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ABSTRACT
Search-based test generation typically targets structural coverage of source code. Past research suggests that targeting coverage 
alone is insufficient to yield tests that achieve common testing goals (e.g., discovering situations where a class-under-test throws 
exceptions) or detect faults. A suggested alternative is to perform multi-objective optimization targeting both coverage and ad-
ditional objectives directly related to the goals of interest. However, it is not fully clear how coverage and goal-based objectives 
interact during the generation process and what effects this interaction will have on the generated test suites. In this study, we 
assess five hypotheses about multi-objective test generation and the relationships between coverage-based and goal-based objec-
tives, focusing on the effects on coverage, goal attainment, fault detection, test suite size, test case length and the impact of the 
search budget. We generate test suites using the EvoSuite framework targeting Branch Coverage, three testing goals—Exception 
Count, Output Coverage and Execution Time—and combinations of coverage and goal-based objectives. Ultimately, we find that 
targeting multiple objectives does not reduce code coverage, yields no or minor reductions in goal attainment, but—at the same 
time—detects more faults compared with single-target configurations. In addition, it produces larger test suites, but test case 
length is not increased. The benefits of multi-objective optimization are often more limited than hypothesized in past research, 
but improved fault detection is still sufficient to recommend multi-objective optimization over targeting coverage or testing goals 
alone. Our study offers insights and guidance into how coverage and goal-based objectives interact during multi-objective test 
generation.

1   |   Introduction

Structural coverage criteria measure the percentage of the 
source code that has been executed according to a set of 
criterion-specific rules regarding (a) which code structures 
should be executed, and (b) how those structures should be ex-
ecuted [1–3]. Two of the most common criteria are Statement 
Coverage—which mandates that all code statements be exe-
cuted, but places no constraints on how they are executed—and 
Branch Coverage—which mandates that all control-diverting 

statements (e.g., if, case and loop conditions) evaluate to each of 
their possible outcomes [4].

Coverage measurement is a common advisory activity for testers 
[1]. The current percentage of coverage attained can serve as an 
approximation of ‘how much testing’ has been conducted, and 
missed coverage goals can serve as the targets of additional test 
cases. Because the attainment of most coverage criteria can be 
automatically measured through programme instrumentation 
and execution analysis, such criteria have also become the de 
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facto basis of automated test generation—especially techniques 
such as search-based test generation, fuzzing, and symbolic or 
concolic execution [5, 6].

Consider, for example, search-based test generation. In search-
based test generation, metaheuristic optimization algorithms 
sample from the space of possible test inputs to identify those 
that maximize or minimize fitness functions—numeric scoring 
functions representing properties of interest [6]. Coverage cri-
teria serve as natural fitness functions, often associating each 
code structure of interest with a score representing how close 
an execution came to executing that structure in the manner 
prescribed by the criterion—e.g., how much x would need to 
change for the condition (x = = 0) to evaluate to true within a 
particular control structure [7].

Coverage-directed testing is ubiquitous in automated test 
generation because structural coverage is easy to measure, 
easy to translate into an optimization target, and is hypoth-
esized to have a correlation to the probability of fault detec-
tion [4]. However, concerns have been raised about its use as 
the primary target of automated generation [3, 8, 9]. We have 
previously conducted large-scale case studies on coverage-
directed test generation, focusing on model and search-based 
test generation [3, 10, 11]. These studies have yielded import-
ant observations about the efficiency and effectiveness of 
coverage-directed test generation—at least, in the manner it 
is generally employed.

First, we have observed that achieving structural coverage is a 
reasonable starting point for effective automated test generation. 
For example, we observed that coverage was the single stron-
gest predictor of the likelihood of fault discovery [11]. That is, 
if we want to detect potential faults, we must execute the code. 
The same basic observation holds for many other goals a tester 
may have. If we want to expose situations where the code can 
crash, we must execute the code. If we want to show that perfor-
mance or reliability targets are met, we must execute the code. 
Other testing goals—e.g., diversity, exposing interaction faults, 
and more—similarly benefit from exploration of the codebase. 
Targeting code coverage during search-based test generation is 
an effective and efficient method of exploring a wide range of 
programme behaviours [11]. Therefore, even if a tester's goals lie 
beyond code coverage, coverage is generally required to achieve 
those goals.

However, we also observed that code coverage alone is a poor 
basis for producing test suites that meet these goals. In our 
past work, coverage only had a moderate correlation to the 
likelihood of fault detection [11], and was often weaker than 
random generation at detecting code mutations [3]. Many 
different inputs can generally cover the same coverage goals. 
While some coverage criteria are stricter than others, the ma-
jority impose few or no constraints on how code is executed 
[3, 11–13].

“How” is important. Testers rarely design tests for the sole pur-
pose of attaining coverage [8, 14]. In practice, tests are designed 
around specifications, and coverage is used to identify clear 

weaknesses in the suite [1]. That is—coverage serves an advi-
sory role for testers, rather than the primary basis of test design. 
If we want to expose crashing code, we select input with a high 
probability of triggering a crash. If we want to violate perfor-
mance requirements, we select input with a high probability of 
slowing programme execution. If there are multiple bugs in a 
branch, we typically need diverse inputs to uncover them all, as 
well as to cover the specification [15, 16]. In other words, while 
research in automated test generation has predominantly fo-
cused on code coverage, coverage alone is not enough to ensure 
that testing goals are met.

Search-based test generation offers potential solutions to this 
challenge. First, rather than optimizing fitness functions re-
lated to code coverage, one could attempt to optimize fitness 
functions based directly on goals of interest—for example, 
there are fitness functions that directly reward discovery 
of crashes or that assess performance. Second, rather than 
choosing coverage or goal optimization, one could attempt 
multi-objective optimization, where the combination of struc-
tural coverage and additional goal-based fitness functions are 
simultaneously targeted.

Multi-objective optimization is a particularly compelling solu-
tion, as each fitness function optimized shapes the resulting test 
suite. Our past research suggests that such a pairing can lead 
to better test suites than targeting coverage or a goal of interest 
alone [10, 11]. Consider a common testing goal—identifying sit-
uations where the system-under-test (SUT) throws an exception. 
This is a non-trivial goal, as we rarely know up front which ex-
ceptions could be thrown. Targeting coverage may not satisfy 
this goal, as exception-triggering input will only be chosen if it 
uniquely enhances coverage. We could alternatively try to di-
rectly maximize the number of exceptions thrown. However, 
this count offers no feedback; more exceptions will only be 
discovered by random chance. We observed situations where 
targeting both offered feedback missing when targeting either 
alone—with the exception count biasing the input used to attain 
coverage, and branch coverage offering a means to explore the 
code base.

These observations suggest the potential benefit of blending 
code coverage and goal-based fitness functions. While multi-
objective test generation has been previously proposed and at-
tempted (e.g., [11, 17, 18]), the interaction between objectives 
during this optimization—in particular, the interaction between 
coverage and goal-based fitness functions—has not been inves-
tigated previously. Understanding this interaction is important, 
as this understanding can influence the selection of optimiza-
tion targets, the design of new fitness functions, and the devel-
opment of new test generation tools.

Therefore, in this study, our goal is to assess and explore five 
hypotheses about this interaction:

Hypothesis 1.  The inclusion of goal-based fitness functions 
as additional generation targets will not have an impact on the 
attainment of code coverage, as compared with targeting coverage 
alone.
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That is, the hypothesis that targeting multiple objectives will not 
affect the evolution of code coverage during the test generation 
process—raising or lowering the final quantity of coverage at-
tained, changing the specific coverage goals covered or affect-
ing the rate at which coverage is attained during the generation 
process.

Hypothesis 2.  Targeting both coverage and a goal-based fit-
ness function will not have an impact on the attainment of goal-
based fitness functions, as compared with targeting coverage or a 
goal-based fitness function alone.

Similar to Hypothesis  1, this hypothesis states that targeting 
multiple objectives will not affect the final fitness values of 
the goal-based objectives—raising or lowering goal attainment 
when compared with targeting a goal-based or a coverage-based 
objective alone.

Hypothesis 3.  Targeting both coverage and a goal-based 
fitness function will not have an impact on the fault detection of 
generated test suites, as compared with targeting coverage or a 
goal-based fitness function alone.

This hypothesis states that targeting multiple objectives will 
not increase or decrease the likelihood that the generated test 
suites detect faults or the number of tests that fail when a fault 
is detected.

Hypothesis 4.  Targeting both coverage and a goal-based fit-
ness function will not have an impact on the size of the test suite 
and the average test length, as compared with targeting coverage 
or a goal-based fitness function alone.

Targeting multiple objectives could increase the number of test 
cases in the generated suites or increase the number of inter-
actions in individual test cases, as each targeted objective adds 
additional obligations that the test suite must achieve. These 
obligations each may require distinct test input and setup to 
achieve, leading to the need for more or longer test cases.

Hypothesis 5.  An increase in the search budget will not lead 
to increased attainment of each objective.

This hypothesis considers the effect of the search budget on fit-
ness attainment. We further hypothesize that the effects that we 
observed when exploring the previous hypotheses will hold at 
higher search budgets. For example, if multi-objective optimi-
zation leads to higher fault detection at a limited search budget 
than single-objective optimization, we hypothesize that it will 
also do so at a higher search budget.

To assess these hypotheses, we target Branch Coverage—the 
most common structural coverage criterion [1]—as well as three 
specific testing goals:

•	 We further explore the goal of discovering situations where 
the SUT can crash.

•	 The discovery of situations that could violate performance 
goals—based on the maximization of execution time [19].

•	 Ensuring that test suites maximize coverage of diverse be-
haviours [16], specifically output diversity of the tested func-
tions, which has been hypothesized to lead to faster coverage 
attainment and higher likelihood of fault detection [20].

Our study offers insight into how coverage and goal-based ob-
jectives interact during multi-objective test generation, with a 
focus on how this interaction affects code coverage, goal attain-
ment, fault detection, the size of the test suite and the length 
of test cases. This research offers a starting point for exploring 
how search-based test generation can be adapted for particular 
goals, product domains, execution scenarios or code structures, 
enables guidance on how to use test generation to meet tester 
goals and can influence the creation of more efficient and effec-
tive test generation techniques and tools.

2   |   Background

2.1   |   Unit Testing

Testing can be performed at various levels of granularity. In this 
research, we focus on unit testing, where test cases target small 
segments of code that can be tested in isolation [21]. Unit tests 
are written as executable code, which can be re-executed on de-
mand by developers. We refer to a purposefully grouped set of 
test cases as a test suite. Unit testing frameworks exist for many 
programming languages, such as JUnit for Java, and are inte-
grated into most development environments.

An example of a unit test, written in JUnit, is shown in Figure 1. 
A unit test consists of a test sequence (or procedure)—a series 
of method calls to the class-under-test (CUT)—with test input 
provided to each method. Then, the test case will validate the 
output of the called methods and the class variables against a 
set of encoded expectations—the test oracle—to determine 
whether the test passes or fails. In a unit test, the oracle is typi-
cally formulated as a series of assertions on the values of method 
output and class attributes [22]. In the example in Figure  1, 
the test input consists of passing a string to the constructor of 
the StringUtils class, then calling its removeWhitespace() and 

FIGURE 1    |    Example of a unit test case written using the JUnit notation for Java.
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getString() methods. We use an assertion to ensure that a space 
is removed from the input.

2.2   |   Adequacy (Coverage) Criteria

When testing, developers must judge both whether the tests they 
have written are effective and whether they have created enough 
test cases. Adequacy criteria have been developed to provide de-
velopers with guidance regarding these topics [1].

Each adequacy criterion prescribes, for a given programme, a 
set of goals—referred to as test obligations. Each obligation rep-
resents one constraint that the produced test suite must fulfil. If 
tests fulfil the test obligations, then testing is deemed ‘adequate’ 
with respect to faults that manifest through the structures of in-
terest to the criterion. Most adequacy criteria are based on the 
execution of structural elements of the software. In such cases, 
an obligation may be expressed as the selection of an individual 
element of the source code—e.g., a statement, a branch of the 
software's control flow or a boolean expression—and the condi-
tions under which that element must be executed—e.g., the cho-
sen expression evaluates to true or false [3, 21]. However, there 
are also adequacy criteria based, e.g., on coverage of formal 
requirements through test cases  [23] or detection of synthetic 
faults (mutants) planted in the source code [10].

Adequacy criteria have seen widespread use in software devel-
opment. Structural coverage is routinely measured as part of au-
tomated build processes [12] (for example, see https://​codec​ov.​
io/​) and is often mandated by safety standards in critical domains 
such as automotive [24] and avionics [25]. It is easy to understand 
the appeal of adequacy criteria. They offer clear checklists of 
testing goals that can be objectively evaluated and automatically 
measured through programme instrumentation and execution 
analysis [12]. These same qualities make adequacy criteria ideal 
for use as automated test generation targets [7].

One of the most common adequacy criteria is Branch Coverage. 
A branch refers to an outcome of any programme statement 
that can cause programme execution to diverge down a partic-
ular control flow path, such as the conditions in if, case or loop 
definitions. Branch Coverage requires that all outcomes of all 
control-diverging statements are executed at least once by the 
test suite under assessment.

To give an example, consider the removeWhitespace() method 
being tested in Figure 1, whose code is depicted in Figure 2. In 
this method, there are two programme statements that affect the 
control flow—the loop condition on Line 7 and the if-condition 
on Line 9. To achieve branch coverage over this method, both 
conditions must evaluate to true and false at least once when the 
test suite is executed. In other words, there are four test obliga-
tions that must be fulfilled.

By default, coverage obligations are formulated over the source 
code. However, in Java, test obligations are often instead for-
mulated and measured over the bytecode representation as this 
form is easier and more efficient to instrument and monitor. 
The bytecode representation of removeWhitespace() is shown 
in Figure 3. The same control-altering expressions are present 
on Lines 11 and 19. Branch Coverage requires that both lines 
evaluate to true and false.

Branch Coverage is arguably the most commonly used cover-
age criterion, with ample tool support and industrial adoption 
[26]. For example, branch coverage measurement is built into 
the popular IntelliJ IDEA development environment. Therefore, 
we focus on Branch Coverage in this study as a representation of 
structural coverage criteria.

2.3   |   Search-Based Test Generation

Manual creation of a large volume of test cases can be tedious 
and expensive. Automation of aspects of test creation, such as 
test input selection, can reduce and focus the required manual 
effort [5]. Search-based test generation frames input selection as 
a search problem, where metaheuristic optimization algorithms 
attempt to identify test input that best embody properties that 
testers seek in their test cases [5, 6].

These properties are assessed using one or more fitness func-
tions—numeric scoring functions. The metaheuristic embeds a 
strategy for sampling solutions from the space of possible inputs, 
often based on a natural process such as evolution or swarm 
behaviour [27]. In test generation, a ‘solution’ is often either a 
single test case or a full test suite. The metaheuristic uses the se-
lected fitness functions to assess solution quality, offering feed-
back to guide the selection and improvement of solutions over a 
series of generations. Search-based test generation has proven to 

FIGURE 2    |    Subset of the class-under-test in Figure 1.
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be a flexible [28], scalable [29] and competitive [11, 18] method 
of automated test generation.

The most common metaheuristics for search-based test genera-
tion are genetic algorithms, which are modelled after the natu-
ral evolution of a population [30]. While specific aspects vary, a 
‘typical’ test generation follows these steps:

•	 An initial population of solutions is randomly generated. 
Each solution represents a test suite, containing test cases.

•	 Each generation, the fitness score of each solution is calcu-
lated and a new population is created. This population is 
formed through four sources of solutions:
•	 One of the best solutions may be carried over to the new 

population intact.
•	 At a certain probability, elements of two solutions will 

be combined to create two ‘children’ (crossover). For 
example, the children may blend test cases from the 
parents.

•	 At a certain probability, a solution can be mutated—e.g., 
a test case may be modified.

•	 At a certain probability, a new randomly generated 
solution will be added to the population to maintain 
diversity.

•	 When the search budget—typically expressed in time 
or number of generations—expires, the best solution is 
returned.

When multiple fitness functions are targeted by an optimization 
algorithm, each fitness function and its individual sub-goals col-
lectively influence the final solution generated. The interaction 
between fitness functions—or even between the sub-goals of 
one or more fitness functions—can be either positive or negative.

In the positive case, one or more fitness functions or sub-goals 
can provide missing feedback that is needed to optimize other 
fitness functions or sub-goals. This is common in  situations 
where the fitness landscape is relatively flat, as is the case for 
functions based on simple counts—e.g., the number of excep-
tions thrown. Such fitness functions offer little feedback for im-
proving solutions, e.g., for detecting new exceptions. However, in 
previous work, we observed cases where pairing such functions 
with more informative fitness functions (e.g., ones based on dis-
tance measurements) offered the missing feedback needed to 
identify additional exceptions [10, 11]. Even informative fitness 
functions can have a positive symbiotic relationship. For exam-
ple, there are multiple methods of formulating a fitness function 
for Branch Coverage, each with differing fitness landscapes. We 
previously observed situations where targeting multiple forms 
of Branch Coverage simultaneously yielded improved perfor-
mance over targeting any one form [31].

In the negative case, there are situations where optimization of a 
subset of fitness functions or sub-goals can lower the attainment 
of other functions or sub-goals—i.e., there are implicit trade-offs 
between these functions or sub-goals. As an example, EvoSuite 
offers a fitness function that rewards executing methods without 
an exception being triggered. This function directly contradicts 
the earlier-mentioned function that rewards suites where more 
exceptions are thrown. It is possible to optimize both functions 
by constructing a test suite where these functions are optimized 
in separate test cases [10, 11]. However, overcoming the contra-
diction between functions requires investing additional time in 
the search process and can result in larger and more cumber-
some test suites.

This theoretical relationship between fitness functions and sub-
goals of fitness functions is not well understood in the context of 

FIGURE 3    |    Java Bytecode of the removeWhitespace() method from Figure 2.
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search-based test generation. While we have discussed examples 
observed in prior work [10, 11, 32], the exact nature of this rela-
tionship has not been deeply explored. One of the goals of this 
study is to further empirically investigate this relationship.

3   |   Related Work

Multi and many-objective optimization algorithms have become 
increasingly common in search-based test generation [33]. Even 
if the goal of the test generation process is solely code coverage, 
coverage can quickly be gained by representing each test obli-
gation as an independent objective and applying multi or many-
objective optimization [34]. Multiple studies have compared 
different algorithms for multi and many-objective optimization 
in terms of coverage achieved (e.g., [35–38]). However, these 
studies focused solely on coverage-based fitness and have not ex-
amined the interaction between coverage-based and goal-based 
fitness functions.

The number of exceptions or crashes discovered is a common 
secondary objective in search-based test generation, optimized 
in conjunction with coverage-based fitness functions (e.g., 
[11, 39–41]). Others have explored combinations of coverage cri-
teria with non-functional criteria during test generation or test 
suite minimization, such as memory consumption [42] or execu-
tion time [43]. While these represent multi-objective optimiza-
tion of coverage and goal-based fitness functions, these studies 
do not examine how these fitness functions interact, e.g., how 
the combinations affect coverage or fault detection.

Rojas et  al. examined multi-objective optimization of Line 
Coverage—a structural coverage criterion—and additional fit-
ness functions [41]. Relevant to our work, they also include two of 
the same goal-based objectives that we focus on, exception count 
and output diversity. They found that adding additional fitness 
functions led to only a minimal loss in the final percentage of Line 
Coverage achieved. They also found that coverage of secondary 
criteria increased over when Line Coverage was targeted alone. 
Therefore, there is a partial overlap in our focus. However, they 
only examined the final level of coverage and focused on different 
aspects of test generation. We address a broader set of hypotheses 
and examine coverage attainment more deeply.

Palomba et  al. examine optimization of Branch Coverage and 
fitness functions intended to improve test quality based on the 
cohesion and coupling of test cases [17]. They found that target-
ing these quality objectives could increase code coverage over 
targeting coverage alone.

Weiglhofer et al. showed that coverage-directed test generation 
can be used to complement test generation based on testing 
goals [44]. In their approach, humans develop ‘test purposes’, 
specifications used in conjunction with formal models to gener-
ate test cases. Coverage-directed testing is then used to generate 
tests for parts of systems not covered by the test purposes. They 
do not apply multi-objective optimization, but the core concept 
is similar.

We previously examined the likelihood of fault detection of test 
suites generated targeting various fitness functions [10, 11]. 

Much of this research focused on single-objective optimization. 
However, we did find that some combinations of objectives, such 
as Branch Coverage and the exception count, had a higher like-
lihood of fault detection than targeting Branch Coverage or ex-
ception count alone [11]. This past work partially addresses one 
of our hypotheses, but we replicate this work and examine that 
hypothesis more closely in this study.

Zhou et al. propose an approach, ‘smart selection’, for selecting 
a subset of test obligations when targeting multiple coverage-
based fitness functions for test generation [45]. Their approach 
reduces redundancy between fitness functions and eases op-
timization difficulty. McMinn et  al. have also proposed using 
search techniques to evolve new coverage criteria that combine 
features of existing criteria [46]. In previous work, we also used 
reinforcement learning to dynamically select the fitness func-
tions targeted during multi-objective test generation [47]. We 
demonstrated that fitness functions could be identified that 
increased attainment of common testing goals for particular 
classes-under-test. However, these studies do not examine the 
interaction between coverage and goal-based fitness functions.

4   |   Methods

Our aim in this research is to examine the interaction between 
coverage-based and goal-based fitness functions during multi-
objective test generation. In Section 1, we raised five informal 
hypotheses about how these objectives could interact. We assess 
those hypotheses by addressing the following specific research 
questions:

•	Research Question 1.  How is the Branch Coverage of 
generated test suites influenced by targeting additional 
goal-based fitness functions compared with targeting 
Branch alone?

•	Research Question 1.1.  How is the final percentage of 
attained Branch Coverage influenced?

•	Research Question 1.2.  How is the set of satisfied 
Branch Coverage obligations influenced?

•	Research Question 1.3.  How is the evolution of cover-
age attainment influenced?

•	Research Question 2.  How is the attainment of test-
ing goals by generated test suites influenced by targeting 
Branch Coverage in addition to a goal-based fitness func-
tion, compared with targeting coverage or a goal-based fit-
ness function alone?

•	Research Question 3.  How is the fault detection of gen-
erated test suites influenced by targeting Branch Coverage 
in addition to a goal-based fitness function, compared with 
targeting coverage or a goal-based fitness function alone?

•	Research Question 4.  How is the suite size and test 
case length of generated test suites influenced by targeting 
Branch Coverage in addition to a goal-based fitness func-
tion, compared with targeting coverage or a goal-based fit-
ness function alone?

•	Research Question 5.  What influence does the search 
budget have on Branch Coverage, goal attainment, fault 
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detection, test suite size, and test case length attained by 
suites targeting different fitness function configurations?

As discussed in Section  1, we focus on three concrete testing 
goals: (1) discovery of scenarios where exceptions are thrown 
(‘Exception Count’), (2) discovery of scenarios where the execu-
tion time may violate performance goals (‘Execution Time’) and 
(3) maximization of output diversity (‘Output Coverage’). To ad-
dress these research questions, we have performed the following 
experiment, targeting Branch Coverage, these three goals and 
combinations of Branch Coverage with each goal:

1.	 Collected case examples: We have selected 93 case ex-
amples from the Defects4J fault dataset, from 14 Java pro-
jects (Section 4.1).

2.	 Defined test generation configurations: We selected 
three single-objective configurations (Branch Coverage, 
Exception Count, Output Coverage) and three multi-
objective configurations (Branch Coverage plus each test-
ing goal listed above) and two search budgets (180 and 
300 s) to target in our experiments (Section 4.2).

3.	 Generated test suites: For each class modified by each 
case example, fitness function configuration and search 
budget, we generated 10 test suites using EvoSuite. We tar-
get the fixed version of each CUT (Section 4.2).

4.	 Monitored coverage evolution: We monitor how satis-
faction of Branch Coverage obligations changes over the 
course of each invocation of EvoSuite (Section 4.3).

5.	 Recorded generation statistics: For each suite gener-
ated, at the end of the generation process, we record infor-
mation on Branch Coverage obligation satisfaction, fitness 
values for each targeted function, test suite size and test 
case length (Section 4.3).

6.	 Removed non-compiling and flaky tests: Any tests 
that do not compile or that return inconsistent results are 
removed (Section 4.3).

7.	 Assessed fault-finding effectiveness: We measure the 
number of faults detected, the proportion of test suites that 
detect each fault to the number generated (likelihood of 
fault detection) and the number of failing tests in each suite 
(Section 4.3).

8.	 Analysed the collected data: We address the research 
questions using the data gathered above (Section 4.4).

4.1   |   Case Example Selection

Defects4J is an extensible database of real faults extracted from 
Java projects [48] (available from http://​defec​ts4j.​org). The cur-
rent dataset, Version 2.0.1, consists of 835 faults from 17 Java 
projects. To control experiment costs, in this study, we aimed 
to select a sample of approximately 100 faults, chosen to reflect 
the proportion of faults-per-project in the full dataset. To select 
this sample, we initially selected 206 faults at random, sampled 
based on the number of faults-per-project in the full dataset. We 
then generated test suites targeting Branch Coverage and the 
three multi-objective configurations following the procedure 
described in Section 4.2, and omitted faults where either:

•	 Errors prevented the completion of 10 valid trials for all 
configurations, where a test suite was generated and all 
data collection completed successfully.

•	 Where the average Branch Coverage was below 5%—we 
judged that the research questions could not be reliably an-
swered without a minimal level of coverage being reached 
over the classes-under-test.

This filtering process ultimately resulted in a set of 93 faults used 
in this study, listed in Table 1. Fifty-nine faults were excluded 
due to issues with the test generation or data collection pro-
cesses, and 54 faults were excluded due to low Branch Coverage.

For each fault, Defects4J provides access to the faulty and fixed 
versions of the code, developer-written test cases that expose the 

TABLE 1    |    Subset of Defects4J faults selected for this study.

Project Faults selected Total

Chart 7, 6, 10, 8, 3, 5 6

Cli 27, 7, 29, 28, 1, 10, 3, 40, 2, 5 10

Closure 161, 74, 19, 154, 162, 164, 
37, 55, 41, 70, 12, 71, 5

13

Codec 7, 6, 17, 1, 2 5

Collections 25, 26 2

Compress 2, 47, 46 3

Csv 1 1

Gson 3, 4, 5, 6 4

JacksonCore 11 1

JacksonDatabind 62, 93, 111, 112 3

Jsoup 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 
11, 12, 13, 14, 55, 60, 77

16

Lang 4, 5, 6, 8, 9, 10, 11, 
12, 41, 55, 64, 65

12

Math 95, 11, 87, 81, 100, 39, 
90, 41, 3, 49, 40, 2

12

Mockito 6, 8, 37, 15, 2 5

Total 93

We make a replication package available containing the data 
collected in this experiment: https://​doi.​org/​10.​5281/​zenodo.​
11047567.

We also make available our modified version of EvoSuite:

•	 Code: https://​github.​com/​afons​ohfon​tes/​evosuite

•	 Executable: https://​github.​com/​afons​ohfon​tes/​defec​
ts4j/​tree/​master/​frame​work/​lib/​test_​gener​ation/​​gener​
ation​
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fault, and a list of classes and lines of code modified by the patch 
that fixes the fault.

Each fault is required to meet three properties. First, a pair 
of code versions must exist that differ only by the minimum 
changes required to address the fault. The ‘fixed’ version must 
be explicitly labelled as a fix to an issue, and changes imposed 
by the fix must be to source code, not to other project artefacts 
such as the build system. Second, the fault must be reproduc-
ible—at least one test must pass on the fixed version and fail on 
the faulty version. Third, the fix must be isolated from unrelated 
code changes such as refactorings.

4.2   |   Test Generation Configuration

In this study, we make use of the EvoSuite unit test generation 
framework for Java [49]. EvoSuite is mature, actively main-
tained, and has been successfully applied to a wide variety of 
projects [11, 18]—even winning multiple tool competitions (e.g., 
[50]). Specifically, we make use of a modified version of EvoSuite 
Version 1.2.1, where we have added an additional fitness func-
tion—Execution Time—as well as additional monitoring and 
data collection capabilities.

4.2.1   |   Test Generation Algorithm

We make use of EvoSuite's ‘whole test suite generation’ Genetic 
Algorithm [49]. This implementation of whole test suite genera-
tion has been replaced as the default optimization algorithm in 
EvoSuite by DynaMOSA, a many-objective optimization algo-
rithm [51]. While DynaMOSA has been shown to achieve better 
coverage than whole test suite generation in some experiments 
[36], we use whole test suite generation to enable clearer com-
parison to our past research [10, 11]. Further, the DynaMOSA 
algorithm explicitly considers the code structure, and goal-based 
fitness functions cannot be decoupled from structural cover-
age. In this implementation of whole test suite generation, each 
solution represents a full test suite—in contrast to approaches 
where a solution represents a single test case. Then, rather than 
targeting one obligation (sub-goal) of each fitness function one-
by-one, fitness is measured over all obligations of each fitness 
function at the same time.

In traditional multi-objective optimization algorithms, such as 
NSGA-II [52], an attempt is made to balance fitness function at-
tainment, and each fitness function is treated as independent. In 
contrast, in this implementation of whole test suite generation, a 
single aggregate fitness score is calculated. The fitness for a test 
suite T over the CUT C is:

That is, the aggregate fitness is the sum of the normalized score 
of each fitness function. EvoSuite treats all optimizations as 
minimization problems, where lower fitness scores represent 
better solutions.

4.2.2   |   Fitness Function Configurations

We execute EvoSuite for each case example utilizing six fitness 
function configurations, representing three single-objective 
configurations (Branch Coverage, Exception Count and 
Output Coverage) and three multi-objective configurations 
(Branch Coverage with Exception Count, Output Coverage and 
Execution Time). The fitness functions are defined as follows:

Branch coverage: As defined in Section  2, Branch 
Coverage requires that all outcomes of all control-
diverging statements are executed at least once by a test 
suite. For search-based test generation to be most effec-
tive, a fitness score should offer feedback to help guide 
the identification of better solutions. To that end, the 
most effective fitness functions tend to encode infor-
mation about the distance to satisfying any unsatisfied 
goals. Therefore, rather than simply measuring whether 
each test obligation is covered or not, the fitness calcula-
tion for Branch Coverage instead embeds information—
for each test obligation—on how close execution came to 
satisfying that obligation.

The branch coverage fitness function is a minimization of the 
following, where T refers to the test suite and B represents the 
set of test obligations. Each test obligation, b ∈ B, represents a 
control-diverging programme statement and a desired outcome 
for that statement (true or false).

where d(T , b) is defined as:

In the case where an obligation has not been satisfied, 
dmin(t∈T , b) represents the branch distance—the magnitude 
of change in execution that would be needed to achieve the 
targeted outcome for that control-diverging statement. The 
branch distance is determined based on how the condition has 
been formulated, following a standard set of formulae [7]. In 
this case, the minimal observed value of the branch distance 
is used in the fitness calculation, and is normalized to be be-
tween 0 and 1.

Exception count: This fitness function represents the 
goal of causing the CUT to throw as many exceptions as 
possible—either declared or undeclared. The fitness func-
tion is a minimization of the following formula, where T 
refers to the test suite, Ediscovered represents the number of 
exceptions discovered during the current generation pro-
cess to date, and Ethrown represents the number thrown by 
the current solution T.

(1)fitness(T ,C) =
∑
f ∈ F

f̂ (T ,C)

(2)fitness(T ,B) =
∑
b∈ B

d(T , b)

(3)

d(T , b) =

⎧
⎪⎨⎪⎩

0 if b has been satisfied

dmin(t∈T , b) if b has been evaluated at least twice

1 otherwise

(4)fitness(T) = 1 −
Ethrown
Ediscovered
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Ediscovered is the number of unique exceptions thrown by all as-
sessed solutions to date, while Ethrown is the number of unique ex-
ceptions thrown by the current test solution-under-assessment, 
which may not throw exceptions that were thrown in previous 
solutions. Therefore, Ethrown ≤ Ediscovered. As the number of possi-
ble exceptions that a class can throw cannot be known ahead 
of time, the number of test obligations may change each time 
EvoSuite is executed on a CUT.

Execution time: This fitness function represents a sce-
nario where we seek test suites that could uncover poten-
tial violations of performance requirements, manifested as 
a test suite—containing individually short test cases—that 
take excessive time to execute. We have added a new fit-
ness function to EvoSuite for this purpose. Due to techni-
cal details of its implementation, we are unable to target 
Execution Time without also targeting Branch Coverage. 
Therefore, Execution Time cannot currently be targeted 
as a single-objective configuration. The fitness function is 
calculated as follows:

where Timecurrent represents the execution time of the solution 
currently under assessment and Timemax is the largest execution 
time of any solution assessed during the current execution of the 
test generation framework.

One avenue to generate test suites with long execution times 
is simply to generate excessively long test cases that call many 
methods. Therefore, to prevent the generation of overly bloated 
test cases, the fitness calculation applies a penalty based on the 
average test case length within the suite:

Output coverage: This configuration represents the goal 
of generating test suites that cover many different types of 
outcomes of the methods of the CUT. A tester may seek 
such diversity for two reasons. First, increased output 
coverage is hypothesized to lead to earlier and potentially 
higher code coverage [15, 16], and second, to potentially in-
crease fault detection over pure white-box techniques [20]

Output coverage rewards diversity in the method output by map-
ping return types to a list of abstract values—Alshahwan and 
Harman provide a detailed explanation, including fitness formu-
lae [20]. A test suite satisfies output coverage if, for each public 
method in the CUT that returns a data type covered by the fitness 
function, at least one test yields a concrete return value matching 
each abstract value. For numeric data types, distance functions 
similar to the branch distance offer feedback using the difference 
between the chosen value and the targeted abstract values.

We have selected these three goal-based objectives because they 
reflect three different, non-overlapping, goals that a tester may 
have. Exception Count reflects the desire of testers to discover 
situations where the software can crash, as unexpected crashes 
can indicate a lack of robustness in the code-under-test. Crashes 

can occur in any software, can be detected without the need 
for specialized test oracles, and are the target of many test gen-
eration tools (e.g., fuzzers [53]). Output Coverage indicates that 
many different programme behaviours have been triggered, po-
tentially ensuring that the actual requirements of the code have 
been thoroughly exercised [20]. Finally, the execution time rep-
resents an important non-functional property of software—its 
performance. Even if the correct execution outcome occurs, slow 
performance may degrade user satisfaction [43]. While other 
goal-based fitness functions exist, we believe that these three ex-
emplify three important, common and distinct testing goals.

4.2.3   |   Search Budgets

Two search budgets were used—180 and 300 s per class. This 
allows us to examine how an increased search budget affects 
the test suites produced by each single- and multi-objective 
configuration.

4.2.4   |   Generation Procedure

Test suites are generated individually for each of the classes 
modified to fix each fault chosen from Defects4J. We repeat gen-
eration a fixed number of times for each class, fitness function 
configuration, and search budget.

Test suites are generated targeting the fixed version of each CUT 
and applied to the faulty version to eliminate the oracle problem. 
EvoSuite generates assertion-based oracles. Generating oracles 
based on the fixed version of the class means that we can con-
firm that the fault is actually detected, and not just that there are 
coincidental differences in programme output. This translates 
to a regression testing scenario, where tests are generated using 
a version of the system understood to be ‘correct’ in order to 
guard against future issues. Tests that fail on the faulty version 
detect behavioural differences between the two versions.

Test suite generation and execution were performed on virtual 
machines, each configured with 4 vCPUs, 8 GB of RAM and 20 
GB of storage, running a server version of Ubuntu 18.04.4 LTS. 
Each virtual machine was dedicated to executing experiments 
for a specific subset of faults and fitness function configurations, 
ensuring that experiments remained isolated and independent 
to ensure result reliability.

To control experiment cost, we deactivated assertion filtering—
all possible regression assertions are included. We also disabled 
test suite reduction, an optional procedure that removes redun-
dant test cases at the end of the generation process. We do this to 
maintain traceability between intermediate and final test suites 
during suite evolution. All other settings were kept at their de-
fault values. As results may vary, we performed 10 trials for each 
CUT, fitness function configuration, and search budget. This re-
sulted in the generation of 11,160 test suites (2 budgets, 10 trials, 
6 configurations, and 93 faults).

Generation tools may generate flaky (unstable) tests [18]. For ex-
ample, a test case that makes assertions about the system time 
will only pass during generation. We automatically remove flaky 

(5)fitness(T) = 1 −
Timecurrent
Timemax

+ penalty

(6)penalty = 0.1 ×
Lengthcurrent
Lengthmax
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tests. First, all non-compiling test suites are removed. Then, each 
remaining test suite is executed on the fixed version of the CUT. If 
the test results are inconsistent, the test case is removed. This pro-
cess is repeated until all tests pass five times in a row. On average, 
less than 1% of test cases were removed from each suite.

4.3   |   Data Collection

To answer our research questions, we capture the following data 
during and after generation:

•	 Final fitness function values: For each test suite, we 
record the final fitness values for all four fitness functions 
considered in this experiment (Branch Coverage, Exception 
Count, Execution Time and Output Coverage).

•	 Branch coverage obligation satisfaction: Given a CUT, 
achieving Branch Coverage requires satisfying a set of test 
obligations, as defined in Section  2. We record informa-
tion on the satisfaction of Branch Coverage obligations, 
including:
•	 Number of test obligations: For each CUT, we record 

the number of Branch Coverage obligations.
•	 Percentage of obligations satisfied: For each final 

test suite, we record the percentage of Branch Coverage 
obligations satisfied.

•	 Specific obligations satisfied: For each final test 
suite, we record the specific obligations satisfied.

•	 Evolution of branch coverage during generation: 
To understand the dynamic evolution of coverage over 
the course of each invocation of EvoSuite, we tracked 
the percentage of obligations and specific obligations 
covered by the best test suite in the population once per 
second during the generation process.

•	 Fault detection: To evaluate the fault-finding effectiveness 
of the generated test suites, we execute each test suite against 
the faulty version of each CUT. We then record the following:
–	 Likelihood of fault detection: Across all trials for 

a particular fault, fitness function configuration, and 
search budget, we record the proportion of trials where 
the fault was detected to the total number of trials for 
that configuration.

–	 Number of failing tests: For each test suite, we record 
the number of test cases that detect that fault (pass on 
the fixed version and fail on the faulty version).

•	 Test suite size: We recorded the number of tests in each 
test suite.

•	 Average test case length: Each test consists of one or 
more method calls, variable initializations and assertions. 
We record the average number of lines in each test case.

4.4   |   Data Analysis

We answer each research question using the data gathered, com-
paring results attained by each fitness function configuration, 
split based on the search budget. To analyse the data, we em-
ploy a combination of descriptive statistics, distribution compar-
isons and effect size tests when distributions are found to differ. 

Further explanation is provided in Section 5. Here, we provide a 
general overview of the data analysis procedure.

4.4.1   |   Descriptive Statistics

Descriptive statistics provide an initial overview of the col-
lected data.

1.	 Data analysis: Basic statistical measures such as the av-
erage, median, standard deviation, and percentiles are cal-
culated for data appropriate for answering each research 
question. This provides an initial understanding of the data 
distribution and central tendencies [54].

2.	 Data visualization: We utilize box plots as a graphical 
representation to offer a visual insight into the result dis-
tribution across different configurations [55].

4.4.2   |   Distribution Comparisons

We are interested in assessing whether the observed differences 
between two fitness function configurations at a particular 
search are significantly different.

For each research question, we select data relevant to that ques-
tion (e.g., Branch Coverage attainment in Research Question 1). 
Then, for each pair of fitness function configurations, we formu-
late a hypothesis and a null hypothesis in the following format:

•	 H: Generated test suites have different distributions of X  de-
pending on the targeted fitness function configuration.

•	 H0: Observations of X  for both configurations are drawn 
from the same distribution.

The informal hypotheses raised in Section 1 correspond to the 
null hypotheses used to answer each research question. Our 
observations for each of the collected data items defined above 
are drawn from an unknown distribution. To evaluate the null 
hypothesis without any assumptions on distribution, we use the 
Wilcoxon rank-sum test [56], a non-parametric test. We apply 
the test with � = 0.05. A p-value less than � indicates a statisti-
cally significant difference [57].

4.4.3   |   Effect Size

The Wilcoxon test determines if there are significant differences 
between the distributions of two configurations. To understand 
cases where there are differences, we use Cliff 's delta to measure 
the effect size of these differences, providing a clearer under-
standing of their magnitude and practical significance [58]. We 
apply the standard interpretation of Cliff 's delta (�):

•	 𝛿 > 0 indicates that observations of configuration A are more 
likely to have higher values than observations of configura-
tion B.

•	 𝛿 < 0 indicates that observations of configuration A are more 
likely to have lower values than observations of configura-
tion B.
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•	 The absolute value of � is categorized as follows for further 
interpretation:
–	 ∣ 𝛿 ∣ < 0.15: Negligible effect
–	 0.15 ≤ ∣ 𝛿 ∣ < 0.33: Small effect
–	 0.33 ≤ ∣ 𝛿 ∣ < 0.47: Medium effect
–	 ∣ � ∣ ≥ 0.47: Large effect

5   |   Results

5.1   |   Effect on Structural Coverage (Research 
Question 1)

In this section, we address the following hypothesis:

Hypothesis 1.  The inclusion of goal-based fitness functions as 
additional generation targets will not have an impact on the attain-
ment of code coverage, as compared with targeting coverage alone.

Often, targeting multiple objectives can have some effect on each 
individual objective targeted, as compared with targeting a single 

objective on its own. If objectives are contradictory, or if too many 
objectives are targeted at once, then the final attainment of each 
may be lowered [11, 41]. However, targeting one objective may 
also offer feedback that enhances attainment of another [10, 47]. 
Therefore, we wish to assess—first—the impact that targeting 
additional goal-based objectives has on code coverage-based ob-
jectives. We examine three aspects of coverage: (1) the final per-
centage of coverage attained, (2) the specific coverage obligations 
covered by the final test suites and (3) the evolution of coverage 
attainment over evolution. For this evaluation, we compare suite 
generated targeting Branch Coverage alone to suite targeting 
Branch Coverage and an additional goal-based fitness function.

5.1.1   |   Attained Branch Coverage

Table  2 offers descriptive statistics on the final attainment of 
Branch Coverage by generated test suites. Figures 4 and 5 also 
depict the attained Branch Coverage overall and by project from 
Defects4J, respectively. Table 2 and Figure 4 do not demonstrate 
any clear differences between configurations with regard to the 

TABLE 2    |    Descriptive statistics of Branch Coverage across different test generation configurations and search budgets.

Configuration Budget Mean Std Dev Min 25th % Median 75th % Max

Branch 180 0.618 0.326 0.000 0.383 0.690 0.906 1.000

Branch and Exception 180 0.614 0.333 0.000 0.367 0.690 0.912 1.000

Branch and Execution Time 180 0.621 0.324 0.000 0.389 0.704 0.900 1.000

Branch and Output 180 0.620 0.325 0.000 0.383 0.704 0.900 1.000

Branch 300 0.665 0.317 0.000 0.484 0.726 0.929 1.000

Branch and Exception 300 0.665 0.325 0.000 0.507 0.749 0.936 1.000

Branch and Execution Time 300 0.659 0.322 0.000 0.484 0.742 0.932 1.000

Branch and Output 300 0.653 0.324 0.000 0.475 0.740 0.934 1.000

FIGURE 4    |    Boxplots of the Branch Coverage attained by test suites, divided by budget.
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final attained Branch Coverage. The distribution of results is vi-
sually similar for each configuration, and the mean and median 
Branch Coverage attained by each configuration are within a 
narrow range. An increase in search budget yields an increase 
in the average Branch Coverage, as well as less variance in the 
final results—seen in a rise in the 25th percentile. However, this 
improvement seems largely consistent across configurations.

In Figure 5, we do see some differences between configurations 
for particular projects. However, there are few clear trends, 
and only a small number of bugs were drawn from many of 
these projects. Still, we note some observations from the proj-
ects with over 10 included bugs. First, for project Cli, we see a 
higher median Branch Coverage for the combination of Branch 
Coverage and Execution Time at both search budgets. For 

FIGURE 5    |    Boxplots of the Branch Coverage, divided by both budget and project from Defects4J. The X-axis reports the budget and the Y-axis 
reports the Branch coverage.
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the project JSoup, we see that the combination of Branch and 
Output Coverage yields a slightly higher median coverage at 
both search budgets. We will investigate both of these observa-
tions—as well as potential differences for other projects—more 
closely in future work.

To confirm our initial inspection, we performed a Wilcoxon 
rank-sum test to assess pairwise comparisons between different 
test generation configurations for the two search budgets. The 
results of this test are shown in Table 3, where we see that no 
comparison demonstrated statistically significant differences—
that is, no p-value was below 0.05.

5.1.2   |   Attained Coverage Obligations

During and after the test generation process, we collected in-
formation on which specific Branch Coverage obligations were 
covered by generated test suites. To assess whether different 
configurations tend to cover distinct test obligations, we cal-
culated the average coverage of each obligation for each CUT 
across all trials conducted for each configuration, search budget 
and bug. For example, if four of the 10 trials targeting Branch 
Coverage and Output Coverage for bug Chart-3 covered the first 
Branch Coverage obligation for the targeted class, then the aver-
age coverage of that obligation would be 0.40.

The resulting averages were then used to compare targeting 
Branch Coverage alone to targeting Branch Coverage as well as 
a second goal-based fitness function. For example, if there were 
four coverage obligations for a class:

•	 When targeting Branch Coverage alone, the average cover-
age of each obligation was 0.4, 0.7, 0.8 and 0.4.

•	 When targeting Branch and Exception Count, the average 
coverage of each obligation was 0.5, 0.7, 0.8 and 0.3.

•	 The resulting difference between the two would be −0.1, 
0.0, 0.0 and 0.1.

TABLE 3    |    Calculated p-values from comparisons of attained Branch Coverage by different configurations, split by search budget.

Comparison Budget p-value Significant Cliff 's � Effect size

Branch vs. Branch and Execution Time 180 0.909 No −0.005 Negligible

Branch vs. Branch and Exception 180 0.362 No −0.007 Negligible

Branch vs. Branch and Output 180 0.647 No 0.005 Negligible

Branch vs. Branch and Exception 300 0.985 No −0.017 Negligible

Branch vs. Branch and Execution Time 300 0.685 No −0.000 Negligible

Branch vs. Branch and Output 300 0.347 No 0.023 Negligible

FIGURE 6    |    Difference in the average coverage of each obligation 
by Branch alone against Branch and Exception (green), Branch and 
Execution Time (blue) and Branch and Output (purple) for Chart-3, 
Class 1, when the budget is set to 180 s.

Research Question 1.1 (attained Branch Coverage): 
Optimizing a second goal-based fitness function does not 
have a significant impact on the final Branch Coverage at-
tained by test suites.
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14 of 30 Software Testing, Verification and Reliability, 2025

Figure 6 visualizes the result of this comparison for one class 
from one bug and search budget, as an example of the differ-
ences that can emerge. In this example, positive spikes show 
cases where targeting Branch alone performed better for a 
particular obligation versus the compared configuration and 
vice versa.

To generalize the assessment across all bugs, we calculated the 
sum of these differences for each class for each bug. Figure  7 
plots the difference between each configuration across all bugs, 
split by search budget. Table 4 includes descriptive statistics on 
the difference in the average coverage of each obligation.

Figure 7 shows the vast majority of the summed differences is 
close to zero, with a median of 0.00 for all comparisons. This 
means that—in most cases—there are few major differences in 

the obligations covered by each configuration. There are differ-
ences in the 25th and 75th percentiles between configurations, 
but relatively narrow ones.

Table 5 offers a complementary analysis, where we indicate the 
proportion of individual coverage obligations where one config-
uration outperformed the other in terms of the average cover-
age of each obligation (a ‘win’) or where their performance was 
identical (a ‘tie’). The results show that for the vast majority of 
obligations (88%–91%), the single- and multi-objective strategies 
perform identically, resulting in a tie. For the small fraction of 
branches where performance differs, there is no consistent win-
ner—both Branch alone and multi-objective configurations win 
a similarly small percentage of the time. This reinforces that 
adding a secondary objective rarely changes which specific 
branches get covered.

FIGURE 7    |    Boxplots of the differences in covered obligations between targeting Branch Coverage alone versus Branch and goal-based fitness 
function.

TABLE 4    |    Descriptive statistics of the difference in the average coverage of each obligation between branch and another configuration, split by 
configuration and budget.

Criterion Budget Mean Std Min 25% 50% 75% Max

Branch and Exception 180 0.0033 0.0373 −0.0625 −0.0010 0.0000 0.0038 0.3194

Branch and Execution Time 180 −0.0015 0.0286 −0.1427 −0.0048 0.0000 0.0039 0.1226

Branch and Output 180 −0.0008 0.0527 −0.3875 −0.0043 0.0000 0.0058 0.2097

Branch and Exception 300 −0.0003 0.0232 −0.1111 −0.0051 0.0000 0.0048 0.0482

Branch and Execution Time 300 −0.0030 0.0311 −0.1936 −0.0063 0.0000 0.0073 0.1014

Branch and Output 300 −0.0011 0.0310 −0.1660 −0.0076 0.0000 0.0073 0.0871
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Figure 7 shows that there are a number of outliers. Most outliers 
are clustered within −0.1 to 0.1, i.e., within 10% difference in 
average coverage. However, it is possible that some of these out-
liers offer information that could improve the results of test gen-
eration. In particular, negative outliers are interesting, as they 
suggest cases where the addition of a goal-based fitness function 
improved Branch Coverage.

We inspected the negative outliers, with a particular focus 
on the six most extreme cases—Math-81 at the 180-s bud-
get for both Branch and Execution Time and Branch and 
Output Coverage, JSoup-9 for Branch and Exception Count 
and Branch and Execution Time at the 300-s budget, Math-
11 for Branch and Execution Time at the 300-s budget and 
Closure-164 for Branch and Output Coverage at the 300-s bud-
get. Overall, there were few clear and actionable conclusions 
that we could draw from these outliers. However, we share 
some interesting observations.

The class modified in Math-81 for Branch and Output Coverage 
at the 180-s budget was the most extreme outlier, with an aver-
age difference of 38.75% in coverage. The explanation for this 
difference is relatively straightforward. Many of the methods 

of the CUT have numeric return values. It is likely that Output 
Coverage, by placing emphasis on returning diverse results for 
these methods, helped to steer test generation towards covering 
Branch Coverage obligations in these methods and in methods 
indirectly called through these methods. This improvement 
disappears at the 300-s search budget, suggesting that Branch 
Coverage alone is eventually effective. However, the addition of 
Output Coverage speeds coverage attainment.

A similar observation can be made for Branch and Output 
Coverage for the CUT in Closure-164, where there was an av-
erage coverage difference of 16.60%. Most methods in this class 
return Boolean values. It is possible that the Output Coverage 
helped to encourage Branch Coverage by ensuring that the 
methods returned both possible values. Here, this difference in-
creased with the search budget.

A potential explanation for the outliers for Branch and 
Execution Time is that the Execution Time fitness function 
encourages the generation of longer test cases, with more pro-
gramme interactions. This function penalizes test cases that 
are too long, but the average test case length is still higher than 
when Branch Coverage is targeted alone. This may encourage 
improvement in coverage as well, in a small number of cases.

5.1.3   |   Evolution of Coverage Attainment

We collected the evolution of coverage during the test generation 
process, based on the Branch Coverage achieved by the best test 
suite in the evolving population. A snapshot of coverage is cap-
tured each second during the generation process. This allows 
us to calculate the AUC (area under the curve) and the time the 
search took to achieve 25%, 50% and 75% coverage during each 
trial for each configuration.

Figure 8 and Table 6 show the statistics for AUC for each con-
figuration and search budget. Higher AUC values indicate that 
Branch Coverage evolved early, while lower ones mean the 
search took more time to achieve coverage.

We observe that the median AUC is lower for both search bud-
gets for Branch and Execution Time as well as for Branch and 
Output Coverage than for Branch alone, potentially indicating 
slightly slower coverage attainment. However, the 25th and 75th 
percentiles are similar. We also observe that the median AUC 
is slightly higher for Branch and Exception Coverage than for 
Branch alone at the 180-s budget, potentially indicating a slight 
improvement in the rate of coverage attainment.

In Table 7, we show the results of statistical testing on the AUC. 
All p-values are considerably above the 0.05 threshold. Figure 9 
and Table 8 report the time needed to reach 25%, 50% and 75% 
Branch Coverage. The median time to reach each landmark is 
very similar across all configurations, regardless of search budget. 
The largest differences between configurations can be seen in the 
75th percentile for each configuration. Here, we often see a higher 
75th percentile for Branch and Output, as compared with the 
higher configurations, indicating again that coverage attainment 
may be slightly slowed with the inclusion of Output Coverage as a 
goal. However, there is no evidence that this effect is significant.

TABLE 5    |    Proportion of coverage obligations where one 
configuration outperforms another.

Comparison Budget

Branch 
wins 
(%)

Branch + X 
wins (%)

Ties 
(%)

Branch vs. 
Branch and 
Exception

180 3.7% 5.1% 91.2%

Branch vs. 
Branch and 
Exec. Time

180 5.6% 6.4% 88.0%

Branch vs. 
Branch and 
Output

180 6.0% 5.7% 88.3%

Branch vs. 
Branch and 
Exception

300 4.6% 4.6% 90.8%

Branch vs. 
Branch and 
Exec. Time

300 5.5% 4.9% 89.7%

Branch vs. 
Branch and 
Output

300 5.2% 5.3% 89.5%

Research Question 1.2 (obligations covered): In the ma-
jority of cases, the addition of a goal-based fitness function 
does not change the likelihood of covering particular test 
obligations. Almost all differences in the average coverage 
of individual obligations are within 10% of when Branch 
Coverage is targeted alone.
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16 of 30 Software Testing, Verification and Reliability, 2025

While the median remains relatively consistent across search 
budgets, the 75% percentile is often higher at the 300-s budget, 
especially at the 75% coverage threshold. The average also raises 
across search budgets. This is because a small number of addi-
tional test suites reach these thresholds later in the generation 
process under the higher budget. Again, the median is relatively 
consistent across all budgets and configurations.

5.2   |   Impact on Goal-Based Objectives (Research 
Question 2)

Our second hypothesis was the following:

Hypothesis 2.  Targeting both coverage and a goal-based fit-
ness function will not have an impact on the attainment of goal-
based fitness functions, as compared with targeting coverage or a 
goal-based fitness function alone.

Similar to Research Question 1, targeting multiple objectives 
could affect the final fitness values of the goal-based fitness 
functions—e.g., raising or lowering goal attainment when com-
pared with targeting a goal-based or a structure-based fitness 
function alone.

In addition to examining this hypothesis directly, there is a 
secondary hypothesis of interest. One of the reasons for the 
prevalence of structural coverage in search-based test gener-
ation is that structural coverage can be translated effectively 
into distance-based fitness functions, e.g., the branch dis-
tance used for optimizing Branch Coverage [7]. This means 
that tests can be efficiently generated that widely explore the 
codebase. Goal-based fitness functions often lack distance-
based fitness functions [47]. Consequently, they may offer less 
feedback to the optimization process. As a result, targeting 
both coverage and goal-based objectives could potentially re-
sult in higher attainment of goal-based fitness by offering an 
additional feedback mechanism [11, 47]. Past research has not 
assessed this hypothesis. In this experiment, the Exception 
Count is one such example. In contrast, Output Coverage does 
have a distance-based fitness function, so such benefits may 
not be observed in this case.

During the experiment, we recorded the final attainment of each 
goal-based fitness function for all generated test suites. Note that 

FIGURE 8    |    Boxplot for aArea uUnder the cCurve (AUC) of the branch coverage evolution, split by budget and cCriterion.

TABLE 6    |    Average and median values for AUC of coverage evolution 
for different configurations, split by budget.

Criterion Budget Average Median

Branch 180 74.06 68.32

Branch and Exception 180 75.44 77.59

Branch and Execution 
Time

180 70.73 61.25

Branch and Output 180 70.30 61.48

Branch 300 134.19 141.89

Branch and Exception 300 135.65 141.93

Branch and Execution 
Time

300 130.55 138.27

Branch and Output 300 127.60 124.85

Research Question 1.3 (coverage evolution): There are 
almost no significant differences between configurations 
with regard to the rate of attainment of Branch Coverage. 
Branch and Exception Coverage at a 180-s budget show sta-
tistically significant improvement, but with only a negligible 
effect size.
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the Execution Time fitness function cannot be executed without 
also targeting Branch Coverage, so we were unable to generate 
test suites targeting Execution Time alone. In addition, note that 
the Exception Count is normalized between 0 and 1 for all bugs, 
based on the largest number of exceptions seen in any trial for 
that bug, as the number of possible exceptions differs between 
bugs. Figure  10 shows boxplots for Exception Count, Output 
Coverage and Execution Time for each fitness function config-
uration and search budget. Average and median values are re-
ported in Table 9. Tables 10–12 report p-values and effect sizes 
for comparisons between single-objective generation versus 
multi-objective optimization.

First, we observe that no goal-based fitness function can serve 
as a proxy for another goal-based fitness function. Targeting 
Output Coverage yields a low Exception Count and Execution 
Time. Similarly, targeting Exception Coverage yields low Output 
Coverage and Execution Time. If one targets a goal-based fitness 
function alone, they should not expect high attainment of goals 
other than the one that function was designed for.

Targeting Branch Coverage alone yields better performance 
at each goal than targeting a fitness function designed for a 

different goal, suggesting that coverage of the code base will al-
ways lead to some degree of goal attainment. However, as shown 
in Tables 10 and 11, these suites are also significantly worse at 
attaining Output Coverage or Exception Count than targeting 
either goal directly or targeting multiple objectives—with a large 
effect size for Exception Count at both search budgets, a small–
medium effect size for Output Coverage at the 180-s search bud-
get, and a medium–large effect size for Output Coverage at the 
300-s budget. In other words, code coverage is a weak proxy for 
a goal-based fitness function—as noted in Section 1, coverage 
alone is not enough to ensure goal attainment.

Next, we compare targeting a goal alone versus multi-objective 
optimization. Table 11 shows that, at both budgets, there is a sig-
nificant difference in Output Coverage between targeting Output 
Coverage alone and targeting both Branch and Output Coverage, 
in favour of targeting Output Coverage alone. However, the effect 

TABLE 7    |    p-values and effect size on pairwise comparisons of AUC by different configurations, split by search budget.

Comparison Budget p-value Significant Cliff 's � Effect size

Branch vs. Branch and Execution Time 180 0.909 No −0.005 Negligible

Branch vs. Branch and Exception 180 0.362 No −0.007 Negligible

Branch vs. Branch and Output 180 0.647 No 0.005 Negligible

Branch vs. Branch and Exception 300 0.985 No −0.017 Negligible

Branch vs. Branch and Execution Time 300 0.685 No −0.001 Negligible

Branch vs. Branch and Output 300 0.347 No 0.023 Negligible

FIGURE 9    |    Boxplots of the time taken to achieve 25%, 50%, and 75% Branch Coverage for each configuration, split by budget.

Research Question 2 (goal coverage): Targeting code 
coverage alone leads to worse goal attainment than directly 
targeting a goal-based objective.
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size is only small at the 180-s budget and negligible at the 300-s 
budget. Similarly, Table 10 shows that, at both budgets, there is no 
significant difference between targeting Branch and Exception 
Count and targeting Exception Count alone.

In our past research, we observed situations where both Branch 
Coverage and the Exception Count offer the other function 
missing feedback—with the Exception Count steering Branch 
Coverage towards input that triggers exceptions and Branch 
Coverage offering feedback on how to further explore the code 
base [11]. Such cases are rare, but may explain the higher me-
dian seen for multi-objective generation in Figure 10.

We were unable to generate suites targeting Execution Time 
alone due to limitations. However, from Table 9, we can see that 
there is a slight improvement in the average (at both budgets) 
and the median (at the 180-s budget) Execution Time from tar-
geting Branch and Execution Time simultaneously. However, 
there are no statistically significant differences between tar-
geting both objectives versus targeting Branch Coverage alone 
(Table 12). No configuration was significantly better at yielding 
tests with high execution times. It is possible that the examples 
chosen from Defects4J had few or no performance issues that 
could be exposed through unit testing.

5.3   |   Impact on Fault Detection (Research 
Question 3)

The third hypothesis that we raised was the following:

Hypothesis 3.  Targeting both coverage and a goal-based 
fitness function will not have an impact on the fault detection of 
generated test suites, as compared with targeting coverage or a 
goal-based fitness function alone.

Regardless of the impact on the code coverage or attainment of 
non-coverage testing goals, targeting multiple objectives could 
change the specific inputs applied to the CUT. As a result, there 

TABLE 8    |    Descriptive statistics on the time (in seconds) to reach 
coverage thresholds, split by configuration and budget. ‘Count’ indicates 
the number of trials that reached this threshold.

Criterion Budget Count Average Median

Time to 25%

Branch 180 544 10.33 1.00

Branch and 
Exception

180 527 9.12 1.00

Branch and 
Execution 
Time

180 501 12.06 1.00

Branch and 
Output

180 512 12.45 1.00

Branch 300 551 19.00 1.00

Branch and 
Exception

300 513 17.37 1.00

Branch and 
Execution 
Time

300 479 19.76 1.00

Branch and 
Output

300 492 21.34 1.00

Time to 50%

Branch 180 433 22.55 5.00

Branch and 
Exception

180 416 18.70 4.00

Branch and 
Execution 
Time

180 376 19.67 5.00

Branch and 
Output

180 391 20.74 5.00

Branch 300 448 35.64 5.00

Branch and 
Exception

300 417 34.98 5.00

Branch and 
Execution 
Time

300 378 33.36 5.00

Branch and 
Output

300 391 37.39 5.00

Time to 75%

Branch 180 233 24.29 5.00

Branch and 
Exception

180 236 22.08 5.00

Branch and 
Execution 
Time

180 209 23.15 5.00

Branch and 
Output

180 217 33.29 5.00

(Continues)

Criterion Budget Count Average Median

Branch 300 244 41.32 5.00

Branch and 
Exception

300 231 35.94 5.00

Branch and 
Execution 
Time

300 222 43.28 5.00

Branch and 
Output

300 229 57.98 6.00

TABLE 8    |    (Continued)

Research Question 2 (goal coverage): Targeting code 
coverage and a goal-based objective simultaneously results 
in no, or only a limited (negligible–small), drop in goal-
based fitness compared with targeting a goal-based objec-
tive alone.
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FIGURE 10    |    Boxplots for Execution Ttime, Exception Count, and Output Coverage divided by budget and configuration.

TABLE 9    |    Averages and median values for Execution Time, Output Coverage and Exception Count, by configuration and budget.

Criterion Budget

Execution Time Output Coverage Exception Count

Avg Median Avg Median Avg Median

Branch 180 41.73 31.00 0.31 0.35 0.29 0.22

Branch and Exception 180 42.69 31.00 0.32 0.37 0.62 0.79

Branch and Execution Time 180 42.90 33.00 0.31 0.36 0.31 0.25

Branch and Output 180 42.89 31.00 0.43 0.49 0.30 0.25

Exception 180 27.48 21.00 0.19 0.11 0.59 0.71

Output 180 23.13 16.00 0.45 0.50 0.13 0.08

Branch 300 39.83 30.00 0.33 0.36 0.30 0.25

Branch and Exception 300 39.11 28.00 0.35 0.39 0.68 0.88

Branch and Execution Time 300 40.37 30.00 0.33 0.36 0.32 0.25

Branch and Output 300 40.38 30.00 0.46 0.50 0.32 0.25

Exception 300 26.87 20.00 0.19 0.11 0.59 0.71

Output 300 23.57 16.00 0.47 0.52 0.14 0.09
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could be a change in the fault-revealing power of those test 
suites—it could either increase due to a change in the versatility 
of the test suite [10, 11, 41] or potentially decrease.

To assess this hypothesis, we consider two aspects of fault 
detection. First, the likelihood of fault detection—for each 
fault, the proportion of suites (for a particular configuration) 
that detect the fault to those generated for that configuration. 
Second, we consider the number of failing tests—how many 
test cases detect the fault when it is detected. We consider both 
so that we can examine both how likely a fault is to be detected 
and how much information exists to understand and debug 
the fault. If two configurations have the same likelihood of 
detection, one may offer more failing tests to use in the debug-
ging process.

Figure  11 illustrates the likelihood of fault detection, and 
Table 13 offers descriptive statistics for each configuration and 
search budget. Table 13 lists, for each budget and fitness function 
configuration, the lowest, highest, average, median, 25th quar-
tile and 75th quartile likelihood of fault detection observed for 

the assessed faults, as well as the total number of faults detected 
over the set of 93 considered in this experiment. Immediately, 
we can see that the multi-objective configurations detect more 
faults—with Branch and Output detecting the most at the 180-s 
budget and Branch and Execution Time detecting the most at 
the 300-s budget. The multi-objective configurations are fol-
lowed by Branch Coverage, then Output Coverage, and finally 
the Exception Count.

However, as the majority of faults are never detected, the me-
dian likelihood of fault detection is also zero for all configura-
tions. The average, skewed by cases where faults are detected, 
is somewhat more informative. Targeting Branch and Output 

TABLE 10    |    Significance tests and effect size for comparisons of Exception Count between single- and multi-objective configurations across 
different budgets.

Comparison Budget p-value Significant Cliff 's � Category

Branch vs. Branch and Exception 180 5.28 × 10−72 Yes −0.48 Large

Branch vs. Exception 180 2.68 × 10−84 Yes −0.56 Large

Branch and Exception vs. Exception 180 0.176 No 0.01 Negligible

Branch vs. Branch and Exception 300 3.06 × 10−80 Yes −0.51 Large

Branch vs. Exception 300 1.49 × 10−79 Yes −0.56 Large

Branch and Exception vs. Exception 300 0.152 No 0.10 Negligible

TABLE 11    |    Significance tests and effect size for comparisons of Output Coverage between single- and multi-objective configurations across 
different budgets.

Comparison Budget p-value Significant Cliff 's � Category

Branch vs. Branch and Output 180 9.72 × 10−29 Yes −0.32 Small

Branch vs. Output 180 7.3 × 10−47 Yes −0.47 Medium

Branch and Output vs. Output 180 2.53 × 10−9 Yes −0.16 Small

Branch vs. Branch and Output 300 1.82 × 10−29 Yes −0.36 Medium

Branch vs. Output 300 1.53 × 10−44 Yes −0.49 Large

Branch and Output vs. Output 300 2.1 × 10−4 Yes −0.11 Negligible

TABLE 12    |    Significance tests and effect size for comparisons of Execution Time between single- and multi-objective configurations across 
different budgets.

Comparison Budget p-value Significant Effect size Category

Branch vs. Branch and Execution Time 180 0.350 No −0.01 Negligible

Branch vs. Branch and Execution Time 300 0.882 No −0.01 Negligible

Research Question 3 (fault detection): Suites targeting 
multi-objective configurations detected more faults than 
single-objective configurations. Further, suites targeting 
Branch Coverage alone detected more faults than goal-based 
suites alone.
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Coverage yields the highest average likelihood of fault detection 
at both search budgets (28% and 31%), followed at both budgets 
by Branch and Exception Count (27% and 30%) and Branch and 
Execution Time (25% and 28%). This same ordering can be seen 
in the 75th percentile in Figure  11. Again, targeting the goal-
based functions alone yields the lowest average likelihood of 
fault detection—with the worst performance from targeting the 
Exception Count alone.

We note that these results replicate the general trends observed 
in our previous work [10, 11]. While the exact results may dif-
fer due to changes made to EvoSuite and the stochastic nature 
of search-based test generation, we previously observed that 
targeting Branch Coverage alone yielded a higher likelihood 
of fault detection than targeting Exception Count or Output 
Coverage alone, and that multi-objective combinations also 
had an even higher average likelihood of fault detection.

Table 14 includes significance tests and effect sizes for the like-
lihood of fault detection. At both budgets, the multi-objective 
configurations do not yield significantly different results from 
targeting Branch Coverage alone in the likelihood of fault 

detection. However, targeting Branch Coverage yields better 
results (with a large effect size) than targeting a goal-based fit-
ness function at both budgets. Targeting Branch and Exception 
Count simultaneously also yields better results than targeting 
Exception Count alone, with a large effect size, at both budgets. 
Finally, targeting Branch Coverage and Output Coverage yields 
better results than targeting Output Coverage alone, with large 
effect sizes at both budgets.

FIGURE 11    |    Boxplots of the likelihood of fault detection, divided by budget and configuration.

TABLE 13    |    Descriptive statistics on the likelihood of fault detection, split by budget and configuration.

Criterion Budget Min 25% 50% 75% Max Avg # of bugs detected

Branch 180 0.00 0.00 0.00 0.38 1.00 0.24 28

Branch and Exception 180 0.00 0.00 0.00 0.54 1.00 0.27 30

Branch and Execution Time 180 0.00 0.00 0.00 0.41 1.00 0.25 34

Branch and Output 180 0.00 0.00 0.00 0.89 1.00 0.28 35

Exception 180 0.00 0.00 0.00 0.10 0.22 0.04 23

Output 180 0.00 0.00 0.00 0.10 0.44 0.09 27

Branch 300 0.00 0.00 0.00 0.43 1.00 0.26 32

Branch and Exception 300 0.00 0.00 0.00 0.75 1.00 0.30 35

Branch and Execution Time 300 0.00 0.00 0.00 0.57 1.00 0.28 39

Branch and Output 300 0.00 0.00 0.00 0.85 1.00 0.31 33

Exception 300 0.00 0.00 0.00 0.10 0.20 0.06 28

Output 300 0.00 0.00 0.00 0.10 0.33 0.13 31

Research Question 3 (fault detection): Suites targeting 
Branch Coverage alone or a multi-objective configuration 
outperform suites targeting a goal-based objective in the 
likelihood of fault detection with medium–large effect size.

Research Question 3 (fault detection): Suites targeting a 
multi-objective configuration fail to outperform suites tar-
geting Branch Coverage alone with significance in the likeli-
hood of fault detection. However, targeting a multi-objective 
configuration does increase the average and 75th percentile 
performance.
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Figure 12 illustrates the number of failing tests, and Table 15 of-
fers descriptive statistics for each configuration and search bud-
get. Table 16 includes significance tests and effect sizes, when 
significance is found.

Here, we see largely similar trends to the likelihood of fault de-
tection, with the median number of failing tests being 0 for all 
configurations. Targeting Branch and Exception Count yields the 
largest average number of failing tests at both budgets (1.13 and 
1.28), followed by Branch and Execution Time (1.00) at the 180-s 
budget and Branch alone (1.08) at the 300-s budget. However, 
these results are in a relatively narrow range, and no multi-
objective configuration is an outlier in terms of the number of 
tests that fail when a fault is detected. As shown in Table 16, tar-
geting Branch Coverage alone or a multi-objective configuration 

yields a larger number of failing tests than targeting a goal-based 
objective alone, with medium effect size.

FIGURE 12    |    Boxplots of the number of failing tests, divided by budget and configuration.

Research Question 3 (fault detection): Suites targeting 
Branch Coverage alone or a multi-objective configuration 
outperform suites targeting a goal-based objective, in the 
number of failing tests, with medium effect size.

Research Question 3 (fault detection): Suites targeting a 
multi-objective configuration fail to outperform suites tar-
geting Branch Coverage alone with significance in the num-
ber of failing tests.

TABLE 14    |    Significance tests and effect size for comparisons of likelihood of fault detection between single- and multi-objective configurations 
across different budgets.

Comparison Budget p-value Significant Cliff 's � Category

Branch vs. Branch and Exception 180 0.657 No −0.035 Negligible

Branch vs. Branch and Execution Time 180 0.895 No −0.014 Negligible

Branch vs. Branch and Output 180 0.457 No −0.052 Negligible

Branch vs. Exception 180 6.39 × 10−5 Yes 0.668 Large

Branch vs. Output 180 1.72 × 10−4 Yes 0.625 Large

Branch and Exception vs. Exception 180 8.32 × 10−5 Yes 0.792 Large

Branch and Output vs. Output 180 5.60 × 10−5 Yes 0.810 Large

Branch vs. Branch and Exception 300 0.384 No −0.061 Negligible

Branch vs. Branch and Execution Time 300 0.612 No −0.046 Negligible

Branch vs. Branch and Output 300 0.461 No −0.058 Negligible

Branch vs. Exception 300 1.41 × 10−5 Yes 0.729 Large

Branch vs. Output 300 6.07 × 10−5 Yes 0.669 Large

Branch and Exception vs. Exception 300 6.28 × 10−6 Yes 0.937 Large

Branch and Output vs. Output 300 2.92 × 10−5 Yes 0.838 Large
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5.4   |   Impact on Test Suite Contents (Research 
Question 4)

Our fourth hypothesis was that:

Hypothesis 4.  Targeting both coverage and a goal-based fit-
ness function will not have an impact on the size of the test suite 
and the average test length, as compared with targeting coverage 
or a goal-based fitness function alone.

Targeting multiple objectives could increase the suite size or av-
erage test case length. Each unit test case contains one or more 

interactions with the CUT. Each targeted objective imposes 
a set of obligations that must be covered in those interactions, 
and only particular input will ensure those obligations are met. 
Multi-objective optimization imposes a larger set of obligations 
than single-objective optimization.

Each test case can cover obligations of multiple criteria, mean-
ing that one should not expect a linear increase in suite size or 
test case length during multi-objective optimization compared 
with single-objective optimization. However, some obligations 
require highly specific test input or setup, potentially necessitat-
ing additional specialized test cases or an increased number of 

TABLE 15    |    Descriptive statistics on number of failing tests, split by budget and configuration.

Criterion Budget Avg Min 25% 50% 75% Max

Branch 180 0.89 0.00 0.00 0.00 0.00 29.00

Branch and Exception 180 1.13 0.00 0.00 0.00 1.00 30.00

Branch and Execution Time 180 1.00 0.00 0.00 0.00 0.00 33.00

Branch and Output 180 0.88 0.00 0.00 0.00 1.00 37.00

Exception 180 0.04 0.00 0.00 0.00 0.00 1.00

Output 180 0.09 0.00 0.00 0.00 0.00 1.00

Branch 300 1.08 0.00 0.00 0.00 1.00 41.00

Branch and Exception 300 1.28 0.00 0.00 0.00 1.00 39.00

Branch and Execution Time 300 1.04 0.00 0.00 0.00 1.00 39.00

Branch and Output 300 0.98 0.00 0.00 0.00 1.00 38.00

Exception 300 0.06 0.00 0.00 0.00 0.00 1.00

Output 300 0.13 0.00 0.00 0.00 0.00 1.00

TABLE 16    |    Significance tests and effect size for comparisons of the number of failing tests between single- and multi-objective configurations 
across different budgets.

Comparison Budget p-value Significant Cliff 's � Category

Branch vs. Branch and Exception 180 0.043 No −0.043 Negligible

Branch vs. Branch and Execution Time 180 0.518 No −0.019 Negligible

Branch vs. Branch and Output 180 0.053 No −0.049 Negligible

Branch vs. Exception 180 2.96 × 10−37 Yes 0.35 Medium

Branch vs. Output 180 7.43 × 10−31 Yes 0.35 Medium

Branch and Exception vs. Exception 180 1.90 × 10−36 Yes 0.41 Medium

Branch and Output vs. Output 180 4.16 × 10−35 Yes 0.36 Medium

Branch vs. Branch and Exception 300 0.014 No −0.069 Negligible

Branch vs. Branch and Execution Time 300 0.124 No −0.050 Negligible

Branch vs. Branch and Output 300 0.012 No −0.059 Negligible

Branch vs. Exception 300 2.90 × 10−45 Yes 0.33 Medium

Branch vs. Output 300 2.62 × 10−37 Yes 0.33 Medium

Branch and Exception vs. Exception 300 2.29 × 10−38 Yes 0.40 Medium

Branch and Output vs. Output 300 3.34 × 10−38 Yes 0.41 Medium
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programme interactions. Therefore, some increase in suite size, 
test length or both could occur.

Figure  13 shows boxplots for the test suite size and average 
test case length, with Table  17 reporting median and av-
erage values for both. Tables  18 and 19 report the results of 

significance tests and effect sizes (when significance is found) 
for both measurements, comparing single- and multi-objective 
configurations.

From Figure  13 and Table  18, we can immediately see that 
the distributions of test suite sizes vary significantly between 

FIGURE 13    |    Boxplots for the test suite size and the average test case length, divided by budget and configuration.

TABLE 17    |    Average and median test suite size and average test case length, divided by budget and configuration.

Criterion Budget

Suite size Test case length

Avg Median Avg Median

Branch 180 18.36 14.00 34.51 21.43

Branch and Exception 180 23.45 19.00 33.48 21.38

Branch and Execution Time 180 19.76 15.00 35.12 21.82

Branch and Output 180 22.89 18.00 35.90 21.67

Exception 180 9.92 6.00 20.35 20.00

Output 180 10.23 5.00 21.76 19.75

Branch 300 20.23 14.00 32.35 21.29

Branch and Exception 300 25.64 19.00 31.06 21.19

Branch and Execution Time 300 22.41 16.00 34.88 21.73

Branch and Output 300 25.96 18.00 34.76 21.54

Exception 300 9.98 6.00 19.85 20.00

Output 300 10.65 6.00 20.45 19.75
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configurations. Targeting code coverage and a goal-based fit-
ness function simultaneously results in larger test suites than 
targeting either alone, with medium–large effect size compared 
with targeting a goal-based objective and negligible small effect 
size compared with targeting Branch Coverage alone.

Figure  13 and Table  19 also show that the average test case 
length tends to increase with multi-objective optimization 
compared with targeting a goal-based objective alone, with a 
small–medium effect size. However, the test length does not 
increase compared with targeting Branch Coverage alone—
with only a negligible increase when targeting Branch and 
Execution Time.

Branch Coverage tends to have more obligations to cover than 
the Exception Count or Output Coverage, as a programme 
will generally have more branches in control flow than output 

partitions or thrown exceptions. Covering the obligations of 
Branch Coverage requires more interactions with the CUT and 
requires that a larger number of specialized scenarios be set up 
and executed compared with a goal-based objective alone, in-
creasing both suite size and test length.

There is a larger increase between Branch and Exception Count 
and Exception Count alone in both suite size and test length than 
between Branch and Output Coverage and Output Coverage 
alone. This is because the Exception Count depends on the num-
ber of exceptions discovered, which—in almost all cases—will 
be fewer than the number of required output partitions for the 
methods of the CUT. Further, tests that trigger exceptions may 
not achieve high coverage, as the execution path will end when 
the exception is triggered. If an exception is triggered early in 
the execution of a particular method, few coverage obligations 
will be achieved.

TABLE 18    |    Significance comparisons and effect sizes for test suite size between single- and multi-objective configurations across different 
budgets. All p-values are significant.

Comparison Budget p-value Cliff 's � Effect size

Branch vs. Branch and Exception 180 1.41 × 10−7 −0.29 Small

Branch vs. Branch and Output 180 1.95 × 10−6 −0.26 Small

Branch vs. Branch and Execution Time 180 0.011 −0.12 Negligible

Branch and Exception vs. Exception 180 4.97 × 10−69 0.84 Large

Branch and Output vs. Output 180 2.38 × 10−54 0.68 Medium

Branch vs. Branch and Exception 300 4.35 × 10−7 −0.27 Small

Branch vs. Branch and Output 300 1.80 × 10−6 −0.27 Small

Branch vs. Branch and Execution Time 300 0.001 −0.13 Negligible

Branch and Exception vs. Exception 300 9.21 × 10−67 0.92 Large

Branch and Output vs. Output 300 1.96 × 10−51 0.73 Medium

TABLE 19    |    Significance comparisons and effect sizes for average test case length between single- and multi-objective configurations across 
different budgets.

Comparison Budget p-value Significant Cliff 's � Effect size

Branch vs. Branch and Exception 180 0.891 No −0.001 Negligible

Branch vs. Branch and Output 180 0.374 No −0.021 Negligible

Branch vs. Branch and Execution Time 180 0.490 No −0.009 Negligible

Branch and Exception vs. Exception 180 4.97 × 10−30 Yes 0.63 Medium

Branch and Output vs. Output 180 2.18 × 10−24 Yes 0.45 Small

Branch vs. Branch and Exception 300 0.691 No −0.003 Negligible

Branch vs. Branch and Output 300 0.300 No −0.023 Negligible

Branch vs. Branch and Execution Time 300 0.002 Yes −0.09 Negligible

Branch and Exception vs. Exception 300 4.30 × 10−26 Yes 0.60 Medium

Branch and Output vs. Output 300 6.61 × 10−21 Yes 0.52 Medium
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There is only a small increase in test suite size—and no increase 
in average test length—between Exception Count and Branch 
Coverage and Output Coverage and Branch Coverage versus 
Branch Coverage alone. As discussed above, the number of obli-
gations for the goal-based objectives is small compared with the 
number for Branch Coverage, so only a small increase in suite 
size would be expected.

We see no or negligible increase in suite size and test length be-
tween Branch Coverage and Branch and Execution Time. The 
Execution Time fitness function differed from the others in that 
it had no ‘obligations’. Rather, the goal was simply to find the 
maximum execution time for a test suite during the generation 
process. Therefore, one would not expect a significant impact 
on the test suite size. Some impact on test case length would be 
reasonable, however, as increasing the number of interactions 
will increase the execution time. That said, the fitness function 
imposed a high penalty on test case length to prevent the gener-
ation of bloated test cases. Further, as shown in Table 12, actual 
attainment of the Execution Time goal was limited.

5.5   |   Impact of Search Budget (Research Question 
5)

Our final hypothesis was the following:

Hypothesis 5.  An increase in the search budget will not lead 
to increased attainment of each objective.

An increased search budget could potentially increase the re-
sulting attainment of each targeted objective. However, we must 
examine whether this is the case. In any case, we also hypoth-
esize that the relative relationships between single- and multi-
objective optimization will not fundamentally differ.

We observe that attainment generally did increase. We also ob-
serve that the observed trends generally held true. With regard 
to attained Branch Coverage, the increased search budget led to 

higher coverage attainment (Table 2) and more suites reaching 
particular coverage thresholds (Table 8). However, this increase 
is approximately consistent across configurations, regardless of 
the targeted fitness functions. The same trends between config-
urations generally held at both search budgets with regard to 
total attained coverage, the particular obligations covered, and 
the rate of coverage attainment.

With regard to coverage of goal-based objectives, an increased 
search budget led to slightly higher median attainment of 
Exception Count and Output Coverage (Table  9). However, 
again, the same general trends were witnessed in comparisons 
of multi-objective and single-objective generation at both bud-
gets for the most part. Two exceptions emerged (Tables 10 and 
11). First, at a higher budget, targeting Branch and Exception 
yielded significantly better Exception Count than targeting 
Branch alone (when there was no significant difference at 
the lower budget). Second, a negligible difference at the lower 
search budget between targeting Branch and Output and tar-
geting Output Coverage alone in terms of the achieved Output 
Coverage disappeared at a higher budget.

With regard to fault detection, the number of faults detected 
increased with the search budget. In addition, we see that the 
average and 75th percentile likelihood of fault detection also in-
creased with the search budget (Table 13)—as well as the aver-
age number of failing tests (Table 15). The general relationships 
between single- and multi-objective configurations held, except 
that some effect sizes increased at the higher budget (Table 14).

Finally, an increased search budget generally led to little-to-no 
change in the median test suite size or test case length—how-
ever, there was a minor increase in the average suite size 
(Table 17). The observations with regard to single versus multi-
objective generation held across budgets, with small amplifica-
tions at the larger search budget (e.g., an increased effect size for 
Branch and Output versus Output alone at a 300-s budget for the 
average test case length).

6   |   Discussion

6.1   |   Assessment of Hypotheses

Our study assessed five hypotheses about the relationships 
between coverage-directed test generation, goal-directed test 
generation, and multi-objective optimization targeting both 

Research Question 4 (test suite contents): Both the 
test suite size and average test length increase with multi-
objective optimization compared with when a goal-based 
criterion is targeted alone. Branch Coverage tends to impose 
more obligations than goal-based objectives, leading to the 
increase.

Research Question 4 (test suite contents): Targeting 
Exception or Output Coverage in addition to Branch 
Coverage leads to a small increase in test suite size compared 
with targeting Branch Coverage alone. However, there is no 
significant increase in test case length.

Research Question 4 (test suite contents): Targeting 
Execution Time in addition to Branch Coverage leads to no 
or negligible change in suite size or test case length com-
pared with targeting Branch Coverage alone.

Research Question 5 (search budget): An increased 
search budget leads to increased Branch Coverage, goal at-
tainment and fault detection, but does not substantially af-
fect test suite size and average test length.

Research Question 5 (search budget): An increased 
search budget generally does not fundamentally change—
but may increase the effect size of—relationships between 
single- and multi-objective optimization.
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coverage and testing goals. Here, we summarize our findings 
with regard to these hypotheses.

Hypothesis 1.  The inclusion of goal-based fitness functions 
as additional generation targets will not have an impact on the 
attainment of code coverage, as compared with targeting coverage 
alone.

Ultimately, our observations fail to refute this hypothesis. 
We found that adding a second goal-based fitness function does 
not have a significant impact on the final Branch Coverage 
attained by test suites. Further, in the majority of cases, the 
addition of a goal-based fitness function does not change the 
likelihood of covering particular test obligations. Almost all 
differences in the average coverage of individual obligations 
are within 10% of when Branch Coverage is targeted alone. 
Finally, there are almost no significant differences between 
configurations with regard to the rate of attainment of Branch 
Coverage.

Hypothesis 2.  Targeting both coverage and a goal-based fit-
ness function will not have an impact on the attainment of goal-
based fitness functions, as compared with targeting coverage or a 
goal-based fitness function alone.

Our observations partially refute this hypothesis. First, we 
observed that targeting code coverage alone leads to worse goal 
attainment than directly targeting a goal-based objective, adding 
evidence to our previous observations [11] that coverage is a pre-
requisite for goal attainment but does not guarantee attainment.

We observed that targeting Branch Coverage and Exception 
Count did not yield significant differences from targeting 
Exception Count alone. However, the multi-objective configu-
ration did have a higher median performance. As observed in 
our previous work [10, 11], the addition of Branch Coverage can 
offer feedback that leads to the discovery of more exceptions. 
However, such cases are rare. Targeting Branch and Output 
Coverage did yield significant differences from targeting Output 
Coverage alone, with worse results from the multi-objective 
configuration. However, the effect size is small at the 180-s bud-
get and negligible at the 300-s budget.

In short, we cannot reject this hypothesis in all situations. 
When we do, the results (i.e., for Output Coverage) indicate that 
there is a potential loss in performance, but only a small one.

Hypothesis 3.  Targeting both coverage and a goal-based 
fitness function will not have an impact on the fault detection of 
generated test suites, as compared with targeting coverage or a 
goal-based fitness function alone.

Our observations partially refute this hypothesis. Suites 
targeting multi-objective configurations detected more faults 
than single-objective configurations. Suites targeting Branch 
Coverage alone detected fewer faults than multi-objective con-
figurations, but they did detect more faults than suites targeting 
goal-based objectives.

In addition, suites targeting Branch Coverage alone or a 
multi-objective configuration outperform suites targeting a 

goal-based objective in the likelihood of fault detection with 
medium–large effect size. However, suites targeting a multi-
objective configuration fail to outperform suites targeting 
Branch Coverage alone with significance in the likelihood 
of fault detection. That said, targeting a multi-objective con-
figuration does increase the average and 75th percentile 
performance.

These findings reinforce our previous observations [10, 11] that 
coverage is needed to discover faults but does not guarantee the se-
lection of the specific inputs needed to trigger a failure. Targeting 
coverage yields more failures than only targeting testing goals. 
Targeting a goal in addition to coverage resulted in the discovery 
of more faults than coverage alone by biasing the test input used in 
the generated suite. However, many faults still remain undetected. 
Future research should consider additional goal-based fitness 
functions and aim to discover which functions can best shape cov-
erage towards an increased likelihood of fault detection.

Hypothesis 4.  Targeting both coverage and a goal-based fit-
ness function will not have an impact on the size of the test suite 
and the average test length, as compared with targeting coverage 
or a goal-based fitness function alone.

Our observations partially refute this hypothesis. Both the 
test suite size and average test length significantly increase 
with multi-objective optimization compared with when a goal-
based criterion is targeted alone. Branch Coverage tends to im-
pose more obligations than goal-based objectives, leading to the 
increase.

Targeting Exception or Output Coverage in addition to Branch 
Coverage also leads to a negligible–small increase in test suite 
size compared with targeting Branch Coverage alone. However, 
there is no significant increase in test case length.

Targeting Execution Time in addition to Branch Coverage 
leads to no or negligible changes in suite size or test length 
compared with targeting Branch Coverage alone, as the 
Execution Time fitness function does not have distinct test 
obligations.

Hypothesis 5.  An increase in the search budget will not lead 
to increased attainment of each objective.

Our observations partially refute this hypothesis. An in-
creased search budget leads to increased Branch Coverage, 
goal attainment, and fault detection, but does not substantially 
affect suite size and test length. Additionally, an increased 
search budget does not fundamentally change—but may 
amplify—relationships between single- and multi-objective 
optimization.

6.2   |   Threats to Validity

6.2.1   |   External Validity

For this study, we focused on case examples of real faults from 
the Defects4J dataset. The use of this dataset introduces certain 
threats to external validity. First, the faults used in the study 
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represent only 14 Java projects. This is a relatively small num-
ber of projects. Nevertheless, we believe that Defects4J offers 
enough case examples that our results are generalizable to, at 
minimum, other small to medium-sized Java projects. Further, 
as Defects4J is used extensively in search-based test generation 
research [59], the use of Defects4J examples enables compari-
sons of our results with other research and eases replication.

The set of specific faults used from the Defects4J dataset may 
also introduce selection bias, as certain types of faults or cer-
tain projects may be overrepresented or underrepresented. 
While we lacked experimental resources to consider all faults, 
we worked to ensure that we drew a proportional sample. We 
initially selected 206 faults, then retained 93 faults in the final 
experiment. This set remains large enough to offer a broad range 
of case examples, and we do not believe that any single project 
is overrepresented.

We have based our research on a single test generation frame-
work, EvoSuite. There are many search-based methods of gen-
erating tests, and these methods may yield different results. 
Unfortunately, no other generation framework offers the same 
variety of fitness functions, particularly goal-based fitness func-
tions. Therefore, a more thorough comparison of tools cannot be 
made at this time. In addition, by focusing on a single generation 
framework, we ensure that all test suites are compared in a con-
trolled and fair manner.

Within EvoSuite, we also only employed one multi-objective 
algorithm, whole suite generation. Other algorithms may yield 
different results, as search objectives may be targeted through 
different mechanisms. We chose this algorithm to enable compar-
ison to past research, and chose to focus on a single algorithm to 
perform a focused and detailed analysis of the data collected. We 
believe that the general trends observed would hold regardless of 
the algorithm, even if specific results varied. In future work, we 
will consider the influence of the algorithm more closely.

6.2.2   |   Internal Validity

Evolutionary algorithms inherently introduce randomness, af-
fecting result consistency. To mitigate this, we conducted multiple 
trials, aiming to average out randomness and stabilize outcomes. 
To control experiment cost, we only generated 10 test suites for 
each class, budget, and fitness function configuration. A larger 
number of repetitions may yield different results. However, given 
the consistency of our results, we believe that this is a sufficient 
number of trials to draw stable conclusions from.

6.2.3   |   Conclusion Validity

Conclusion validity depends on our choice of statistical tests 
and the assumptions underlying those tests. Data segmenta-
tion allowed for targeted analysis of different budget and fitness 
function configurations, with descriptive statistics and box plots 
providing an initial overview that could be used to validate the 
results of statistical analyses. We have favoured non-parametric 
methods, as distribution characteristics were not known a pri-
ori, and normality cannot be assumed.

7   |   Conclusion

Past research has suggested the potential benefit of blending 
code coverage and goal-based fitness functions. While multi-
objective generation has been previously studied, how these 
objectives interact—and, in particular, the interaction between 
coverage and goal-based fitness functions—has not been studied 
in depth. Therefore, in this study, we assessed and explored five 
hypotheses about this interaction and its effects on code cover-
age, goal attainment, fault detection, the size of the test suite, the 
length of test cases and the impact of the search budget.

Ultimately, our observations suggest that there are more benefits 
than drawbacks in targeting multiple objectives over a single ob-
jective. Targeting multiple objectives does not reduce code cov-
erage, and goal attainment is either not reduced or only minorly 
reduced. At the same time, targeting multiple objectives can lead 
to the detection of more faults and a higher average likelihood of 
fault detection. Multi-objective optimization does lead to larger test 
suites but imposes only a small increase over suites targeting code 
coverage alone, and test case length is not significantly increased.

The benefits of multi-objective optimization are often more lim-
ited than hypothesized in past research, but the improvements 
in fault detection are still sufficient enough to recommend 
multi-objective optimization over targeting coverage or testing 
goals alone. Our study offers insight into how coverage and goal-
based objectives interact during multi-objective test generation, 
offering guidance to researchers and testers and a starting point 
for future research on multi-objective test generation.

In future work, we would like to continue to explore these—and 
other—hypotheses with an expanded scope and and consider-
ation of additional experimental variables. We will target a wider 
variety of projects and faults and will also vary the metaheuris-
tic algorithms used to perform multi-objective generation (e.g., 
contrasting whole suite generation and MOSA). In addition, we 
will consider combinations of more than two fitness functions. 
Our past research found that EvoSuite's default combination of 
eight fitness functions performed worse at fault detection than 
simply targeting Branch Coverage under the same budget, as 
competing objectives and the overhead of calculating fitness 
limited test suite evolution. However, a subset of more than two 
and less than eight functions may yield highly effective results. 
Finally, we will also explore situations where fitness functions 
can be given different weights during optimization—e.g., target-
ing both a goal-based and coverage-based function and giving 
heavier weight to the goal-based function.
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