
all pipeline stages so that other blocks, beside the BFG,
consume approximately constant power to process a nonzero
input sample.

TABLE 1
PERCENTAGE DYNAMIC POWER CONSUMPTION PER BLOCK

Block Power (%)

Design 100

BFG 65

- Delay registers (type I) 3

- Complex multiplier (type II) 62

MAC 17

Other 18

Delay registers in the design are to a significant degree clock
gated, which reduces their power consumption. Similarly,
the MAC block will always perform the same number of
operations for every input sample and consumes fairly constant
power for all samples when compared to the BFG block.
Optimization of the design is, therefore, steered towards mini-
mizing type II operations to lower overall power consumption.
This can be done by finding a set of basis functions, i.e., an
indices table configuration, that reduces power consumption
without compromising accuracy.

B. Indices Table Configuration

In order to investigate power consumption for basis function
generation, we performed power simulations on the design
using different sets of basis functions. Different indices tables
will lead to different order and dependencies of type I and
type II operations, and this in turn creates different bit patterns
in the design that affect power consumption. Therefore, having
different indices tables is useful in exercising our design
to extract information about its power consumption. Indices
table configuration refers to the order of operations, while
composition refers to the dependencies of operations.

An initial indices table is obtained by running an un-
constrained BAPS algorithm in Matlab. The unconstrained
BAPS algorithm will generate basis functions depending on
the PA’s characteristics and operating conditions. This initial
configuration acts as a benchmark, and we denote it the
baseline. In addition to the baseline indices table, we created
27 indices table configurations by biasing the BAPS system
identification algorithm to favor a desired table configuration.
Generally, desired indices tables should have at least one
type II operation, but type II operations should not comprise
more than half of all operations. After system identification,
the runtime performance, in terms of NMSE and ACPR, is
calculated from the linearized PA output, and together with the
design’s power consumption are used to find a configuration
with a good tradeoff.

For every configuration, system identification with BAPS is
performed to generate thirteen basis functions and coefficients,
using the Weblab PA setup and ILA for parameter identifica-
tion. The PA input is a complex baseband signal generated



as bandlimited Gaussian noise. To reduce the variability in
results, power simulations are performed with the same input
signal and the same number of operations for all indices
table configurations. Power analysis is performed for 32 input
samples and a total of 13-32 = 416 operations. For each con-
figuration, system identification is performed on five different
signals, generating five runs of the same configuration. Here,
the average NMSE, ACPR, and dynamic power, of the five
runs for each configuration, are retrieved.

Five of the 27 configurations have a good power vs. accu-
racy tradeoff, i.e., less than 2 dB loss in performance and lower
power consumption, compared to baseline. Table II shows the
configurations and the number of type I and II operations in
each. Configuration CFG_1 has type II operations followed
by type I operations. Configuration CFG_2 has type I in the
middle of the indices table with type II operations above and
below. Configuration CFG_3 has type I operations followed
by a type II operation in alternating fashion. Configurations
CFG_4, and CFG_S are arranged similarly to CFG_2. CFG_6
has only type I operations, while CFG_7 has only type II
operations. CFG_6 and CFG_7 have the least and highest
power consumption respectively, and have been added for
comparison purposes.

TABLE II
INDICES TABLES’ CONFIGURATIONS

Type of Operations
Label Typyepl 1y TrpeTI
CFG_1 9 3
CFG_2 8 4
CFG_3 6 6
baseline” 6,6,6,5,6 6,6,6,7,6
CFG_4 9 3
CFG_5 10 2
CFG_6 12 0
CFG_7 0 12

* Loy . .
table composition for five runs in corresponding order

Table III shows dynamic power and performance of the dif-
ferent configurations compared to the baseline configuration.

TABLE III
AVERAGE DYNAMIC POWER AND PERFORMANCE
Configuration | Power (uW) | NMSE (dB) | ACPR (dB)
CFG_1 885 -37.9 -43.0
CFG_2 1125 -38.5 -43.3
CFG_3 1249 -38.9 -43.3
baseline 1269 -38.9 -43.4
CFG_4 971 -37.7 -42.9
CFG_5 791 -37.6 -42.8
CFG_6 495 21.1 -30.4
CFG_7 1349 -26.2 -40.9

Figures 3 and 4 plot dynamic power versus performance,
for configurations that have lower power consumption than
baseline. CFG_S5 has the best tradeoff: a 37 % reduction in dy-
namic power consumption with 1.3 dB and 0.6 dB performance
penalty for the NMSE and ACPR respectively. Even with a
tighter accuracy requirement of 1dB compared to baseline, a
30 % reduction in power consumption is achieved with CFG_1.

1300 r @ baseline |
“ ¥ CFG_1
B CFG_2
1200 ’ CFG 3 |
- X CFG_4
= 1100 A CFG5 ||
2
o)
1000 1
2 x
(s}
900 v J
800 A
-39  -38.8 -38.6 -384 -382 -38 -37.8 -37.6
NMSE (dB)
Fig. 3. Dynamic power vs. NMSE.
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Fig. 4. Dynamic power vs. ACPR.

V. CONCLUSION

We have introduced a hardware implementation of a DPD
predistorter based on the BAPS algorithm. A serial, 32-
bit floating-point prototype is implemented to achieve high
accuracy and low power, and to act as a reference for future
designs. We have explored some power optimizations related
to different sets of basis functions. BAPS type II operations
consume most power, however, through special arrangement
of type I and type II operations in a basis functions set, power
consumption is reduced by a third with minimum loss in
linearization performance. This demonstrates that algorithm-
circuit codesign has a great potential to reduce power dissipa-
tion in digital predistorter designs.
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