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Renewable electricity generation is expected to play a pivotal role in the global shift toward electrification.
However, the inherent variability of renewable energy sources, in addition to factors such as local weather
patterns and grid limitations, poses a significant challenge in terms of determining the optimal size and place-
ment of distributed generation units. This study tackles this issue by applying a novel, high-resolution energy
systems model that is tailored to the Nordic region. The model is designed to capture with high accuracy local
nuances in relation to grid infrastructure, weather patterns, and demand profiles. The model minimizes the total
system costs, accounting for both investment and operational expenditures, through the optimal integration of
variable renewable energy sources and dispatchable generation units. The findings indicate that the siting of
renewable generation is primarily influenced by a combination of a high number of full-load hours and proximity
to the electricity demand, with the latter becoming increasingly important under high-demand conditions.
Among renewable technologies, solar photovoltaic systems exhibit the strongest correlation with demand center
proximity, whereas offshore wind is mainly constrained by a high potential annual production capacity. In
addition, assumptions regarding the availability of electricity grid capacity are shown to have a significant
impact on the results, with up to 26% of production being relocated when 100 % thermal grid capacity is

available, as compared to when 30% of grid capacity is reserved for contingency events.

1. Introduction

Global electricity demand is projected to nearly double by Year 2050
compared to the Year 2023 levels, according to estimates from the In-
ternational Energy Agency [1]. A significant portion of this increased
demand is expected to be met by variable renewable energy (VRE)
sources, such as wind and solar photovoltaic (PV) systems. However,
their non-dispatchable nature makes the optimal siting and sizing of
these technologies — considering local weather patterns, transmission
grid limitations, and proximity to demand — a challenging problem with
potentially substantial impacts on system costs.

The optimal localization of distributed generation has been
researched from both the energy system modeling perspective, which
commonly aims at minimizing the total system costs, and the power grid
perspective, which focuses on the physical constraints within the dis-
tribution grid, such as power losses, voltage control, reliability and
stability [2]. From the power grid perspective, several methods have
been developed, including Analytical methods (e.g., the 2/3-rule [3] and
the Index Method [4]), Heuristic methods (e.g., the Genetic Algorithm

[5], Tabu search [6], Particle Swarm Optimization [7], Ant Colony
Search Algorithm [8]), and Numerical methods (e.g., Gradient Search
[9], Mixed non-linear programming [10], Dynamic programming [11]).
Comprehensive reviews on the subject have been presented by Prakash
and Khathod [12], Georgilakis and Hatziargyriou [2], Shebaz and Patel
[13] and Pesaran et al. [14].

From an energy system modeling perspective, the question of
optimal localization of wind and solar power has been explored from a
more spatially aggregated perspective, with less emphasis on the phys-
ical grid constraints and properties. Such studies have frequently
focused on assessing the potential benefits of large-scale renewable en-
ergy coordination and enhanced grid interconnectivity. Brown et al.
[15] investigated the optimal siting of generation using VRE sources
from a pan-European perspective, focusing on sector coupling and the
impact of the inter-continental transmission grid. They modeled each
country as a node and conclude that interconnecting several countries
helps to smooth variations, especially those arising from wind power
generation, across the continent, although the largest benefit in relation
to total system cost is derived from sector coupling flexibility.
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Using a similar modeling approach, Schlachtberger et al. [16]
investigated the optimal siting of wind and solar power units in Europe,
comparing two strategies for balancing variability: local storage and
transmission grid expansion. The study, which relied on a highly
aggregated representation of the transmission grid, concludes that wind
power variations can be effectively smoothed through grid expansion,
while PV fluctuations are most-efficiently managed with short-term
storage solutions, such as batteries.

Copp et al. [17] investigated the optimal sizing and placement of
distributed energy resources in a system powered entirely by wind and
solar PV, using New Mexico, USA as a case study. The study highlights
the importance of regional trade in reducing curtailment and empha-
sizes that combining wind and PV can significantly lower system costs,
as compared to relying on a single technology.

Other studies have examined similar interactions between different
VRE sources and their optimal placement, focusing on regions such as
the Middle East [18,19], South America [20] and North America [21], ,
and various countries in Europe [22-24].

These studies typically employ capacity expansion models for sce-
narios that feature high shares of wind and solar PV in the energy mix
but that operate at relatively low spatial resolution. This limitation has
two primary effects on the modeling outcomes: (i) it dilutes the identi-
fication of optimal sites for generation using VREs by averaging the
capacity factors over large areas; and (ii) it reduces the visibility of
transmission bottlenecks in the electricity grid [25]. The impacts of
these effects on the modeling results have been investigated by Frysz-
tacki et al. [23], who have presented a novel methodology that sepa-
rately assesses the influence of spatial resolution on energy modeling
with a high share of renewable power production. Their findings indi-
cate that spatial resolution significantly affects the results, with greater
geographic detail potentially increasing total system costs by up to 23%,
primarily due to transmission bottlenecks that become apparent at
higher resolutions. Their study also highlights substantial changes in the
shares of onshore and offshore wind power in response to spatial reso-
lution. Higher resolution enables the identification of more-favorable
sites for onshore wind, resulting in a greater share of onshore wind
power capacity as fewer nodes are aggregated. The study emphasizes the
critical importance of having high spatial resolution for making reliable
technology choices, particularly in scenarios where grid expansion is
constrained or not permitted.

Several studies have examined the impacts of geographic resolution
in energy system modeling [25-31]. Krishnan and Cole [27] have
analyzed the value of high spatial resolution in capacity expansion
models using the ReEDS model. By comparing three levels of spatial
resolution, they demonstrate that the competitiveness of renewable re-
sources for electricity production is significantly influenced by the
chosen level of resolution. Their findings indicate that PV investments
are particularly sensitive to the level of spatial aggregation, with higher
aggregation levels leading to reduced PV deployment in favor of wind
resources.

Kiala and Mahfouz [28] and Frysztacki et al. [26] focused on how
geographic clustering should be performed to preserve local character-
istics and grid bottlenecks. Both studies emphasized the importance of
avoiding clustering based on political entities, advocating instead for
methods that consider transmission grid constraints. Frysztacki et al.
[24] concluded that hierarchical clustering methods yield more-
accurate results than commonly used k-means clustering, as they bet-
ter preserve the grid topology limitations.

Findings from the literature underscore the importance of the high
spatial resolution adopted in the present study. Notably, Fiirsch et al.
[32] have demonstrated the value of detailed spatial modeling by
analyzing grid expansion in Europe using an iterative approach between
an investment and dispatch optimization model and a load flow model,
covering 224 nodes across the continent. They show that large-scale grid
expansion that allows for optimal utilization of renewable energy sites is
almost always beneficial from a low-cost perspective. It is only in certain
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areas of Central Europe, located far from large heavy power consump-
tion centers, that the cost of grid expansion is not motivated from the
system perspective.

Using a different modeling framework, Trondle et al. [33] have
compared the total system costs on different geographic balancing
scales: continental, national, and regional. Their model includes the
electricity supply and demand across 497 European regions, based on
administrative boundaries. Similar to Fiirsch et al. [32], Trondle et al.
conclude that balancing wind and solar variations is most efficient at the
continental scale. Their results also show that restricting balancing to a
regional or national level is a possibility if grid expansion is constrained,
although it can incur a cost penalty of up to 20%.

The optimal placement of onshore wind has been analyzed by
Obermiiller [34], who compared wind energy valuation under nodal and
zonal market structures. Using the PyPSA modeling framework for
Germany, represented by a 575-node model, the study demonstrates
that zonal pricing — where large areas are aggregated — can lead to
suboptimal wind investments, increasing grid congestion and lowering
the overall system value of wind energy. The study concludes that wind
energy subsidy schemes that are directing new capacity towards system-
optimal locations could help to mitigate inefficient investment signals
caused by zonal pricing.

The high spatial resolution applied in these studies enables the
investigation of local parameters — such as weather conditions, demand
characteristics, and grid connections — that influence the placement of
distributed electricity generation sources. However, previous studies
have typically relied on administrative borders, which fail to capture
real grid bottlenecks because they have a restricted time resolution,
lower geographic scope with respect to investment and dispatch
modeling, and provide only limited representations of VRE-based elec-
tricity production.

This work is novel in that it develops and applies an energy systems
model that optimizes the localization and sizing of distributed genera-
tion, including both VRE and dispatchable production units, with high
geographic resolution, accounting for both investment and dispatch
costs. It also incorporates a detailed representation of local conditions
for wind and solar power within a grid representation in the model,
which is validated using a full AC power flow model. In addition, the
applied model integrates multiple energy carriers (electricity, heat, and
hydrogen) alongside a comprehensive representation of hydropower,
which is the dominant electricity production source in the modeled re-
gion. Within this modeling framework, this study aims to answer the
following questions:

e What are the key factors that influence the cost-optimal placement of
new electricity production in a high-resolution spatial energy sys-
tems model of the Nordic energy system concomitant with large-
scale electrification?

e How do different levels of increased electricity demand and power
grid availability impact this placement?

2. Method
2.1. General model formulation

This work presents a newly developed linear optimization model, the
EHUB Nordic model, which has been designed to minimize investment,
maintenance and operational costs while adhering to economic and
technical constraints. The model encompasses 342 nodes across Nor-
way, Sweden, and Finland, and the DK2 price area in Denmark, all of
which share the same synchronous grid. The 342 nodes correspond to
existing substations in the transmission grid, based on ENTSO-E data,
and are geographically defined using a Voronoi cell distribution. The
model is exogenously provided with specific demands for electricity,
heat, hydrogen, and transportation for each node. In addition, it con-
siders potential wind and solar power generation based on the available
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land and meteorologic conditions in each individual node.

An overview of the EHUB Nordic model is provided in Fig. 1. The
optimization process minimizes investment and dispatch costs over an
entire year, with a time resolution of 3 hours, using 2019 as the refer-
ence weather year. The model applies a greenfield approach, assuming
no pre-existing production technologies or storage systems, with the
only exceptions being the inclusion of existing hydropower and nuclear
capacity within the modeled region. No emissions of fossil CO, are
permitted and all investment decisions are driven by the projected en-
ergy demands and costs for Year 2040.

The model’s objective function seeks to minimize the total system
cost over the entire modeled year, incorporating both operational costs
and annualized investment costs, and can be written as:

MIN : c**
-y ((c,%“v + € s+ > (G (Pran + Guen) 5
n i t
+ st ) D> (cmwi) 6
r n t

tot

where ¢ is the total system cost that is to be minimized, C" represents

the annualized investment costs, and C?Mﬁ* is the fixed operational costs
for all technologies (i). The sum of these factors is multiplied by the new
installed capacity (s;,) of each technology in each node (n). The running
cost (C*"), including both fuel costs and the variable operation cost, is
multiplied by the sum of the produced electricity (p;.n) and heat (gi¢n)
at each timestep (t) for each technology and node. The start-up cost

(citart) is the cost associated with starting additional thermal power

plants, while the part-load cost (cﬁﬁ',fl““d) is calculated based on the dif-
ference between the capacity of the power plant currently in operation
and the actual production level for each timestep for thermal plants.

These two costs are included as variables in the model, which is further
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described in Section 2.1.5. The cost of imported electricity (Cif',lp)
through DC connections to neighboring regions (r) outside the Nordic
countries is multiplied by the import level (wg','f,) for each timestep and
node. The import level is permitted to take a negative value to account
for electricity exports.

At all timesteps, the produced electricity, heat and hydrogen must
match the demand for each node. For electricity, this can be written as a
nodal balance:

D, + b+ PEVE, + HEV?, + 3 Jtn | pindeonst | pigel 1 eqfel

iclpy i @
D Sim AL <Y Piea+ bl Y WiasVen
m T

i€ly

The left-hand side of this equation is the sum of the electricity demand at
each timestep and node, and includes the: historic electricity demand

(Diln); charging of stationary batteries (bfﬁ) ; charging of personal electric

vehicles (PEV‘;’;) and heavy electric vehicles (HEV" ); and the electricity
for power-to-heat, calculated as the heat produced divided by the
technology efficiency, (%‘). In addition, three types of industrial elec-
tricity loads, chosen to represent different levels of demand flexibility,
are included: electricity demand at a constant level from new industrial
establishments (D"<o™st); electricity fed to electrolyzers for hydrogen
production (hzfl

'n); and electricity fed to electric arc furnaces in the steel
industry (eq t}n) (further details in Section 2.3.6). Electricity can be

transferred (ff’,j‘ﬁ) from node (n) to a neighboring node (m) through the

transmission grid, and this is associated with a loss ({[o™**) that is
assumed to occur in the sending node. The transferred power is allowed
to take negative values to allow for the import of power to a node, while
the loss is based on the absolute quantity of transferred electricity and is,
thus, always positive. The sum of the electricity demands is, for each
timestep and node, less than or equal to the sum of the produced

Demand input

Optimization model

Output

PV-park
PV-roof
Onshore wind
Offshore Wind
Hydropower

Electricity

Production technologies:

Gas turbine
Gas turbine-CC  CHP
Electrolyzer
Nuclear

Biomass boiler

Heat pump
Electric boiler

Heat

EHUB Nordic .

Fixed transmission grid

Model output:

Total cost

* [nvestments
* Dispatch

Hydrogen 1

1

Storage

technologies:
Li-lon batteries
Tank heat storage
Hydrogen storage LRC
Hydrogen storage Tank

Transport

Electricity
import
Hourly import price
from continental
Europe

Fig. 1. An overview of the main components in the EHUB Nordic model.



J. Bertilsson et al.

electricity (pirn) plus the discharge from stationary batteries (bg;h) and

electricity imported from continental Europe (w;",).

A similar equation can be written for the heat balance:

D + tesih < tes® +> " qua¥t,n 3)

tn = "tn
iely

Here, the fixed hourly heat demand (D) plus the charging of thermal
energy storage (tesff}l) is always less than or equal to the sum of the

produced heat (gitn) plus discharge from storage (tesf;,h) for each
timestep and node.

Similarly, for hydrogen:
D 4 hastore™ < h2% *n,,, + h2storel"vt,n 4)
This ensures that the sum of the hydrogen demand (D¥2) plus the

charging of hydrogen storage units is less or equal to the produced

hydrogen (hzfl *Nuo) Plus discharge from hydrogen storage (h25toreif1h s

n
for each node and timestep. Thus, neither hydrogen nor heat can be

transported between nodes.

2.1.1. Geography and transmission grid

The area to which the model is applied is shown in Fig. 2, together
with the geographic resolution, which is based on the locations of the
transformer stations (>220 kV) across the Nordic region, based on Year
2023 data from ENTSO-E [35]. The model does not account for endog-
enous expansion of transmission grid capacity. Instead, it incorporates
expansions of the grid based on estimates from the Nordic TSO’s [3637],
planned to be operational before Year 2040.

Each node included in the model corresponds to a transformer sta-
tion in the transmission grid, connected to other nodes through an
exogenously provided grid (blue lines in Fig. 2). The geographic loca-
tions of these transformer stations serve as centroids for generating
Voronoi cells that define the geographic areas within the Nordic coun-
tries. Consequently, each node is associated with a specific geographic
area, from which capacity profiles and production patterns for wind and
solar power are derived. The red lines in Fig. 2 illustrate DC links, both

Latitude

Longitude

Fig. 2. The geographic area to which the EHUB model is applied, illustrating
the Voronoi cells, transmission grid (blue lines) and DC connections (red lines).
Gray color indicates areas outside the modeled region.
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within the nodes in the model and to neighboring countries in Europe.
The transmission grid is modeled according to the DC load flow, also

referred to as linearized load flow, as described in [38] and [39]. This

linearization of AC load flow is based on the following assumptions:

e Voltage angle difference between the nodes is small, with sin(A#) ~
AQ and cos(Af) = 0.

e The voltage magnitude is fixed at a nominal voltage.

e Reactive power flow is ignored.

e Conductance is negligible relative susceptance.

As a result, the power flow between any two nodes (n and m) at all
timesteps can be formulated as:

L:,r,]ns = Bum* (gt.n - Ht,m)Vty n,m (5)
where the power flow between two nodes (fg’,‘lf’,'ns) is equal to the sus-
ceptance (Bnn) of the line connecting the nodes, multiplied by the
voltage angle difference between the nodes. The susceptance values for
the modeled grid are based on [40] in which the grid is validated using a
full AC power flow model.

In addition, the flow between nodes is constrained by the maximum
capacities of the grid lines. These capacities are determined by selecting
the lowest value from the calculations based on thermal limitations and
maximum voltage angle, as defined by Equations (6) and (7):

F'T:_ix.thennal — \/g* V:l‘.lr[ned*IT';L,lrtde*SWn7 m (6)
Frecade _ B %A@, *SFYn,m @

where V,'f,‘,fd and Ifffrfd are the rated voltages and currents, respectively, of
each line based on a previous publication [40]. The maximum voltage
angle difference, AGpqy, is set to 30° as the approximation sin(Af) ~ Ag
introduces a small error (less than 2.5% [41]) within this range, as long
as the node voltages are not suppressed relative to the assumed nominal
voltage [39]. The term SF is a safety factor used for HVAC lines to ac-
count for the n-1 security and additional grid load from reactive power,
here set at 0.7, in line with similar grid modeling studies [25]. Trans-
former stations with voltage levels between 220 kV and 400 kV are
modeled as grid lines with infinite maximum capacity and a fixed sus-
ceptance. Thus, it is assumed that the capacity of the transformer sta-
tions between voltage levels does not limit the magnitude of transferable
power. Grid losses are assumed to be proportional to the length of the
transmission lines, with 5% power loss per 1,000 km of transferred
distance based on [42] and [43].

DC links between two nodes within the model (red lines in Fig. 2) are
treated as point loads or generators, ensuring that the production at one
end of the DC link equals the load at the other end. DC connections to
areas outside the modeled region (see red lines to outside regions in
Fig. 2) are allowed to have both positive and negative values, repre-
senting imports and exports, respectively, and are constrained by a fixed
upper limit for maximum capacity without any option for the model to
increase this capacity.

The model permits electricity trade with continental Europe through
existing interconnections, shown as red lines linking to grey regions in
Fig. 2. The hourly prices of imported and exported electricity are derived
from a model of the European energy system originally formulated by
Goransson et al. [44], and further developed by Oberg et al. [45] to
incorporate future industrial electrification projections. This linear in-
vestment optimization model applies a greenfield approach to a Year
2050 energy system for northern Europe, assuming zero fossil CO»
emissions. The model includes projected future electricity, heat, and
transportation demands, and is run using Year 2019 weather data to
align with the demand patterns used in this study. The resulting long-
term marginal costs of electricity, used in the model as the import/
export price for each externally connected bidding zone, are based on a
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generation mix that is dominated by wind, nuclear, and solar PV power.

2.1.2. Available technologies

Table 1 illustrates the assumed technical lifetimes, investment costs
and efficiencies of the available technologies in the model. Investment
costs and lifetimes are based on estimates for Year 2040, taken from
Danish Energy Agency [46] if not otherwise stated in the table. Nuclear
capacity is limited to nodes with already existing nuclear power
production.

2.1.3. Varying renewable electricity production

The model allows for investments in renewable electricity technol-
ogies, including onshore wind (WON), offshore wind (WOFF), PV parks
(PVP), and rooftop PV (PVR). The production levels from these sources
are constrained by both their hourly capacity factors and the available
suitable land in each node, following the methodology outlined in [49].
Data for hourly capacity factor profiles are derived from ERAS5 re-
analysis data. The hourly wind speeds in ERA5 are bias-corrected
using the annual average wind speeds from the Global Wind Atlas at
high geographic resolution (250 m).

The maximum installable capacity for each VRE technology at each
node is determined by the available land area, factoring in restrictions
such as built environments and protected areas. Areas with low resource
endowment are excluded (annual average 100-m wind speeds <6 m/s

Table 1
Overview of data for technologies included in the EHUB Nordic model. In-
vestments costs are specified in Year 2020 monetary value

Technology Technical Investment Cost  Efficiency
Lifetime (EUR/KW)
(Years)
Production technologies
Onshore wind 30 1090 -
Offshore wind 30 1680 -x
Solar PV park 40 320 *
Solar PV roof 40 699 -
Reservoir hydropower - - -
Hydropower run of river - - *
with pondage
Gas turbine biogas 25 575 0.42
Combined-cycle gas 25 866 0.59
turbine biogas
Combined-cycle (back- 25 1222 0.51,
pressure) gas turbine alpha=2
biogas
Nuclear (based on [47]) 60 6181 0.33
Electric boiler 25 60 1
Heat pump 25 810 COoP=3
Heat only-boiler biomass 20 430 1.15
Heat only-boiler biogas 25 50 1.04
Combined heat and power 25 3360 0.27,
biomass alpha=0.4
PEM Electrolyzer 25 500 0.62
Storage technologies
Lithium ion battery 25%* 80 1
storage
Lithium ion battery 25 60 1
discharge capacity
Tank thermal energy 25 3 0.2 %/day
storage loss
Hydrogen storage LRC 30 11 L
(Lined rock cavern ,
based on [48])
Hydrogen storage Tank 25 29 1

*Efficiency is included in the production profiles per technology. ** No battery
degradation over time is assumed in the model. The 25-year technical lifetime
applied is based on the maximum calendar life, rather than the maximum
number of cycles. ***Hydrogen storage is associated with no loss, but represents
an additional electricity demand for the compressor, corresponding to 12% of
the stored energy.
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onshore and <7 m/s offshore, or average solar insolation <140 W/m?).
After identifying the usable land, a reduction factor [50] is applied to
account for other limitations, such as social acceptance and military
zones. This adjusted area is then converted to a maximum capacity
constraint, based on the power density of each technology. The main
assumptions used to generate the data are detailed in Table 2.

2.1.4. Hydropower

Hydropower as of Year 2024 is included in the model as existing
capacity, with no further expansion allowed. The operation of all hy-
dropower is limited by the installed maximum capacity in each node
according to Equation (8):

plvde < Sdoyn te € Hydro R, Hydro_RRP )

In addition, the hydropower stations are categorized into two types:
Reservoir (Hydro_R), and Run-of-River with Pondage (Hydro_RRP),
based on [35]. Hydro_RRP refers to stations located on rivers with
relatively small upstream water storage behind the station’s weir,
making their production and storage levels dependent on the operation
of upstream power plants. Reservoir hydropower is, in contrast,
modeled as operating independently of other hydropower nodes. This
distinction is important because a significant portion of the installed
hydropower capacity in the studied region, particularly in Sweden and
Finland, is of the Hydro RRP type, which offers less operational flexi-
bility compared to Hydro_R.

2.1.4.1. Reservoir hydropower. Data for Hydro_R are based on the Eu-
ropean Commission’s Joint Research Centre Hydropower plants data-
base [51], in terms of installed maximum capacity, storage, and annual
expected production. The storage balance for nodes with Hydro_R can be
formulated as:

hydro __ jhydro hyd) 15 q fvdro
[ — (e _ phvdro . wlocelipf ™™t n € Hydro R ©
where lﬁ?’tdm represents the water storage level at each bus per timestep,

measured in GWh. The storage level at any given timestep must equal

hydro
[l

the storage level from the prior timestep [, minus the hydropower

production p:f’tdm, plus the local water inflow to the storage (W),

which is multiplied by an energy conversion factor (M), to convert
water flow into energy flow, as expressed in Equation (10):
tydro

pn
MY = < i € Hydro R, Hydro RRP a0
teT "' nt

where P refers to the exogenously determined, expected annual
hydropower production volume for each node, while W@ represents

Table 2
Excluded land types, reduction factors and power densities for the varying
renewable energy sources included in the model.

Technology Excluded land types Reduction Power density
factor (MW/km?)
Onshore e Highly populated areas 0.05 5
wind o Protected areas
e Wetlands
Offshore e Protected areas 0.33 8
wind e Water depth >40 m
e Water too near shore
(within 5 km)
Solar PV park e Highly populated areas 0.05 45
e Protected areas
e Forests
Solar PV roof e Sparsely populated 0.05 45

areas
All areas not roof
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the total inflow of water per node and timestep. The water inflow pro-
files per timestep are based on Swedish hydropower data [52,53].

In addition, the storage level at any timestep must not exceed the
available maximum storage capacity for the node, as defined by Equa-
tion (11). This constraint applies to both Hydro_R and Hydro_RRP:

chydro=store > fydroin ¢ Hydro_R, Hydro_RRP a1

2.1.4.2. Run of river hydropower with pondage. Run-of-river hydropower
(Hydro_RRP) nodes are limited by the same constraints on maximum
production and storage capacities, as in Equations (8) and (11). The
operation is also limited by a minimum production level constraint
equal to 10% of the installed maximum capacity (S;{y 0y "t account for
minimum flow regulations for rivers, as shown in Equation (12):

plvdre > gHydrox(.1vt, n € Hydro_RRP 12)

In addition, the storage balance of RRP nodes will depend on the
operation of upstream nodes in the same river, as the total inflow of
water will be a product of both the river inflow and local inflow. Thus,
the storage balance for RRP nodes can be written as:

hydro

hydro __ jhydro hydro ocal % y, f/dro hydro *Mn
ln.t - ln.t—l “FPnt + V:l,t thn + pn—l,t—l Mhydm
n-1

)Vt, n € Hydro_RRP
13

Equation (13) is similar to that describing the storage balance for
Hydro R nodes [Equation (9)], with the only difference being the
addition of the expression in the last parenthesis representing the inflow

. . hydro
of water from the upstream node in the same river. Here, p’%",_; is the

production from hydropower in the previous timestep in the upstream
. LMo L. .
node (n-1) while the ratio % relates to the electricity production po-
n-1

tential in nodes n and n-1, according to Equation (10). Thus, this factor
accounts for the fact that the value of water varies along the river
dependent especially on available head.

As the coupling of production patterns between nodes in the same
river increases the computational load, clustering to reduce the number
of Hydro RRP nodes was carried out according to the following
principles

e Hydro_ RRP nodes connected in series in the transmission grid are
aggregated;

e Univalent Hydro_RRP nodes (dead-ends) are merged until only one
such node in a branch remains;

e Only nodes within the same bidding zone are clustered; and

e Only nodes in the same river are clustered.

2.1.5. Dispatchable thermal electricity generation

All thermal generation of electricity (pirn) per timestep, including
nuclear generation, is limited by the installed capacity of each tech-
nology i at each node (s;,) according to Equation (15):

Ditn S si.nVi S Ithennal (15)

Thermal production is associated with both part-load costs and start-up
costs, so as to discourage unnecessary cycling whilst keeping the model
formulation linear, similar to the implementation in [44]. The variable
part-load cost, (cf‘:_'rf’”“), is calculated from the difference between the
production in operation (spinning) (vfffﬁ
duction level (pin), for each timestep and technology. This cost is
multiplied by a fixed cost associated with deviating from the nominal

) and the actual current pro-

load, (C?%%  which is determined by the efficiency of each technology
at part-load), as expressed by Equation (16):
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cyniead = gportoadse (VB — by 1)V € Lipermal (16)

itn
Similarly, all thermal production is associated with a start-up cost (¢
that is calculated based on how much thermal production capacity is
started per node and timestep (v{},), multiplied by a fixed start-up cost

per technology (C**), according to Equation (17):

cstart — Cfm't""v‘.m Vi € Iihermat @

itn itn

The value for v?7  is added to v{h

status of thermal units. In addition, the operation of thermal units is
constrained by start-up times, which means that the time that elapses
between shutting down and restarting a thermal plant must exceed the
specified start-up time for that particular technology. This ensures that
thermal units cannot be cycled on and off too quickly, adhering to the
technology’s operational limitations.

This implementation of thermal production models each technology
at each node as a single production unit, without an absolute constraint
on minimum capacity. By maintaining a linear structure, the model
significantly reduces the computational time while still capturing the
key operational flexibility limitations of thermal units.

Since fossil CO2 emissions are not permitted in the model, gas tur-
bines are only allowed to operate on biogas (hydrogen blending is not
included as a technology option). The cost of biogas is calculated based
on an assumed biomass price of 40 EUR/MWHh, with additional costs for
capital depreciation and operation derived from a 200 MW commercial
biogas plant, as referenced in [54]. This results in a biogas cost of 77
EUR/MWh, which is applied in this study.

after start-up, to track the operational

2.1.6. Heat generation

Heat production (girn) from incineration is governed by the same
constraints as outlined in Equations (15)-(17). In addition, heat can be
supplied by heat pumps (HP) and electric boilers (EB). Heat pumps are
assumed to operate with a Coefficient of Performance (COP) of 3
throughout the year, a conservative estimate that is chosen deliberately
to avoid overestimating their performance.

2.2. Demand data and modeling

Each node in the EHUB Nordic model is associated with an exoge-
nously predetermined demand for the three energy carriers — electricity,
heat, and hydrogen — within the modeling framework. This local de-
mand is derived from four input demand categories: historic electricity
demand; heat demand; transport demand; and future industrial demand.

2.2.1. Traditional electricity demand

The traditional electricity demand profile in the model, based on
historic data, is derived from measured hourly data for each bidding
zone in Year 2019, sourced from the ENTSO-E Transparency Platform
[55]. Thus, all the modeled nodes within the same bidding zone have the
same demand profile. To determine the magnitude of the annual elec-
tricity demand of each node in the model, annual municipal electricity
consumption data were used. Municipalities were divided into 1x1 km
grid cells, with each cell being assigned an electricity demand propor-
tional to its share of the total land area in the municipality. These grid
cells were then mapped to the corresponding Voronoi cells (one per node
in the model), to calculate the aggregated electricity demand for each
node. Traditional electricity demand data are assumed to remain un-
changed when looking at future scenarios and are included as a constant
parameter.

2.2.2. Heat demand

Heat demand profiles for district heating are derived from mea-
surement data collected from four different district heating companies
located throughout the modeled region for weather Year 2019. Each
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bidding zone is assigned one of these profiles according to geographic
proximity. The total annual heat demand for each bidding zone is based
on national statistics and is assumed to be the same as the Year 2019
level. The allocation from the bidding zone level to individual nodes
within the bidding zone is assumed to be proportional to the population
size.

2.2.3. Electricity demand for transportation

The model includes the electricity demand from the transportation
sector, covering cars, buses, and trucks. It assumes that by Year 2050,
the total fleet size in each bidding zone will be the same as in Year 2019,
albeit fully electrified. The distribution of electric vehicles from bidding
zones to individual Voronoi cells is based on population proportionality.
No vehicles are assumed to have the capability for flexible charging or
participation in vehicle-to-grid (V2G) discharging. This conservative
assumption is adopted to avoid overestimating the transport sector’s
contribution to system flexibility. The charging patterns for EVs are
modeled according to the methodology of Taljegérd et al. [56].

2.2.4. Industrial electricity demand

In addition, planned industrial facilities have been manually added
to their proposed geographic locations, based on available estimates
[57-63]. The industrial processes included were selected for their
anticipated key roles in the electrification of industry within the studied
geographic region. Table 3 provides an overview of the future industries
incorporated into the optimization, and outlines how they are modeled.

2.3. Scenario description

Given the significant uncertainties surrounding the future electricity
demand in terms of timing, magnitude, and geographic distribution, two
electrification scenarios are analyzed: High Demand and Moderate De-
mand. The assumptions made regarding the future electricity demand
under each scenario are outlined in Table 4. These values exclude
endogenously generated demands in the model, such as power-to-heat,
grid losses, and trade with continental Europe. As shown, the pro-
jected demand in the High Demand scenario is significantly higher than in
the Moderate Demand scenario, especially for flexible demands, such as
hydrogen production. Fig. 6 illustrates the geographic distribution of the
annual net demand for the two scenarios. Here, ‘annual net demand’
refers to the annual demand remaining after subtracting the existing
levels of hydropower and nuclear production at each node. This should
not be confused with the concept of ‘net load’, which describes the re-
sidual demand after accounting for production from variable renew-
ables. For both modeled scenarios, no emissions of fossil CO5 are
permitted.

Fig. 3 shows that most of Finland and Denmark, along with southern
Sweden and Norway’s coastline, are dominated by nodes with positive

Table 3
Types of industrial demands included in the model and how they are
implemented.

Type of industry Implementation of demand in EHUB Nordic model

Fertilizer Flexible hydrogen production. For details, see Supplementary
S1: Modeling of industrial processes.

Electrofuel and Flexible hydrogen production. For details, see Supplementary

refineries S1: Modeling of industrial processes.
Plastic Flexible hydrogen production. For details, see Supplementary
S1: Modeling of industrial processes.
Steel (HBI Constant HBI demand to direct reduction shaft, with flexible
production) hydrogen production and storage. For details, see
Supplementary S1: Modeling of industrial processes.
Steel (EAF Flexible EAF operation, with HBI storage. For details, see
operation) Supplementary S1: Modeling of industrial processes.
Battery Constant demand

Constant demand
Constant demand

Server halls
Others

Renewable Energy Focus 56 (2026) 100765

Table 4

Future electricity demand per category exogenously provided to the model, as
applied to the Nordic region (excluding Iceland). The table does not include
endogenously created demands in the model from power-to-heat, grid losses or
electricity exports.

Type of demand Resulting demand [TWh]

Moderate Demand High Demand
scenario scenario
Historical electricity demand 368 368
Future industry — Steel 20 68
Future industry — Fertilizer 0 5
Future industry — Batteries 4 4
Future industry — Refineries and 0 56
plastics
Future industry — Server halls 20 40
Future industry — Others 5 10
Transportation — Buses and trucks 24 47
Transportation — Personal electric 38 38
vehicles
Total exogenous electricity 479 636
demand
Of which is added demand from 111 268
electrification
Of which is hydrogen production in 14 110
electrolyzers
Heat demand 112 112

annual net demands (red areas). In contrast, regions with existing hy-
dropower production, particularly inland Norway and northern Sweden,
exhibit negative annual net demands (blue areas). As the demand shifts
from Moderate to High, areas of larger positive annual net demand
emerge, especially in northern Sweden, along Finland’s southern coast,
and around Sweden’s western coast. The presence of existing nuclear
power is represented by dark-blue cells in the maps, located in southern
Sweden and southern Finland.

3. Results

Fig. 4 presents the annual electricity production levels for the Mod-
erate demand scenario and High demand scenario, while Fig. 8 illustrates
the corresponding installed technology capacities, categorized as
Renewable, Thermal, and Storage. In the Moderate demand scenario,
onshore wind emerges as the dominant source of electricity generation,
complemented by exogenously included hydropower and nuclear power
(represented by dashed bars in Fig. 4), with smaller contributions from
offshore wind and utility-scale solar PV. As the electricity demand in-
creases in the High demand scenario, production from all VRE sources
increases, with onshore and offshore wind experiencing the largest ab-
solute increase in annual output, while solar PV exhibits the highest
relative growth in terms of output. The annual levels of production from
nuclear and hydropower remain constant across both scenarios.

Fig. 8 further illustrates that the installed capacity of thermal peak-
ing technologies with relatively low investment costs, such as open-cycle
gas turbines, is higher in the High demand scenario than in the Moderate
demand scenario. In terms of storage technologies, battery capacity in-
creases by 35% as demand rises. However, the absolute size of the
battery capacity remains small in comparison to those of the lined rock
caverns used for hydrogen storage and thermal tank storage. There is a
substantial difference in hydrogen storage capacity between the two
scenarios (Fig. 8). These results should be interpreted in light of the
different levels of additional electricity demand introduced in the two
scenarios: 111 TWh/year in the Moderate demand scenario, and 268
TWh/year in the High demand scenario. Moreover, a significant share of
the additional demand in the High demand scenario is flexible, primarily
due to increased hydrogen consumption, as detailed in Table 4.
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Fig. 4. Annual electricity production levels per technology for the Moderate
demand scenario and High demand scenario.

3.1. Optimal localization of onshore wind

As shown in Fig. 5, the optimal installed capacity of onshore wind (as
obtained from the modeling) increases from 40 GW in the Moderate
demand scenario to 63 GW in the High demand scenario. The localization
of wind power capacity for the two scenarios is illustrated in Fig. 6,

where the color scale indicates the wind conditions expressed in annual
full-load hours (FLH) for each node. Since the maximum allowed ca-
pacity varies significantly between nodes, the maps display the locations
and wind conditions of new production but not the magnitudes of pro-
duction capacity. A comparison of the two maps reveals that the High
demand scenario introduces substantially more blue areas, indicating
that investing in nodes with high annual production volumes is not al-
ways the optimal choice when additional load is introduced into the
system. Instead, new onshore wind is concentrated to regions with high
annual net demand, as is evident when comparing Fig. 6 and Fig. 6.

The relationship between installed onshore wind and annual net
demand is further illustrated in Fig. 7. In this figure, onshore wind in-
stallations across all the modeled nodes are plotted against FLH and
annual net demand for both the Moderate demand scenario and High
demand scenario. Blue markers indicate nodes where onshore wind is
installed. The vertical line marks the boundary between the positive and
negative annual net loads, while the horizontal line represents the
average number of FLH across all nodes with onshore wind capacity in
the model. These two lines divide each plot into four quadrants. The
average capacity values shown in each quadrant reflect the average level
of utilization of the permitted onshore wind capacity for the nodes
falling within that quadrant.

As expected, the highest utilization of onshore wind capacity is found
in nodes with high FLH and a positive annual net demand, corre-
sponding to the top-right quadrants in the figures. In fact, all nodes with
FLH >3,300 and annual net demand >1,000 GWh/year see investments
in onshore wind to the maximum allowed capacity in both scenarios.

In the Moderate demand scenario shown in Fig. 7, a larger share of
onshore wind capacity is utilized in the top-left quadrant compared to
the bottom-right quadrant. This suggests that, at this demand level,
favorable wind conditions play a more-significant role in the optimal
placement of onshore wind capacity than proximity to local demand.
However, as the demand increases from Moderate to High, this pattern
shifts, with most of the new WON production appearing in the bottom-
right quadrant. This change aligns with the increase in blue areas in the
right-hand map of Fig. 6, which suggests that as demand grows and
transmission grid congestion increases, proximity to demand becomes a
more-critical factor for the optimal siting of onshore wind. This is
mirrored by the lower number of average FLH of installed onshore wind
in the High demand scenario (2,960 FLH) compared with the Moderate
demand scenario (3,100 FLH), despite many sites with higher annual
production potential being available, as indicated by the orange circles
in the upper half of plot B in Fig. 7.
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Fig. 5. Overview of installed capacities from the modeled results for the Moderate demand scenario and High demand scenario. The hatched bars for Nuclear and
Hydropower indicate that these capacities are not model outputs, but have been exogenously provided to the model. The results are aggregated for the entire

modeled region, with the constraint that no fossil CO, emissions are permitted.

Deviations from the expected trend of favoring wind power in-
stallations in nodes with high annual production and positive net de-
mand are evident in Fig. 7. The area marked as “1” in Fig. 7 highlights
investments in nodes that are characterized by poor wind conditions and

negative annual net demand. These deviations are primarily observed in
the High demand scenario, and can be attributed to the geographic
proximity of these nodes to major demand centers, particularly within
the two highlighted areas in Fig. 6. Consequently, the modeled cost-
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Fig. 6. Geographic localization of onshore wind from the modeled results. Colored cells represent the geographic locations where onshore wind is installed. The color
scale indicates the number of full-load hours for offshore wind in each cell with onshore wind. Highlighted areas are referenced in the text.

efficient capacity of onshore wind in these regions appears to be driven
by a high regional electricity demand, despite poor wind conditions.

Another deviation from the expected pattern in Fig. 7 is marked as
“2” and is present in both the Moderate demand scenario and High demand
scenario. This deviation arises from the colocation of onshore wind
(WON) and nuclear power. Despite having low net demands for elec-
tricity, as a result of nuclear power production, these nodes are favor-
able for onshore wind generation due to their strong grid connections
and proximity to areas with high annual net demands.

3.2. Optimal localization of offshore wind

Fig. 8 illustrates the optimal siting of offshore wind in both the
Moderate demand scenario and High demand scenario. The maps show the
land areas closest to the actual locations where offshore wind parks
would be installed. Similar to the depiction of onshore wind power, the
cell color reflects the number of annual FLH, albeit with a different scale.
Notably, despite an increase in offshore capacity from 14 GW to 26 GW,
the optimal siting remains largely consistent across both scenarios. The
regions with the highest concentration of offshore wind installations
include southern Finland and the northern part of Sweden’s west coast.

Unlike onshore wind, higher electricity demand does not lead to the
appearance of any new blue cells in the right-hand side map in Fig. 8,
indicating minimal investment in areas with low numbers of FLH for
offshore wind in any scenario. This pattern is further illustrated in Fig. 9,
which demonstrates how offshore wind installations correlate with FLH
and the node annual net demand. The plots follow the same structure as
described for Fig. 7, with quadrants defined by average FLH and the
boundary between positive and negative annual net loads, and the
average capacity values displayed for each quadrant.

Here, it becomes clear that the offshore wind investments in both
demand scenarios are almost exclusively situated in nodes with favor-
able wind conditions and positive annual net demands, shown as blue
markers in the top-right quadrant. This contrasts with onshore wind,
where investments in nodes with less-favorable wind conditions are
common, particularly in the High demand scenario (cf. Fig. 7). The dif-
ference can be attributed to the cost structures of the two technologies,
as outlined in Table 4. Thus, offshore wind has a 50% higher investment
cost than its onshore counterpart. Consequently, the model only finds
offshore wind power to be cost-effective at locations that yield suffi-
ciently high annual numbers of FLH . This is also reflected by the average
number of FLH for offshore wind, which remains largely constant

10

between the two scenarios, with 4,630 FLH in the Moderate demand
scenario and 4,620 FLH in the High demand scenario .

Similar to onshore wind, some deviations from the expected patterns
appear for offshore wind in Fig. 9, indicated by numbered circles in the
plots. As with onshore wind, colocation with nuclear power (circled as
“1” in the plot) promotes offshore wind installations, despite low annual
net demands at these nodes, particularly in the Moderate demand scenario
when the transmission grid is less-congested. In addition, as indicated by
the circles marked as “2” in the plots, several nodes with excellent wind
conditions and high positive annual net demands do not see offshore
wind installations as part of the optimal solution. These nodes, charac-
terized by annual FLH >4,500 and annual net demands >4,000 GWh,
are all located near DC link connections to continental Europe (illus-
trated in Fig. 2). The prices of electricity imports and exports through
these DC links are significantly impacted by a high share of wind-based
generation in the surrounding region, leading to overspill effects that
reduce the economic attractiveness of offshore wind power in these
nodes within the model. Thus, the connection to wind-dominated
northern continental Europe lowers the value of wind power in the
nodes that lie closest to external DC links.

The third deviation, marked as “3” in Fig. 9, originates from offshore
wind power in a node in western Norway, where significant grid
congestion occurs. This results in an abnormally high value for local
electricity production, which drives offshore wind installations despite
comparatively low numbers of FLH.

3.3. Optimal localization of solar PV

The deployment of utility-scale solar PV in the modeled results is
presented in Fig. 10 for both the Moderate demand scenario and High
demand scenario. Similar to what is shown in Fig. 5, Fig. 14 further
emphasizes that higher demand is associated with significant expansion
of solar PV installations, as evidenced by the increased colored areas in
map B. Moreover, Fig. 10 reveals a notable shift in the geographic dis-
tribution of new PV capacity in the High demand scenario compared with
the Moderate demand scenario. New installations in the High demand
scenario are primarily concentrated along the coast of Finland, despite
these areas having relatively low FLH potential for solar PV. Instead, the
spatial distribution appears to be primarily influenced by colocation
with positive annual net demand, as suggested by a comparison of
Fig. 10 with Fig. 6.

Similar to the analysis conducted for onshore and offshore wind, the
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Fig. 7. Scatter plot depicting the installation of onshore wind units in all nodes in the model, plotted against full-load hours (y-axis) and the node annual net demand
(x-axis) for the two scenarios. The blue markers indicate that onshore wind is installed in that node. The horizontal dotted line represents the average FLH value of all
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represent the average utilized onshore wind capacity for the datapoints located in the respective quadrants. Nodes with zero onshore wind capacity are excluded from
the plot. Datapoints outside the diagram limits are included on the outside borders of the plot for visibility reasons. Numbered circles indicate deviating datapoints, as

explained in the text.

relationship between FLH and annual net demand for PV installations in
the modeled results can be illustrated using a scatter plot (Fig. 11). This
figure demonstrates that in the Moderate demand scenario, solar PV in-
vestments are almost exclusively concentrated in nodes with positive
annual net demands and relatively high numbers of annual FLH. One of
few exceptions to this, marked with a circle labeled “1” in plot A in
Fig. 11, corresponds to a situation with colocation of PV and nuclear
power.

With the introduction of increased electricity demand in the High
demand scenario, most of the new PV capacity is introduced in nodes
with positive annual net demands - particularly in areas where the
number of annual FLH exceeds the average. In nodes with an annual net
demand exceeding 5,200 GWh and above-average number of FLH , PV
installations are found to be optimal across all nodes (area marked “2” in
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Fig. 11).

Solar PV exhibits the lowest level of investment in nodes with
negative annual net demands, when compared with onshore and
offshore wind power. In the Moderate demand scenario, only 3% of the
total PV capacity is allocated to such nodes, increasing slightly to 8% in
the High demand scenario. This dependency of optimal PV placement
should be understood in the context of its production profile, especially
when compared with other VRE sources. The diurnal nature of PV
production, characterized by high-amplitude and short-duration peaks,
makes it less-suitable for long-distance transmission in a grid with
limited capacity, particularly under conditions of high demand and
heavy grid congestion.

However, certain data-points in the High demand scenario appear to
deviate from this general trend. These nodes, highlighted as “3” in plot B
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Fig. 8. Geographic localization of offshore wind from the modeled results. Colored cells represent the geographic locations on the coast, outside of where offshore
wind is installed. The color scale indicates the number of full-load hours for offshore wind in each cell with installations.

in Fig. 11 for the High demand scenario, are situated in close proximity to
large demand centers and are connected to positive net demands
through a strong transmission grid. Thus, the electricity generated at
these locations is consumed in neighboring nodes and can be regarded as
part of a localized solution rather than as part of a centralized produc-
tion system. This is similar to the behavior of onshore wind, illustrated in
Fig. 6. Here, regional areas defined by congestion in the transmission
grid become associated with a higher value for localized electricity
production, thus making the production technology, in this case solar
PV, part of the optimal solution despite unfavorable production condi-
tions in terms of FLH.

Only 0.9% of the total solar PV investments from the Moderate de-
mand scenario are not included in the optimal solution for the High de-
mand scenario, which is a lower share than for onshore wind (2.5%) or
offshore wind (6.5%). This suggests that solar PV is the technology
whose optimal geographic placement is least-sensitive to increases in the
electricity demand at an aggregate level. However, none of the inves-
tigated technologies exhibit a strong tendency to shift their optimal
localization as new demand centers emerge in the High demand scenario.
This indicates that decisions regarding the placement of new production
technologies can be made with confidence, even in the face of significant
uncertainties related to the absolute size of future demand projections.

3.4. Optimal localization of gas turbines and batteries

As illustrated in Fig. 8, the deployment of gas turbines increases the
capacity from 1.5 GW to 3.8 GW in the High demand scenario, while
battery capacities exhibit a similar expansion, growing from 11 GWh to
15 GWh. Fig. 12 provides a spatial representation of the gas turbines and
batteries in the High demand scenario. Similar to wind and solar power,
the optimal siting of gas turbines and batteries is influenced by the
localization of a high annual net demand for electricity. For instance,
regions such as southern Finland, western Norway, and the Oslo area
experience significant installations of gas turbines and exhibit high
annual net demands for electricity (as shown in Fig. 6). However, ex-
ceptions exist, such as in northern Sweden, where despite a substantial
net electricity demand, gas turbines and batteries are entirely absent.
This absence can be partially attributed to the temporal flexibility of
new demand in the region -as in the case of hydrogen production —
which can be shifted over time and does not necessarily contribute to a
new peak demand. Furthermore, northern Sweden benefits from sub-
stantial hydropower capacity, which effectively manages fluctuations in
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the electricity demand.

For nodes that lack hydropower availability, the placement of gas
turbines and batteries is strongly correlated with a firm peak demand
relative to the node’s total import capacity — a metric termed ‘peak
import congestion’. This metric is calculated by dividing the annual firm
peak demand of a node by its total import capacity from neighboring
nodes in the transmission grid. Fig. 13 presents the peak import
congestion levels across all the modeled nodes in the High demand sce-
nario, sorted in descending order. The upper graph depicts the installed
gas turbine capacity per node (red bars), while the lower graph illus-
trates the magnitude of the installed stationary battery capacity per node
(blue bars). Although only the results for the High demand scenario are
displayed, similar trends are observed for the Moderate demand scenario.
The figure demonstrates that both technologies are predominantly
installed in nodes with high peak congestion levels, which are classified
as ‘locally congested nodes’. In these nodes, the electricity demand
cannot be met solely through imports from the transmission grid, indi-
cating that local grid bottlenecks are a key driver of these investments.
Around 45% of the total gas turbine capacity and 52% of the capacities
of the batteries are associated with such locally congested nodes (with
peak import congestion >0.4).

Fig. 13 further indicates that certain nodes with high congestion
levels (far to the left-hand side) lack gas turbines and/or batteries. This
can be attributed to the availability of hydropower with storage at these
locations. Furthermore, some of the largest gas turbine installations —
designated as ‘regional power deficit nodes’ in Fig. 13 — are located in
areas with relatively low peak import congestion values (<0.2). These
installations, such as those in eastern Finland (depicted in Fig. 16), are
primarily driven not by local grid bottlenecks but by regional power
deficits. During periods of low wind production and high electricity
demand, gas turbines emerge as the most-cost-effective solution for
meeting the electricity demands in these regions, particularly where
hydropower availability is low. As a result, the highest concentration of
gas turbine capacity is observed in eastern Finland, highlighting the
necessity to have dispatchable generation in this region.

Another deviation from the expected correlation between peak
import congestion and battery installations is observed in the ‘solar PV
nodes’ in Fig. 13. These nodes feature battery installations despite
exhibiting low peak import congestion levels. This pattern can be
explained by comparing Fig. 12 and Fig. 10, which illustrates the
optimal siting of solar PV. Batteries in solar PV nodes, for example in
southern Finland and the Oslo region, are primarily deployed to manage
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Fig. 9. Scatter plot depicting the installation of offshore wind in all nodes in the model, plotted against full-load hours (y-axis) and the annual node net demand (x-
axis). The blue markers indicate that offshore wind is installed in that node. The horizontal dotted line represents the average FLH value for all the included
datapoints, while the vertical line indicates the distinction between positive and negative annual node net demands. The presented Average capacity values represent
the average utilized offshore wind capacity for the datapoints located in the respective quadrants. Nodes with zero offshore wind capacity are excluded from the plot.
Datapoints outside the diagram limits are included on the outside borders of the plot for visibility reasons. The numbered circles indicate deviating datapoints, as

explained in the text.

diurnal variations in solar power generation rather than to mitigate local
grid congestion, explaining the strong spatial alignment between battery
placement and solar PV locations.

3.5. Sensitivity analysis: reduction of maximum grid line capacity

Throughout this study, a safety factor of 0.7 (referred to as the
‘Standard grid capacity’) has been applied to reduce the maximum grid
capacity values, accounting for factors such as the n-1 criterion and
reactive power, in line with similar modeling work [25]. In this sensi-
tivity analysis, a safety factor of 1 (referred to as the ‘High grid capac-
ity’) is used, meaning that the maximum grid capacities are determined
solely by thermal constraints, as described in Section 2.1.1. Since the
observed trends are similar in both demand scenarios, the presented
results are primarily for the High demand scenario.
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Fig. 14 presents the average installed capacities per technology — as a
share of the maximum allowed capacity — for the quadrants introduced
in Figs. 10, 12, and 14. These quadrants are defined based on whether a
node has a positive or negative annual net demand and whether its
number of FLH is above or below the average (as indicated by the dashed
lines in Figs. 10, 12, and 14). For example, the bars in the top-left
quadrant represent the average installed capacities (as a share of the
allowed maximum) for all nodes with a negative net demand and above-
average FLH, shown separately for offshore wind, onshore wind, and
solar PV, under both grid capacity assumptions.

As shown in the figure, expanding the grid capacity leads to a
reduction in production capacity in the bottom-right quadrant and an
increase in production capacity in the top-left quadrant, indicating a
shift towards locations with higher numbers of FLH. This trend confirms
that as grid capacity increases, proximity to demand centers becomes a
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Fig. 10. Installation of utility-scale solar PV in the two modeled scenarios. The color scale indicates the number of full-load hours for offshore wind in each cell that

acquires PV installations in the results.

less-critical factor for the optimal siting of wind and solar power
generation.

Another key observation from Fig. 14 is that solar PV production
capacity decreases with increased grid capacity across all quadrants as it
is outcompeted by wind power. The local value of solar PV, which
contributed to its penetration level in the High demand scenario, di-
minishes as a higher grid capacity enables more-flexible electricity
transfers between nodes. Due to its high-amplitude, high-frequency
production variations, solar PV benefits less from a moderate increase in
grid capacity compared with onshore and offshore wind power. In
contrast, WON and WOFF, with their longer and less-frequent produc-
tion variations, are better suited to leveraging increased grid capacity,
making them more-favorable in the High grid system.

It is also important to emphasize that increasing the grid capacity in
the sensitivity analysis leads to a significant relocation of VRE produc-
tion capacity. This effect is illustrated in Fig. 15, which depicts the share
of production capacity that is relocated under two different changes to
the modeling inputs: (1) increasing the demand level from Moderate to
High; and (2) increasing grid capacity from Standard to High in the High
demand scenario.

Fig. 15 clearly shows that the results are more-robust to variations in
demand levels and more-sensitive to how the electricity grid is repre-
sented in the model. This sensitivity is further reflected in the impact on
total system cost, illustrated in Table 5. Compared to the Standard grid
assumption, total system cost is reduced by 12% in the High demand
scenario and by 14% in the Moderate demand scenario as the grid safety
factor is changed from 0.7 to 1. These findings highlight the critical role
of grid representation in shaping model outcomes and emphasize the
importance of continued evaluation of how the thermal limits of the grid
can be utilized more efficiently, for instance through approaches such as
dynamic line rating. Table 5 also highlights that the majority of costs are
attributed to investments, reflecting the dominance of power sources
such as wind and hydropower in the modeled results—technologies
characterized by low operational costs.

In terms of installed production capacities, the most-pronounced
differences between the High and Standard grid assumptions are
observed in the thermal peaking units and battery storage units. Spe-
cifically, the installed capacity of open-cycle gas turbines decreases by
42% with increased grid capacity, while battery storage capacity de-
clines by 43%. The enhanced ability to transfer electricity between
nodes reduces the reliance on local flexibility solutions, particularly in
nodes that are identified as “locally congested” in Fig. 13, underscoring

14

the strong dependence of these technologies on local grid conditions.
4. Discussion

The results presented in this study represent the optimal spatial al-
locations of distributed production and storage units from a purely
techno-economic perspective. Consequently, considerations related to
other aspects, such as political or social factors, are not included. In the
studied region, this omission is particularly relevant for offshore wind
deployment, where for example military interests may significantly in-
fluence site selection. Furthermore, the model uses a simplified repre-
sentation of social acceptance for renewable energy deployment. The
impact of social acceptance is applied through a reduction factor to limit
available land use, considering for example population density and
protected areas. However, it does not account for the phenomenon in
energy system modeling whereby high geographic resolution can lead to
solutions that incorporate highly spatially concentrated deployment of
wind and solar power, which may be socially unacceptable [64].

For example, the results for onshore wind indicate a preference for
deployment of wind power in areas with high annual net electricity
loads, such as Oslo, Stockholm, and Copenhagen, as shown in Fig. 6.
These locations are densely populated, raising concerns about the
practical feasibility of the proposed siting. Lohr et al. [64] have explored
this issue in detail, demonstrating that incorporating quadratic envi-
ronmental costs, which penalize high shares of the maximum allowable
capacity for renewables in a region, could be an alternative approach to
this problem, albeit at the expense of a higher computational burden.

Previous research has also demonstrated that high spatial resolution
in energy systems modeling influences the optimal production mix,
primarily by preserving high FLH sites that would otherwise be diluted
in aggregated models. This effect tends to favor onshore wind over
offshore wind and solar power, aligning with the findings of this study,
where onshore wind emerges as the dominant new electricity source.
However, as electricity demand increases, a significant share of the
onshore wind capacity is deployed in areas with comparatively poor
wind conditions, suggesting that the availability of high-quality sites
identified using the high-resolution approach eventually becomes
saturated. Instead, the results underscore the growing importance of
colocalization with regions of high annual electricity demand, particu-
larly for onshore wind and solar power, as demand levels rise.

The applied model consists of 352 nodes distributed across 11 bid-
ding zones. The results presented in this study are derived from an
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Fig. 11. Scatter plot depicting the installation of utility-scale PV in all nodes in the model, plotted against full-load hours (y-axis) and the annual node net demand (x-
axis). The blue markers indicate that PV is installed in that node. The orange markers indicate that there are no PV installations. The horizontal dotted line represents
the average FLH value of all the included datapoints, while the vertical line indicates the distinction between positive and negative annual node net demands. The
presented Average capacity values represent the average utilized PV capacity for the datapoints located in the respective quadrants. Nodes with zero PV capacity are
excluded from the plot. Datapoints outside the diagram limits are included on the outside borders of the plot for visibility reasons. The numbered circles indicate

deviating data-points, as explained in the text.

optimization framework that determines the placement of production
and storage units based on the total cost of the 352-node system, rather
than the electricity valuation mechanisms inherent to the bidding zones.
Consequently, discrepancies may arise between the price signals at the
bidding zone level and those at the nodal level. Achieving alignment
between economic incentives and the optimal localization of produc-
tion, as suggested by this study, will necessitate a more-granular
approach to electricity valuation. In an extreme scenario, this would
imply the establishment of 352 bidding zones in the Nordic region.
While such an approach is neither practical nor desirable, it underscores
the limitations of the current bidding zone structure in incentivizing
optimal production plant placement. This observation is consistent with
previous research, such as the work of Obermiiller [34], which has
demonstrated that zonal pricing mechanisms that fail to account
adequately for grid constraints may result in inefficient locational
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signals for VRE generation.

The model’s calculations of the flexibility requirements for tech-
nologies such as gas turbines and batteries are subject to both under- and
over-estimation due to the assumptions applied. On the one hand, the
model’s 3-hour temporal resolution may smoothen fluctuations in gen-
eration and demand, potentially leading to an underestimation of the
need for short-term flexibility measures. On the other hand, the model
adopts a conservative assumption that the transportation sector does not
contribute to system flexibility through either vehicle-to-grid discharge
or flexible charging. Furthermore, the model does not incorporate
additional functionalities such as participation in ancillary service
markets or black-start capabilities.

A further limitation of this analysis is that investment decisions are
based on a single representative weather year. As shown in the studies
carried out by Zeyringer et al. [65] and Bloomfield et al. [66], the choice
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of weather year can significantly influence the optimal generation mix,
indicating the sensitivity of the results to weather variability.

In addition, the representation of hydropower, which is the pre-
dominant electricity generation technology in the region, is likely to
influence the estimated need for peaking capacity. Previous studies (e.g.,
Falth et al. [67] and Hirth [68]) have highlighted that aggregated rep-
resentations of hydropower with perfect foresight in energy systems
modeling, as is also the case in this study, tend to overestimate the
flexibility provided by hydropower. A more-accurate approach to ac-
counting for the physical constraints of rivers and reservoirs, as
demonstrated by [69], involves the development of equivalent models
that reduce storage and production capacities. The absence of such
constraints in the present study may result in an underestimation of the
required capacities for peaking technologies, such as gas turbines.

As a result of the aforementioned uncertainties, the absolute values
related to flexibility measures, such as gas turbines and batteries, should
be interpreted as indicative estimates rather than precise capacity re-
quirements. Further model development and sensitivity analyses are
needed to support more-robust conclusions regarding the optimal siting
and scale of these technologies.

The sensitivity analysis conducted in this study indicates that while
key assumptions do not significantly alter the overall system production
mix, they can heavily influence the spatial distributions of wind and
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solar power generation. Specifically, the analysis reveals that up to 26%
of renewable power production units would be relocated if the
maximum theoretical thermal capacity of the grid was to be fully uti-
lized. This effect is particularly pronounced for offshore wind, given its
reliance on a limited number of sites with high potential annual pro-
duction levels.

However, due to n-1 security constraints, the assumption of full
utilization of thermal capacity at all times is not realistic. A more-refined
approach to representing grid capacity over time would entail incor-
porating weather-dependent transmission capacities, wherein trans-
mission limits adjust dynamically based on the ambient temperature and
wind speeds. Integrating such an approach represents a logical next step
towards improving the applied modeling framework.

5. Conclusions

e The number of FLH annually and proximity to net demand are crit-
ical factors influencing the siting of VRE technologies in the model.
In general, onshore wind, offshore wind, and solar PV tend to be
installed in nodes with high annual net electricity demands and
favorable FLH potentials. However, each technology follows certain
distinct trends:



J. Bertilsson et al.

30

Renewable Energy Focus 56 (2026) 100765

= = N N
o w o ¥
1 1 1 1

Relocalized share of production capacity [%]
w

A\
A\

N
N\

0- T
WOFF: WOFF: WON:
Increasing Increasing Increasing
demand  grid capacity demand

WON: PV: PV:
Increasing Increasing Increasing
grid capacity demand  grid capacity

Fig. 15. The shares of production capacity that are relocated for two different changes in modeling inputs: (1) increasing the demand level from Moderate to High;
and (2) increasing the grid capacity from Standard to High (in the High demand scenario). WOFF, offshore wind; WON, onshore wind; PV, photovoltaic.

Table 5

Total system costs for the different modeling cases included in the sensitivity
analysis. These costs encompass both investment and operational expenditures,
as defined in Equation (1). The table also shows the proportion of total costs
accounted for by investments.

Modeling case Total system cost Investment cost as share of

[GEUR] total cost
Moderate demand, Grid 6.2 88 %
factor 0.7
Moderate demand, Grid 5.3 86 %
factor 1
High demand, Grid factor  12.6 86 %
0.7
High demand, Grid factor ~ 11.1 85 %

1

o Onshore wind prioritizes sites with the most-favorable wind con-
ditions in the Moderate demand scenario. As the demand for elec-
tricity increases, the placement of additional capacity shifts
toward locations that lie closer to major load centers, demon-
strating high versatility in optimal siting decisions.

Optimal siting of offshore wind is primarily dictated by high

numbers of FLH, regardless of the electricity demand levels. Its

high capital costs require a high capacity factor to ensure cost
efficiency.

Siting of solar PV shows the strongest correlation with positive

annual net demand for electricity. Its strong variations in pro-

duction amplitude make it less-suitable for long-distance trans-
mission in a constrained grid, reinforcing a preference for local
placement close to demand centers.

Deviations from the expected correlation between FLH and net de-

mand were identified:

o Colocation of both solar and wind power with existing nuclear
production nodes occurs despite a negative net demand locally.
These nodes benefit from a strong transmission infrastructure and
are often situated in regions with electricity surpluses.

o Nodes in regions close to major demand centers attract in-
vestments in onshore wind and, to a lesser extent, solar PV, even at
locations with low annual FLH potential.
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e The optimal placement of gas turbines and batteries is strongly
influenced by local grid conditions, demand center locations, and
hydropower availability. In nodes where import capacity is limited
relative to local demand, these technologies are deployed as a means
to meet the nodal peak electricity demand. In addition, gas turbines
and batteries are introduced to serve other functions, addressing
regional power deficits and balancing solar power fluctuations,
particularly in areas that lack hydropower resources.

e The sensitivity analysis underscores the significant impacts of grid
capacity assumptions on the spatial distribution of renewable energy
production. When 100% of the thermal grid capacity is utilized
instead of 70%, 22%-26% of wind and solar power production is
relocated. In contrast, variations in demand levels do not result in
similarly pronounced shifts in the location of production units. This
suggests that, provided that the geographic positioning of the future
demand is known, uncertainties regarding its absolute magnitude are
less-critical for determining the optimal siting of distributed gener-
ation technologies.
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