
Exploring the Interaction of Code Coverage and Non-Coverage Objectives
in Search-Based Test Generation

Downloaded from: https://research.chalmers.se, 2025-10-15 13:39 UTC

Citation for the original published paper (version of record):
Fontes, A., Gay, G., Feldt, R. (2025). Exploring the Interaction of Code Coverage and Non-Coverage
Objectives in Search-Based Test
Generation. Software Testing Verification and Reliability, 35(6-7).
http://dx.doi.org/10.1002/stvr.70009

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

1 of 30Software Testing, Verification and Reliability, 2025; 35:e70009
https://doi.org/10.1002/stvr.70009

Software Testing, Verification and Reliability

RESEARCH ARTICLE OPEN ACCESS

Exploring the Interaction of Code Coverage and
Non-Coverage Objectives in Search-Based Test Generation
Afonso Fontes  | Gregory Gay   | Robert Feldt

Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden

Correspondence: Gregory Gay (greg@greggay.com)

Received: 10 June 2024  |  Revised: 30 June 2025  |  Accepted: 2 September 2025

Funding: This research was supported by Vetenskapsrådet grants 2019-05275 and 2020-05272. Computing resources were provided by the National
Academic Infrastructure for Supercomputing in Sweden (NAISS), partially funded by Vetenskapsrådet grant agreement 2022-06725.

Keywords: adequacy criteria | automated test generation | branch coverage | coverage criteria | search-based test generation

ABSTRACT
Search-based test generation typically targets structural coverage of source code. Past research suggests that targeting coverage
alone is insufficient to yield tests that achieve common testing goals (e.g., discovering situations where a class-under-test throws
exceptions) or detect faults. A suggested alternative is to perform multi-objective optimization targeting both coverage and ad-
ditional objectives directly related to the goals of interest. However, it is not fully clear how coverage and goal-based objectives
interact during the generation process and what effects this interaction will have on the generated test suites. In this study, we
assess five hypotheses about multi-objective test generation and the relationships between coverage-based and goal-based objec-
tives, focusing on the effects on coverage, goal attainment, fault detection, test suite size, test case length and the impact of the
search budget. We generate test suites using the EvoSuite framework targeting Branch Coverage, three testing goals—Exception
Count, Output Coverage and Execution Time—and combinations of coverage and goal-based objectives. Ultimately, we find that
targeting multiple objectives does not reduce code coverage, yields no or minor reductions in goal attainment, but—at the same
time—detects more faults compared with single-target configurations. In addition, it produces larger test suites, but test case
length is not increased. The benefits of multi-objective optimization are often more limited than hypothesized in past research,
but improved fault detection is still sufficient to recommend multi-objective optimization over targeting coverage or testing goals
alone. Our study offers insights and guidance into how coverage and goal-based objectives interact during multi-objective test
generation.

1   |   Introduction

Structural coverage criteria measure the percentage of the
source code that has been executed according to a set of
criterion-specific rules regarding (a) which code structures
should be executed, and (b) how those structures should be ex-
ecuted [1–3]. Two of the most common criteria are Statement
Coverage—which mandates that all code statements be exe-
cuted, but places no constraints on how they are executed—and
Branch Coverage—which mandates that all control-diverting

statements (e.g., if, case and loop conditions) evaluate to each of
their possible outcomes [4].

Coverage measurement is a common advisory activity for testers
[1]. The current percentage of coverage attained can serve as an
approximation of ‘how much testing’ has been conducted, and
missed coverage goals can serve as the targets of additional test
cases. Because the attainment of most coverage criteria can be
automatically measured through programme instrumentation
and execution analysis, such criteria have also become the de

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.

© 2025 The Author(s). Software Testing, Verification and Reliability published by John Wiley & Sons Ltd.

https://doi.org/10.1002/stvr.70009
https://doi.org/10.1002/stvr.70009
https://orcid.org/0000-0001-6794-9585
mailto:
mailto:greg@greggay.com
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fstvr.70009&domain=pdf&date_stamp=2025-10-05

2 of 30 Software Testing, Verification and Reliability, 2025

facto basis of automated test generation—especially techniques
such as search-based test generation, fuzzing, and symbolic or
concolic execution [5, 6].

Consider, for example, search-based test generation. In search-
based test generation, metaheuristic optimization algorithms
sample from the space of possible test inputs to identify those
that maximize or minimize fitness functions—numeric scoring
functions representing properties of interest [6]. Coverage cri-
teria serve as natural fitness functions, often associating each
code structure of interest with a score representing how close
an execution came to executing that structure in the manner
prescribed by the criterion—e.g., how much x would need to
change for the condition (x = = 0) to evaluate to true within a
particular control structure [7].

Coverage-directed testing is ubiquitous in automated test
generation because structural coverage is easy to measure,
easy to translate into an optimization target, and is hypoth-
esized to have a correlation to the probability of fault detec-
tion [4]. However, concerns have been raised about its use as
the primary target of automated generation [3, 8, 9]. We have
previously conducted large-scale case studies on coverage-
directed test generation, focusing on model and search-based
test generation [3, 10, 11]. These studies have yielded import-
ant observations about the efficiency and effectiveness of
coverage-directed test generation—at least, in the manner it
is generally employed.

First, we have observed that achieving structural coverage is a
reasonable starting point for effective automated test generation.
For example, we observed that coverage was the single stron-
gest predictor of the likelihood of fault discovery [11]. That is,
if we want to detect potential faults, we must execute the code.
The same basic observation holds for many other goals a tester
may have. If we want to expose situations where the code can
crash, we must execute the code. If we want to show that perfor-
mance or reliability targets are met, we must execute the code.
Other testing goals—e.g., diversity, exposing interaction faults,
and more—similarly benefit from exploration of the codebase.
Targeting code coverage during search-based test generation is
an effective and efficient method of exploring a wide range of
programme behaviours [11]. Therefore, even if a tester's goals lie
beyond code coverage, coverage is generally required to achieve
those goals.

However, we also observed that code coverage alone is a poor
basis for producing test suites that meet these goals. In our
past work, coverage only had a moderate correlation to the
likelihood of fault detection [11], and was often weaker than
random generation at detecting code mutations [3]. Many
different inputs can generally cover the same coverage goals.
While some coverage criteria are stricter than others, the ma-
jority impose few or no constraints on how code is executed
[3, 11–13].

“How” is important. Testers rarely design tests for the sole pur-
pose of attaining coverage [8, 14]. In practice, tests are designed
around specifications, and coverage is used to identify clear

weaknesses in the suite [1]. That is—coverage serves an advi-
sory role for testers, rather than the primary basis of test design.
If we want to expose crashing code, we select input with a high
probability of triggering a crash. If we want to violate perfor-
mance requirements, we select input with a high probability of
slowing programme execution. If there are multiple bugs in a
branch, we typically need diverse inputs to uncover them all, as
well as to cover the specification [15, 16]. In other words, while
research in automated test generation has predominantly fo-
cused on code coverage, coverage alone is not enough to ensure
that testing goals are met.

Search-based test generation offers potential solutions to this
challenge. First, rather than optimizing fitness functions re-
lated to code coverage, one could attempt to optimize fitness
functions based directly on goals of interest—for example,
there are fitness functions that directly reward discovery
of crashes or that assess performance. Second, rather than
choosing coverage or goal optimization, one could attempt
multi-objective optimization, where the combination of struc-
tural coverage and additional goal-based fitness functions are
simultaneously targeted.

Multi-objective optimization is a particularly compelling solu-
tion, as each fitness function optimized shapes the resulting test
suite. Our past research suggests that such a pairing can lead
to better test suites than targeting coverage or a goal of interest
alone [10, 11]. Consider a common testing goal—identifying sit-
uations where the system-under-test (SUT) throws an exception.
This is a non-trivial goal, as we rarely know up front which ex-
ceptions could be thrown. Targeting coverage may not satisfy
this goal, as exception-triggering input will only be chosen if it
uniquely enhances coverage. We could alternatively try to di-
rectly maximize the number of exceptions thrown. However,
this count offers no feedback; more exceptions will only be
discovered by random chance. We observed situations where
targeting both offered feedback missing when targeting either
alone—with the exception count biasing the input used to attain
coverage, and branch coverage offering a means to explore the
code base.

These observations suggest the potential benefit of blending
code coverage and goal-based fitness functions. While multi-
objective test generation has been previously proposed and at-
tempted (e.g., [11, 17, 18]), the interaction between objectives
during this optimization—in particular, the interaction between
coverage and goal-based fitness functions—has not been inves-
tigated previously. Understanding this interaction is important,
as this understanding can influence the selection of optimiza-
tion targets, the design of new fitness functions, and the devel-
opment of new test generation tools.

Therefore, in this study, our goal is to assess and explore five
hypotheses about this interaction:

Hypothesis 1.  The inclusion of goal-based fitness functions
as additional generation targets will not have an impact on the
attainment of code coverage, as compared with targeting coverage
alone.

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

3 of 30

That is, the hypothesis that targeting multiple objectives will not
affect the evolution of code coverage during the test generation
process—raising or lowering the final quantity of coverage at-
tained, changing the specific coverage goals covered or affect-
ing the rate at which coverage is attained during the generation
process.

Hypothesis 2.  Targeting both coverage and a goal-based fit-
ness function will not have an impact on the attainment of goal-
based fitness functions, as compared with targeting coverage or a
goal-based fitness function alone.

Similar to Hypothesis 1, this hypothesis states that targeting
multiple objectives will not affect the final fitness values of
the goal-based objectives—raising or lowering goal attainment
when compared with targeting a goal-based or a coverage-based
objective alone.

Hypothesis 3.  Targeting both coverage and a goal-based
fitness function will not have an impact on the fault detection of
generated test suites, as compared with targeting coverage or a
goal-based fitness function alone.

This hypothesis states that targeting multiple objectives will
not increase or decrease the likelihood that the generated test
suites detect faults or the number of tests that fail when a fault
is detected.

Hypothesis 4.  Targeting both coverage and a goal-based fit-
ness function will not have an impact on the size of the test suite
and the average test length, as compared with targeting coverage
or a goal-based fitness function alone.

Targeting multiple objectives could increase the number of test
cases in the generated suites or increase the number of inter-
actions in individual test cases, as each targeted objective adds
additional obligations that the test suite must achieve. These
obligations each may require distinct test input and setup to
achieve, leading to the need for more or longer test cases.

Hypothesis 5.  An increase in the search budget will not lead
to increased attainment of each objective.

This hypothesis considers the effect of the search budget on fit-
ness attainment. We further hypothesize that the effects that we
observed when exploring the previous hypotheses will hold at
higher search budgets. For example, if multi-objective optimi-
zation leads to higher fault detection at a limited search budget
than single-objective optimization, we hypothesize that it will
also do so at a higher search budget.

To assess these hypotheses, we target Branch Coverage—the
most common structural coverage criterion [1]—as well as three
specific testing goals:

•	 We further explore the goal of discovering situations where
the SUT can crash.

•	 The discovery of situations that could violate performance
goals—based on the maximization of execution time [19].

•	 Ensuring that test suites maximize coverage of diverse be-
haviours [16], specifically output diversity of the tested func-
tions, which has been hypothesized to lead to faster coverage
attainment and higher likelihood of fault detection [20].

Our study offers insight into how coverage and goal-based ob-
jectives interact during multi-objective test generation, with a
focus on how this interaction affects code coverage, goal attain-
ment, fault detection, the size of the test suite and the length
of test cases. This research offers a starting point for exploring
how search-based test generation can be adapted for particular
goals, product domains, execution scenarios or code structures,
enables guidance on how to use test generation to meet tester
goals and can influence the creation of more efficient and effec-
tive test generation techniques and tools.

2   |   Background

2.1   |   Unit Testing

Testing can be performed at various levels of granularity. In this
research, we focus on unit testing, where test cases target small
segments of code that can be tested in isolation [21]. Unit tests
are written as executable code, which can be re-executed on de-
mand by developers. We refer to a purposefully grouped set of
test cases as a test suite. Unit testing frameworks exist for many
programming languages, such as JUnit for Java, and are inte-
grated into most development environments.

An example of a unit test, written in JUnit, is shown in Figure 1.
A unit test consists of a test sequence (or procedure)—a series
of method calls to the class-under-test (CUT)—with test input
provided to each method. Then, the test case will validate the
output of the called methods and the class variables against a
set of encoded expectations—the test oracle—to determine
whether the test passes or fails. In a unit test, the oracle is typi-
cally formulated as a series of assertions on the values of method
output and class attributes [22]. In the example in Figure 1,
the test input consists of passing a string to the constructor of
the StringUtils class, then calling its removeWhitespace() and

FIGURE 1    |    Example of a unit test case written using the JUnit notation for Java.

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

4 of 30 Software Testing, Verification and Reliability, 2025

getString() methods. We use an assertion to ensure that a space
is removed from the input.

2.2   |   Adequacy (Coverage) Criteria

When testing, developers must judge both whether the tests they
have written are effective and whether they have created enough
test cases. Adequacy criteria have been developed to provide de-
velopers with guidance regarding these topics [1].

Each adequacy criterion prescribes, for a given programme, a
set of goals—referred to as test obligations. Each obligation rep-
resents one constraint that the produced test suite must fulfil. If
tests fulfil the test obligations, then testing is deemed ‘adequate’
with respect to faults that manifest through the structures of in-
terest to the criterion. Most adequacy criteria are based on the
execution of structural elements of the software. In such cases,
an obligation may be expressed as the selection of an individual
element of the source code—e.g., a statement, a branch of the
software's control flow or a boolean expression—and the condi-
tions under which that element must be executed—e.g., the cho-
sen expression evaluates to true or false [3, 21]. However, there
are also adequacy criteria based, e.g., on coverage of formal
requirements through test cases [23] or detection of synthetic
faults (mutants) planted in the source code [10].

Adequacy criteria have seen widespread use in software devel-
opment. Structural coverage is routinely measured as part of au-
tomated build processes [12] (for example, see https://​codec​ov.​
io/​) and is often mandated by safety standards in critical domains
such as automotive [24] and avionics [25]. It is easy to understand
the appeal of adequacy criteria. They offer clear checklists of
testing goals that can be objectively evaluated and automatically
measured through programme instrumentation and execution
analysis [12]. These same qualities make adequacy criteria ideal
for use as automated test generation targets [7].

One of the most common adequacy criteria is Branch Coverage.
A branch refers to an outcome of any programme statement
that can cause programme execution to diverge down a partic-
ular control flow path, such as the conditions in if, case or loop
definitions. Branch Coverage requires that all outcomes of all
control-diverging statements are executed at least once by the
test suite under assessment.

To give an example, consider the removeWhitespace() method
being tested in Figure 1, whose code is depicted in Figure 2. In
this method, there are two programme statements that affect the
control flow—the loop condition on Line 7 and the if-condition
on Line 9. To achieve branch coverage over this method, both
conditions must evaluate to true and false at least once when the
test suite is executed. In other words, there are four test obliga-
tions that must be fulfilled.

By default, coverage obligations are formulated over the source
code. However, in Java, test obligations are often instead for-
mulated and measured over the bytecode representation as this
form is easier and more efficient to instrument and monitor.
The bytecode representation of removeWhitespace() is shown
in Figure 3. The same control-altering expressions are present
on Lines 11 and 19. Branch Coverage requires that both lines
evaluate to true and false.

Branch Coverage is arguably the most commonly used cover-
age criterion, with ample tool support and industrial adoption
[26]. For example, branch coverage measurement is built into
the popular IntelliJ IDEA development environment. Therefore,
we focus on Branch Coverage in this study as a representation of
structural coverage criteria.

2.3   |   Search-Based Test Generation

Manual creation of a large volume of test cases can be tedious
and expensive. Automation of aspects of test creation, such as
test input selection, can reduce and focus the required manual
effort [5]. Search-based test generation frames input selection as
a search problem, where metaheuristic optimization algorithms
attempt to identify test input that best embody properties that
testers seek in their test cases [5, 6].

These properties are assessed using one or more fitness func-
tions—numeric scoring functions. The metaheuristic embeds a
strategy for sampling solutions from the space of possible inputs,
often based on a natural process such as evolution or swarm
behaviour [27]. In test generation, a ‘solution’ is often either a
single test case or a full test suite. The metaheuristic uses the se-
lected fitness functions to assess solution quality, offering feed-
back to guide the selection and improvement of solutions over a
series of generations. Search-based test generation has proven to

FIGURE 2    |    Subset of the class-under-test in Figure 1.

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://codecov.io/
https://codecov.io/

5 of 30

be a flexible [28], scalable [29] and competitive [11, 18] method
of automated test generation.

The most common metaheuristics for search-based test genera-
tion are genetic algorithms, which are modelled after the natu-
ral evolution of a population [30]. While specific aspects vary, a
‘typical’ test generation follows these steps:

•	 An initial population of solutions is randomly generated.
Each solution represents a test suite, containing test cases.

•	 Each generation, the fitness score of each solution is calcu-
lated and a new population is created. This population is
formed through four sources of solutions:
•	 One of the best solutions may be carried over to the new

population intact.
•	 At a certain probability, elements of two solutions will

be combined to create two ‘children’ (crossover). For
example, the children may blend test cases from the
parents.

•	 At a certain probability, a solution can be mutated—e.g.,
a test case may be modified.

•	 At a certain probability, a new randomly generated
solution will be added to the population to maintain
diversity.

•	 When the search budget—typically expressed in time
or number of generations—expires, the best solution is
returned.

When multiple fitness functions are targeted by an optimization
algorithm, each fitness function and its individual sub-goals col-
lectively influence the final solution generated. The interaction
between fitness functions—or even between the sub-goals of
one or more fitness functions—can be either positive or negative.

In the positive case, one or more fitness functions or sub-goals
can provide missing feedback that is needed to optimize other
fitness functions or sub-goals. This is common in situations
where the fitness landscape is relatively flat, as is the case for
functions based on simple counts—e.g., the number of excep-
tions thrown. Such fitness functions offer little feedback for im-
proving solutions, e.g., for detecting new exceptions. However, in
previous work, we observed cases where pairing such functions
with more informative fitness functions (e.g., ones based on dis-
tance measurements) offered the missing feedback needed to
identify additional exceptions [10, 11]. Even informative fitness
functions can have a positive symbiotic relationship. For exam-
ple, there are multiple methods of formulating a fitness function
for Branch Coverage, each with differing fitness landscapes. We
previously observed situations where targeting multiple forms
of Branch Coverage simultaneously yielded improved perfor-
mance over targeting any one form [31].

In the negative case, there are situations where optimization of a
subset of fitness functions or sub-goals can lower the attainment
of other functions or sub-goals—i.e., there are implicit trade-offs
between these functions or sub-goals. As an example, EvoSuite
offers a fitness function that rewards executing methods without
an exception being triggered. This function directly contradicts
the earlier-mentioned function that rewards suites where more
exceptions are thrown. It is possible to optimize both functions
by constructing a test suite where these functions are optimized
in separate test cases [10, 11]. However, overcoming the contra-
diction between functions requires investing additional time in
the search process and can result in larger and more cumber-
some test suites.

This theoretical relationship between fitness functions and sub-
goals of fitness functions is not well understood in the context of

FIGURE 3    |    Java Bytecode of the removeWhitespace() method from Figure 2.

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

6 of 30 Software Testing, Verification and Reliability, 2025

search-based test generation. While we have discussed examples
observed in prior work [10, 11, 32], the exact nature of this rela-
tionship has not been deeply explored. One of the goals of this
study is to further empirically investigate this relationship.

3   |   Related Work

Multi and many-objective optimization algorithms have become
increasingly common in search-based test generation [33]. Even
if the goal of the test generation process is solely code coverage,
coverage can quickly be gained by representing each test obli-
gation as an independent objective and applying multi or many-
objective optimization [34]. Multiple studies have compared
different algorithms for multi and many-objective optimization
in terms of coverage achieved (e.g., [35–38]). However, these
studies focused solely on coverage-based fitness and have not ex-
amined the interaction between coverage-based and goal-based
fitness functions.

The number of exceptions or crashes discovered is a common
secondary objective in search-based test generation, optimized
in conjunction with coverage-based fitness functions (e.g.,
[11, 39–41]). Others have explored combinations of coverage cri-
teria with non-functional criteria during test generation or test
suite minimization, such as memory consumption [42] or execu-
tion time [43]. While these represent multi-objective optimiza-
tion of coverage and goal-based fitness functions, these studies
do not examine how these fitness functions interact, e.g., how
the combinations affect coverage or fault detection.

Rojas et al. examined multi-objective optimization of Line
Coverage—a structural coverage criterion—and additional fit-
ness functions [41]. Relevant to our work, they also include two of
the same goal-based objectives that we focus on, exception count
and output diversity. They found that adding additional fitness
functions led to only a minimal loss in the final percentage of Line
Coverage achieved. They also found that coverage of secondary
criteria increased over when Line Coverage was targeted alone.
Therefore, there is a partial overlap in our focus. However, they
only examined the final level of coverage and focused on different
aspects of test generation. We address a broader set of hypotheses
and examine coverage attainment more deeply.

Palomba et al. examine optimization of Branch Coverage and
fitness functions intended to improve test quality based on the
cohesion and coupling of test cases [17]. They found that target-
ing these quality objectives could increase code coverage over
targeting coverage alone.

Weiglhofer et al. showed that coverage-directed test generation
can be used to complement test generation based on testing
goals [44]. In their approach, humans develop ‘test purposes’,
specifications used in conjunction with formal models to gener-
ate test cases. Coverage-directed testing is then used to generate
tests for parts of systems not covered by the test purposes. They
do not apply multi-objective optimization, but the core concept
is similar.

We previously examined the likelihood of fault detection of test
suites generated targeting various fitness functions [10, 11].

Much of this research focused on single-objective optimization.
However, we did find that some combinations of objectives, such
as Branch Coverage and the exception count, had a higher like-
lihood of fault detection than targeting Branch Coverage or ex-
ception count alone [11]. This past work partially addresses one
of our hypotheses, but we replicate this work and examine that
hypothesis more closely in this study.

Zhou et al. propose an approach, ‘smart selection’, for selecting
a subset of test obligations when targeting multiple coverage-
based fitness functions for test generation [45]. Their approach
reduces redundancy between fitness functions and eases op-
timization difficulty. McMinn et al. have also proposed using
search techniques to evolve new coverage criteria that combine
features of existing criteria [46]. In previous work, we also used
reinforcement learning to dynamically select the fitness func-
tions targeted during multi-objective test generation [47]. We
demonstrated that fitness functions could be identified that
increased attainment of common testing goals for particular
classes-under-test. However, these studies do not examine the
interaction between coverage and goal-based fitness functions.

4   |   Methods

Our aim in this research is to examine the interaction between
coverage-based and goal-based fitness functions during multi-
objective test generation. In Section 1, we raised five informal
hypotheses about how these objectives could interact. We assess
those hypotheses by addressing the following specific research
questions:

•	Research Question 1.  How is the Branch Coverage of
generated test suites influenced by targeting additional
goal-based fitness functions compared with targeting
Branch alone?

•	Research Question 1.1.  How is the final percentage of
attained Branch Coverage influenced?

•	Research Question 1.2.  How is the set of satisfied
Branch Coverage obligations influenced?

•	Research Question 1.3.  How is the evolution of cover-
age attainment influenced?

•	Research Question 2.  How is the attainment of test-
ing goals by generated test suites influenced by targeting
Branch Coverage in addition to a goal-based fitness func-
tion, compared with targeting coverage or a goal-based fit-
ness function alone?

•	Research Question 3.  How is the fault detection of gen-
erated test suites influenced by targeting Branch Coverage
in addition to a goal-based fitness function, compared with
targeting coverage or a goal-based fitness function alone?

•	Research Question 4.  How is the suite size and test
case length of generated test suites influenced by targeting
Branch Coverage in addition to a goal-based fitness func-
tion, compared with targeting coverage or a goal-based fit-
ness function alone?

•	Research Question 5.  What influence does the search
budget have on Branch Coverage, goal attainment, fault

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

7 of 30

detection, test suite size, and test case length attained by
suites targeting different fitness function configurations?

As discussed in Section 1, we focus on three concrete testing
goals: (1) discovery of scenarios where exceptions are thrown
(‘Exception Count’), (2) discovery of scenarios where the execu-
tion time may violate performance goals (‘Execution Time’) and
(3) maximization of output diversity (‘Output Coverage’). To ad-
dress these research questions, we have performed the following
experiment, targeting Branch Coverage, these three goals and
combinations of Branch Coverage with each goal:

1.	 Collected case examples: We have selected 93 case ex-
amples from the Defects4J fault dataset, from 14 Java pro-
jects (Section 4.1).

2.	 Defined test generation configurations: We selected
three single-objective configurations (Branch Coverage,
Exception Count, Output Coverage) and three multi-
objective configurations (Branch Coverage plus each test-
ing goal listed above) and two search budgets (180 and
300 s) to target in our experiments (Section 4.2).

3.	 Generated test suites: For each class modified by each
case example, fitness function configuration and search
budget, we generated 10 test suites using EvoSuite. We tar-
get the fixed version of each CUT (Section 4.2).

4.	 Monitored coverage evolution: We monitor how satis-
faction of Branch Coverage obligations changes over the
course of each invocation of EvoSuite (Section 4.3).

5.	 Recorded generation statistics: For each suite gener-
ated, at the end of the generation process, we record infor-
mation on Branch Coverage obligation satisfaction, fitness
values for each targeted function, test suite size and test
case length (Section 4.3).

6.	 Removed non-compiling and flaky tests: Any tests
that do not compile or that return inconsistent results are
removed (Section 4.3).

7.	 Assessed fault-finding effectiveness: We measure the
number of faults detected, the proportion of test suites that
detect each fault to the number generated (likelihood of
fault detection) and the number of failing tests in each suite
(Section 4.3).

8.	 Analysed the collected data: We address the research
questions using the data gathered above (Section 4.4).

4.1   |   Case Example Selection

Defects4J is an extensible database of real faults extracted from
Java projects [48] (available from http://​defec​ts4j.​org). The cur-
rent dataset, Version 2.0.1, consists of 835 faults from 17 Java
projects. To control experiment costs, in this study, we aimed
to select a sample of approximately 100 faults, chosen to reflect
the proportion of faults-per-project in the full dataset. To select
this sample, we initially selected 206 faults at random, sampled
based on the number of faults-per-project in the full dataset. We
then generated test suites targeting Branch Coverage and the
three multi-objective configurations following the procedure
described in Section 4.2, and omitted faults where either:

•	 Errors prevented the completion of 10 valid trials for all
configurations, where a test suite was generated and all
data collection completed successfully.

•	 Where the average Branch Coverage was below 5%—we
judged that the research questions could not be reliably an-
swered without a minimal level of coverage being reached
over the classes-under-test.

This filtering process ultimately resulted in a set of 93 faults used
in this study, listed in Table 1. Fifty-nine faults were excluded
due to issues with the test generation or data collection pro-
cesses, and 54 faults were excluded due to low Branch Coverage.

For each fault, Defects4J provides access to the faulty and fixed
versions of the code, developer-written test cases that expose the

TABLE 1    |    Subset of Defects4J faults selected for this study.

Project Faults selected Total

Chart 7, 6, 10, 8, 3, 5 6

Cli 27, 7, 29, 28, 1, 10, 3, 40, 2, 5 10

Closure 161, 74, 19, 154, 162, 164,
37, 55, 41, 70, 12, 71, 5

13

Codec 7, 6, 17, 1, 2 5

Collections 25, 26 2

Compress 2, 47, 46 3

Csv 1 1

Gson 3, 4, 5, 6 4

JacksonCore 11 1

JacksonDatabind 62, 93, 111, 112 3

Jsoup 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 55, 60, 77

16

Lang 4, 5, 6, 8, 9, 10, 11,
12, 41, 55, 64, 65

12

Math 95, 11, 87, 81, 100, 39,
90, 41, 3, 49, 40, 2

12

Mockito 6, 8, 37, 15, 2 5

Total 93

We make a replication package available containing the data
collected in this experiment: https://​doi.​org/​10.​5281/​zenodo.​
11047567.

We also make available our modified version of EvoSuite:

•	 Code: https://​github.​com/​afons​ohfon​tes/​evosuite

•	 Executable: https://​github.​com/​afons​ohfon​tes/​defec​
ts4j/​tree/​master/​frame​work/​lib/​test_​gener​ation/​​gener​
ation​

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://defects4j.org
https://doi.org/10.5281/zenodo.11047567
https://doi.org/10.5281/zenodo.11047567
https://github.com/afonsohfontes/evosuite
https://github.com/afonsohfontes/defects4j/tree/master/framework/lib/test_generation/generation
https://github.com/afonsohfontes/defects4j/tree/master/framework/lib/test_generation/generation
https://github.com/afonsohfontes/defects4j/tree/master/framework/lib/test_generation/generation

8 of 30 Software Testing, Verification and Reliability, 2025

fault, and a list of classes and lines of code modified by the patch
that fixes the fault.

Each fault is required to meet three properties. First, a pair
of code versions must exist that differ only by the minimum
changes required to address the fault. The ‘fixed’ version must
be explicitly labelled as a fix to an issue, and changes imposed
by the fix must be to source code, not to other project artefacts
such as the build system. Second, the fault must be reproduc-
ible—at least one test must pass on the fixed version and fail on
the faulty version. Third, the fix must be isolated from unrelated
code changes such as refactorings.

4.2   |   Test Generation Configuration

In this study, we make use of the EvoSuite unit test generation
framework for Java [49]. EvoSuite is mature, actively main-
tained, and has been successfully applied to a wide variety of
projects [11, 18]—even winning multiple tool competitions (e.g.,
[50]). Specifically, we make use of a modified version of EvoSuite
Version 1.2.1, where we have added an additional fitness func-
tion—Execution Time—as well as additional monitoring and
data collection capabilities.

4.2.1   |   Test Generation Algorithm

We make use of EvoSuite's ‘whole test suite generation’ Genetic
Algorithm [49]. This implementation of whole test suite genera-
tion has been replaced as the default optimization algorithm in
EvoSuite by DynaMOSA, a many-objective optimization algo-
rithm [51]. While DynaMOSA has been shown to achieve better
coverage than whole test suite generation in some experiments
[36], we use whole test suite generation to enable clearer com-
parison to our past research [10, 11]. Further, the DynaMOSA
algorithm explicitly considers the code structure, and goal-based
fitness functions cannot be decoupled from structural cover-
age. In this implementation of whole test suite generation, each
solution represents a full test suite—in contrast to approaches
where a solution represents a single test case. Then, rather than
targeting one obligation (sub-goal) of each fitness function one-
by-one, fitness is measured over all obligations of each fitness
function at the same time.

In traditional multi-objective optimization algorithms, such as
NSGA-II [52], an attempt is made to balance fitness function at-
tainment, and each fitness function is treated as independent. In
contrast, in this implementation of whole test suite generation, a
single aggregate fitness score is calculated. The fitness for a test
suite T over the CUT C is:

That is, the aggregate fitness is the sum of the normalized score
of each fitness function. EvoSuite treats all optimizations as
minimization problems, where lower fitness scores represent
better solutions.

4.2.2   |   Fitness Function Configurations

We execute EvoSuite for each case example utilizing six fitness
function configurations, representing three single-objective
configurations (Branch Coverage, Exception Count and
Output Coverage) and three multi-objective configurations
(Branch Coverage with Exception Count, Output Coverage and
Execution Time). The fitness functions are defined as follows:

Branch coverage: As defined in Section 2, Branch
Coverage requires that all outcomes of all control-
diverging statements are executed at least once by a test
suite. For search-based test generation to be most effec-
tive, a fitness score should offer feedback to help guide
the identification of better solutions. To that end, the
most effective fitness functions tend to encode infor-
mation about the distance to satisfying any unsatisfied
goals. Therefore, rather than simply measuring whether
each test obligation is covered or not, the fitness calcula-
tion for Branch Coverage instead embeds information—
for each test obligation—on how close execution came to
satisfying that obligation.

The branch coverage fitness function is a minimization of the
following, where T refers to the test suite and B represents the
set of test obligations. Each test obligation, b ∈ B, represents a
control-diverging programme statement and a desired outcome
for that statement (true or false).

where d(T , b) is defined as:

In the case where an obligation has not been satisfied,
dmin(t∈T , b) represents the branch distance—the magnitude
of change in execution that would be needed to achieve the
targeted outcome for that control-diverging statement. The
branch distance is determined based on how the condition has
been formulated, following a standard set of formulae [7]. In
this case, the minimal observed value of the branch distance
is used in the fitness calculation, and is normalized to be be-
tween 0 and 1.

Exception count: This fitness function represents the
goal of causing the CUT to throw as many exceptions as
possible—either declared or undeclared. The fitness func-
tion is a minimization of the following formula, where T
refers to the test suite, Ediscovered represents the number of
exceptions discovered during the current generation pro-
cess to date, and Ethrown represents the number thrown by
the current solution T.

(1)fitness(T ,C) =
∑
f ∈ F

f̂ (T ,C)

(2)fitness(T ,B) =
∑
b∈ B

d(T , b)

(3)

d(T , b) =

⎧
⎪⎨⎪⎩

0 if b has been satisfied

dmin(t∈T , b) if b has been evaluated at least twice

1 otherwise

(4)fitness(T) = 1 −
Ethrown
Ediscovered

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

9 of 30

Ediscovered is the number of unique exceptions thrown by all as-
sessed solutions to date, while Ethrown is the number of unique ex-
ceptions thrown by the current test solution-under-assessment,
which may not throw exceptions that were thrown in previous
solutions. Therefore, Ethrown ≤ Ediscovered. As the number of possi-
ble exceptions that a class can throw cannot be known ahead
of time, the number of test obligations may change each time
EvoSuite is executed on a CUT.

Execution time: This fitness function represents a sce-
nario where we seek test suites that could uncover poten-
tial violations of performance requirements, manifested as
a test suite—containing individually short test cases—that
take excessive time to execute. We have added a new fit-
ness function to EvoSuite for this purpose. Due to techni-
cal details of its implementation, we are unable to target
Execution Time without also targeting Branch Coverage.
Therefore, Execution Time cannot currently be targeted
as a single-objective configuration. The fitness function is
calculated as follows:

where Timecurrent represents the execution time of the solution
currently under assessment and Timemax is the largest execution
time of any solution assessed during the current execution of the
test generation framework.

One avenue to generate test suites with long execution times
is simply to generate excessively long test cases that call many
methods. Therefore, to prevent the generation of overly bloated
test cases, the fitness calculation applies a penalty based on the
average test case length within the suite:

Output coverage: This configuration represents the goal
of generating test suites that cover many different types of
outcomes of the methods of the CUT. A tester may seek
such diversity for two reasons. First, increased output
coverage is hypothesized to lead to earlier and potentially
higher code coverage [15, 16], and second, to potentially in-
crease fault detection over pure white-box techniques [20]

Output coverage rewards diversity in the method output by map-
ping return types to a list of abstract values—Alshahwan and
Harman provide a detailed explanation, including fitness formu-
lae [20]. A test suite satisfies output coverage if, for each public
method in the CUT that returns a data type covered by the fitness
function, at least one test yields a concrete return value matching
each abstract value. For numeric data types, distance functions
similar to the branch distance offer feedback using the difference
between the chosen value and the targeted abstract values.

We have selected these three goal-based objectives because they
reflect three different, non-overlapping, goals that a tester may
have. Exception Count reflects the desire of testers to discover
situations where the software can crash, as unexpected crashes
can indicate a lack of robustness in the code-under-test. Crashes

can occur in any software, can be detected without the need
for specialized test oracles, and are the target of many test gen-
eration tools (e.g., fuzzers [53]). Output Coverage indicates that
many different programme behaviours have been triggered, po-
tentially ensuring that the actual requirements of the code have
been thoroughly exercised [20]. Finally, the execution time rep-
resents an important non-functional property of software—its
performance. Even if the correct execution outcome occurs, slow
performance may degrade user satisfaction [43]. While other
goal-based fitness functions exist, we believe that these three ex-
emplify three important, common and distinct testing goals.

4.2.3   |   Search Budgets

Two search budgets were used—180 and 300 s per class. This
allows us to examine how an increased search budget affects
the test suites produced by each single- and multi-objective
configuration.

4.2.4   |   Generation Procedure

Test suites are generated individually for each of the classes
modified to fix each fault chosen from Defects4J. We repeat gen-
eration a fixed number of times for each class, fitness function
configuration, and search budget.

Test suites are generated targeting the fixed version of each CUT
and applied to the faulty version to eliminate the oracle problem.
EvoSuite generates assertion-based oracles. Generating oracles
based on the fixed version of the class means that we can con-
firm that the fault is actually detected, and not just that there are
coincidental differences in programme output. This translates
to a regression testing scenario, where tests are generated using
a version of the system understood to be ‘correct’ in order to
guard against future issues. Tests that fail on the faulty version
detect behavioural differences between the two versions.

Test suite generation and execution were performed on virtual
machines, each configured with 4 vCPUs, 8 GB of RAM and 20
GB of storage, running a server version of Ubuntu 18.04.4 LTS.
Each virtual machine was dedicated to executing experiments
for a specific subset of faults and fitness function configurations,
ensuring that experiments remained isolated and independent
to ensure result reliability.

To control experiment cost, we deactivated assertion filtering—
all possible regression assertions are included. We also disabled
test suite reduction, an optional procedure that removes redun-
dant test cases at the end of the generation process. We do this to
maintain traceability between intermediate and final test suites
during suite evolution. All other settings were kept at their de-
fault values. As results may vary, we performed 10 trials for each
CUT, fitness function configuration, and search budget. This re-
sulted in the generation of 11,160 test suites (2 budgets, 10 trials,
6 configurations, and 93 faults).

Generation tools may generate flaky (unstable) tests [18]. For ex-
ample, a test case that makes assertions about the system time
will only pass during generation. We automatically remove flaky

(5)fitness(T) = 1 −
Timecurrent
Timemax

+ penalty

(6)penalty = 0.1 ×
Lengthcurrent
Lengthmax

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

10 of 30 Software Testing, Verification and Reliability, 2025

tests. First, all non-compiling test suites are removed. Then, each
remaining test suite is executed on the fixed version of the CUT. If
the test results are inconsistent, the test case is removed. This pro-
cess is repeated until all tests pass five times in a row. On average,
less than 1% of test cases were removed from each suite.

4.3   |   Data Collection

To answer our research questions, we capture the following data
during and after generation:

•	 Final fitness function values: For each test suite, we
record the final fitness values for all four fitness functions
considered in this experiment (Branch Coverage, Exception
Count, Execution Time and Output Coverage).

•	 Branch coverage obligation satisfaction: Given a CUT,
achieving Branch Coverage requires satisfying a set of test
obligations, as defined in Section 2. We record informa-
tion on the satisfaction of Branch Coverage obligations,
including:
•	 Number of test obligations: For each CUT, we record

the number of Branch Coverage obligations.
•	 Percentage of obligations satisfied: For each final

test suite, we record the percentage of Branch Coverage
obligations satisfied.

•	 Specific obligations satisfied: For each final test
suite, we record the specific obligations satisfied.

•	 Evolution of branch coverage during generation:
To understand the dynamic evolution of coverage over
the course of each invocation of EvoSuite, we tracked
the percentage of obligations and specific obligations
covered by the best test suite in the population once per
second during the generation process.

•	 Fault detection: To evaluate the fault-finding effectiveness
of the generated test suites, we execute each test suite against
the faulty version of each CUT. We then record the following:
–	 Likelihood of fault detection: Across all trials for

a particular fault, fitness function configuration, and
search budget, we record the proportion of trials where
the fault was detected to the total number of trials for
that configuration.

–	 Number of failing tests: For each test suite, we record
the number of test cases that detect that fault (pass on
the fixed version and fail on the faulty version).

•	 Test suite size: We recorded the number of tests in each
test suite.

•	 Average test case length: Each test consists of one or
more method calls, variable initializations and assertions.
We record the average number of lines in each test case.

4.4   |   Data Analysis

We answer each research question using the data gathered, com-
paring results attained by each fitness function configuration,
split based on the search budget. To analyse the data, we em-
ploy a combination of descriptive statistics, distribution compar-
isons and effect size tests when distributions are found to differ.

Further explanation is provided in Section 5. Here, we provide a
general overview of the data analysis procedure.

4.4.1   |   Descriptive Statistics

Descriptive statistics provide an initial overview of the col-
lected data.

1.	 Data analysis: Basic statistical measures such as the av-
erage, median, standard deviation, and percentiles are cal-
culated for data appropriate for answering each research
question. This provides an initial understanding of the data
distribution and central tendencies [54].

2.	 Data visualization: We utilize box plots as a graphical
representation to offer a visual insight into the result dis-
tribution across different configurations [55].

4.4.2   |   Distribution Comparisons

We are interested in assessing whether the observed differences
between two fitness function configurations at a particular
search are significantly different.

For each research question, we select data relevant to that ques-
tion (e.g., Branch Coverage attainment in Research Question 1).
Then, for each pair of fitness function configurations, we formu-
late a hypothesis and a null hypothesis in the following format:

•	 H: Generated test suites have different distributions of X de-
pending on the targeted fitness function configuration.

•	 H0: Observations of X for both configurations are drawn
from the same distribution.

The informal hypotheses raised in Section 1 correspond to the
null hypotheses used to answer each research question. Our
observations for each of the collected data items defined above
are drawn from an unknown distribution. To evaluate the null
hypothesis without any assumptions on distribution, we use the
Wilcoxon rank-sum test [56], a non-parametric test. We apply
the test with � = 0.05. A p-value less than � indicates a statisti-
cally significant difference [57].

4.4.3   |   Effect Size

The Wilcoxon test determines if there are significant differences
between the distributions of two configurations. To understand
cases where there are differences, we use Cliff 's delta to measure
the effect size of these differences, providing a clearer under-
standing of their magnitude and practical significance [58]. We
apply the standard interpretation of Cliff 's delta (�):

•	 𝛿 > 0 indicates that observations of configuration A are more
likely to have higher values than observations of configura-
tion B.

•	 𝛿 < 0 indicates that observations of configuration A are more
likely to have lower values than observations of configura-
tion B.

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

11 of 30

•	 The absolute value of � is categorized as follows for further
interpretation:
–	 ∣ 𝛿 ∣ < 0.15: Negligible effect
–	 0.15 ≤ ∣ 𝛿 ∣ < 0.33: Small effect
–	 0.33 ≤ ∣ 𝛿 ∣ < 0.47: Medium effect
–	 ∣ � ∣ ≥ 0.47: Large effect

5   |   Results

5.1   |   Effect on Structural Coverage (Research
Question 1)

In this section, we address the following hypothesis:

Hypothesis 1.  The inclusion of goal-based fitness functions as
additional generation targets will not have an impact on the attain-
ment of code coverage, as compared with targeting coverage alone.

Often, targeting multiple objectives can have some effect on each
individual objective targeted, as compared with targeting a single

objective on its own. If objectives are contradictory, or if too many
objectives are targeted at once, then the final attainment of each
may be lowered [11, 41]. However, targeting one objective may
also offer feedback that enhances attainment of another [10, 47].
Therefore, we wish to assess—first—the impact that targeting
additional goal-based objectives has on code coverage-based ob-
jectives. We examine three aspects of coverage: (1) the final per-
centage of coverage attained, (2) the specific coverage obligations
covered by the final test suites and (3) the evolution of coverage
attainment over evolution. For this evaluation, we compare suite
generated targeting Branch Coverage alone to suite targeting
Branch Coverage and an additional goal-based fitness function.

5.1.1   |   Attained Branch Coverage

Table 2 offers descriptive statistics on the final attainment of
Branch Coverage by generated test suites. Figures 4 and 5 also
depict the attained Branch Coverage overall and by project from
Defects4J, respectively. Table 2 and Figure 4 do not demonstrate
any clear differences between configurations with regard to the

TABLE 2    |    Descriptive statistics of Branch Coverage across different test generation configurations and search budgets.

Configuration Budget Mean Std Dev Min 25th % Median 75th % Max

Branch 180 0.618 0.326 0.000 0.383 0.690 0.906 1.000

Branch and Exception 180 0.614 0.333 0.000 0.367 0.690 0.912 1.000

Branch and Execution Time 180 0.621 0.324 0.000 0.389 0.704 0.900 1.000

Branch and Output 180 0.620 0.325 0.000 0.383 0.704 0.900 1.000

Branch 300 0.665 0.317 0.000 0.484 0.726 0.929 1.000

Branch and Exception 300 0.665 0.325 0.000 0.507 0.749 0.936 1.000

Branch and Execution Time 300 0.659 0.322 0.000 0.484 0.742 0.932 1.000

Branch and Output 300 0.653 0.324 0.000 0.475 0.740 0.934 1.000

FIGURE 4    |    Boxplots of the Branch Coverage attained by test suites, divided by budget.

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

12 of 30 Software Testing, Verification and Reliability, 2025

final attained Branch Coverage. The distribution of results is vi-
sually similar for each configuration, and the mean and median
Branch Coverage attained by each configuration are within a
narrow range. An increase in search budget yields an increase
in the average Branch Coverage, as well as less variance in the
final results—seen in a rise in the 25th percentile. However, this
improvement seems largely consistent across configurations.

In Figure 5, we do see some differences between configurations
for particular projects. However, there are few clear trends,
and only a small number of bugs were drawn from many of
these projects. Still, we note some observations from the proj-
ects with over 10 included bugs. First, for project Cli, we see a
higher median Branch Coverage for the combination of Branch
Coverage and Execution Time at both search budgets. For

FIGURE 5    |    Boxplots of the Branch Coverage, divided by both budget and project from Defects4J. The X-axis reports the budget and the Y-axis
reports the Branch coverage.

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

13 of 30

the project JSoup, we see that the combination of Branch and
Output Coverage yields a slightly higher median coverage at
both search budgets. We will investigate both of these observa-
tions—as well as potential differences for other projects—more
closely in future work.

To confirm our initial inspection, we performed a Wilcoxon
rank-sum test to assess pairwise comparisons between different
test generation configurations for the two search budgets. The
results of this test are shown in Table 3, where we see that no
comparison demonstrated statistically significant differences—
that is, no p-value was below 0.05.

5.1.2   |   Attained Coverage Obligations

During and after the test generation process, we collected in-
formation on which specific Branch Coverage obligations were
covered by generated test suites. To assess whether different
configurations tend to cover distinct test obligations, we cal-
culated the average coverage of each obligation for each CUT
across all trials conducted for each configuration, search budget
and bug. For example, if four of the 10 trials targeting Branch
Coverage and Output Coverage for bug Chart-3 covered the first
Branch Coverage obligation for the targeted class, then the aver-
age coverage of that obligation would be 0.40.

The resulting averages were then used to compare targeting
Branch Coverage alone to targeting Branch Coverage as well as
a second goal-based fitness function. For example, if there were
four coverage obligations for a class:

•	 When targeting Branch Coverage alone, the average cover-
age of each obligation was 0.4, 0.7, 0.8 and 0.4.

•	 When targeting Branch and Exception Count, the average
coverage of each obligation was 0.5, 0.7, 0.8 and 0.3.

•	 The resulting difference between the two would be −0.1,
0.0, 0.0 and 0.1.

TABLE 3    |    Calculated p-values from comparisons of attained Branch Coverage by different configurations, split by search budget.

Comparison Budget p-value Significant Cliff 's � Effect size

Branch vs. Branch and Execution Time 180 0.909 No −0.005 Negligible

Branch vs. Branch and Exception 180 0.362 No −0.007 Negligible

Branch vs. Branch and Output 180 0.647 No 0.005 Negligible

Branch vs. Branch and Exception 300 0.985 No −0.017 Negligible

Branch vs. Branch and Execution Time 300 0.685 No −0.000 Negligible

Branch vs. Branch and Output 300 0.347 No 0.023 Negligible

FIGURE 6    |    Difference in the average coverage of each obligation
by Branch alone against Branch and Exception (green), Branch and
Execution Time (blue) and Branch and Output (purple) for Chart-3,
Class 1, when the budget is set to 180 s.

Research Question 1.1 (attained Branch Coverage):
Optimizing a second goal-based fitness function does not
have a significant impact on the final Branch Coverage at-
tained by test suites.

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

14 of 30 Software Testing, Verification and Reliability, 2025

Figure 6 visualizes the result of this comparison for one class
from one bug and search budget, as an example of the differ-
ences that can emerge. In this example, positive spikes show
cases where targeting Branch alone performed better for a
particular obligation versus the compared configuration and
vice versa.

To generalize the assessment across all bugs, we calculated the
sum of these differences for each class for each bug. Figure 7
plots the difference between each configuration across all bugs,
split by search budget. Table 4 includes descriptive statistics on
the difference in the average coverage of each obligation.

Figure 7 shows the vast majority of the summed differences is
close to zero, with a median of 0.00 for all comparisons. This
means that—in most cases—there are few major differences in

the obligations covered by each configuration. There are differ-
ences in the 25th and 75th percentiles between configurations,
but relatively narrow ones.

Table 5 offers a complementary analysis, where we indicate the
proportion of individual coverage obligations where one config-
uration outperformed the other in terms of the average cover-
age of each obligation (a ‘win’) or where their performance was
identical (a ‘tie’). The results show that for the vast majority of
obligations (88%–91%), the single- and multi-objective strategies
perform identically, resulting in a tie. For the small fraction of
branches where performance differs, there is no consistent win-
ner—both Branch alone and multi-objective configurations win
a similarly small percentage of the time. This reinforces that
adding a secondary objective rarely changes which specific
branches get covered.

FIGURE 7    |    Boxplots of the differences in covered obligations between targeting Branch Coverage alone versus Branch and goal-based fitness
function.

TABLE 4    |    Descriptive statistics of the difference in the average coverage of each obligation between branch and another configuration, split by
configuration and budget.

Criterion Budget Mean Std Min 25% 50% 75% Max

Branch and Exception 180 0.0033 0.0373 −0.0625 −0.0010 0.0000 0.0038 0.3194

Branch and Execution Time 180 −0.0015 0.0286 −0.1427 −0.0048 0.0000 0.0039 0.1226

Branch and Output 180 −0.0008 0.0527 −0.3875 −0.0043 0.0000 0.0058 0.2097

Branch and Exception 300 −0.0003 0.0232 −0.1111 −0.0051 0.0000 0.0048 0.0482

Branch and Execution Time 300 −0.0030 0.0311 −0.1936 −0.0063 0.0000 0.0073 0.1014

Branch and Output 300 −0.0011 0.0310 −0.1660 −0.0076 0.0000 0.0073 0.0871

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

15 of 30

Figure 7 shows that there are a number of outliers. Most outliers
are clustered within −0.1 to 0.1, i.e., within 10% difference in
average coverage. However, it is possible that some of these out-
liers offer information that could improve the results of test gen-
eration. In particular, negative outliers are interesting, as they
suggest cases where the addition of a goal-based fitness function
improved Branch Coverage.

We inspected the negative outliers, with a particular focus
on the six most extreme cases—Math-81 at the 180-s bud-
get for both Branch and Execution Time and Branch and
Output Coverage, JSoup-9 for Branch and Exception Count
and Branch and Execution Time at the 300-s budget, Math-
11 for Branch and Execution Time at the 300-s budget and
Closure-164 for Branch and Output Coverage at the 300-s bud-
get. Overall, there were few clear and actionable conclusions
that we could draw from these outliers. However, we share
some interesting observations.

The class modified in Math-81 for Branch and Output Coverage
at the 180-s budget was the most extreme outlier, with an aver-
age difference of 38.75% in coverage. The explanation for this
difference is relatively straightforward. Many of the methods

of the CUT have numeric return values. It is likely that Output
Coverage, by placing emphasis on returning diverse results for
these methods, helped to steer test generation towards covering
Branch Coverage obligations in these methods and in methods
indirectly called through these methods. This improvement
disappears at the 300-s search budget, suggesting that Branch
Coverage alone is eventually effective. However, the addition of
Output Coverage speeds coverage attainment.

A similar observation can be made for Branch and Output
Coverage for the CUT in Closure-164, where there was an av-
erage coverage difference of 16.60%. Most methods in this class
return Boolean values. It is possible that the Output Coverage
helped to encourage Branch Coverage by ensuring that the
methods returned both possible values. Here, this difference in-
creased with the search budget.

A potential explanation for the outliers for Branch and
Execution Time is that the Execution Time fitness function
encourages the generation of longer test cases, with more pro-
gramme interactions. This function penalizes test cases that
are too long, but the average test case length is still higher than
when Branch Coverage is targeted alone. This may encourage
improvement in coverage as well, in a small number of cases.

5.1.3   |   Evolution of Coverage Attainment

We collected the evolution of coverage during the test generation
process, based on the Branch Coverage achieved by the best test
suite in the evolving population. A snapshot of coverage is cap-
tured each second during the generation process. This allows
us to calculate the AUC (area under the curve) and the time the
search took to achieve 25%, 50% and 75% coverage during each
trial for each configuration.

Figure 8 and Table 6 show the statistics for AUC for each con-
figuration and search budget. Higher AUC values indicate that
Branch Coverage evolved early, while lower ones mean the
search took more time to achieve coverage.

We observe that the median AUC is lower for both search bud-
gets for Branch and Execution Time as well as for Branch and
Output Coverage than for Branch alone, potentially indicating
slightly slower coverage attainment. However, the 25th and 75th
percentiles are similar. We also observe that the median AUC
is slightly higher for Branch and Exception Coverage than for
Branch alone at the 180-s budget, potentially indicating a slight
improvement in the rate of coverage attainment.

In Table 7, we show the results of statistical testing on the AUC.
All p-values are considerably above the 0.05 threshold. Figure 9
and Table 8 report the time needed to reach 25%, 50% and 75%
Branch Coverage. The median time to reach each landmark is
very similar across all configurations, regardless of search budget.
The largest differences between configurations can be seen in the
75th percentile for each configuration. Here, we often see a higher
75th percentile for Branch and Output, as compared with the
higher configurations, indicating again that coverage attainment
may be slightly slowed with the inclusion of Output Coverage as a
goal. However, there is no evidence that this effect is significant.

TABLE 5    |    Proportion of coverage obligations where one
configuration outperforms another.

Comparison Budget

Branch
wins
(%)

Branch + X
wins (%)

Ties
(%)

Branch vs.
Branch and
Exception

180 3.7% 5.1% 91.2%

Branch vs.
Branch and
Exec. Time

180 5.6% 6.4% 88.0%

Branch vs.
Branch and
Output

180 6.0% 5.7% 88.3%

Branch vs.
Branch and
Exception

300 4.6% 4.6% 90.8%

Branch vs.
Branch and
Exec. Time

300 5.5% 4.9% 89.7%

Branch vs.
Branch and
Output

300 5.2% 5.3% 89.5%

Research Question 1.2 (obligations covered): In the ma-
jority of cases, the addition of a goal-based fitness function
does not change the likelihood of covering particular test
obligations. Almost all differences in the average coverage
of individual obligations are within 10% of when Branch
Coverage is targeted alone.

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

16 of 30 Software Testing, Verification and Reliability, 2025

While the median remains relatively consistent across search
budgets, the 75% percentile is often higher at the 300-s budget,
especially at the 75% coverage threshold. The average also raises
across search budgets. This is because a small number of addi-
tional test suites reach these thresholds later in the generation
process under the higher budget. Again, the median is relatively
consistent across all budgets and configurations.

5.2   |   Impact on Goal-Based Objectives (Research
Question 2)

Our second hypothesis was the following:

Hypothesis 2.  Targeting both coverage and a goal-based fit-
ness function will not have an impact on the attainment of goal-
based fitness functions, as compared with targeting coverage or a
goal-based fitness function alone.

Similar to Research Question 1, targeting multiple objectives
could affect the final fitness values of the goal-based fitness
functions—e.g., raising or lowering goal attainment when com-
pared with targeting a goal-based or a structure-based fitness
function alone.

In addition to examining this hypothesis directly, there is a
secondary hypothesis of interest. One of the reasons for the
prevalence of structural coverage in search-based test gener-
ation is that structural coverage can be translated effectively
into distance-based fitness functions, e.g., the branch dis-
tance used for optimizing Branch Coverage [7]. This means
that tests can be efficiently generated that widely explore the
codebase. Goal-based fitness functions often lack distance-
based fitness functions [47]. Consequently, they may offer less
feedback to the optimization process. As a result, targeting
both coverage and goal-based objectives could potentially re-
sult in higher attainment of goal-based fitness by offering an
additional feedback mechanism [11, 47]. Past research has not
assessed this hypothesis. In this experiment, the Exception
Count is one such example. In contrast, Output Coverage does
have a distance-based fitness function, so such benefits may
not be observed in this case.

During the experiment, we recorded the final attainment of each
goal-based fitness function for all generated test suites. Note that

FIGURE 8    |    Boxplot for aArea uUnder the cCurve (AUC) of the branch coverage evolution, split by budget and cCriterion.

TABLE 6    |    Average and median values for AUC of coverage evolution
for different configurations, split by budget.

Criterion Budget Average Median

Branch 180 74.06 68.32

Branch and Exception 180 75.44 77.59

Branch and Execution
Time

180 70.73 61.25

Branch and Output 180 70.30 61.48

Branch 300 134.19 141.89

Branch and Exception 300 135.65 141.93

Branch and Execution
Time

300 130.55 138.27

Branch and Output 300 127.60 124.85

Research Question 1.3 (coverage evolution): There are
almost no significant differences between configurations
with regard to the rate of attainment of Branch Coverage.
Branch and Exception Coverage at a 180-s budget show sta-
tistically significant improvement, but with only a negligible
effect size.

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

17 of 30

the Execution Time fitness function cannot be executed without
also targeting Branch Coverage, so we were unable to generate
test suites targeting Execution Time alone. In addition, note that
the Exception Count is normalized between 0 and 1 for all bugs,
based on the largest number of exceptions seen in any trial for
that bug, as the number of possible exceptions differs between
bugs. Figure 10 shows boxplots for Exception Count, Output
Coverage and Execution Time for each fitness function config-
uration and search budget. Average and median values are re-
ported in Table 9. Tables 10–12 report p-values and effect sizes
for comparisons between single-objective generation versus
multi-objective optimization.

First, we observe that no goal-based fitness function can serve
as a proxy for another goal-based fitness function. Targeting
Output Coverage yields a low Exception Count and Execution
Time. Similarly, targeting Exception Coverage yields low Output
Coverage and Execution Time. If one targets a goal-based fitness
function alone, they should not expect high attainment of goals
other than the one that function was designed for.

Targeting Branch Coverage alone yields better performance
at each goal than targeting a fitness function designed for a

different goal, suggesting that coverage of the code base will al-
ways lead to some degree of goal attainment. However, as shown
in Tables 10 and 11, these suites are also significantly worse at
attaining Output Coverage or Exception Count than targeting
either goal directly or targeting multiple objectives—with a large
effect size for Exception Count at both search budgets, a small–
medium effect size for Output Coverage at the 180-s search bud-
get, and a medium–large effect size for Output Coverage at the
300-s budget. In other words, code coverage is a weak proxy for
a goal-based fitness function—as noted in Section 1, coverage
alone is not enough to ensure goal attainment.

Next, we compare targeting a goal alone versus multi-objective
optimization. Table 11 shows that, at both budgets, there is a sig-
nificant difference in Output Coverage between targeting Output
Coverage alone and targeting both Branch and Output Coverage,
in favour of targeting Output Coverage alone. However, the effect

TABLE 7    |    p-values and effect size on pairwise comparisons of AUC by different configurations, split by search budget.

Comparison Budget p-value Significant Cliff 's � Effect size

Branch vs. Branch and Execution Time 180 0.909 No −0.005 Negligible

Branch vs. Branch and Exception 180 0.362 No −0.007 Negligible

Branch vs. Branch and Output 180 0.647 No 0.005 Negligible

Branch vs. Branch and Exception 300 0.985 No −0.017 Negligible

Branch vs. Branch and Execution Time 300 0.685 No −0.001 Negligible

Branch vs. Branch and Output 300 0.347 No 0.023 Negligible

FIGURE 9    |    Boxplots of the time taken to achieve 25%, 50%, and 75% Branch Coverage for each configuration, split by budget.

Research Question 2 (goal coverage): Targeting code
coverage alone leads to worse goal attainment than directly
targeting a goal-based objective.

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

18 of 30 Software Testing, Verification and Reliability, 2025

size is only small at the 180-s budget and negligible at the 300-s
budget. Similarly, Table 10 shows that, at both budgets, there is no
significant difference between targeting Branch and Exception
Count and targeting Exception Count alone.

In our past research, we observed situations where both Branch
Coverage and the Exception Count offer the other function
missing feedback—with the Exception Count steering Branch
Coverage towards input that triggers exceptions and Branch
Coverage offering feedback on how to further explore the code
base [11]. Such cases are rare, but may explain the higher me-
dian seen for multi-objective generation in Figure 10.

We were unable to generate suites targeting Execution Time
alone due to limitations. However, from Table 9, we can see that
there is a slight improvement in the average (at both budgets)
and the median (at the 180-s budget) Execution Time from tar-
geting Branch and Execution Time simultaneously. However,
there are no statistically significant differences between tar-
geting both objectives versus targeting Branch Coverage alone
(Table 12). No configuration was significantly better at yielding
tests with high execution times. It is possible that the examples
chosen from Defects4J had few or no performance issues that
could be exposed through unit testing.

5.3   |   Impact on Fault Detection (Research
Question 3)

The third hypothesis that we raised was the following:

Hypothesis 3.  Targeting both coverage and a goal-based
fitness function will not have an impact on the fault detection of
generated test suites, as compared with targeting coverage or a
goal-based fitness function alone.

Regardless of the impact on the code coverage or attainment of
non-coverage testing goals, targeting multiple objectives could
change the specific inputs applied to the CUT. As a result, there

TABLE 8    |    Descriptive statistics on the time (in seconds) to reach
coverage thresholds, split by configuration and budget. ‘Count’ indicates
the number of trials that reached this threshold.

Criterion Budget Count Average Median

Time to 25%

Branch 180 544 10.33 1.00

Branch and
Exception

180 527 9.12 1.00

Branch and
Execution
Time

180 501 12.06 1.00

Branch and
Output

180 512 12.45 1.00

Branch 300 551 19.00 1.00

Branch and
Exception

300 513 17.37 1.00

Branch and
Execution
Time

300 479 19.76 1.00

Branch and
Output

300 492 21.34 1.00

Time to 50%

Branch 180 433 22.55 5.00

Branch and
Exception

180 416 18.70 4.00

Branch and
Execution
Time

180 376 19.67 5.00

Branch and
Output

180 391 20.74 5.00

Branch 300 448 35.64 5.00

Branch and
Exception

300 417 34.98 5.00

Branch and
Execution
Time

300 378 33.36 5.00

Branch and
Output

300 391 37.39 5.00

Time to 75%

Branch 180 233 24.29 5.00

Branch and
Exception

180 236 22.08 5.00

Branch and
Execution
Time

180 209 23.15 5.00

Branch and
Output

180 217 33.29 5.00

(Continues)

Criterion Budget Count Average Median

Branch 300 244 41.32 5.00

Branch and
Exception

300 231 35.94 5.00

Branch and
Execution
Time

300 222 43.28 5.00

Branch and
Output

300 229 57.98 6.00

TABLE 8    |    (Continued)

Research Question 2 (goal coverage): Targeting code
coverage and a goal-based objective simultaneously results
in no, or only a limited (negligible–small), drop in goal-
based fitness compared with targeting a goal-based objec-
tive alone.

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

19 of 30

FIGURE 10    |    Boxplots for Execution Ttime, Exception Count, and Output Coverage divided by budget and configuration.

TABLE 9    |    Averages and median values for Execution Time, Output Coverage and Exception Count, by configuration and budget.

Criterion Budget

Execution Time Output Coverage Exception Count

Avg Median Avg Median Avg Median

Branch 180 41.73 31.00 0.31 0.35 0.29 0.22

Branch and Exception 180 42.69 31.00 0.32 0.37 0.62 0.79

Branch and Execution Time 180 42.90 33.00 0.31 0.36 0.31 0.25

Branch and Output 180 42.89 31.00 0.43 0.49 0.30 0.25

Exception 180 27.48 21.00 0.19 0.11 0.59 0.71

Output 180 23.13 16.00 0.45 0.50 0.13 0.08

Branch 300 39.83 30.00 0.33 0.36 0.30 0.25

Branch and Exception 300 39.11 28.00 0.35 0.39 0.68 0.88

Branch and Execution Time 300 40.37 30.00 0.33 0.36 0.32 0.25

Branch and Output 300 40.38 30.00 0.46 0.50 0.32 0.25

Exception 300 26.87 20.00 0.19 0.11 0.59 0.71

Output 300 23.57 16.00 0.47 0.52 0.14 0.09

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

20 of 30 Software Testing, Verification and Reliability, 2025

could be a change in the fault-revealing power of those test
suites—it could either increase due to a change in the versatility
of the test suite [10, 11, 41] or potentially decrease.

To assess this hypothesis, we consider two aspects of fault
detection. First, the likelihood of fault detection—for each
fault, the proportion of suites (for a particular configuration)
that detect the fault to those generated for that configuration.
Second, we consider the number of failing tests—how many
test cases detect the fault when it is detected. We consider both
so that we can examine both how likely a fault is to be detected
and how much information exists to understand and debug
the fault. If two configurations have the same likelihood of
detection, one may offer more failing tests to use in the debug-
ging process.

Figure 11 illustrates the likelihood of fault detection, and
Table 13 offers descriptive statistics for each configuration and
search budget. Table 13 lists, for each budget and fitness function
configuration, the lowest, highest, average, median, 25th quar-
tile and 75th quartile likelihood of fault detection observed for

the assessed faults, as well as the total number of faults detected
over the set of 93 considered in this experiment. Immediately,
we can see that the multi-objective configurations detect more
faults—with Branch and Output detecting the most at the 180-s
budget and Branch and Execution Time detecting the most at
the 300-s budget. The multi-objective configurations are fol-
lowed by Branch Coverage, then Output Coverage, and finally
the Exception Count.

However, as the majority of faults are never detected, the me-
dian likelihood of fault detection is also zero for all configura-
tions. The average, skewed by cases where faults are detected,
is somewhat more informative. Targeting Branch and Output

TABLE 10    |    Significance tests and effect size for comparisons of Exception Count between single- and multi-objective configurations across
different budgets.

Comparison Budget p-value Significant Cliff 's � Category

Branch vs. Branch and Exception 180 5.28 × 10−72 Yes −0.48 Large

Branch vs. Exception 180 2.68 × 10−84 Yes −0.56 Large

Branch and Exception vs. Exception 180 0.176 No 0.01 Negligible

Branch vs. Branch and Exception 300 3.06 × 10−80 Yes −0.51 Large

Branch vs. Exception 300 1.49 × 10−79 Yes −0.56 Large

Branch and Exception vs. Exception 300 0.152 No 0.10 Negligible

TABLE 11    |    Significance tests and effect size for comparisons of Output Coverage between single- and multi-objective configurations across
different budgets.

Comparison Budget p-value Significant Cliff 's � Category

Branch vs. Branch and Output 180 9.72 × 10−29 Yes −0.32 Small

Branch vs. Output 180 7.3 × 10−47 Yes −0.47 Medium

Branch and Output vs. Output 180 2.53 × 10−9 Yes −0.16 Small

Branch vs. Branch and Output 300 1.82 × 10−29 Yes −0.36 Medium

Branch vs. Output 300 1.53 × 10−44 Yes −0.49 Large

Branch and Output vs. Output 300 2.1 × 10−4 Yes −0.11 Negligible

TABLE 12    |    Significance tests and effect size for comparisons of Execution Time between single- and multi-objective configurations across
different budgets.

Comparison Budget p-value Significant Effect size Category

Branch vs. Branch and Execution Time 180 0.350 No −0.01 Negligible

Branch vs. Branch and Execution Time 300 0.882 No −0.01 Negligible

Research Question 3 (fault detection): Suites targeting
multi-objective configurations detected more faults than
single-objective configurations. Further, suites targeting
Branch Coverage alone detected more faults than goal-based
suites alone.

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

21 of 30

Coverage yields the highest average likelihood of fault detection
at both search budgets (28% and 31%), followed at both budgets
by Branch and Exception Count (27% and 30%) and Branch and
Execution Time (25% and 28%). This same ordering can be seen
in the 75th percentile in Figure 11. Again, targeting the goal-
based functions alone yields the lowest average likelihood of
fault detection—with the worst performance from targeting the
Exception Count alone.

We note that these results replicate the general trends observed
in our previous work [10, 11]. While the exact results may dif-
fer due to changes made to EvoSuite and the stochastic nature
of search-based test generation, we previously observed that
targeting Branch Coverage alone yielded a higher likelihood
of fault detection than targeting Exception Count or Output
Coverage alone, and that multi-objective combinations also
had an even higher average likelihood of fault detection.

Table 14 includes significance tests and effect sizes for the like-
lihood of fault detection. At both budgets, the multi-objective
configurations do not yield significantly different results from
targeting Branch Coverage alone in the likelihood of fault

detection. However, targeting Branch Coverage yields better
results (with a large effect size) than targeting a goal-based fit-
ness function at both budgets. Targeting Branch and Exception
Count simultaneously also yields better results than targeting
Exception Count alone, with a large effect size, at both budgets.
Finally, targeting Branch Coverage and Output Coverage yields
better results than targeting Output Coverage alone, with large
effect sizes at both budgets.

FIGURE 11    |    Boxplots of the likelihood of fault detection, divided by budget and configuration.

TABLE 13    |    Descriptive statistics on the likelihood of fault detection, split by budget and configuration.

Criterion Budget Min 25% 50% 75% Max Avg # of bugs detected

Branch 180 0.00 0.00 0.00 0.38 1.00 0.24 28

Branch and Exception 180 0.00 0.00 0.00 0.54 1.00 0.27 30

Branch and Execution Time 180 0.00 0.00 0.00 0.41 1.00 0.25 34

Branch and Output 180 0.00 0.00 0.00 0.89 1.00 0.28 35

Exception 180 0.00 0.00 0.00 0.10 0.22 0.04 23

Output 180 0.00 0.00 0.00 0.10 0.44 0.09 27

Branch 300 0.00 0.00 0.00 0.43 1.00 0.26 32

Branch and Exception 300 0.00 0.00 0.00 0.75 1.00 0.30 35

Branch and Execution Time 300 0.00 0.00 0.00 0.57 1.00 0.28 39

Branch and Output 300 0.00 0.00 0.00 0.85 1.00 0.31 33

Exception 300 0.00 0.00 0.00 0.10 0.20 0.06 28

Output 300 0.00 0.00 0.00 0.10 0.33 0.13 31

Research Question 3 (fault detection): Suites targeting
Branch Coverage alone or a multi-objective configuration
outperform suites targeting a goal-based objective in the
likelihood of fault detection with medium–large effect size.

Research Question 3 (fault detection): Suites targeting a
multi-objective configuration fail to outperform suites tar-
geting Branch Coverage alone with significance in the likeli-
hood of fault detection. However, targeting a multi-objective
configuration does increase the average and 75th percentile
performance.

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

22 of 30 Software Testing, Verification and Reliability, 2025

Figure 12 illustrates the number of failing tests, and Table 15 of-
fers descriptive statistics for each configuration and search bud-
get. Table 16 includes significance tests and effect sizes, when
significance is found.

Here, we see largely similar trends to the likelihood of fault de-
tection, with the median number of failing tests being 0 for all
configurations. Targeting Branch and Exception Count yields the
largest average number of failing tests at both budgets (1.13 and
1.28), followed by Branch and Execution Time (1.00) at the 180-s
budget and Branch alone (1.08) at the 300-s budget. However,
these results are in a relatively narrow range, and no multi-
objective configuration is an outlier in terms of the number of
tests that fail when a fault is detected. As shown in Table 16, tar-
geting Branch Coverage alone or a multi-objective configuration

yields a larger number of failing tests than targeting a goal-based
objective alone, with medium effect size.

FIGURE 12    |    Boxplots of the number of failing tests, divided by budget and configuration.

Research Question 3 (fault detection): Suites targeting
Branch Coverage alone or a multi-objective configuration
outperform suites targeting a goal-based objective, in the
number of failing tests, with medium effect size.

Research Question 3 (fault detection): Suites targeting a
multi-objective configuration fail to outperform suites tar-
geting Branch Coverage alone with significance in the num-
ber of failing tests.

TABLE 14    |    Significance tests and effect size for comparisons of likelihood of fault detection between single- and multi-objective configurations
across different budgets.

Comparison Budget p-value Significant Cliff 's � Category

Branch vs. Branch and Exception 180 0.657 No −0.035 Negligible

Branch vs. Branch and Execution Time 180 0.895 No −0.014 Negligible

Branch vs. Branch and Output 180 0.457 No −0.052 Negligible

Branch vs. Exception 180 6.39 × 10−5 Yes 0.668 Large

Branch vs. Output 180 1.72 × 10−4 Yes 0.625 Large

Branch and Exception vs. Exception 180 8.32 × 10−5 Yes 0.792 Large

Branch and Output vs. Output 180 5.60 × 10−5 Yes 0.810 Large

Branch vs. Branch and Exception 300 0.384 No −0.061 Negligible

Branch vs. Branch and Execution Time 300 0.612 No −0.046 Negligible

Branch vs. Branch and Output 300 0.461 No −0.058 Negligible

Branch vs. Exception 300 1.41 × 10−5 Yes 0.729 Large

Branch vs. Output 300 6.07 × 10−5 Yes 0.669 Large

Branch and Exception vs. Exception 300 6.28 × 10−6 Yes 0.937 Large

Branch and Output vs. Output 300 2.92 × 10−5 Yes 0.838 Large

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

23 of 30

5.4   |   Impact on Test Suite Contents (Research
Question 4)

Our fourth hypothesis was that:

Hypothesis 4.  Targeting both coverage and a goal-based fit-
ness function will not have an impact on the size of the test suite
and the average test length, as compared with targeting coverage
or a goal-based fitness function alone.

Targeting multiple objectives could increase the suite size or av-
erage test case length. Each unit test case contains one or more

interactions with the CUT. Each targeted objective imposes
a set of obligations that must be covered in those interactions,
and only particular input will ensure those obligations are met.
Multi-objective optimization imposes a larger set of obligations
than single-objective optimization.

Each test case can cover obligations of multiple criteria, mean-
ing that one should not expect a linear increase in suite size or
test case length during multi-objective optimization compared
with single-objective optimization. However, some obligations
require highly specific test input or setup, potentially necessitat-
ing additional specialized test cases or an increased number of

TABLE 15    |    Descriptive statistics on number of failing tests, split by budget and configuration.

Criterion Budget Avg Min 25% 50% 75% Max

Branch 180 0.89 0.00 0.00 0.00 0.00 29.00

Branch and Exception 180 1.13 0.00 0.00 0.00 1.00 30.00

Branch and Execution Time 180 1.00 0.00 0.00 0.00 0.00 33.00

Branch and Output 180 0.88 0.00 0.00 0.00 1.00 37.00

Exception 180 0.04 0.00 0.00 0.00 0.00 1.00

Output 180 0.09 0.00 0.00 0.00 0.00 1.00

Branch 300 1.08 0.00 0.00 0.00 1.00 41.00

Branch and Exception 300 1.28 0.00 0.00 0.00 1.00 39.00

Branch and Execution Time 300 1.04 0.00 0.00 0.00 1.00 39.00

Branch and Output 300 0.98 0.00 0.00 0.00 1.00 38.00

Exception 300 0.06 0.00 0.00 0.00 0.00 1.00

Output 300 0.13 0.00 0.00 0.00 0.00 1.00

TABLE 16    |    Significance tests and effect size for comparisons of the number of failing tests between single- and multi-objective configurations
across different budgets.

Comparison Budget p-value Significant Cliff 's � Category

Branch vs. Branch and Exception 180 0.043 No −0.043 Negligible

Branch vs. Branch and Execution Time 180 0.518 No −0.019 Negligible

Branch vs. Branch and Output 180 0.053 No −0.049 Negligible

Branch vs. Exception 180 2.96 × 10−37 Yes 0.35 Medium

Branch vs. Output 180 7.43 × 10−31 Yes 0.35 Medium

Branch and Exception vs. Exception 180 1.90 × 10−36 Yes 0.41 Medium

Branch and Output vs. Output 180 4.16 × 10−35 Yes 0.36 Medium

Branch vs. Branch and Exception 300 0.014 No −0.069 Negligible

Branch vs. Branch and Execution Time 300 0.124 No −0.050 Negligible

Branch vs. Branch and Output 300 0.012 No −0.059 Negligible

Branch vs. Exception 300 2.90 × 10−45 Yes 0.33 Medium

Branch vs. Output 300 2.62 × 10−37 Yes 0.33 Medium

Branch and Exception vs. Exception 300 2.29 × 10−38 Yes 0.40 Medium

Branch and Output vs. Output 300 3.34 × 10−38 Yes 0.41 Medium

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

24 of 30 Software Testing, Verification and Reliability, 2025

programme interactions. Therefore, some increase in suite size,
test length or both could occur.

Figure 13 shows boxplots for the test suite size and average
test case length, with Table 17 reporting median and av-
erage values for both. Tables 18 and 19 report the results of

significance tests and effect sizes (when significance is found)
for both measurements, comparing single- and multi-objective
configurations.

From Figure 13 and Table 18, we can immediately see that
the distributions of test suite sizes vary significantly between

FIGURE 13    |    Boxplots for the test suite size and the average test case length, divided by budget and configuration.

TABLE 17    |    Average and median test suite size and average test case length, divided by budget and configuration.

Criterion Budget

Suite size Test case length

Avg Median Avg Median

Branch 180 18.36 14.00 34.51 21.43

Branch and Exception 180 23.45 19.00 33.48 21.38

Branch and Execution Time 180 19.76 15.00 35.12 21.82

Branch and Output 180 22.89 18.00 35.90 21.67

Exception 180 9.92 6.00 20.35 20.00

Output 180 10.23 5.00 21.76 19.75

Branch 300 20.23 14.00 32.35 21.29

Branch and Exception 300 25.64 19.00 31.06 21.19

Branch and Execution Time 300 22.41 16.00 34.88 21.73

Branch and Output 300 25.96 18.00 34.76 21.54

Exception 300 9.98 6.00 19.85 20.00

Output 300 10.65 6.00 20.45 19.75

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

25 of 30

configurations. Targeting code coverage and a goal-based fit-
ness function simultaneously results in larger test suites than
targeting either alone, with medium–large effect size compared
with targeting a goal-based objective and negligible small effect
size compared with targeting Branch Coverage alone.

Figure 13 and Table 19 also show that the average test case
length tends to increase with multi-objective optimization
compared with targeting a goal-based objective alone, with a
small–medium effect size. However, the test length does not
increase compared with targeting Branch Coverage alone—
with only a negligible increase when targeting Branch and
Execution Time.

Branch Coverage tends to have more obligations to cover than
the Exception Count or Output Coverage, as a programme
will generally have more branches in control flow than output

partitions or thrown exceptions. Covering the obligations of
Branch Coverage requires more interactions with the CUT and
requires that a larger number of specialized scenarios be set up
and executed compared with a goal-based objective alone, in-
creasing both suite size and test length.

There is a larger increase between Branch and Exception Count
and Exception Count alone in both suite size and test length than
between Branch and Output Coverage and Output Coverage
alone. This is because the Exception Count depends on the num-
ber of exceptions discovered, which—in almost all cases—will
be fewer than the number of required output partitions for the
methods of the CUT. Further, tests that trigger exceptions may
not achieve high coverage, as the execution path will end when
the exception is triggered. If an exception is triggered early in
the execution of a particular method, few coverage obligations
will be achieved.

TABLE 18    |    Significance comparisons and effect sizes for test suite size between single- and multi-objective configurations across different
budgets. All p-values are significant.

Comparison Budget p-value Cliff 's � Effect size

Branch vs. Branch and Exception 180 1.41 × 10−7 −0.29 Small

Branch vs. Branch and Output 180 1.95 × 10−6 −0.26 Small

Branch vs. Branch and Execution Time 180 0.011 −0.12 Negligible

Branch and Exception vs. Exception 180 4.97 × 10−69 0.84 Large

Branch and Output vs. Output 180 2.38 × 10−54 0.68 Medium

Branch vs. Branch and Exception 300 4.35 × 10−7 −0.27 Small

Branch vs. Branch and Output 300 1.80 × 10−6 −0.27 Small

Branch vs. Branch and Execution Time 300 0.001 −0.13 Negligible

Branch and Exception vs. Exception 300 9.21 × 10−67 0.92 Large

Branch and Output vs. Output 300 1.96 × 10−51 0.73 Medium

TABLE 19    |    Significance comparisons and effect sizes for average test case length between single- and multi-objective configurations across
different budgets.

Comparison Budget p-value Significant Cliff 's � Effect size

Branch vs. Branch and Exception 180 0.891 No −0.001 Negligible

Branch vs. Branch and Output 180 0.374 No −0.021 Negligible

Branch vs. Branch and Execution Time 180 0.490 No −0.009 Negligible

Branch and Exception vs. Exception 180 4.97 × 10−30 Yes 0.63 Medium

Branch and Output vs. Output 180 2.18 × 10−24 Yes 0.45 Small

Branch vs. Branch and Exception 300 0.691 No −0.003 Negligible

Branch vs. Branch and Output 300 0.300 No −0.023 Negligible

Branch vs. Branch and Execution Time 300 0.002 Yes −0.09 Negligible

Branch and Exception vs. Exception 300 4.30 × 10−26 Yes 0.60 Medium

Branch and Output vs. Output 300 6.61 × 10−21 Yes 0.52 Medium

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

26 of 30 Software Testing, Verification and Reliability, 2025

There is only a small increase in test suite size—and no increase
in average test length—between Exception Count and Branch
Coverage and Output Coverage and Branch Coverage versus
Branch Coverage alone. As discussed above, the number of obli-
gations for the goal-based objectives is small compared with the
number for Branch Coverage, so only a small increase in suite
size would be expected.

We see no or negligible increase in suite size and test length be-
tween Branch Coverage and Branch and Execution Time. The
Execution Time fitness function differed from the others in that
it had no ‘obligations’. Rather, the goal was simply to find the
maximum execution time for a test suite during the generation
process. Therefore, one would not expect a significant impact
on the test suite size. Some impact on test case length would be
reasonable, however, as increasing the number of interactions
will increase the execution time. That said, the fitness function
imposed a high penalty on test case length to prevent the gener-
ation of bloated test cases. Further, as shown in Table 12, actual
attainment of the Execution Time goal was limited.

5.5   |   Impact of Search Budget (Research Question
5)

Our final hypothesis was the following:

Hypothesis 5.  An increase in the search budget will not lead
to increased attainment of each objective.

An increased search budget could potentially increase the re-
sulting attainment of each targeted objective. However, we must
examine whether this is the case. In any case, we also hypoth-
esize that the relative relationships between single- and multi-
objective optimization will not fundamentally differ.

We observe that attainment generally did increase. We also ob-
serve that the observed trends generally held true. With regard
to attained Branch Coverage, the increased search budget led to

higher coverage attainment (Table 2) and more suites reaching
particular coverage thresholds (Table 8). However, this increase
is approximately consistent across configurations, regardless of
the targeted fitness functions. The same trends between config-
urations generally held at both search budgets with regard to
total attained coverage, the particular obligations covered, and
the rate of coverage attainment.

With regard to coverage of goal-based objectives, an increased
search budget led to slightly higher median attainment of
Exception Count and Output Coverage (Table 9). However,
again, the same general trends were witnessed in comparisons
of multi-objective and single-objective generation at both bud-
gets for the most part. Two exceptions emerged (Tables 10 and
11). First, at a higher budget, targeting Branch and Exception
yielded significantly better Exception Count than targeting
Branch alone (when there was no significant difference at
the lower budget). Second, a negligible difference at the lower
search budget between targeting Branch and Output and tar-
geting Output Coverage alone in terms of the achieved Output
Coverage disappeared at a higher budget.

With regard to fault detection, the number of faults detected
increased with the search budget. In addition, we see that the
average and 75th percentile likelihood of fault detection also in-
creased with the search budget (Table 13)—as well as the aver-
age number of failing tests (Table 15). The general relationships
between single- and multi-objective configurations held, except
that some effect sizes increased at the higher budget (Table 14).

Finally, an increased search budget generally led to little-to-no
change in the median test suite size or test case length—how-
ever, there was a minor increase in the average suite size
(Table 17). The observations with regard to single versus multi-
objective generation held across budgets, with small amplifica-
tions at the larger search budget (e.g., an increased effect size for
Branch and Output versus Output alone at a 300-s budget for the
average test case length).

6   |   Discussion

6.1   |   Assessment of Hypotheses

Our study assessed five hypotheses about the relationships
between coverage-directed test generation, goal-directed test
generation, and multi-objective optimization targeting both

Research Question 4 (test suite contents): Both the
test suite size and average test length increase with multi-
objective optimization compared with when a goal-based
criterion is targeted alone. Branch Coverage tends to impose
more obligations than goal-based objectives, leading to the
increase.

Research Question 4 (test suite contents): Targeting
Exception or Output Coverage in addition to Branch
Coverage leads to a small increase in test suite size compared
with targeting Branch Coverage alone. However, there is no
significant increase in test case length.

Research Question 4 (test suite contents): Targeting
Execution Time in addition to Branch Coverage leads to no
or negligible change in suite size or test case length com-
pared with targeting Branch Coverage alone.

Research Question 5 (search budget): An increased
search budget leads to increased Branch Coverage, goal at-
tainment and fault detection, but does not substantially af-
fect test suite size and average test length.

Research Question 5 (search budget): An increased
search budget generally does not fundamentally change—
but may increase the effect size of—relationships between
single- and multi-objective optimization.

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

27 of 30

coverage and testing goals. Here, we summarize our findings
with regard to these hypotheses.

Hypothesis 1.  The inclusion of goal-based fitness functions
as additional generation targets will not have an impact on the
attainment of code coverage, as compared with targeting coverage
alone.

Ultimately, our observations fail to refute this hypothesis.
We found that adding a second goal-based fitness function does
not have a significant impact on the final Branch Coverage
attained by test suites. Further, in the majority of cases, the
addition of a goal-based fitness function does not change the
likelihood of covering particular test obligations. Almost all
differences in the average coverage of individual obligations
are within 10% of when Branch Coverage is targeted alone.
Finally, there are almost no significant differences between
configurations with regard to the rate of attainment of Branch
Coverage.

Hypothesis 2.  Targeting both coverage and a goal-based fit-
ness function will not have an impact on the attainment of goal-
based fitness functions, as compared with targeting coverage or a
goal-based fitness function alone.

Our observations partially refute this hypothesis. First, we
observed that targeting code coverage alone leads to worse goal
attainment than directly targeting a goal-based objective, adding
evidence to our previous observations [11] that coverage is a pre-
requisite for goal attainment but does not guarantee attainment.

We observed that targeting Branch Coverage and Exception
Count did not yield significant differences from targeting
Exception Count alone. However, the multi-objective configu-
ration did have a higher median performance. As observed in
our previous work [10, 11], the addition of Branch Coverage can
offer feedback that leads to the discovery of more exceptions.
However, such cases are rare. Targeting Branch and Output
Coverage did yield significant differences from targeting Output
Coverage alone, with worse results from the multi-objective
configuration. However, the effect size is small at the 180-s bud-
get and negligible at the 300-s budget.

In short, we cannot reject this hypothesis in all situations.
When we do, the results (i.e., for Output Coverage) indicate that
there is a potential loss in performance, but only a small one.

Hypothesis 3.  Targeting both coverage and a goal-based
fitness function will not have an impact on the fault detection of
generated test suites, as compared with targeting coverage or a
goal-based fitness function alone.

Our observations partially refute this hypothesis. Suites
targeting multi-objective configurations detected more faults
than single-objective configurations. Suites targeting Branch
Coverage alone detected fewer faults than multi-objective con-
figurations, but they did detect more faults than suites targeting
goal-based objectives.

In addition, suites targeting Branch Coverage alone or a
multi-objective configuration outperform suites targeting a

goal-based objective in the likelihood of fault detection with
medium–large effect size. However, suites targeting a multi-
objective configuration fail to outperform suites targeting
Branch Coverage alone with significance in the likelihood
of fault detection. That said, targeting a multi-objective con-
figuration does increase the average and 75th percentile
performance.

These findings reinforce our previous observations [10, 11] that
coverage is needed to discover faults but does not guarantee the se-
lection of the specific inputs needed to trigger a failure. Targeting
coverage yields more failures than only targeting testing goals.
Targeting a goal in addition to coverage resulted in the discovery
of more faults than coverage alone by biasing the test input used in
the generated suite. However, many faults still remain undetected.
Future research should consider additional goal-based fitness
functions and aim to discover which functions can best shape cov-
erage towards an increased likelihood of fault detection.

Hypothesis 4.  Targeting both coverage and a goal-based fit-
ness function will not have an impact on the size of the test suite
and the average test length, as compared with targeting coverage
or a goal-based fitness function alone.

Our observations partially refute this hypothesis. Both the
test suite size and average test length significantly increase
with multi-objective optimization compared with when a goal-
based criterion is targeted alone. Branch Coverage tends to im-
pose more obligations than goal-based objectives, leading to the
increase.

Targeting Exception or Output Coverage in addition to Branch
Coverage also leads to a negligible–small increase in test suite
size compared with targeting Branch Coverage alone. However,
there is no significant increase in test case length.

Targeting Execution Time in addition to Branch Coverage
leads to no or negligible changes in suite size or test length
compared with targeting Branch Coverage alone, as the
Execution Time fitness function does not have distinct test
obligations.

Hypothesis 5.  An increase in the search budget will not lead
to increased attainment of each objective.

Our observations partially refute this hypothesis. An in-
creased search budget leads to increased Branch Coverage,
goal attainment, and fault detection, but does not substantially
affect suite size and test length. Additionally, an increased
search budget does not fundamentally change—but may
amplify—relationships between single- and multi-objective
optimization.

6.2   |   Threats to Validity

6.2.1   |   External Validity

For this study, we focused on case examples of real faults from
the Defects4J dataset. The use of this dataset introduces certain
threats to external validity. First, the faults used in the study

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

28 of 30 Software Testing, Verification and Reliability, 2025

represent only 14 Java projects. This is a relatively small num-
ber of projects. Nevertheless, we believe that Defects4J offers
enough case examples that our results are generalizable to, at
minimum, other small to medium-sized Java projects. Further,
as Defects4J is used extensively in search-based test generation
research [59], the use of Defects4J examples enables compari-
sons of our results with other research and eases replication.

The set of specific faults used from the Defects4J dataset may
also introduce selection bias, as certain types of faults or cer-
tain projects may be overrepresented or underrepresented.
While we lacked experimental resources to consider all faults,
we worked to ensure that we drew a proportional sample. We
initially selected 206 faults, then retained 93 faults in the final
experiment. This set remains large enough to offer a broad range
of case examples, and we do not believe that any single project
is overrepresented.

We have based our research on a single test generation frame-
work, EvoSuite. There are many search-based methods of gen-
erating tests, and these methods may yield different results.
Unfortunately, no other generation framework offers the same
variety of fitness functions, particularly goal-based fitness func-
tions. Therefore, a more thorough comparison of tools cannot be
made at this time. In addition, by focusing on a single generation
framework, we ensure that all test suites are compared in a con-
trolled and fair manner.

Within EvoSuite, we also only employed one multi-objective
algorithm, whole suite generation. Other algorithms may yield
different results, as search objectives may be targeted through
different mechanisms. We chose this algorithm to enable compar-
ison to past research, and chose to focus on a single algorithm to
perform a focused and detailed analysis of the data collected. We
believe that the general trends observed would hold regardless of
the algorithm, even if specific results varied. In future work, we
will consider the influence of the algorithm more closely.

6.2.2   |   Internal Validity

Evolutionary algorithms inherently introduce randomness, af-
fecting result consistency. To mitigate this, we conducted multiple
trials, aiming to average out randomness and stabilize outcomes.
To control experiment cost, we only generated 10 test suites for
each class, budget, and fitness function configuration. A larger
number of repetitions may yield different results. However, given
the consistency of our results, we believe that this is a sufficient
number of trials to draw stable conclusions from.

6.2.3   |   Conclusion Validity

Conclusion validity depends on our choice of statistical tests
and the assumptions underlying those tests. Data segmenta-
tion allowed for targeted analysis of different budget and fitness
function configurations, with descriptive statistics and box plots
providing an initial overview that could be used to validate the
results of statistical analyses. We have favoured non-parametric
methods, as distribution characteristics were not known a pri-
ori, and normality cannot be assumed.

7   |   Conclusion

Past research has suggested the potential benefit of blending
code coverage and goal-based fitness functions. While multi-
objective generation has been previously studied, how these
objectives interact—and, in particular, the interaction between
coverage and goal-based fitness functions—has not been studied
in depth. Therefore, in this study, we assessed and explored five
hypotheses about this interaction and its effects on code cover-
age, goal attainment, fault detection, the size of the test suite, the
length of test cases and the impact of the search budget.

Ultimately, our observations suggest that there are more benefits
than drawbacks in targeting multiple objectives over a single ob-
jective. Targeting multiple objectives does not reduce code cov-
erage, and goal attainment is either not reduced or only minorly
reduced. At the same time, targeting multiple objectives can lead
to the detection of more faults and a higher average likelihood of
fault detection. Multi-objective optimization does lead to larger test
suites but imposes only a small increase over suites targeting code
coverage alone, and test case length is not significantly increased.

The benefits of multi-objective optimization are often more lim-
ited than hypothesized in past research, but the improvements
in fault detection are still sufficient enough to recommend
multi-objective optimization over targeting coverage or testing
goals alone. Our study offers insight into how coverage and goal-
based objectives interact during multi-objective test generation,
offering guidance to researchers and testers and a starting point
for future research on multi-objective test generation.

In future work, we would like to continue to explore these—and
other—hypotheses with an expanded scope and and consider-
ation of additional experimental variables. We will target a wider
variety of projects and faults and will also vary the metaheuris-
tic algorithms used to perform multi-objective generation (e.g.,
contrasting whole suite generation and MOSA). In addition, we
will consider combinations of more than two fitness functions.
Our past research found that EvoSuite's default combination of
eight fitness functions performed worse at fault detection than
simply targeting Branch Coverage under the same budget, as
competing objectives and the overhead of calculating fitness
limited test suite evolution. However, a subset of more than two
and less than eight functions may yield highly effective results.
Finally, we will also explore situations where fitness functions
can be given different weights during optimization—e.g., target-
ing both a goal-based and coverage-based function and giving
heavier weight to the goal-based function.

Acknowledgements

This research was supported by Vetenskapsrådet grants 2019-05275
and 2020-05272. Computing resources were provided by the National
Academic Infrastructure for Supercomputing in Sweden (NAISS), par-
tially funded by Vetenskapsrådet grant agreement 2022-06725.

Data Availability Statement

The data that support the findings of this study are openly available
in Exploring the Interaction of Code Coverage and Non-Coverage at
https://​doi.​org/​10.​5281/​zenodo.​11047567.

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.5281/zenodo.11047567

29 of 30

References

1. M. Aniche, Effective Software Testing: A Developer's Guide (Simon and
Schuster, 2022).

2. Y. T. Chen, R. Gopinath, A. Tadakamalla, et al., “Revisiting the Rela-
tionship Between Fault Detection, Test Adequacy Criteria, and Test Set
Size,” in Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering (2020), 237–249.

3. G. Gay, M. Staats, M. Whalen, and M. Heimdahl, “The Risks of
Coverage-Directed Test Case Generation,” IEEE Transactions on Soft-
ware Engineering 41 (2015): 803–819, https://​doi.​org/​10.​1109/​TSE.​2015.​
2421011.

4. T. T. Chekam, M. Papadakis, Y. Le Traon, and M. Harman, “An Em-
pirical Study on Mutation, Statement and Branch Coverage Fault Rev-
elation That Avoids the Unreliable Clean Program Assumption,” in
2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE), (IEEE, 2017), 597–608.

5. A. S. Burke, E. K. Chen, T. Y. Clark, et al., “An Orchestrated Survey of
Methodologies for Automated Software Test Case Generation,” Journal
of Systems and Software 86, no. 8 (2013): 1978–2001.

6. P. McMinn, “Search-Based Software Test Data Generation: A Sur-
vey,” Software Testing, Verification and Reliability 14 (2004): 105–156.

7. A. Arcuri, “It Really Does Matter How You Normalize the Branch
Distance in Search-Based Software Testing,” Software Testing, Verifica-
tion and Reliability 23, no. 2 (2013): 119–147.

8. H. Hemmati, “How Effective Are Code Coverage Criteria?,” in 2015
IEEE International Conference on Software Quality, Reliability and Se-
curity (2015), 151–156.

9. L. Inozemtseva and R. Holmes, “Coverage Is Not Strongly Correlated
With Test Suite Effectiveness,” in Proceedings of the 36th International
Conference on Software Engineering, ACM, New York, NY, USA, ICSE
2014 (2014): 435–445, https://​doi.​org/​10.​1145/​25682​25.​2568271.

10. G. Gay, “Generating Effective Test Suites by Combining Coverage
Criteria,” in Proceedings of the Symposium on Search-Based Software
Engineering, vol. 2017 (Springer Verlag, SSBSE, 2017).

11. A. Salahirad, H. Almulla, and G. Gay, “Choosing the Fitness Func-
tion for the Job: Automated Generation of Test Suites That Detect Real
Faults,” Software Testing, Verification and Reliability 29, no. 4–5 (2019):
e1701, https://​doi.​org/​10.​1002/​stvr.​1701.

12. A. Groce, M. A. Alipour, and R. Gopinath, “Coverage and Its Dis-
contents,” in Proceedings of the 2014 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming & Soft-
ware, ACM, New York, NY, USA, Onward!’14 (2014), 255–268, https://​
doi.​org/​10.​1145/​26611​36.​2661157.

13. Y. Meng, G. Gay, and M. Whalen, “Ensuring the Observability of
Structural Test Obligations,” IEEE Transactions on Software Engineer-
ing 46, no. 7 (2018): 748–772, https://​doi.​org/​10.​1109/​TSE.​2018.​2869146.

14. D. Istanbuly, M. Zimmer, and G. Gay, “How Do Different Types of
Testing Goals Affect Test Case Design?” in IFIP International Confer-
ence on Testing Software and Systems (Springer, 2023), 97–114.

15. R. Feldt, S. Poulding, D. Clark, and S. Yoo, “Test Set Diameter:
Quantifying the Diversity of Sets of Test Cases,” in 2016 IEEE Inter-
national Conference on Software Testing, Verification and Validation
(ICST) (IEEE, 2016), 223–233.

16. R. Feldt, R. Torkar, T. Gorschek, and W. Afzal, “Searching for Cogni-
tively Diverse Tests: Towards Universal Test Diversity Metrics,” in 2008
IEEE International Conference on Software Testing Verification and Val-
idation Workshop, (IEEE, 2008), 178–186.

17. F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lucia,
“Automatic Test Case Generation: What If Test Code Quality Matters?,”
in Proceedings of the 25th International Symposium on Software Testing
and Analysis, (2016), 130–141.

18. S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Ar-
curi, “Do Automatically Generated Unit Tests Find Real Faults? An
Empirical Study of Effectiveness and Challenges,” in Proceedings of the
30th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), ACM, New York, NY, USA, ASE 2015 (2015).

19. M. H. Moghadam, M. Saadatmand, M. Borg, M. Bohlin, and B.
Lisper, “An Autonomous Performance Testing Framework Using Self-
Adaptive Fuzzy Reinforcement Learning,” Software Quality Journal 30,
no. 1 (2022): 127–159.

20. N. Alshahwan and M. Harman, “Coverage and Fault Detection of
the Output-Uniqueness Test Selection Criteria,” in Proceedings of the
2014 International Symposium on Software Testing and Analysis (ACM,
ISSTA, 2014), 181–192, https://​doi.​org/​10.​1145/​26103​84.​2610413.

21. M. Pezze and M. Young, Software Test and Analysis: Process, Princi-
ples, and Techniques (John Wiley and Sons, 2006).

22. E. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
Oracle Problem in Software Testing: A Survey,” IEEE Transactions on
Software Engineering 41, no. 5 (2015): 507–525, https://​doi.​org/​10.​1109/​
TSE.​2014.​2372785.

23. M. Staats, M. W. Whalen, A. Rajan, and M. P. Heimdahl, “Coverage
Metrics for Requirements-Based Testing: Evaluation of Effectiveness,”
in Proceedings of the Second NASA Formal Methods Symposium (NASA,
2010).

24. O. I. de Normalización, ISO 26262: Road Vehicles: Functional Safety
(ISO, 2011), https://​books.​google.​se/​books?​id=​3gcAj​wEACAAJ.

25. Y. Moy, E. Ledinot, H. Delseny, V. Wiels, and B. Monate, “Testing
or Formal Verification: DO-178C Alternatives and Industrial Experi-
ence,” IEEE Software 30, no. 3 (2013): 50–57, https://​doi.​org/​10.​1109/​
MS.​2013.​43.

26. A. Parsai and S. Demeyer, “Comparing Mutation Coverage Against
Branch Coverage in an Industrial Setting,” International Journal on
Software Tools for Technology Transfer 22, no. 4 (2020): 365–388.

27. J. H. Holland, Adaptation in Natural and Artificial Systems: An In-
troductory Analysis With Applications to Biology, Control, and Artificial
Intelligence (MIT Press, 1992).

28. S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, “A
Systematic Review of the Application and Empirical Investigation of
Search-Based Test Case Generation,” IEEE Transactions on Software
Engineering 36, no. 6 (2010): 742–762.

29. J. Malburg and G. Fraser, “Combining Search-Based and Constraint-
Based Testing,” in Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering, IEEE Computer Soci-
ety, Washington, DC, USA, ASE'11 (2011), 436–439, https://​doi.​org/​10.​
1109/​ASE.​2011.​6100092.

30. R. Feldt and S. Poulding, “Broadening the Search in Search-Based
Software Testing: It Need Not Be Evolutionary,” in 2015 IEEE/ACM
8th International Workshop on Search-Based Software Testing (SBST)
(2015), 1–7.

31. G. Gay, “To Call, or Not to Call: Contrasting Direct and Indirect
Branch Coverage in Test Generation,” in Proceedings of the 11th Interna-
tional Workshop on Search-Based Software Testing (ACM, SBST, 2018).

32. A. Kanapala and G. Gay, “Mapping Class Dependencies for Fun and
Profit,” in Proceedings of the Symposium on Search-Based Software En-
gineering (Springer Verlag, SSBSE, 2018).

33. A. Ramírez, J. R. Romero, and S. Ventura, “A Survey of Many-
Objective Optimisation in Search-Based Software Engineering,” Jour-
nal of Systems and Software 149 (2019): 382–395.

34. A. Panichella, F. M. Kifetew, and P. Tonella, “Automated Test Case
Generation as a Many-Objective Optimization Problem With Dynamic
Selection of the Targets,” IEEE Transactions on Software Engineering
44, no. 2 (2017): 122–158.

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1109/TSE.2015.2421011
https://doi.org/10.1109/TSE.2015.2421011
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1002/stvr.1701
https://doi.org/10.1145/2661136.2661157
https://doi.org/10.1145/2661136.2661157
https://doi.org/10.1109/TSE.2018.2869146
https://doi.org/10.1145/2610384.2610413
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://books.google.se/books?id=3gcAjwEACAAJ
https://doi.org/10.1109/MS.2013.43
https://doi.org/10.1109/MS.2013.43
https://doi.org/10.1109/ASE.2011.6100092
https://doi.org/10.1109/ASE.2011.6100092

30 of 30 Software Testing, Verification and Reliability, 2025

35. A. Arcuri, “Test Suite Generation With the Many Independent Ob-
jective (MIO) Algorithm,” Information and Software Technology 104
(2018): 195–206, https://​doi.​org/​10.​1016/j.​infsof.​2018.​05.​003.

36. J. Campos, Y. Ge, N. Albunian, G. Fraser, M. Eler, and A. Arcuri,
“An Empirical Evaluation of Evolutionary Algorithms for Unit Test
Suite Generation,” Information and Software Technology 104 (2018):
207–235, https://​doi.​org/​10.​1016/j.​infsof.​2018.​08.​010.

37. S. Lukasczyk, F. Kroiß, and G. Fraser, “An Empirical Study of Auto-
mated Unit Test Generation for Python,” Empirical Software Engineer-
ing 28, no. 2 (2023): 36, https://​doi.​org/​10.​1007/​s1066​4-​022-​10248​-​w.

38. A. Panichella, F. M. Kifetew, and P. Tonella, “A Large Scale Empir-
ical Comparison of State-of-the-Art Search-Based Test Case Genera-
tors,” Information and Software Technology 104 (2018): 236–256.

39. N. Alshahwan, X. Gao, M. Harman, et al., “Deploying Search Based
Software Engineering With Sapienz at Facebook,” in Search-Based Soft-
ware Engineering (Springer International Publishing, 2018), 3–45.

40. M. Kechagia, X. Devroey, A. Panichella, G. Gousios, and A. van
Deursen, “Effective and Efficient API Misuse Detection via Exception
Propagation and Search-Based Testing,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
Association for Computing Machinery, New York, NY, USA, ISSTA 2019
(2019), 192–203, https://​doi.​org/​10.​1145/​32938​82.​3330552.

41. J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, and A. Arcuri, “Com-
bining Multiple Coverage Criteria in Search-Based Unit Test Genera-
tion,” in Search-Based Software Engineering, eds. M. Barros and Y.
Labiche (Springer International Publishing, Volume 9275 of Lecture
Notes in Computer Science, 2015), 93–108, https://​doi.​org/​10.​1007/​978-​
3-​319-​22183​-​0_​7.

42. K. Lakhotia, M. Harman, and P. McMinn, “A Multi-Objective Ap-
proach to Search-Based Test Data Generation,” in Proceedings of the 9th
Annual Conference on Genetic and Evolutionary Computation, ACM,
New York, NY, USA, GECCO'07 (2007), 1098–1105, https://​doi.​org/​10.​
1145/​12769​58.​1277175.

43. S. Yoo and M. Harman, “Using Hybrid Algorithm for Pareto Effi-
cient Multi-Objective Test Suite Minimisation,” Journal of Systems and
Software 83, no. 4 (2010): 689–701.

44. M. Weiglhofer, G. Fraser, and F. Wotawa, “Using Coverage to Auto-
mate and Improve Test Purpose Based Testing,” Information and Soft-
ware Technology 51, no. 11 (2009): 1601–1617.

45. Z. Zhou, Y. Zhou, C. Fang, Z. Chen, and Y. Tang, “Selectively Com-
bining Multiple Coverage Goals in Search-Based Unit Test Generation,”
in Proceedings of the 37th IEEE/ACM International Conference on Au-
tomated Software Engineering (Association for Computing Machinery,
ASE'22, 2023), https://​doi.​org/​10.​1145/​35513​49.​3556902.

46. P. McMinn, M. Harman, G. Fraser, and G. M. Kapfhammer, “Auto-
mated Search for Good Coverage Criteria: Moving From Code Coverage
to Fault Coverage Through Search-Based Software Engineering,” in
Proceedings of the 9th International Workshop on Search-Based Software
Testing, ACM, New York, NY, USA, SBST'16 (2016), 43–44, https://​doi.​
org/​10.​1145/​28970​10.​2897013.

47. H. Almulla and G. Gay, “Learning How to Search: Generating Effec-
tive Test Cases Through Adaptive Fitness Function Selection,” Empir-
ical Software Engineering 27, no. 2 (2022): 38, https://​doi.​org/​10.​1007/​
s1066​4-​021-​10048​-​8.

48. R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A Database of Existing
Faults to Enable Controlled Testing Studies for Java Programs,” in Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis (ACM, ISSTA, 2014), 437–440, https://​doi.​org/​10.​1145/​26103​
84.​2628055.

49. J. M. Rojas, M. Vivanti, A. Arcuri, and G. Fraser, “A Detailed Inves-
tigation of the Effectiveness of Whole Test Suite Generation,” Empirical
Software Engineering 22, no. 2 (2017): 852–893, https://​doi.​org/​10.​1007/​
s1066​4-​015-​9424-​2.

50. S. Vogl, S. Schweikl, G. Fraser, A. Arcuri, J. Campos, and A. Pan-
ichella, “Evosuite at the SBST 2021 Tool Competition,” in 2021 IEEE/
ACM 14th International Workshop on Search-Based Software Testing
(SBST) (IEEE, 2021), 28–29.

51. A. Panichella, F. M. Kifetew, and P. Tonella, “Automated Test Case
Generation as a Many-Objective Optimisation Problem With Dynamic
Selection of the Targets,” IEEE Transactions on Software Engineering
44, no. 2 (2017): 122–158.

52. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elit-
ist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation 6, no. 2 (2002): 182–197.

53. V. J. Manès, H. Han, C. Han, et al., “The Art, Science, and Engineer-
ing of Fuzzing: A Survey,” IEEE Transactions on Software Engineering
47, no. 11 (2021): 2312–2331, https://​doi.​org/​10.​1109/​TSE.​2019.​2946563.

54. J. W. Tukey, Exploratory Data Analysis. Addison-Wesley Series in
Behavioral Science (Addison-Wesley Pub. Co., 1977).

55. R. McGill, J. W. Tukey, and W. A. Larsen, “Variations of Box Plots,”
American Statistician 32, no. 1 (1978): 12–16.

56. F. Wilcoxon, “Individual Comparisons by Ranking Methods,” Bio-
metrics Bulletin 1, no. 6 (1945): 80–83, https://​doi.​org/​10.​2307/​3001968.

57. H. B. Mann and D. R. Whitney, “On a Test of Whether One of Two
Random Variables Is Stochastically Larger Than the Other. The Annals
of Mathematical Statistics,” (1947), 50–60.

58. N. Cliff, “Dominance Statistics: Ordinal Analyses to Answer Ordi-
nal Questions,” Psychological Bulletin 114, no. 3 (1993): 494–509.

59. G. Gay and R. Just, “Defects4J as a Challenge Case for the Search-
Based Software Engineering Community,” in Search-Based Software
Engineering, eds. A. Aleti and A. Panichella (Springer International
Publishing, 2020), 255–261.

 10991689, 2025, 6-7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.70009 by Statens B

eredning, W
iley O

nline L
ibrary on [12/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.infsof.2018.05.003
https://doi.org/10.1016/j.infsof.2018.08.010
https://doi.org/10.1007/s10664-022-10248-w
https://doi.org/10.1145/3293882.3330552
https://doi.org/10.1007/978-3-319-22183-0_7
https://doi.org/10.1007/978-3-319-22183-0_7
https://doi.org/10.1145/1276958.1277175
https://doi.org/10.1145/1276958.1277175
https://doi.org/10.1145/3551349.3556902
https://doi.org/10.1145/2897010.2897013
https://doi.org/10.1145/2897010.2897013
https://doi.org/10.1007/s10664-021-10048-8
https://doi.org/10.1007/s10664-021-10048-8
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1007/s10664-015-9424-2
https://doi.org/10.1007/s10664-015-9424-2
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.2307/3001968

	Exploring the Interaction of Code Coverage and Non-Coverage Objectives in Search-Based Test Generation
	ABSTRACT
	1   |   Introduction
	2   |   Background
	2.1   |   Unit Testing
	2.2   |   Adequacy (Coverage) Criteria
	2.3   |   Search-Based Test Generation

	3   |   Related Work
	4   |   Methods
	4.1   |   Case Example Selection
	4.2   |   Test Generation Configuration
	4.2.1   |   Test Generation Algorithm
	4.2.2   |   Fitness Function Configurations
	4.2.3   |   Search Budgets
	4.2.4   |   Generation Procedure

	4.3   |   Data Collection
	4.4   |   Data Analysis
	4.4.1   |   Descriptive Statistics
	4.4.2   |   Distribution Comparisons
	4.4.3   |   Effect Size

	5   |   Results
	5.1   |   Effect on Structural Coverage (Research Question 1)
	5.1.1   |   Attained Branch Coverage
	5.1.2   |   Attained Coverage Obligations
	5.1.3   |   Evolution of Coverage Attainment

	5.2   |   Impact on Goal-Based Objectives (Research Question 2)
	5.3   |   Impact on Fault Detection (Research Question 3)
	5.4   |   Impact on Test Suite Contents (Research Question 4)
	5.5   |   Impact of Search Budget (Research Question 5)

	6   |   Discussion
	6.1   |   Assessment of Hypotheses
	6.2   |   Threats to Validity
	6.2.1   |   External Validity
	6.2.2   |   Internal Validity
	6.2.3   |   Conclusion Validity

	7   |   Conclusion
	Acknowledgements
	Data Availability Statement
	References

