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Abstract We studied linear and nonlinear coupling in coupled multicore fiber (MCF) experimentally and
numerically. We investigated wavelength and polarization-dependent coupling and effects of coupling
strength on parametric interactions. Results show that nonlinear responses depend sensitively on the
longitudinally varying coupling coefficient in real MCF. ©2025 The Author(s)

Introduction

The growing demand for data throughput has
led to significant interest in spatial multiplexing
using multi-core fibers, which show promise for
both transmission[1] and parametric interactions.
It has been shown in[2]–[4] that the coupling plays
a significant role in the phase matching condi-
tion, enabling wavelength-independent exponen-
tial gain[2], which is not possible in single-core
fibers. Coupling between cores has been stud-
ied analytically for decades, including nonlinear
coupling[5], solitons[6], and parametric amplifi-
cation[2],[3], though experimental verifications of
these models are fewer.

Experiments show that the ideal model, assum-
ing constant coupling between cores, is incom-
plete, with significant random fluctuations in cou-
pling being observed[1],[7]. Macho et al.[7] pro-
posed a unified model for linear and nonlinear
crosstalk. Random polarization effects, bend-
ing, and twisting also affect crosstalk in coupled
MCF[8],[9]. While most studies are theoretical, ex-
perimental measurements of nonlinear coupling
and the wavelength and polarization dependence
remain limited.

In this paper, we present a comparative study
of linear and nonlinear coupling in an ideal (sim-
ulated) MCF with constant coupling and a real
MCF. Unlike the ideal case, the real MCF ex-
hibits random coupling in both frequency and
time, caused by environmental perturbations
(e.g., temperature, strain, bending, and twisting)
and fabrication imperfections (e.g., variations in
core radius and separation). We have also inves-
tigated the wavelength and polarization depen-
dence of coupling and its impact on parametric
processes, particularly wavelength conversion[4].

Theory and Simulation

We assume two identical cores in a coupled
dual-core fiber (DCF), where u1 and u2 are the
wave amplitudes described by coupled nonlinear
Schrödinger equations (NLSEs). The cores have
identical dispersion and nonlinearity, with a con-
stant coupling coefficient C. The parameters βn,
γ, and C represent the nth-order dispersion, non-
linearity, and coupling strength, respectively. The
coupled NLSEs are given by

∂u1

∂z
= i

∞∑
n=2

in
βn

n!

∂nu1

∂tn
+ iγu1|u1|2 + iCu2 (1)

∂u2

∂z
= i
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n=2

in
βn

n!

∂nu2

∂tn
+ iγu2|u2|2 + iCu1. (2)

We numerically solved the coupled NLSEs using
the split-step Fourier method (SSFM)[10]. Defining
the dispersion and nonlinear operators as

Dk = i

∞∑
n=2

in
βn

n!

∂n

∂tn
, Nk = iγuk|uk|2.

Where, k denotes the core index. The SSFM in-
dependently solves Eqs. (1) and (2) at each step
dz, after which the solutions u1 and u2 are cou-
pled using a 2×2 transfer matrix R of the coupler,
given by:

R =

(
cos(Cdz) i sin(Cdz)

i sin(Cdz) cos(Cdz)

)
. (3)

The numerical step of Eqn. (1) and (2) becomes(
u1(z + dz)

u2(z + dz)

)
≈ R

(
eD1dz/2eN1dzeD1dz/2u1(z)

eD2dz/2eN2dzeD2dz/2u2(z)

)
.

(4)
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Fig. 1: (a) The experimental setup for measurement of crosstalk and wavelength conversion in coupled DCF. (b) Spectrum
showing idler generation based on four wave mixing experiment.

The solution remains valid as long as the step size
dz is much smaller than the coupling, nonlinear,
and dispersion lengths of the coupled dual-core
fiber. The measured value of C is 2.5 ×10−4 m−1

at 1550 nm with β3 and γ being 0.07 ps3/km and
7.1W−1km−1, respectively, for both cores. The
zero-dispersion wavelengths are measured to be
1543.5 nm and 1544.5 nm in core 1 and core
2, respectively, with an error of about 0.5 nm.
The DCF is 350 m long, with a core diame-
ter of 4.77µm and a core-to-core separation of
17.4µm, within a 125µm cladding diameter.

Experimental setup
The experimental setup, shown in Fig 1 (a), con-
sists of a tunable pump laser and a high-power
EDFA with a maximum output power of 34 dBm.
When working with high power pump, we need
to suppress the Stimulated Brillouin Scattering
threshold, which is about 20 dBm. The pump is
phase modulated before sending it to the DCF.
The RF input for the phase modulator is gener-
ated by an RF tone generator, which is ampli-
fied and fed to the modulator. We used two RF
tones (100 MHz and 300 MHz) to modulate the
pump phase. The modulated pump is amplified
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Fig. 2: Measurement of wavelength-dependent coupling in
the linear regime of coupled MCF, showing two data sets

taken 10 minutes apart.

and passed through an isolator. A WDM cou-
pler is used to filter pump ASE noise and combine
the signal and pump before sending them to the
DCF. The output of the DCF is recorded on an op-
tical spectrum analyzer (OSA). The same setup
measures power-dependent crosstalk in adjacent
cores by turning off the signal and sweeping
pump power from 0 dBm to 32 dBm. Wavelength-
dependent coupling in the linear regime is mea-
sured using the EDFA as an ASE source, and po-
larization dependence with a tunable laser in the
same setup.

Results and Discussion
The wavelength-dependent coupling in the linear
regime is shown in Fig (2). This coupling in MCF
arises from random perturbations such as core
radius fluctuations, varying core separation, ran-
dom birefringence, and micro-bending along the
fiber. At longer wavelengths, the mode area in-
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Fig. 3: Measured crosstalk variation with (max./min.) state of
polarization (SOP) and wavelength.

creases, leading to higher mode overlap integrals
and stronger coupling. Our experimental obser-
vations show that in the linear regime, changing
the SOP of the launched signal causes significant
crosstalk variation, as shown in Fig (3). The ef-
fect of polarization on nonlinear coupling is shown
in Fig (4). In SMF, polarization mode disper-
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Fig. 4: Power-dependent crosstalk at 1554 nm. Case A
(Case B) corresponds to the SOP being set for min (max)

crosstalk in the linear regime.

sion (PMD) and nonlinearity compete for control
of polarization of the wave[11]. However, in cou-
pled MCFs, another interacting phenomenon is
linear coupling. In the nonlinear regime, as pump
power increases, the influence of PMD, which pri-
marily affects case A, diminishes due to the en-
hanced self-polarization effect of the pump. When
pump power exceeds a certain threshold, cross-
polarization terms, sensitive to phase mismatch
caused by birefringence, become comparatively
negligible. Consequently, case A and case B are
influenced identically by linear and nonlinear cou-
pling effects.

A measurement of nonlinear coupling at two
wavelengths is shown in Fig (5). Efficient power
transfer occurs only when phase matching is sat-
isfied. At high power, the nonlinear phase shift
affects phase matching[5],[12]. As a result, op-
tical power remains in the same core, leading
to nonlinear power suppression in the adjacent
core[13]. However, at sufficiently high power, the
phase-matching condition is disrupted, changing
the power transfer trend. Phase matching can
be disrupted by the interplay between linear cou-
pling and nonlinearity, as discussed in[5], and by
inherent random wavelength-dependent coupling.
Crosstalk depends sensitively on the coupling
coefficients, and differences between ideal and
measured fiber can be partly understood by longi-
tudinally varying random coupling coefficients; an
example is shown in Fig 5 (solid lines).

Parametric effects and idler conversion effi-
ciency are measured in both cores, as shown in
Fig (6). Wavelength conversion in coupled MCF
is investigated using a 24 dBm pump and a weak
signal launched into the same core. The idler
spectrum is shown in Fig 1(b). The wavelength
dependence of the coupling causes fluctuations

in the idler conversion. The bandwidth reduc-
tion compared to simulations in core 1 may be
due to PMD and zero-dispersion wavelength fluc-
tuations along the fiber[14],[15]. Simulations show
that stronger coupling (dashed lines in Fig 6) en-
hances phase matching and reduces the phase
mismatch dip in both cores, thereby improving
conversion efficiency. Experimental results are in
good agreement with the simulations.
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Fig. 5: Power-dependent crosstalk measured at different
wavelengths. Simulations using coupling coefficients C1/C2

in the first/second half of the fiber show improved agreement
with experiments.
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Fig. 6: Wavelength conversion in coupled MCF when only
one core contain both pump and signal.

Conclusions
We have studied linear and nonlinear coupling in
an MCF experimentally and numerically. Our re-
sults show that nonlinear responses are highly
sensitive to the longitudinally varying coupling co-
efficient in real MCF fiber. We have also inves-
tigated wavelength and polarization dependent
coupling, showing that wavelength-dependent
coupling causes idler conversion fluctuations, and
stronger coupling reduces the phase mismatch
dip in both cores.
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