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A B S T R A C T

Renewable electricity generation is expected to play a pivotal role in the global shift toward electrification. 
However, the inherent variability of renewable energy sources, in addition to factors such as local weather 
patterns and grid limitations, poses a significant challenge in terms of determining the optimal size and place
ment of distributed generation units. This study tackles this issue by applying a novel, high-resolution energy 
systems model that is tailored to the Nordic region. The model is designed to capture with high accuracy local 
nuances in relation to grid infrastructure, weather patterns, and demand profiles. The model minimizes the total 
system costs, accounting for both investment and operational expenditures, through the optimal integration of 
variable renewable energy sources and dispatchable generation units. The findings indicate that the siting of 
renewable generation is primarily influenced by a combination of a high number of full-load hours and proximity 
to the electricity demand, with the latter becoming increasingly important under high-demand conditions. 
Among renewable technologies, solar photovoltaic systems exhibit the strongest correlation with demand center 
proximity, whereas offshore wind is mainly constrained by a high potential annual production capacity. In 
addition, assumptions regarding the availability of electricity grid capacity are shown to have a significant 
impact on the results, with up to 26% of production being relocated when 100 % thermal grid capacity is 
available, as compared to when 30% of grid capacity is reserved for contingency events.

1. Introduction

Global electricity demand is projected to nearly double by Year 2050 
compared to the Year 2023 levels, according to estimates from the In
ternational Energy Agency [1]. A significant portion of this increased 
demand is expected to be met by variable renewable energy (VRE) 
sources, such as wind and solar photovoltaic (PV) systems. However, 
their non-dispatchable nature makes the optimal siting and sizing of 
these technologies – considering local weather patterns, transmission 
grid limitations, and proximity to demand – a challenging problem with 
potentially substantial impacts on system costs.

The optimal localization of distributed generation has been 
researched from both the energy system modeling perspective, which 
commonly aims at minimizing the total system costs, and the power grid 
perspective, which focuses on the physical constraints within the dis
tribution grid, such as power losses, voltage control, reliability and 
stability [2]. From the power grid perspective, several methods have 
been developed, including Analytical methods (e.g., the 2/3-rule [3] and 
the Index Method [4]), Heuristic methods (e.g., the Genetic Algorithm 

[5], Tabu search [6], Particle Swarm Optimization [7], Ant Colony 
Search Algorithm [8]), and Numerical methods (e.g., Gradient Search 
[9], Mixed non-linear programming [10], Dynamic programming [11]). 
Comprehensive reviews on the subject have been presented by Prakash 
and Khathod [12], Georgilakis and Hatziargyriou [2], Shebaz and Patel 
[13] and Pesaran et al. [14].

From an energy system modeling perspective, the question of 
optimal localization of wind and solar power has been explored from a 
more spatially aggregated perspective, with less emphasis on the phys
ical grid constraints and properties. Such studies have frequently 
focused on assessing the potential benefits of large-scale renewable en
ergy coordination and enhanced grid interconnectivity. Brown et al. 
[15] investigated the optimal siting of generation using VRE sources 
from a pan-European perspective, focusing on sector coupling and the 
impact of the inter-continental transmission grid. They modeled each 
country as a node and conclude that interconnecting several countries 
helps to smooth variations, especially those arising from wind power 
generation, across the continent, although the largest benefit in relation 
to total system cost is derived from sector coupling flexibility.
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E-mail address: joel.bertilsson@chalmers.se (J. Bertilsson). 

Contents lists available at ScienceDirect

Renewable Energy Focus

journal homepage: www.elsevier.com/locate/ref

https://doi.org/10.1016/j.ref.2025.100765
Received 8 May 2025; Received in revised form 4 August 2025; Accepted 26 September 2025  

Renewable Energy Focus 56 (2026) 100765 

Available online 30 September 2025 
1755-0084/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:joel.bertilsson@chalmers.se
www.sciencedirect.com/science/journal/17550084
https://www.elsevier.com/locate/ref
https://doi.org/10.1016/j.ref.2025.100765
https://doi.org/10.1016/j.ref.2025.100765
http://creativecommons.org/licenses/by/4.0/


Using a similar modeling approach, Schlachtberger et al. [16] 
investigated the optimal siting of wind and solar power units in Europe, 
comparing two strategies for balancing variability: local storage and 
transmission grid expansion. The study, which relied on a highly 
aggregated representation of the transmission grid, concludes that wind 
power variations can be effectively smoothed through grid expansion, 
while PV fluctuations are most-efficiently managed with short-term 
storage solutions, such as batteries.

Copp et al. [17] investigated the optimal sizing and placement of 
distributed energy resources in a system powered entirely by wind and 
solar PV, using New Mexico, USA as a case study. The study highlights 
the importance of regional trade in reducing curtailment and empha
sizes that combining wind and PV can significantly lower system costs, 
as compared to relying on a single technology.

Other studies have examined similar interactions between different 
VRE sources and their optimal placement, focusing on regions such as 
the Middle East [18,19], South America [20] and North America [21], , 
and various countries in Europe [22–24].

These studies typically employ capacity expansion models for sce
narios that feature high shares of wind and solar PV in the energy mix 
but that operate at relatively low spatial resolution. This limitation has 
two primary effects on the modeling outcomes: (i) it dilutes the identi
fication of optimal sites for generation using VREs by averaging the 
capacity factors over large areas; and (ii) it reduces the visibility of 
transmission bottlenecks in the electricity grid [25]. The impacts of 
these effects on the modeling results have been investigated by Frysz
tacki et al. [23], who have presented a novel methodology that sepa
rately assesses the influence of spatial resolution on energy modeling 
with a high share of renewable power production. Their findings indi
cate that spatial resolution significantly affects the results, with greater 
geographic detail potentially increasing total system costs by up to 23%, 
primarily due to transmission bottlenecks that become apparent at 
higher resolutions. Their study also highlights substantial changes in the 
shares of onshore and offshore wind power in response to spatial reso
lution. Higher resolution enables the identification of more-favorable 
sites for onshore wind, resulting in a greater share of onshore wind 
power capacity as fewer nodes are aggregated. The study emphasizes the 
critical importance of having high spatial resolution for making reliable 
technology choices, particularly in scenarios where grid expansion is 
constrained or not permitted.

Several studies have examined the impacts of geographic resolution 
in energy system modeling [25–31]. Krishnan and Cole [27] have 
analyzed the value of high spatial resolution in capacity expansion 
models using the ReEDS model. By comparing three levels of spatial 
resolution, they demonstrate that the competitiveness of renewable re
sources for electricity production is significantly influenced by the 
chosen level of resolution. Their findings indicate that PV investments 
are particularly sensitive to the level of spatial aggregation, with higher 
aggregation levels leading to reduced PV deployment in favor of wind 
resources.

Kiala and Mahfouz [28] and Frysztacki et al. [26] focused on how 
geographic clustering should be performed to preserve local character
istics and grid bottlenecks. Both studies emphasized the importance of 
avoiding clustering based on political entities, advocating instead for 
methods that consider transmission grid constraints. Frysztacki et al. 
[24] concluded that hierarchical clustering methods yield more- 
accurate results than commonly used k-means clustering, as they bet
ter preserve the grid topology limitations.

Findings from the literature underscore the importance of the high 
spatial resolution adopted in the present study. Notably, Fürsch et al. 
[32] have demonstrated the value of detailed spatial modeling by 
analyzing grid expansion in Europe using an iterative approach between 
an investment and dispatch optimization model and a load flow model, 
covering 224 nodes across the continent. They show that large-scale grid 
expansion that allows for optimal utilization of renewable energy sites is 
almost always beneficial from a low-cost perspective. It is only in certain 

areas of Central Europe, located far from large heavy power consump
tion centers, that the cost of grid expansion is not motivated from the 
system perspective.

Using a different modeling framework, Tröndle et al. [33] have 
compared the total system costs on different geographic balancing 
scales: continental, national, and regional. Their model includes the 
electricity supply and demand across 497 European regions, based on 
administrative boundaries. Similar to Fürsch et al. [32], Tröndle et al. 
conclude that balancing wind and solar variations is most efficient at the 
continental scale. Their results also show that restricting balancing to a 
regional or national level is a possibility if grid expansion is constrained, 
although it can incur a cost penalty of up to 20%.

The optimal placement of onshore wind has been analyzed by 
Obermüller [34], who compared wind energy valuation under nodal and 
zonal market structures. Using the PyPSA modeling framework for 
Germany, represented by a 575-node model, the study demonstrates 
that zonal pricing – where large areas are aggregated – can lead to 
suboptimal wind investments, increasing grid congestion and lowering 
the overall system value of wind energy. The study concludes that wind 
energy subsidy schemes that are directing new capacity towards system- 
optimal locations could help to mitigate inefficient investment signals 
caused by zonal pricing.

The high spatial resolution applied in these studies enables the 
investigation of local parameters – such as weather conditions, demand 
characteristics, and grid connections – that influence the placement of 
distributed electricity generation sources. However, previous studies 
have typically relied on administrative borders, which fail to capture 
real grid bottlenecks because they have a restricted time resolution, 
lower geographic scope with respect to investment and dispatch 
modeling, and provide only limited representations of VRE-based elec
tricity production.

This work is novel in that it develops and applies an energy systems 
model that optimizes the localization and sizing of distributed genera
tion, including both VRE and dispatchable production units, with high 
geographic resolution, accounting for both investment and dispatch 
costs. It also incorporates a detailed representation of local conditions 
for wind and solar power within a grid representation in the model, 
which is validated using a full AC power flow model. In addition, the 
applied model integrates multiple energy carriers (electricity, heat, and 
hydrogen) alongside a comprehensive representation of hydropower, 
which is the dominant electricity production source in the modeled re
gion. Within this modeling framework, this study aims to answer the 
following questions: 

• What are the key factors that influence the cost-optimal placement of 
new electricity production in a high-resolution spatial energy sys
tems model of the Nordic energy system concomitant with large- 
scale electrification?

• How do different levels of increased electricity demand and power 
grid availability impact this placement?

2. Method

2.1. General model formulation

This work presents a newly developed linear optimization model, the 
EHUB Nordic model, which has been designed to minimize investment, 
maintenance and operational costs while adhering to economic and 
technical constraints. The model encompasses 342 nodes across Nor
way, Sweden, and Finland, and the DK2 price area in Denmark, all of 
which share the same synchronous grid. The 342 nodes correspond to 
existing substations in the transmission grid, based on ENTSO-E data, 
and are geographically defined using a Voronoi cell distribution. The 
model is exogenously provided with specific demands for electricity, 
heat, hydrogen, and transportation for each node. In addition, it con
siders potential wind and solar power generation based on the available 
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land and meteorologic conditions in each individual node.
An overview of the EHUB Nordic model is provided in Fig. 1. The 

optimization process minimizes investment and dispatch costs over an 
entire year, with a time resolution of 3 hours, using 2019 as the refer
ence weather year. The model applies a greenfield approach, assuming 
no pre-existing production technologies or storage systems, with the 
only exceptions being the inclusion of existing hydropower and nuclear 
capacity within the modeled region. No emissions of fossil CO2 are 
permitted and all investment decisions are driven by the projected en
ergy demands and costs for Year 2040.

The model’s objective function seeks to minimize the total system 
cost over the entire modeled year, incorporating both operational costs 
and annualized investment costs, and can be written as: 

MIN : ctot

=
∑

n

∑

i

(
(

Cinv
i + COMfix

i

)
*si,n +

∑

t

(
Crun

i *(pi,t,n + qi,t,n)+cstart
i,t,n

+ cpartload
i,t,n

)
)

+
∑

r

∑

n

∑

t

(
Cimp

t,r *wimp
t,n,r

)
(1) 

where ctot is the total system cost that is to be minimized, Cinv
i represents 

the annualized investment costs, and COMfix
i is the fixed operational costs 

for all technologies (i). The sum of these factors is multiplied by the new 
installed capacity (si,n) of each technology in each node (n). The running 
cost (Crun

i ), including both fuel costs and the variable operation cost, is 
multiplied by the sum of the produced electricity (pi,t,n) and heat (qi,t,n)

at each timestep (t) for each technology and node. The start-up cost 
(cstart

i,t,n ) is the cost associated with starting additional thermal power 
plants, while the part-load cost (cpartload

i,t,n ) is calculated based on the dif
ference between the capacity of the power plant currently in operation 
and the actual production level for each timestep for thermal plants. 
These two costs are included as variables in the model, which is further 

described in Section 2.1.5. The cost of imported electricity (Cimp
t,r )

through DC connections to neighboring regions (r) outside the Nordic 
countries is multiplied by the import level (wimp

t,n,r) for each timestep and 
node. The import level is permitted to take a negative value to account 
for electricity exports.

At all timesteps, the produced electricity, heat and hydrogen must 
match the demand for each node. For electricity, this can be written as a 
nodal balance: 

Del
t,n + bch

t,n +PEVch
t,n +HEVch

t,n +
∑

i∈IPtH

qi,t,n

ηi
+Dind,const

n + h2el
t,n + eafel

t,n

+
∑

m
f trans
t,n,m + ltrans,loss

t,n ≤
∑

i∈Iel

pi,t,n + bdch
t,n +

∑

r
wt,n,r∀t, n

(2) 

The left-hand side of this equation is the sum of the electricity demand at 
each timestep and node, and includes the: historic electricity demand 
(Del

t,n); charging of stationary batteries (bch
t,n); charging of personal electric 

vehicles (PEVch
t,n) and heavy electric vehicles (HEVch

t,n); and the electricity 
for power-to-heat, calculated as the heat produced divided by the 
technology efficiency, (qi,t

ηi
). In addition, three types of industrial elec

tricity loads, chosen to represent different levels of demand flexibility, 
are included: electricity demand at a constant level from new industrial 
establishments (Dind,const

n ); electricity fed to electrolyzers for hydrogen 
production (h2el

t,n); and electricity fed to electric arc furnaces in the steel 

industry (eafel
t,n) (further details in Section 2.3.6). Electricity can be 

transferred (f trans
t,n,m) from node (n) to a neighboring node (m) through the 

transmission grid, and this is associated with a loss (ltrans,loss
t,n ) that is 

assumed to occur in the sending node. The transferred power is allowed 
to take negative values to allow for the import of power to a node, while 
the loss is based on the absolute quantity of transferred electricity and is, 
thus, always positive. The sum of the electricity demands is, for each 
timestep and node, less than or equal to the sum of the produced 

Fig. 1. An overview of the main components in the EHUB Nordic model.
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electricity (pi,t,n) plus the discharge from stationary batteries (bdch
t,n ) and 

electricity imported from continental Europe (wimp
t,n,r).

A similar equation can be written for the heat balance: 

Dheat
t,n + tesch

t,n ≤ tesdch
t,n +

∑

i∈IH

qi,t,n∀t, n (3) 

Here, the fixed hourly heat demand (Dheat
t,n ) plus the charging of thermal 

energy storage (tesch
t,n) is always less than or equal to the sum of the 

produced heat (qi,t,n) plus discharge from storage (tesdch
t,n ) for each 

timestep and node.
Similarly, for hydrogen: 

DH2
t,n + h2storech

t,n ≤ h2el
t,n*ηH2 + h2storedch

t,n ∀t, n (4) 

This ensures that the sum of the hydrogen demand (DH2
t,n ) plus the 

charging of hydrogen storage units is less or equal to the produced 
hydrogen (h2el

t,n*ηH2) plus discharge from hydrogen storage (h2storedch
t,n ), 

for each node and timestep. Thus, neither hydrogen nor heat can be 
transported between nodes.

2.1.1. Geography and transmission grid
The area to which the model is applied is shown in Fig. 2, together 

with the geographic resolution, which is based on the locations of the 
transformer stations (≥220 kV) across the Nordic region, based on Year 
2023 data from ENTSO-E [35]. The model does not account for endog
enous expansion of transmission grid capacity. Instead, it incorporates 
expansions of the grid based on estimates from the Nordic TSO’s [3637], 
planned to be operational before Year 2040.

Each node included in the model corresponds to a transformer sta
tion in the transmission grid, connected to other nodes through an 
exogenously provided grid (blue lines in Fig. 2). The geographic loca
tions of these transformer stations serve as centroids for generating 
Voronoi cells that define the geographic areas within the Nordic coun
tries. Consequently, each node is associated with a specific geographic 
area, from which capacity profiles and production patterns for wind and 
solar power are derived. The red lines in Fig. 2 illustrate DC links, both 

within the nodes in the model and to neighboring countries in Europe.
The transmission grid is modeled according to the DC load flow, also 

referred to as linearized load flow, as described in [38] and [39]. This 
linearization of AC load flow is based on the following assumptions: 

• Voltage angle difference between the nodes is small, with sin(Δθ) ≈
Δθ and cos(Δθ) ≈ 0.

• The voltage magnitude is fixed at a nominal voltage.
• Reactive power flow is ignored.
• Conductance is negligible relative susceptance.

As a result, the power flow between any two nodes (n and m) at all 
timesteps can be formulated as: 

f trans
t,n,m = Bn,m*

(
θt,n − θt,m

)
∀t, n,m (5) 

where the power flow between two nodes (f trans
t,n,m) is equal to the sus

ceptance (Bn,m) of the line connecting the nodes, multiplied by the 
voltage angle difference between the nodes. The susceptance values for 
the modeled grid are based on [40] in which the grid is validated using a 
full AC power flow model.

In addition, the flow between nodes is constrained by the maximum 
capacities of the grid lines. These capacities are determined by selecting 
the lowest value from the calculations based on thermal limitations and 
maximum voltage angle, as defined by Equations (6) and (7): 

Fmax,thermal
n,m =

̅̅̅
3

√
*Vrated

n,m *Irated
n,m *SF∀n,m (6) 

Fmax,angle
n,m = Bn,m*Δθmax*SF∀n,m (7) 

where Vrated
n,m and Irated

n,m are the rated voltages and currents, respectively, of 
each line based on a previous publication [40]. The maximum voltage 
angle difference, Δθmax, is set to 30◦ as the approximation sin(Δθ) ≈ Δθ 
introduces a small error (less than 2.5% [41]) within this range, as long 
as the node voltages are not suppressed relative to the assumed nominal 
voltage [39]. The term SF is a safety factor used for HVAC lines to ac
count for the n-1 security and additional grid load from reactive power, 
here set at 0.7, in line with similar grid modeling studies [25]. Trans
former stations with voltage levels between 220 kV and 400 kV are 
modeled as grid lines with infinite maximum capacity and a fixed sus
ceptance. Thus, it is assumed that the capacity of the transformer sta
tions between voltage levels does not limit the magnitude of transferable 
power. Grid losses are assumed to be proportional to the length of the 
transmission lines, with 5% power loss per 1,000 km of transferred 
distance based on [42] and [43].

DC links between two nodes within the model (red lines in Fig. 2) are 
treated as point loads or generators, ensuring that the production at one 
end of the DC link equals the load at the other end. DC connections to 
areas outside the modeled region (see red lines to outside regions in 
Fig. 2) are allowed to have both positive and negative values, repre
senting imports and exports, respectively, and are constrained by a fixed 
upper limit for maximum capacity without any option for the model to 
increase this capacity.

The model permits electricity trade with continental Europe through 
existing interconnections, shown as red lines linking to grey regions in 
Fig. 2. The hourly prices of imported and exported electricity are derived 
from a model of the European energy system originally formulated by 
Göransson et al. [44], and further developed by Öberg et al. [45] to 
incorporate future industrial electrification projections. This linear in
vestment optimization model applies a greenfield approach to a Year 
2050 energy system for northern Europe, assuming zero fossil CO2 
emissions. The model includes projected future electricity, heat, and 
transportation demands, and is run using Year 2019 weather data to 
align with the demand patterns used in this study. The resulting long- 
term marginal costs of electricity, used in the model as the import/ 
export price for each externally connected bidding zone, are based on a 

Fig. 2. The geographic area to which the EHUB model is applied, illustrating 
the Voronoi cells, transmission grid (blue lines) and DC connections (red lines). 
Gray color indicates areas outside the modeled region.
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generation mix that is dominated by wind, nuclear, and solar PV power.

2.1.2. Available technologies
Table 1 illustrates the assumed technical lifetimes, investment costs 

and efficiencies of the available technologies in the model. Investment 
costs and lifetimes are based on estimates for Year 2040, taken from 
Danish Energy Agency [46] if not otherwise stated in the table. Nuclear 
capacity is limited to nodes with already existing nuclear power 
production.

2.1.3. Varying renewable electricity production
The model allows for investments in renewable electricity technol

ogies, including onshore wind (WON), offshore wind (WOFF), PV parks 
(PVP), and rooftop PV (PVR). The production levels from these sources 
are constrained by both their hourly capacity factors and the available 
suitable land in each node, following the methodology outlined in [49]. 
Data for hourly capacity factor profiles are derived from ERA5 re- 
analysis data. The hourly wind speeds in ERA5 are bias-corrected 
using the annual average wind speeds from the Global Wind Atlas at 
high geographic resolution (250 m).

The maximum installable capacity for each VRE technology at each 
node is determined by the available land area, factoring in restrictions 
such as built environments and protected areas. Areas with low resource 
endowment are excluded (annual average 100-m wind speeds <6 m/s 

onshore and <7 m/s offshore, or average solar insolation <140 W/m2). 
After identifying the usable land, a reduction factor [50] is applied to 
account for other limitations, such as social acceptance and military 
zones. This adjusted area is then converted to a maximum capacity 
constraint, based on the power density of each technology. The main 
assumptions used to generate the data are detailed in Table 2.

2.1.4. Hydropower
Hydropower as of Year 2024 is included in the model as existing 

capacity, with no further expansion allowed. The operation of all hy
dropower is limited by the installed maximum capacity in each node 
according to Equation (8): 

phydro
n,t ≤ SHydro

n ∀n, t• ∈ Hydro R,Hydro RRP (8) 

In addition, the hydropower stations are categorized into two types: 
Reservoir (Hydro_R), and Run-of-River with Pondage (Hydro_RRP), 
based on [35]. Hydro_RRP refers to stations located on rivers with 
relatively small upstream water storage behind the station’s weir, 
making their production and storage levels dependent on the operation 
of upstream power plants. Reservoir hydropower is, in contrast, 
modeled as operating independently of other hydropower nodes. This 
distinction is important because a significant portion of the installed 
hydropower capacity in the studied region, particularly in Sweden and 
Finland, is of the Hydro_RRP type, which offers less operational flexi
bility compared to Hydro_R.

2.1.4.1. Reservoir hydropower. Data for Hydro_R are based on the Eu
ropean Commission’s Joint Research Centre Hydropower plants data
base [51], in terms of installed maximum capacity, storage, and annual 
expected production. The storage balance for nodes with Hydro_R can be 
formulated as: 

lhydro
n,t = lhydro

n,t− 1 − phydro
n,t +Wlocal

n,t *Mhydro
n ∀t, n ∈ Hydro R (9) 

where lhydro
n,t represents the water storage level at each bus per timestep, 

measured in GWh. The storage level at any given timestep must equal 
the storage level from the prior timestep lhydro

n,t− 1 minus the hydropower 

production phydro
n,t , plus the local water inflow to the storage (Wlocal

n,t ), 

which is multiplied by an energy conversion factor (Mhydro
n ), to convert 

water flow into energy flow, as expressed in Equation (10): 

Mhydro
n =

Phydro
n∑

t∈TWlocal
n,t

∀n ∈ Hydro R,Hydro RRP (10) 

where Phydro
n refers to the exogenously determined, expected annual 

hydropower production volume for each node, while Wtotal
n,t represents 

Table 1 
Overview of data for technologies included in the EHUB Nordic model. In
vestments costs are specified in Year 2020 monetary value

Technology Technical 
Lifetime 
(Years)

Investment Cost 
(EUR/kW)

Efficiency

Production technologies ​
Onshore wind 30 1090 -*
Offshore wind 30 1680 -*
Solar PV park 40 320 -*
Solar PV roof 40 699 -*
Reservoir hydropower - - -*
Hydropower run of river 

with pondage
- - -*

Gas turbine biogas 25 575 0.42
Combined-cycle gas 

turbine biogas
25 866 0.59

Combined-cycle (back- 
pressure) gas turbine 
biogas

25 1222 0.51, 
alpha=2

Nuclear (based on [47]) 60 6181 0.33
Electric boiler 25 60 1
Heat pump 25 810 COP=3
Heat only-boiler biomass 20 430 1.15
Heat only-boiler biogas 25 50 1.04
Combined heat and power 

biomass
25 3360 0.27, 

alpha=0.4
PEM Electrolyzer 25 500 0.62

Storage technologies ​
Lithium ion battery 

storage
25** 80 1

Lithium ion battery 
discharge capacity

25 60 1

Tank thermal energy 
storage

25 3 0.2 %/day 
loss

Hydrogen storage LRC 
(Lined rock cavern , 
based on [48])

30 11 1***

Hydrogen storage Tank 25 29 1***

*Efficiency is included in the production profiles per technology. ** No battery 
degradation over time is assumed in the model. The 25-year technical lifetime 
applied is based on the maximum calendar life, rather than the maximum 
number of cycles. ***Hydrogen storage is associated with no loss, but represents 
an additional electricity demand for the compressor, corresponding to 12% of 
the stored energy.

Table 2 
Excluded land types, reduction factors and power densities for the varying 
renewable energy sources included in the model.

Technology Excluded land types Reduction 
factor

Power density 
(MW/km2)

Onshore 
wind

• Highly populated areas
• Protected areas
• Wetlands

0.05 5

Offshore 
wind

• Protected areas
• Water depth >40 m
• Water too near shore 

(within 5 km)

0.33 8

Solar PV park • Highly populated areas
• Protected areas
• Forests

0.05 45

Solar PV roof • Sparsely populated 
areas

• All areas not roof

0.05 45
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the total inflow of water per node and timestep. The water inflow pro
files per timestep are based on Swedish hydropower data [52,53].

In addition, the storage level at any timestep must not exceed the 
available maximum storage capacity for the node, as defined by Equa
tion (11). This constraint applies to both Hydro_R and Hydro_RRP: 

chydro− store
n ≥ lhydro

n,t ∀n ∈ Hydro R,Hydro RRP (11) 

2.1.4.2. Run of river hydropower with pondage. Run-of-river hydropower 
(Hydro_RRP) nodes are limited by the same constraints on maximum 
production and storage capacities, as in Equations (8) and (11). The 
operation is also limited by a minimum production level constraint 
equal to 10% of the installed maximum capacity (SHydro

j ), to account for 
minimum flow regulations for rivers, as shown in Equation (12): 

phydro
n,t ≥ SHydro

n *0.1∀t, n ∈ Hydro RRP (12) 

In addition, the storage balance of RRP nodes will depend on the 
operation of upstream nodes in the same river, as the total inflow of 
water will be a product of both the river inflow and local inflow. Thus, 
the storage balance for RRP nodes can be written as: 

lhydro
n,t = lhydro

n,t− 1 − phydro
n,t +Vlocal

n,t *Mhydro
n +

(

phydro
n− 1,t− 1*

Mhydro
n

Mhydro
n− 1

)

∀t, n ∈ Hydro RRP

(13) 

Equation (13) is similar to that describing the storage balance for 
Hydro_R nodes [Equation (9)], with the only difference being the 
addition of the expression in the last parenthesis representing the inflow 
of water from the upstream node in the same river. Here, phydro

n− 1,n− 1 is the 
production from hydropower in the previous timestep in the upstream 

node (n-1) while the ratio M
hydro
n

Mhydro
n− 1 

relates to the electricity production po

tential in nodes n and n-1, according to Equation (10). Thus, this factor 
accounts for the fact that the value of water varies along the river 
dependent especially on available head.

As the coupling of production patterns between nodes in the same 
river increases the computational load, clustering to reduce the number 
of Hydro_RRP nodes was carried out according to the following 
principles 

• Hydro_RRP nodes connected in series in the transmission grid are 
aggregated;

• Univalent Hydro_RRP nodes (dead-ends) are merged until only one 
such node in a branch remains;

• Only nodes within the same bidding zone are clustered; and
• Only nodes in the same river are clustered.

2.1.5. Dispatchable thermal electricity generation
All thermal generation of electricity (pi,t,n) per timestep, including 

nuclear generation, is limited by the installed capacity of each tech
nology i at each node (si,n) according to Equation (15): 

pi,t,n ≤ si,n∀i ∈ Ithermal (15) 

Thermal production is associated with both part-load costs and start-up 
costs, so as to discourage unnecessary cycling whilst keeping the model 
formulation linear, similar to the implementation in [44]. The variable 
part-load cost, (cpartload

i,t,n ), is calculated from the difference between the 

production in operation (spinning) (vspin
i,t,n) and the actual current pro

duction level (pi,t,n), for each timestep and technology. This cost is 
multiplied by a fixed cost associated with deviating from the nominal 
load, (Cpartload

t , which is determined by the efficiency of each technology 
at part-load), as expressed by Equation (16): 

cpartload
i,t,n = Cpartload

t *(vspin
i,t,n − pi,t,n)∀i ∈ Ithermal (16) 

Similarly, all thermal production is associated with a start-up cost (cstart
i,t,n ) 

that is calculated based on how much thermal production capacity is 
started per node and timestep (von

i,t,n), multiplied by a fixed start-up cost 
per technology (Cstart

t ), according to Equation (17): 

cstart
i,t,n = Cstart

t *von
i,t,n∀i ∈ Ithermal (17) 

The value for von
i,t,n is added to vspin

i,t,n after start-up, to track the operational 
status of thermal units. In addition, the operation of thermal units is 
constrained by start-up times, which means that the time that elapses 
between shutting down and restarting a thermal plant must exceed the 
specified start-up time for that particular technology. This ensures that 
thermal units cannot be cycled on and off too quickly, adhering to the 
technology’s operational limitations.

This implementation of thermal production models each technology 
at each node as a single production unit, without an absolute constraint 
on minimum capacity. By maintaining a linear structure, the model 
significantly reduces the computational time while still capturing the 
key operational flexibility limitations of thermal units.

Since fossil CO2 emissions are not permitted in the model, gas tur
bines are only allowed to operate on biogas (hydrogen blending is not 
included as a technology option). The cost of biogas is calculated based 
on an assumed biomass price of 40 EUR/MWh, with additional costs for 
capital depreciation and operation derived from a 200 MW commercial 
biogas plant, as referenced in [54]. This results in a biogas cost of 77 
EUR/MWh, which is applied in this study.

2.1.6. Heat generation
Heat production (qi,t,n) from incineration is governed by the same 

constraints as outlined in Equations (15)–(17). In addition, heat can be 
supplied by heat pumps (HP) and electric boilers (EB). Heat pumps are 
assumed to operate with a Coefficient of Performance (COP) of 3 
throughout the year, a conservative estimate that is chosen deliberately 
to avoid overestimating their performance.

2.2. Demand data and modeling

Each node in the EHUB Nordic model is associated with an exoge
nously predetermined demand for the three energy carriers – electricity, 
heat, and hydrogen – within the modeling framework. This local de
mand is derived from four input demand categories: historic electricity 
demand; heat demand; transport demand; and future industrial demand.

2.2.1. Traditional electricity demand
The traditional electricity demand profile in the model, based on 

historic data, is derived from measured hourly data for each bidding 
zone in Year 2019, sourced from the ENTSO-E Transparency Platform 
[55]. Thus, all the modeled nodes within the same bidding zone have the 
same demand profile. To determine the magnitude of the annual elec
tricity demand of each node in the model, annual municipal electricity 
consumption data were used. Municipalities were divided into 1×1 km 
grid cells, with each cell being assigned an electricity demand propor
tional to its share of the total land area in the municipality. These grid 
cells were then mapped to the corresponding Voronoi cells (one per node 
in the model), to calculate the aggregated electricity demand for each 
node. Traditional electricity demand data are assumed to remain un
changed when looking at future scenarios and are included as a constant 
parameter.

2.2.2. Heat demand
Heat demand profiles for district heating are derived from mea

surement data collected from four different district heating companies 
located throughout the modeled region for weather Year 2019. Each 
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bidding zone is assigned one of these profiles according to geographic 
proximity. The total annual heat demand for each bidding zone is based 
on national statistics and is assumed to be the same as the Year 2019 
level. The allocation from the bidding zone level to individual nodes 
within the bidding zone is assumed to be proportional to the population 
size.

2.2.3. Electricity demand for transportation
The model includes the electricity demand from the transportation 

sector, covering cars, buses, and trucks. It assumes that by Year 2050, 
the total fleet size in each bidding zone will be the same as in Year 2019, 
albeit fully electrified. The distribution of electric vehicles from bidding 
zones to individual Voronoi cells is based on population proportionality. 
No vehicles are assumed to have the capability for flexible charging or 
participation in vehicle-to-grid (V2G) discharging. This conservative 
assumption is adopted to avoid overestimating the transport sector’s 
contribution to system flexibility. The charging patterns for EVs are 
modeled according to the methodology of Taljegård et al. [56].

2.2.4. Industrial electricity demand
In addition, planned industrial facilities have been manually added 

to their proposed geographic locations, based on available estimates 
[57–63]. The industrial processes included were selected for their 
anticipated key roles in the electrification of industry within the studied 
geographic region. Table 3 provides an overview of the future industries 
incorporated into the optimization, and outlines how they are modeled.

2.3. Scenario description

Given the significant uncertainties surrounding the future electricity 
demand in terms of timing, magnitude, and geographic distribution, two 
electrification scenarios are analyzed: High Demand and Moderate De
mand. The assumptions made regarding the future electricity demand 
under each scenario are outlined in Table 4. These values exclude 
endogenously generated demands in the model, such as power-to-heat, 
grid losses, and trade with continental Europe. As shown, the pro
jected demand in the High Demand scenario is significantly higher than in 
the Moderate Demand scenario, especially for flexible demands, such as 
hydrogen production. Fig. 6 illustrates the geographic distribution of the 
annual net demand for the two scenarios. Here, ‘annual net demand’ 
refers to the annual demand remaining after subtracting the existing 
levels of hydropower and nuclear production at each node. This should 
not be confused with the concept of ‘net load’, which describes the re
sidual demand after accounting for production from variable renew
ables. For both modeled scenarios, no emissions of fossil CO2 are 
permitted.

Fig. 3 shows that most of Finland and Denmark, along with southern 
Sweden and Norway’s coastline, are dominated by nodes with positive 

annual net demands (red areas). In contrast, regions with existing hy
dropower production, particularly inland Norway and northern Sweden, 
exhibit negative annual net demands (blue areas). As the demand shifts 
from Moderate to High, areas of larger positive annual net demand 
emerge, especially in northern Sweden, along Finland’s southern coast, 
and around Sweden’s western coast. The presence of existing nuclear 
power is represented by dark-blue cells in the maps, located in southern 
Sweden and southern Finland.

3. Results

Fig. 4 presents the annual electricity production levels for the Mod
erate demand scenario and High demand scenario, while Fig. 8 illustrates 
the corresponding installed technology capacities, categorized as 
Renewable, Thermal, and Storage. In the Moderate demand scenario, 
onshore wind emerges as the dominant source of electricity generation, 
complemented by exogenously included hydropower and nuclear power 
(represented by dashed bars in Fig. 4), with smaller contributions from 
offshore wind and utility-scale solar PV. As the electricity demand in
creases in the High demand scenario, production from all VRE sources 
increases, with onshore and offshore wind experiencing the largest ab
solute increase in annual output, while solar PV exhibits the highest 
relative growth in terms of output. The annual levels of production from 
nuclear and hydropower remain constant across both scenarios.

Fig. 8 further illustrates that the installed capacity of thermal peak
ing technologies with relatively low investment costs, such as open-cycle 
gas turbines, is higher in the High demand scenario than in the Moderate 
demand scenario. In terms of storage technologies, battery capacity in
creases by 35% as demand rises. However, the absolute size of the 
battery capacity remains small in comparison to those of the lined rock 
caverns used for hydrogen storage and thermal tank storage. There is a 
substantial difference in hydrogen storage capacity between the two 
scenarios (Fig. 8). These results should be interpreted in light of the 
different levels of additional electricity demand introduced in the two 
scenarios: 111 TWh/year in the Moderate demand scenario, and 268 
TWh/year in the High demand scenario. Moreover, a significant share of 
the additional demand in the High demand scenario is flexible, primarily 
due to increased hydrogen consumption, as detailed in Table 4.

Table 3 
Types of industrial demands included in the model and how they are 
implemented.

Type of industry Implementation of demand in EHUB Nordic model

Fertilizer Flexible hydrogen production. For details, see Supplementary 
S1: Modeling of industrial processes.

Electrofuel and 
refineries

Flexible hydrogen production. For details, see Supplementary 
S1: Modeling of industrial processes.

Plastic Flexible hydrogen production. For details, see Supplementary 
S1: Modeling of industrial processes.

Steel (HBI 
production)

Constant HBI demand to direct reduction shaft, with flexible 
hydrogen production and storage. For details, see 
Supplementary S1: Modeling of industrial processes.

Steel (EAF 
operation)

Flexible EAF operation, with HBI storage. For details, see 
Supplementary S1: Modeling of industrial processes.

Battery Constant demand
Server halls Constant demand
Others Constant demand

Table 4 
Future electricity demand per category exogenously provided to the model, as 
applied to the Nordic region (excluding Iceland). The table does not include 
endogenously created demands in the model from power-to-heat, grid losses or 
electricity exports.

Type of demand Resulting demand [TWh]
Moderate Demand 
scenario

High Demand 
scenario

Historical electricity demand 368 368
Future industry – Steel 20 68
Future industry – Fertilizer 0 5
Future industry – Batteries 4 4
Future industry – Refineries and 

plastics
0 56

Future industry – Server halls 20 40
Future industry – Others 5 10
Transportation – Buses and trucks 24 47
Transportation – Personal electric 

vehicles
38 38

Total exogenous electricity 
demand

479 636

Of which is added demand from 
electrification

111 268

Of which is hydrogen production in 
electrolyzers

14 110

Heat demand 112 112
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3.1. Optimal localization of onshore wind

As shown in Fig. 5, the optimal installed capacity of onshore wind (as 
obtained from the modeling) increases from 40 GW in the Moderate 
demand scenario to 63 GW in the High demand scenario. The localization 
of wind power capacity for the two scenarios is illustrated in Fig. 6, 

where the color scale indicates the wind conditions expressed in annual 
full-load hours (FLH) for each node. Since the maximum allowed ca
pacity varies significantly between nodes, the maps display the locations 
and wind conditions of new production but not the magnitudes of pro
duction capacity. A comparison of the two maps reveals that the High 
demand scenario introduces substantially more blue areas, indicating 
that investing in nodes with high annual production volumes is not al
ways the optimal choice when additional load is introduced into the 
system. Instead, new onshore wind is concentrated to regions with high 
annual net demand, as is evident when comparing Fig. 6 and Fig. 6.

The relationship between installed onshore wind and annual net 
demand is further illustrated in Fig. 7. In this figure, onshore wind in
stallations across all the modeled nodes are plotted against FLH and 
annual net demand for both the Moderate demand scenario and High 
demand scenario. Blue markers indicate nodes where onshore wind is 
installed. The vertical line marks the boundary between the positive and 
negative annual net loads, while the horizontal line represents the 
average number of FLH across all nodes with onshore wind capacity in 
the model. These two lines divide each plot into four quadrants. The 
average capacity values shown in each quadrant reflect the average level 
of utilization of the permitted onshore wind capacity for the nodes 
falling within that quadrant.

As expected, the highest utilization of onshore wind capacity is found 
in nodes with high FLH and a positive annual net demand, corre
sponding to the top-right quadrants in the figures. In fact, all nodes with 
FLH >3,300 and annual net demand >1,000 GWh/year see investments 
in onshore wind to the maximum allowed capacity in both scenarios.

In the Moderate demand scenario shown in Fig. 7, a larger share of 
onshore wind capacity is utilized in the top-left quadrant compared to 
the bottom-right quadrant. This suggests that, at this demand level, 
favorable wind conditions play a more-significant role in the optimal 
placement of onshore wind capacity than proximity to local demand. 
However, as the demand increases from Moderate to High, this pattern 
shifts, with most of the new WON production appearing in the bottom- 
right quadrant. This change aligns with the increase in blue areas in the 
right-hand map of Fig. 6, which suggests that as demand grows and 
transmission grid congestion increases, proximity to demand becomes a 
more-critical factor for the optimal siting of onshore wind. This is 
mirrored by the lower number of average FLH of installed onshore wind 
in the High demand scenario (2,960 FLH) compared with the Moderate 
demand scenario (3,100 FLH), despite many sites with higher annual 
production potential being available, as indicated by the orange circles 
in the upper half of plot B in Fig. 7.

Fig. 3. Annual net demands for electricity of the modeled nodes for the Moderate demand scenario and High demand scenario

Fig. 4. Annual electricity production levels per technology for the Moderate 
demand scenario and High demand scenario.
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Deviations from the expected trend of favoring wind power in
stallations in nodes with high annual production and positive net de
mand are evident in Fig. 7. The area marked as “1” in Fig. 7 highlights 
investments in nodes that are characterized by poor wind conditions and 

negative annual net demand. These deviations are primarily observed in 
the High demand scenario, and can be attributed to the geographic 
proximity of these nodes to major demand centers, particularly within 
the two highlighted areas in Fig. 6. Consequently, the modeled cost- 

Fig. 5. Overview of installed capacities from the modeled results for the Moderate demand scenario and High demand scenario. The hatched bars for Nuclear and 
Hydropower indicate that these capacities are not model outputs, but have been exogenously provided to the model. The results are aggregated for the entire 
modeled region, with the constraint that no fossil CO2 emissions are permitted.
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efficient capacity of onshore wind in these regions appears to be driven 
by a high regional electricity demand, despite poor wind conditions.

Another deviation from the expected pattern in Fig. 7 is marked as 
“2” and is present in both the Moderate demand scenario and High demand 
scenario. This deviation arises from the colocation of onshore wind 
(WON) and nuclear power. Despite having low net demands for elec
tricity, as a result of nuclear power production, these nodes are favor
able for onshore wind generation due to their strong grid connections 
and proximity to areas with high annual net demands.

3.2. Optimal localization of offshore wind

Fig. 8 illustrates the optimal siting of offshore wind in both the 
Moderate demand scenario and High demand scenario. The maps show the 
land areas closest to the actual locations where offshore wind parks 
would be installed. Similar to the depiction of onshore wind power, the 
cell color reflects the number of annual FLH, albeit with a different scale. 
Notably, despite an increase in offshore capacity from 14 GW to 26 GW, 
the optimal siting remains largely consistent across both scenarios. The 
regions with the highest concentration of offshore wind installations 
include southern Finland and the northern part of Sweden’s west coast.

Unlike onshore wind, higher electricity demand does not lead to the 
appearance of any new blue cells in the right-hand side map in Fig. 8, 
indicating minimal investment in areas with low numbers of FLH for 
offshore wind in any scenario. This pattern is further illustrated in Fig. 9, 
which demonstrates how offshore wind installations correlate with FLH 
and the node annual net demand. The plots follow the same structure as 
described for Fig. 7, with quadrants defined by average FLH and the 
boundary between positive and negative annual net loads, and the 
average capacity values displayed for each quadrant.

Here, it becomes clear that the offshore wind investments in both 
demand scenarios are almost exclusively situated in nodes with favor
able wind conditions and positive annual net demands, shown as blue 
markers in the top-right quadrant. This contrasts with onshore wind, 
where investments in nodes with less-favorable wind conditions are 
common, particularly in the High demand scenario (cf. Fig. 7). The dif
ference can be attributed to the cost structures of the two technologies, 
as outlined in Table 4. Thus, offshore wind has a 50% higher investment 
cost than its onshore counterpart. Consequently, the model only finds 
offshore wind power to be cost-effective at locations that yield suffi
ciently high annual numbers of FLH . This is also reflected by the average 
number of FLH for offshore wind, which remains largely constant 

between the two scenarios, with 4,630 FLH in the Moderate demand 
scenario and 4,620 FLH in the High demand scenario .

Similar to onshore wind, some deviations from the expected patterns 
appear for offshore wind in Fig. 9, indicated by numbered circles in the 
plots. As with onshore wind, colocation with nuclear power (circled as 
“1” in the plot) promotes offshore wind installations, despite low annual 
net demands at these nodes, particularly in the Moderate demand scenario 
when the transmission grid is less-congested. In addition, as indicated by 
the circles marked as “2” in the plots, several nodes with excellent wind 
conditions and high positive annual net demands do not see offshore 
wind installations as part of the optimal solution. These nodes, charac
terized by annual FLH >4,500 and annual net demands >4,000 GWh, 
are all located near DC link connections to continental Europe (illus
trated in Fig. 2). The prices of electricity imports and exports through 
these DC links are significantly impacted by a high share of wind-based 
generation in the surrounding region, leading to overspill effects that 
reduce the economic attractiveness of offshore wind power in these 
nodes within the model. Thus, the connection to wind-dominated 
northern continental Europe lowers the value of wind power in the 
nodes that lie closest to external DC links.

The third deviation, marked as “3” in Fig. 9, originates from offshore 
wind power in a node in western Norway, where significant grid 
congestion occurs. This results in an abnormally high value for local 
electricity production, which drives offshore wind installations despite 
comparatively low numbers of FLH.

3.3. Optimal localization of solar PV

The deployment of utility-scale solar PV in the modeled results is 
presented in Fig. 10 for both the Moderate demand scenario and High 
demand scenario. Similar to what is shown in Fig. 5, Fig. 14 further 
emphasizes that higher demand is associated with significant expansion 
of solar PV installations, as evidenced by the increased colored areas in 
map B. Moreover, Fig. 10 reveals a notable shift in the geographic dis
tribution of new PV capacity in the High demand scenario compared with 
the Moderate demand scenario. New installations in the High demand 
scenario are primarily concentrated along the coast of Finland, despite 
these areas having relatively low FLH potential for solar PV. Instead, the 
spatial distribution appears to be primarily influenced by colocation 
with positive annual net demand, as suggested by a comparison of 
Fig. 10 with Fig. 6.

Similar to the analysis conducted for onshore and offshore wind, the 

Fig. 6. Geographic localization of onshore wind from the modeled results. Colored cells represent the geographic locations where onshore wind is installed. The color 
scale indicates the number of full-load hours for offshore wind in each cell with onshore wind. Highlighted areas are referenced in the text.
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relationship between FLH and annual net demand for PV installations in 
the modeled results can be illustrated using a scatter plot (Fig. 11). This 
figure demonstrates that in the Moderate demand scenario, solar PV in
vestments are almost exclusively concentrated in nodes with positive 
annual net demands and relatively high numbers of annual FLH. One of 
few exceptions to this, marked with a circle labeled “1” in plot A in 
Fig. 11, corresponds to a situation with colocation of PV and nuclear 
power.

With the introduction of increased electricity demand in the High 
demand scenario, most of the new PV capacity is introduced in nodes 
with positive annual net demands – particularly in areas where the 
number of annual FLH exceeds the average. In nodes with an annual net 
demand exceeding 5,200 GWh and above-average number of FLH , PV 
installations are found to be optimal across all nodes (area marked “2” in 

Fig. 11).
Solar PV exhibits the lowest level of investment in nodes with 

negative annual net demands, when compared with onshore and 
offshore wind power. In the Moderate demand scenario, only 3% of the 
total PV capacity is allocated to such nodes, increasing slightly to 8% in 
the High demand scenario. This dependency of optimal PV placement 
should be understood in the context of its production profile, especially 
when compared with other VRE sources. The diurnal nature of PV 
production, characterized by high-amplitude and short-duration peaks, 
makes it less-suitable for long-distance transmission in a grid with 
limited capacity, particularly under conditions of high demand and 
heavy grid congestion.

However, certain data-points in the High demand scenario appear to 
deviate from this general trend. These nodes, highlighted as “3” in plot B 

Fig. 7. Scatter plot depicting the installation of onshore wind units in all nodes in the model, plotted against full-load hours (y-axis) and the node annual net demand 
(x-axis) for the two scenarios. The blue markers indicate that onshore wind is installed in that node. The horizontal dotted line represents the average FLH value of all 
included nodes, while the vertical line indicates the distinction between positive and negative node annual net demands. The presented Average capacity values 
represent the average utilized onshore wind capacity for the datapoints located in the respective quadrants. Nodes with zero onshore wind capacity are excluded from 
the plot. Datapoints outside the diagram limits are included on the outside borders of the plot for visibility reasons. Numbered circles indicate deviating datapoints, as 
explained in the text.
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in Fig. 11 for the High demand scenario, are situated in close proximity to 
large demand centers and are connected to positive net demands 
through a strong transmission grid. Thus, the electricity generated at 
these locations is consumed in neighboring nodes and can be regarded as 
part of a localized solution rather than as part of a centralized produc
tion system. This is similar to the behavior of onshore wind, illustrated in 
Fig. 6. Here, regional areas defined by congestion in the transmission 
grid become associated with a higher value for localized electricity 
production, thus making the production technology, in this case solar 
PV, part of the optimal solution despite unfavorable production condi
tions in terms of FLH.

Only 0.9% of the total solar PV investments from the Moderate de
mand scenario are not included in the optimal solution for the High de
mand scenario, which is a lower share than for onshore wind (2.5%) or 
offshore wind (6.5%). This suggests that solar PV is the technology 
whose optimal geographic placement is least-sensitive to increases in the 
electricity demand at an aggregate level. However, none of the inves
tigated technologies exhibit a strong tendency to shift their optimal 
localization as new demand centers emerge in the High demand scenario. 
This indicates that decisions regarding the placement of new production 
technologies can be made with confidence, even in the face of significant 
uncertainties related to the absolute size of future demand projections.

3.4. Optimal localization of gas turbines and batteries

As illustrated in Fig. 8, the deployment of gas turbines increases the 
capacity from 1.5 GW to 3.8 GW in the High demand scenario, while 
battery capacities exhibit a similar expansion, growing from 11 GWh to 
15 GWh. Fig. 12 provides a spatial representation of the gas turbines and 
batteries in the High demand scenario. Similar to wind and solar power, 
the optimal siting of gas turbines and batteries is influenced by the 
localization of a high annual net demand for electricity. For instance, 
regions such as southern Finland, western Norway, and the Oslo area 
experience significant installations of gas turbines and exhibit high 
annual net demands for electricity (as shown in Fig. 6). However, ex
ceptions exist, such as in northern Sweden, where despite a substantial 
net electricity demand, gas turbines and batteries are entirely absent. 
This absence can be partially attributed to the temporal flexibility of 
new demand in the region –as in the case of hydrogen production – 
which can be shifted over time and does not necessarily contribute to a 
new peak demand. Furthermore, northern Sweden benefits from sub
stantial hydropower capacity, which effectively manages fluctuations in 

the electricity demand.
For nodes that lack hydropower availability, the placement of gas 

turbines and batteries is strongly correlated with a firm peak demand 
relative to the node’s total import capacity – a metric termed ‘peak 
import congestion’. This metric is calculated by dividing the annual firm 
peak demand of a node by its total import capacity from neighboring 
nodes in the transmission grid. Fig. 13 presents the peak import 
congestion levels across all the modeled nodes in the High demand sce
nario, sorted in descending order. The upper graph depicts the installed 
gas turbine capacity per node (red bars), while the lower graph illus
trates the magnitude of the installed stationary battery capacity per node 
(blue bars). Although only the results for the High demand scenario are 
displayed, similar trends are observed for the Moderate demand scenario. 
The figure demonstrates that both technologies are predominantly 
installed in nodes with high peak congestion levels, which are classified 
as ‘locally congested nodes’. In these nodes, the electricity demand 
cannot be met solely through imports from the transmission grid, indi
cating that local grid bottlenecks are a key driver of these investments. 
Around 45% of the total gas turbine capacity and 52% of the capacities 
of the batteries are associated with such locally congested nodes (with 
peak import congestion >0.4).

Fig. 13 further indicates that certain nodes with high congestion 
levels (far to the left-hand side) lack gas turbines and/or batteries. This 
can be attributed to the availability of hydropower with storage at these 
locations. Furthermore, some of the largest gas turbine installations – 
designated as ‘regional power deficit nodes’ in Fig. 13 – are located in 
areas with relatively low peak import congestion values (<0.2). These 
installations, such as those in eastern Finland (depicted in Fig. 16), are 
primarily driven not by local grid bottlenecks but by regional power 
deficits. During periods of low wind production and high electricity 
demand, gas turbines emerge as the most-cost-effective solution for 
meeting the electricity demands in these regions, particularly where 
hydropower availability is low. As a result, the highest concentration of 
gas turbine capacity is observed in eastern Finland, highlighting the 
necessity to have dispatchable generation in this region.

Another deviation from the expected correlation between peak 
import congestion and battery installations is observed in the ‘solar PV 
nodes’ in Fig. 13. These nodes feature battery installations despite 
exhibiting low peak import congestion levels. This pattern can be 
explained by comparing Fig. 12 and Fig. 10, which illustrates the 
optimal siting of solar PV. Batteries in solar PV nodes, for example in 
southern Finland and the Oslo region, are primarily deployed to manage 

Fig. 8. Geographic localization of offshore wind from the modeled results. Colored cells represent the geographic locations on the coast, outside of where offshore 
wind is installed. The color scale indicates the number of full-load hours for offshore wind in each cell with installations.
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diurnal variations in solar power generation rather than to mitigate local 
grid congestion, explaining the strong spatial alignment between battery 
placement and solar PV locations.

3.5. Sensitivity analysis: reduction of maximum grid line capacity

Throughout this study, a safety factor of 0.7 (referred to as the 
‘Standard grid capacity’) has been applied to reduce the maximum grid 
capacity values, accounting for factors such as the n-1 criterion and 
reactive power, in line with similar modeling work [25]. In this sensi
tivity analysis, a safety factor of 1 (referred to as the ‘High grid capac
ity’) is used, meaning that the maximum grid capacities are determined 
solely by thermal constraints, as described in Section 2.1.1. Since the 
observed trends are similar in both demand scenarios, the presented 
results are primarily for the High demand scenario.

Fig. 14 presents the average installed capacities per technology – as a 
share of the maximum allowed capacity – for the quadrants introduced 
in Figs. 10, 12, and 14. These quadrants are defined based on whether a 
node has a positive or negative annual net demand and whether its 
number of FLH is above or below the average (as indicated by the dashed 
lines in Figs. 10, 12, and 14). For example, the bars in the top-left 
quadrant represent the average installed capacities (as a share of the 
allowed maximum) for all nodes with a negative net demand and above- 
average FLH, shown separately for offshore wind, onshore wind, and 
solar PV, under both grid capacity assumptions.

As shown in the figure, expanding the grid capacity leads to a 
reduction in production capacity in the bottom-right quadrant and an 
increase in production capacity in the top-left quadrant, indicating a 
shift towards locations with higher numbers of FLH. This trend confirms 
that as grid capacity increases, proximity to demand centers becomes a 

Fig. 9. Scatter plot depicting the installation of offshore wind in all nodes in the model, plotted against full-load hours (y-axis) and the annual node net demand (x- 
axis). The blue markers indicate that offshore wind is installed in that node. The horizontal dotted line represents the average FLH value for all the included 
datapoints, while the vertical line indicates the distinction between positive and negative annual node net demands. The presented Average capacity values represent 
the average utilized offshore wind capacity for the datapoints located in the respective quadrants. Nodes with zero offshore wind capacity are excluded from the plot. 
Datapoints outside the diagram limits are included on the outside borders of the plot for visibility reasons. The numbered circles indicate deviating datapoints, as 
explained in the text.
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less-critical factor for the optimal siting of wind and solar power 
generation.

Another key observation from Fig. 14 is that solar PV production 
capacity decreases with increased grid capacity across all quadrants as it 
is outcompeted by wind power. The local value of solar PV, which 
contributed to its penetration level in the High demand scenario, di
minishes as a higher grid capacity enables more-flexible electricity 
transfers between nodes. Due to its high-amplitude, high-frequency 
production variations, solar PV benefits less from a moderate increase in 
grid capacity compared with onshore and offshore wind power. In 
contrast, WON and WOFF, with their longer and less-frequent produc
tion variations, are better suited to leveraging increased grid capacity, 
making them more-favorable in the High grid system.

It is also important to emphasize that increasing the grid capacity in 
the sensitivity analysis leads to a significant relocation of VRE produc
tion capacity. This effect is illustrated in Fig. 15, which depicts the share 
of production capacity that is relocated under two different changes to 
the modeling inputs: (1) increasing the demand level from Moderate to 
High; and (2) increasing grid capacity from Standard to High in the High 
demand scenario.

Fig. 15 clearly shows that the results are more-robust to variations in 
demand levels and more-sensitive to how the electricity grid is repre
sented in the model. This sensitivity is further reflected in the impact on 
total system cost, illustrated in Table 5. Compared to the Standard grid 
assumption, total system cost is reduced by 12% in the High demand 
scenario and by 14% in the Moderate demand scenario as the grid safety 
factor is changed from 0.7 to 1. These findings highlight the critical role 
of grid representation in shaping model outcomes and emphasize the 
importance of continued evaluation of how the thermal limits of the grid 
can be utilized more efficiently, for instance through approaches such as 
dynamic line rating. Table 5 also highlights that the majority of costs are 
attributed to investments, reflecting the dominance of power sources 
such as wind and hydropower in the modeled results—technologies 
characterized by low operational costs.

In terms of installed production capacities, the most-pronounced 
differences between the High and Standard grid assumptions are 
observed in the thermal peaking units and battery storage units. Spe
cifically, the installed capacity of open-cycle gas turbines decreases by 
42% with increased grid capacity, while battery storage capacity de
clines by 43%. The enhanced ability to transfer electricity between 
nodes reduces the reliance on local flexibility solutions, particularly in 
nodes that are identified as “locally congested” in Fig. 13, underscoring 

the strong dependence of these technologies on local grid conditions.

4. Discussion

The results presented in this study represent the optimal spatial al
locations of distributed production and storage units from a purely 
techno-economic perspective. Consequently, considerations related to 
other aspects, such as political or social factors, are not included. In the 
studied region, this omission is particularly relevant for offshore wind 
deployment, where for example military interests may significantly in
fluence site selection. Furthermore, the model uses a simplified repre
sentation of social acceptance for renewable energy deployment. The 
impact of social acceptance is applied through a reduction factor to limit 
available land use, considering for example population density and 
protected areas. However, it does not account for the phenomenon in 
energy system modeling whereby high geographic resolution can lead to 
solutions that incorporate highly spatially concentrated deployment of 
wind and solar power, which may be socially unacceptable [64].

For example, the results for onshore wind indicate a preference for 
deployment of wind power in areas with high annual net electricity 
loads, such as Oslo, Stockholm, and Copenhagen, as shown in Fig. 6. 
These locations are densely populated, raising concerns about the 
practical feasibility of the proposed siting. Lohr et al. [64] have explored 
this issue in detail, demonstrating that incorporating quadratic envi
ronmental costs, which penalize high shares of the maximum allowable 
capacity for renewables in a region, could be an alternative approach to 
this problem, albeit at the expense of a higher computational burden.

Previous research has also demonstrated that high spatial resolution 
in energy systems modeling influences the optimal production mix, 
primarily by preserving high FLH sites that would otherwise be diluted 
in aggregated models. This effect tends to favor onshore wind over 
offshore wind and solar power, aligning with the findings of this study, 
where onshore wind emerges as the dominant new electricity source. 
However, as electricity demand increases, a significant share of the 
onshore wind capacity is deployed in areas with comparatively poor 
wind conditions, suggesting that the availability of high-quality sites 
identified using the high-resolution approach eventually becomes 
saturated. Instead, the results underscore the growing importance of 
colocalization with regions of high annual electricity demand, particu
larly for onshore wind and solar power, as demand levels rise.

The applied model consists of 352 nodes distributed across 11 bid
ding zones. The results presented in this study are derived from an 

Fig. 10. Installation of utility-scale solar PV in the two modeled scenarios. The color scale indicates the number of full-load hours for offshore wind in each cell that 
acquires PV installations in the results.
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optimization framework that determines the placement of production 
and storage units based on the total cost of the 352-node system, rather 
than the electricity valuation mechanisms inherent to the bidding zones. 
Consequently, discrepancies may arise between the price signals at the 
bidding zone level and those at the nodal level. Achieving alignment 
between economic incentives and the optimal localization of produc
tion, as suggested by this study, will necessitate a more-granular 
approach to electricity valuation. In an extreme scenario, this would 
imply the establishment of 352 bidding zones in the Nordic region. 
While such an approach is neither practical nor desirable, it underscores 
the limitations of the current bidding zone structure in incentivizing 
optimal production plant placement. This observation is consistent with 
previous research, such as the work of Obermüller [34], which has 
demonstrated that zonal pricing mechanisms that fail to account 
adequately for grid constraints may result in inefficient locational 

signals for VRE generation.
The model’s calculations of the flexibility requirements for tech

nologies such as gas turbines and batteries are subject to both under- and 
over-estimation due to the assumptions applied. On the one hand, the 
model’s 3-hour temporal resolution may smoothen fluctuations in gen
eration and demand, potentially leading to an underestimation of the 
need for short-term flexibility measures. On the other hand, the model 
adopts a conservative assumption that the transportation sector does not 
contribute to system flexibility through either vehicle-to-grid discharge 
or flexible charging. Furthermore, the model does not incorporate 
additional functionalities such as participation in ancillary service 
markets or black-start capabilities.

A further limitation of this analysis is that investment decisions are 
based on a single representative weather year. As shown in the studies 
carried out by Zeyringer et al. [65] and Bloomfield et al. [66], the choice 

Fig. 11. Scatter plot depicting the installation of utility-scale PV in all nodes in the model, plotted against full-load hours (y-axis) and the annual node net demand (x- 
axis). The blue markers indicate that PV is installed in that node. The orange markers indicate that there are no PV installations. The horizontal dotted line represents 
the average FLH value of all the included datapoints, while the vertical line indicates the distinction between positive and negative annual node net demands. The 
presented Average capacity values represent the average utilized PV capacity for the datapoints located in the respective quadrants. Nodes with zero PV capacity are 
excluded from the plot. Datapoints outside the diagram limits are included on the outside borders of the plot for visibility reasons. The numbered circles indicate 
deviating data-points, as explained in the text.
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Fig. 12. Geographic positions of installed batteries (to gas turbines in open and combined cycle for the High demand scenario.

Fig. 13. Congestion levels for all nodes in the model for the High demand scenario, sorted from high to low. The red bars indicate gas turbine installations in each 
node. The node congestion level is calculated for each node by taking the highest annual inflexible demand value (firm peak load) and dividing it by the total 
electricity import capacity to the node.
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of weather year can significantly influence the optimal generation mix, 
indicating the sensitivity of the results to weather variability.

In addition, the representation of hydropower, which is the pre
dominant electricity generation technology in the region, is likely to 
influence the estimated need for peaking capacity. Previous studies (e.g., 
Fälth et al. [67] and Hirth [68]) have highlighted that aggregated rep
resentations of hydropower with perfect foresight in energy systems 
modeling, as is also the case in this study, tend to overestimate the 
flexibility provided by hydropower. A more-accurate approach to ac
counting for the physical constraints of rivers and reservoirs, as 
demonstrated by [69], involves the development of equivalent models 
that reduce storage and production capacities. The absence of such 
constraints in the present study may result in an underestimation of the 
required capacities for peaking technologies, such as gas turbines.

As a result of the aforementioned uncertainties, the absolute values 
related to flexibility measures, such as gas turbines and batteries, should 
be interpreted as indicative estimates rather than precise capacity re
quirements. Further model development and sensitivity analyses are 
needed to support more-robust conclusions regarding the optimal siting 
and scale of these technologies.

The sensitivity analysis conducted in this study indicates that while 
key assumptions do not significantly alter the overall system production 
mix, they can heavily influence the spatial distributions of wind and 

solar power generation. Specifically, the analysis reveals that up to 26% 
of renewable power production units would be relocated if the 
maximum theoretical thermal capacity of the grid was to be fully uti
lized. This effect is particularly pronounced for offshore wind, given its 
reliance on a limited number of sites with high potential annual pro
duction levels.

However, due to n-1 security constraints, the assumption of full 
utilization of thermal capacity at all times is not realistic. A more-refined 
approach to representing grid capacity over time would entail incor
porating weather-dependent transmission capacities, wherein trans
mission limits adjust dynamically based on the ambient temperature and 
wind speeds. Integrating such an approach represents a logical next step 
towards improving the applied modeling framework.

5. Conclusions

• The number of FLH annually and proximity to net demand are crit
ical factors influencing the siting of VRE technologies in the model. 
In general, onshore wind, offshore wind, and solar PV tend to be 
installed in nodes with high annual net electricity demands and 
favorable FLH potentials. However, each technology follows certain 
distinct trends: 

Fig. 14. The average installed capacities per technology as a share of the maximum allowed capacity for all nodes within each quadrant. The quadrants are defined 
based on whether the annual net demand is positive or negative in a node, as well as the production conditions for each technology in terms of FLH. As the number of 
nodes varies between quadrants, a change in one quadrant does not equal the same change in another quadrant in absolute capacity numbers. Results are shown for 
offshore wind, onshore wind, and solar PV, across both grid capacity levels.
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o Onshore wind prioritizes sites with the most-favorable wind con
ditions in the Moderate demand scenario. As the demand for elec
tricity increases, the placement of additional capacity shifts 
toward locations that lie closer to major load centers, demon
strating high versatility in optimal siting decisions.

o Optimal siting of offshore wind is primarily dictated by high 
numbers of FLH, regardless of the electricity demand levels. Its 
high capital costs require a high capacity factor to ensure cost 
efficiency.

o Siting of solar PV shows the strongest correlation with positive 
annual net demand for electricity. Its strong variations in pro
duction amplitude make it less-suitable for long-distance trans
mission in a constrained grid, reinforcing a preference for local 
placement close to demand centers.

• Deviations from the expected correlation between FLH and net de
mand were identified: 
o Colocation of both solar and wind power with existing nuclear 

production nodes occurs despite a negative net demand locally. 
These nodes benefit from a strong transmission infrastructure and 
are often situated in regions with electricity surpluses.

o Nodes in regions close to major demand centers attract in
vestments in onshore wind and, to a lesser extent, solar PV, even at 
locations with low annual FLH potential.

• The optimal placement of gas turbines and batteries is strongly 
influenced by local grid conditions, demand center locations, and 
hydropower availability. In nodes where import capacity is limited 
relative to local demand, these technologies are deployed as a means 
to meet the nodal peak electricity demand. In addition, gas turbines 
and batteries are introduced to serve other functions, addressing 
regional power deficits and balancing solar power fluctuations, 
particularly in areas that lack hydropower resources.

• The sensitivity analysis underscores the significant impacts of grid 
capacity assumptions on the spatial distribution of renewable energy 
production. When 100% of the thermal grid capacity is utilized 
instead of 70%, 22%–26% of wind and solar power production is 
relocated. In contrast, variations in demand levels do not result in 
similarly pronounced shifts in the location of production units. This 
suggests that, provided that the geographic positioning of the future 
demand is known, uncertainties regarding its absolute magnitude are 
less-critical for determining the optimal siting of distributed gener
ation technologies.
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Fig. 15. The shares of production capacity that are relocated for two different changes in modeling inputs: (1) increasing the demand level from Moderate to High; 
and (2) increasing the grid capacity from Standard to High (in the High demand scenario). WOFF, offshore wind; WON, onshore wind; PV, photovoltaic.

Table 5 
Total system costs for the different modeling cases included in the sensitivity 
analysis. These costs encompass both investment and operational expenditures, 
as defined in Equation (1). The table also shows the proportion of total costs 
accounted for by investments.

Modeling case Total system cost 
[GEUR]

Investment cost as share of 
total cost

Moderate demand, Grid 
factor 0.7

6.2 88 %

Moderate demand, Grid 
factor 1

5.3 86 %

High demand, Grid factor 
0.7

12.6 86 %

High demand, Grid factor 
1

11.1 85 %
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ref.2025.100765.
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