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ARTICLE INFO ABSTRACT
Keywords: The threat of climate change has renewed interest in sailing as a carbon-neutral propulsion method, with rigid
Machine learning wing sails emerging as promising auxiliary systems. A new class of wing sails that is symmetric about the half
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chord (also termed crescent-shape in the literature) has enabled the introduction of camber to enhance thrust
production. They are particularly suited for wind-assisted ship propulsion, where performance across a wide
range of apparent wind angles is critical. However, their aerodynamic shape remains largely unoptimised. To
address this, an efficient aerodynamic optimisation method was developed by integrating a neural network-based
aerofoil simulation tool and a Bayesian optimisation framework. The optimisation strategy guided the search for
maximum average thrust across apparent wind angles from 10° to 150°, using a Gaussian Process surrogate model
to balance exploration and exploitation. Aerofoil profiles were sampled through hybrid geometry parametrisa-
tion that combines Bézier curve-specified camber and modified NACA 4-digit thickness distribution. Sensitivity
analysis revealed that larger tip radii and reduced maximum thickness can improve thrust production. The op-
timised geometry, termed BN4, was adopted to construct a full-size wing sail configuration. This configuration
together with a benchmark configuration were simulated using the Improved Delayed Detached Eddy Simulation
(IDDES). The simulation results indicated that the optimisation alleviates flow separation and increases pressure
magnitudes on the suction side of the profile. This work demonstrates a path for the use of machine learning
techniques in aerodynamic optimisation for wing sails, and sheds light on geometric parameters dominating the
specific thrust production.

1. Introduction cargo handling. Rigid sails address many limitations of soft sails Silva
Sailing was the primary form of transportation across water until et al. (2019). Their nearly constant aerodynamic shape enables more
combustion engines were widely equipped in the 19th century (Khan efficient operation near headwind conditions. The structural stiffness
et al., 2021). However, with the increasing threat of climate change, can reduce wear and tear, and the higher lift-to-drag ratio can lead to
the modern shipping industry endeavours to reincorporate wind power smaller heeling moments.
as auxiliary or main propulsion (Zhu et al., 2023b). The introduction of rigid wing sails in the 2010 America’s Cup
The auxiliary propulsion is collectively referred to as Wind-Assisted marked a turning point in sail technology development due to their supe-
Ship Propulsion (WASP), and it encompasses various technologies. No- rior performance (Blakeley et al., 2012). Such a rigid sail consists of two
table examples include Flettner rotors, kite rig propulsion, traditional foils, resembling an aircraft wing with a high-lift device. Blakeley et al.
soft sails, and rigid wing sails. (2012) performed wind tunnel tests for a two-element wing sail. They
Soft sails provide an easily adjustable solution for varying wind con- showed that the size of the gap between the two foil elements signifi-
ditions, offering quick storage, simple repairs, and reliable performance cantly affects the angle. of stall. Later Fur ukawa et al. (.2015) found thfft
in diverse operational scenarios (Neal et al., 2009). However, they re- compareq to the.gap size and pivot Pomt, flap deflection plays a dOl:nl—
quire constant adjustment to maintain their shape, particularly near nant role in the lift and drag generation. They also observed that at high
headwinds, which increases operational complexity and cost. Addition- camber and angle of a.ttack (AOA), Reynolds nu.mbers below 6 x 195 lead
ally, their extensive rigging can interfere with deck activities such as to early flow separation and poor aerodynamic performance. Li et al.
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\begin {equation}\label {eq001} \thrust = L(\angleofattack ) \cdot \mathrm {sin}(\theta _{AW}) - D(\angleofattack ) \cdot \mathrm {cos} (\theta _{AW}) \enspace ,\end {equation}
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(2020) expanded the analysis using two- and three-dimensional (2D and
3D) CFD simulations. They showed that at large flap deflections, stall
can be delayed by moving the flap rotation axis aft and increasing the
flap thickness. Especially the lift increases when the flap rotation axis is
placed between 85-95 % of the chord. Recent research by Hillenbrand
et al. (2024) investigated stall behaviour through wind tunnel experi-
ments. A two-stage stall was revealed, and it involves an initial flap stall
followed by full wing separation that exhibits hysteresis effects. Addi-
tionally, a wing sail design investigated by Jo et al. (2013) incorporates
a morphing wing equipped with a hinged flap. By deflecting the flap,
the lift is increased. This design is similar to the two-element one, while
its flap is merged into the wing so that no gap is formed to affect the
aerodynamic performance.

Alternatively, symmetrically cambered (also termed crescent-
shaped) wing sails have attracted growing interest. These are single-
element aerofoils that generate high thrust across a wide range of angles
of attack (van Reen et al., 2025). Their simple structure also allows for
telescopic size adjustment to suit weather conditions (Zhu et al., 2023b).
Ouchi et al. (2011) introduced the concept of a “motor-assisted sailing
ship" equipped with nine telescopically adjustable symmetrically cam-
bered wing sails, projecting up to 50% energy savings when sailing
with the Trade Winds. This concept evolved into the “Wind Challenger"
(Ouchi et al., 2016), featuring four wing sails and estimated to reduce
energy use by around 30 % on a voyage between Yokohama and Seattle.
In 2022, the bulk carrier Shofu Maru was fitted with a single Wind Chal-
lenger sail, installed on the forecastle (Ouchi et al., 2023). Fuel savings
were estimated at 5% on routes between Japan and Eastern Australia,
and 8% on routes to the west coast of North America (Ouchi et al.,
2023).

Expanding on the practical implementation of symmetrically cam-
bered wing sails, research into their aerodynamic performance has ad-
vanced significantly. Zhu et al. (2022) proposed a refinement to the
basic crescent shape. They conducted a parametric study using the
Computational Fluid Dynamics (CFD) method, the unsteady Reynolds-
Averaged Navier-Stokes (RANS) equations, to evaluate various geomet-
ric configurations. A geometry termed “D2R10" was identified with the
best lift generation. Building on this, Zhu et al. (2023b) carried out a
detailed numerical analysis of D2R10 using unsteady RANS, and it was
further refined by Zhu et al. (2024) through Improved Delayed Detached
Eddy Simulation (IDDES) to capture more complex flow behaviour. Ad-
ditionally, Zhu et al. (2023a) conducted wind tunnel tests on three in-
line D2R10 wing sails under varying wind speeds, apparent wind angles
(AWAs), and AOAs. They found that the front sail generated the most
thrust, the aft the least, and the middle sail experienced the highest
structural vibrations.

To achieve efficient aerodynamic performance, sectional profiles of
wing sails were optimised by scholars. Makram et al. (2023) optimised
a flapped morphing wing sail configuration for a Suezmax tanker us-
ing the Taguchi method aided with RANS. There were 13 symmetrical
profiles evaluated in the 2D XFOIL code (Drela, 1989), and one was
selected for its high lift, low drag, low pitching moment, and smooth
stall behaviour at moderate-to-high Reynolds numbers. This profile was
applied to construct 9 configurations, varying in aspect ratio, taper ra-
tio, and number of wing sail pairs. The study also showed that neglect-
ing aerodynamic interferences between sails could significantly overesti-
mate performance. Guzelbulut et al. (2024) optimised the D2R10 profile
by varying three design parameters at three levels to enhance the thrust
or reduce the propeller power. Using the Taguchi method, 9 out of 27
combinations were selected for CFD simulations across a range of AOAs
and wind directions. The best-performing angles were averaged for each
design, and the results were used to train a second-order polynomial
surrogate model. The thrust-optimised design increased the thrust by
12.3 %, while the power-optimised design reduced the required power
by 22 % compared to the original.

Aside from sectional profile optimisation, the optimisation of
multiple-sail installation layout was investigated to minimise aerody-
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namic interference effects between installed sails. Jo et al. (2013) in-
vestigated the optimal operating conditions for three morphing-wing
sails arranged in a line. Using a Kriging surrogate model combined with
a genetic algorithm, they optimised nine design parameters, including
deflection angle, flap length and angle of attack. Their results predicted
a 10 % increase in thrust. Hussain and Amin (2021) used steady RANS
to estimate the thrust generated by a bulk carrier equipped with five
rigid wing sails. NACA 4412 was adopted as the sail profile, which is
adaptive to winds from one board side. The simulations predicted a
reduction in required brake power by 30% at zero drift and 20 % at
higher drift angles. Yasuda et al. (2024) numerically simulated inter-
actions between two symmetrically cambered rigid sails. Their work
aimed to optimise AOAs for maximum thrust at AWAs of 150° and
180°. They found that a low fore and high aft angle of attack is opti-
mal at 150°, while the reverse is more effective at 180°, emphasising
the role of sail configuration and control in enhancing propulsion ef-
ficiency. Malmek et al. (2024) extended the lifting line model devel-
oped by Malmek (2023) to simulate multiple wing sails. This enhanced
model incorporates a potential flow-based interaction method and an
optional boundary layer correction, enabling more accurate prediction
of 3D aerodynamic forces in upwind conditions while maintaining com-
putational efficiency. van Reen et al. (2025) evaluated triple in-line
and quad parallel layouts for symmetrically cambered sails, using a hy-
brid method that combines a genetic algorithm and a Kriging surrogate
model to optimise sail spacing under a fixed total distance. The in-line
layout showed only 4 % to 6 % thrust loss due to aerodynamic interfer-
ence, compared to up to 28 % in the parallel layout. Although optimi-
sation yielded slight gains, relaxing spacing constraints appeared more
effective.

As the research into wing sail design matures and computing power
increases, machine learning optimisation of wing sails has become a
viable way to improve wing sail designs. Ma et al. (2019) proposed
a coupled wing sail design that combines an arc-shaped wing with a
NACAO0018 aerofoil to improve aerodynamic performance. They used
the modified PARSEC method to define 14 geometric parameters and
applied the Particle Swarm Optimisation (PSO) to maximise the power
factor, defined as Ci’S /Cp, across AOAs from -15° to 40°. And an opti-
mal AOA was selected for each wind speed. The final metric, a weighted
sum of power factors, showed a 30% improvement over the original
arc-shaped sail in the optimal configuration. A notable aspect of Ma
et al. (2019) is the maximization of the power factor, which implic-
itly penalizes drag and favours aerodynamic efficiency. This approach
aligns with conventional aircraft optimisation strategies (Huang et al.,
2020a,b), which prioritize low drag and stall avoidance by operating at
low AOAs.

However, such strategies are not directly applicable to wing sail
design. Unlike aircraft wings that aim to generate lift, wing sails pro-
duce thrust from lift, drag, or both, depending on the AWA (Zhu et al.,
2023b; Hillenbrand et al., 2024). Consequently, they must perform
across a broader range of AOAs, including deep-stall conditions. Wing
sails are often operated under tailwinds or high-AOA scenarios to maxi-
mize thrust, making their optimisation more complex. Instead of avoid-
ing stall, the optimisation goal for wing sails should be to sustain high
thrust under variable and unsteady wind conditions.

This study aims to optimise the aerodynamic performance of sym-
metrically cambered geometries for rigid wing sails. To address the
unique challenges of wing sail design, this paper will propose an optimi-
sation framework tailored to their complex performance requirements.
Given the wide range of apparent wind angles (AWAs) and the need for
extensive parametric sampling, machine learning techniques will be
incorporated to reduce computational costs. Aerofoil profiles will
parametrised using a hybrid camber and thickness definition featur-
ing six adjustable parameters. The sensitivity of the flow field to the
parameters will be addressed. The optimised geometry and a bench-
mark geometry from a previous work (Zhu et al., 2023b) will then be
assessed through the high-fidelity CFD method of the Improved Delayed
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Fig. 1. Diagram of the AOA (a), lift (L), drag (D), resultant aerodynamic force

(F,.,) and thrust (T') with respect to the apparent wind vector (V) at the AWA

(‘9,414/)-

Detached Eddy Simulation (IDDES), to explore dominant aerodynamic
mechanisms.

This paper is organized by starting with an overview of the optimi-
sation method and the setup of the high-fidelity simulations. The result
section presents and discusses the method validation and the aerody-
namic performance of the optimised design in reference to the bench-
mark configuration. Lastly, the conclusions are drawn, and the future
work is pointed out.

2. Method
2.1. Objective selection

The primary purpose of a sail is to provide thrust, which naturally
makes it the most important optimisation objective to maximise. The
thrust vector can be defined as the component of the resultant aerody-
namic force F,,, in the movement direction of the ship. This definition
is shown in Fig. 1, where the AOA is a, V,, is the apparent wind vector,
L is the lift, D is the drag, and T is the thrust. From this definition, an
equation for the thrust can be derived:

T = L(a) - sin(@ 4p/) — D(@) - cos(@ 4y) (@D)]

where 0, denotes the AWA, and L and D are dependent on «. When
non-dimensionalised, the thrust, lift and drag coefficients are defined
as:

C = T ’ C = L C, = D
1 y2
EpVooC

1 2 ’ 1 2 ’ (2)
3 pVge 3 pVgc
where p is the air density, V_, is the speed of the incoming flow and c is
the chord of the aerofoil.

The wind angle observed by an external observer is called the true
wind angle (TWA). When the ship is stationary, the AWA and TWA are
identical. Only the apparent wind needs to be considered for the purpose
of aerodynamics, as this determines the wind force applied to sails (Kim-
ball, 2009). The AWA is counted as counter-clockwise when looking at
the ship from above, as shown in Fig. 2.

According to Eq. 1, the thrust coefficient varies directly with the
AWA and indirectly with the AOA through C, and C,. A wing sail can
fully rotate in the horizontal plane, that is, be freely adjustable to any
AOA. Thus, for an arbitrary AWA, the thrust is calculated for the AOA
that provides the highest thrust. This thrust variance means that one
cannot simply assign a single thrust value to a certain geometry. Instead,
the optimisation objective is not strictly the thrust but the average thrust
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90° 270°

180°

Fig. 2. Definition of the apparent wind angle 6 ,,,, from a top-down view, where
the ship is in blue.

over a range of AWAs. This yields:

Cii s 3

M=

C =~
N
i=1

where ‘i’ represents the ith AWA of interest, and ‘N’ is the total number
of angels.

2.2. Geometric parametrisation

In this study, a new hybrid parametrisation method for symmetri-
cally cambered aerofoils proposed by Yao (2025) will be used to gen-
erate various geometric samples during the optimisation process. The
parametrisation is formulated in reference to NACA-series foils and cam-
bers.

The reference camber height distribution is based on the camber line
definition of a NACA 4-digit aerofoil (Jacobs et al., 1933). For the cam-
ber section upstream of the position of the maximum camber height, the
camber height y, is defined as:

Ve h, [ X ( X )2]

—=—[2=-= 0<x<x, @
c c | x. X,

where £, is the maximum camber height, x, the location of 4., and ¢ the
chord length. Since the camber of the crescent aerofoil is symmetric, we
choose this upstream camber section to construct the crescent camber

by setting x./c = 0.5 and mirroring the upstream section to form the
downstream one. This gives:

Lﬂ[f_(zf] 0<X<i, ®)
c c c c Cc
Note that this definition only requires A, as an input. The camber
parametrisation is constructed using a Bézier curve defined by four con-
trol points. These points shape the curvature of the front half of the cam-
ber line, while the rear half is generated by mirroring the front. Control
Point 1 (CP1) is fixed at the leading edge of the foil with nondimen-
sionalised coordinates (x, y) = (0,0), and Control Point 4 (CP4) is fixed
at (x,y) = (0.5, h,). In contrast, Control Points 2 and 3 are left unfixed
to allow flexibility in adjusting the curvature. The initial Bézier curve is
obtained by fitting it to the reference camber line defined in Eq. 5. The
fitting process employs the minimize function from the Python library
Scipy (Virtanen et al., 2020). It finds the CP2 and CP3 coordinates that
minimise the least-squares error between the reference camber line and
the Bézier curve.

Next, the thickness distribution of the aerofoil is parametrised based
on the modified NACA 4-digit series (Mason, 2018). The front half of
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Fig. 3. A parameterized crescent airfoil with a camber that is symmetric about the middle point of the chord. The control points such as CP1-CP4 are used to define

a Bézier curve for half of the camber line.

the thickness distribution is defined as:

s EralZ) () va()] os2

where 4, is the maximum thickness. The coefficient a,, reads:

IA

05 (6)

ap ~ 0296904 - y, %)
and

_f 1/6 for1 <8
ALE = {10.3933 for I =9 ®

where I is the index used to specify the leading edge radius. The other
coefficients are:

a, ~ 0.477 — 2.650a, ©)
a, ~ —0.708 + 3.5364, (10)
ay ~ 0.308 — 2.121a, @an

According to Egs. (6)-(11), the definition of the thickness distribu-
tion needs A, and [ as inputs. Using the same method as for constructing
the whole camber line, the front half of the thickness distribution is mir-
rored about x/c = 0.5, to create a symmetric thickness distribution.

The new camber line and thickness distribution are then combined
to create a symmetrically cambered aerofoil. A geometry example and
its parameters are illustrated in Fig. 3. The adjustable parameters are the
leading edge radius index I, the maximum thickness 4,, and the x and
y-coordinates of the control points, CP2 and CP3, of the Bézier curve.

2.3. Parameter constraints

The variation ranges of the geometric parameters for the proposed
crescent foil are constrained with reference to the D2R10 foil studied
by Zhu et al. (2023b), as its structural viability has been validated by
the industry in prior studies. By doing this, the superior performance of
the optimal geometry can be identified in comparison to D2R10.

The minimum thickness of the D2R10 was required to provide space
for the mast, and it corresponds to 14.29 % c. This value serves as the
lower bound of the foil thickness &,, as well as its reference. The upper
bound is set to 20 % above the reference. The maximum camber height,
h,, is fixed at the same value as that of the D2R10 reference aerofoil,
specifically 14.25 % ¢ (Zhu et al., 2023b). This decision is motivated by
preliminary studies indicating that 4, has a significant influence on the
resulting aerodynamic forces. Since the primary goal of this study is
to evaluate the effectiveness of the optimisation framework relative to
the D2R10, it makes sense to maintain certain geometric features un-
changed. Therefore, i, is held constant to focus on the effects of other
design variables and ensure a fair comparison with the reference con-
figuration.

The control point coordinate bounds can vary 5 % from the reference
coordinates, which are obtained by fitting the Bézier curve to the ref-
erence NACA 4-digit camber line. The radius index of the leading and
trailing edges (LE and TE) is bounded between 4 and 8. The constraints
for each feature are summarised in Table 1.

In addition to the parameter constraints described above, curvature
constraints are further set to filter abnormal geometries that consist of
wavy curve segments (Yao et al., 2022). In these constraints, the slope

Table 1
The constraints of the geometrical parameters for the crescent foil.
Variable Feature = Lower bound  Reference  Upper bound
LE/TE radius index I 4 - 8
Foil thickness (% c) h, 14.29 14.29 17.15
CP2, x-position (% c) X, 17 22 27
CP2, y-position (% c) s 3 8 13
CP3, x-position (% c) X3 33 38 43
CP3, y-position (% c) V3 8 13 18

of the front half of the camber line is always positive, and the second
derivative along the front half changes sign no more than once. If a
sample does not comply with the constraints, it is discarded and a new
sample is generated until a suitable one is found.

2.4. Optimisation method

The Bayesian optimisation method is employed in this study (Snoek
et al., 2012; Hebbal et al., 2021), where an objective function is min-
imised by approximating it with a probabilistic surrogate model, which
in this case is a Gaussian Process (GP) (Snoek et al., 2012)

A GP is defined as a collection of random variables, where any finite
subset of these variables has a joint Gaussian distribution (Rasmussen,
2004; Hebbal et al., 2021). It is specified by a prior mean function m(¢)
and a prior covariance function k(¢, ¢’), also known as a kernel, where
¢ and ¢’ are inputs in the input space ®:

f(x) = GP(m(¢), k($, ¢") 12)

The mean function describes the prior belief about the trend of the func-
tion that the surrogate model seeks to approximate. If nothing is known,
a constant mean function may be used. The covariance function captures
the prior belief about the correlation between individual samples (Shan
et al., 2025; Hebbal et al., 2021).

This study uses the Matérn kernel (Rasmussen and Williams, 2006),
which is particularly suitable for modelling functions that are not overly
smooth. The Matérn kernel with smoothness parameter v =5/2 and a
length scale / = 1 is defined as (Rasmussen and Williams, 2006):

V5 (@ - ¢
3

The algorithm that creates a GP is called the Gaussian Process Regres-
sion (Rogers et al., 2023). When the GP observes sample data .S, (¢,. y,),
with observed inputs ¢, and observed objective values y, it updates its
prior beliefs to form a posterior distribution. This posterior is defined by
a predictive mean y,(¢,) and variance af(d)*) (Rasmussen, 2004). These
functions describe a Gaussian distribution over the objective value
at any new input ¢, € ®, capturing both prediction and uncertainty
(Snoek et al., 2012; Hebbal et al., 2021). The functions are defined as:

u(p) =k, (K+o:D7 'y, (eE)
o2(¢,) = k(¢,.d.) — kT (K + 2Dk, (15)

To guide the optimisation, an acquisition function is derived from
the GP posterior. This function determines where to sample next by bal-
ancing exploration (uncertainty) and exploitation (high predicted value)

k)= +V5|p—¢/| + yexp(-V5 lp—¢')  (13)



S. van Reen et al.

(Wang et al., 2023). The acquisition function used in this study is the
Upper Confidence Bound (UCB) defined as:

The parameter k controls the trade-off between exploration and ex-
ploitation (Snoek et al., 2012). A higher value of k encourages explo-
ration by favouring regions with high uncertainty, while a lower value
promotes exploitation of regions with high predicted objective values.
In this study, k is set to 2.576, corresponding to the 99 % confidence
interval of a standard normal distribution.

The Bayesian optimisation algorithm was selected because of the
complex nature of the relation between thrust and wing sail design.
There is no closed-form expression to analyse, nor any gradient data,
which makes gradient-based algorithms unusable. Instead, the optimiser
must effectively explore the design space and balance this with exploita-
tion (Wang et al., 2023). There are other algorithms that can do this,
such a genetic algorithms and particle swarm optimisation, but these
generally require more evaluations from the aerodynamic solver than
Bayesian optimisation to find an optimum (Wang et al., 2023). Given
that the current goal is the develop an optimisation framework that can
be generalised to multiple aerodynamic solvers, including high-fidelity
CFD, it is essential to decrease the required number of function evalua-
tions.

The power of the Bayesian optimisation in this paper can largely
be attributed to the GP surrogate model. The GP is a powerful algo-
rithm that is incorporated in multiple other optimisation methods, such
as dimensionality reduction with the GP Latent Variable Model (Li and
Chen, 2016), GP for classification (Nickisch and Rasmussen, 2008) or re-
inforcement learning with the Probalilistic Inference Learning Control
algorithm (Deisenroth and Rasmussen, 2011). But these are not suit-
able for the use as a surrogate model for a complicated aerodynamic
function that predicts the thrust. By contrast, the Bayesian optimisation
algorithm is able to harness the prediction capability and uncertainty
estimation of the GP surrogate model to efficiently recreate black-box
functions.

2.5. Training data acquisition

A hybrid sampling strategy is employed to generate the initial set of
100 samples used for training the surrogate model. The process starts
with Sobol sampling, which provides uniform coverage of the input
space. Each sample, composed of 6 feature values and the objective
value C,, is then subjected to constraint checks related to the camber
line. Samples that do not satisfy these constraints are discarded and re-
placed with new ones, ensuring that only valid configurations are re-
tained. These validated samples form the basis for the initial surrogate
model, which is further refined throughout the optimisation process.

The lift and drag coefficients used to calculate the thrust coefficient
are computed using NeuralFoil (Sharpe, 2023), an aerofoil analysis soft-
ware written in Python that utilises a physics-informed neural network
for its predictions. NeuralFoil was trained based on results from XFOIL
and is suitable for two-dimensional viscous, steady, incompressible and
compressible aerodynamic analysis.

The predictions made by NeuralFoil are similarly accurate to XFOIL,
but NeuralFoil is significantly faster (Sharpe and Hansman, 2025). Fur-
thermore, convergence failure sometimes happens in XFOIL when it at-
tempts complicated simulation tasks (Sharpe and Hansman, 2025). As
a result, XFOIL cannot provide the necessary training data for the wide
variety of aerofoil geometries that are required in this study. By con-
trast, NeuralFoil provides an answer for a large range of geometries it
is given to analyse. NeuralFoil also incorporates analytical relations de-
veloped by Truong (2020) in its framework. These relations include C,
and C,; predictions over a 360° AOA range and models for moderate to
deep stall. This shows that NeuralFoil not only utilizes XFOIL data but
also builds upon it with enhanced predictive capabilities.
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Wing sails ideally operate at the AOA that provides the maximum
thrust, which is often found near the AOA of the maximum lift
(Malmek et al., 2024). Previous 3D simulations by Zhu et al. (2023b)
showed that a,,,, for the D2R10 is 20°. While a wing sail ideally op-
erates at the stall angle of attack, a sudden gust of wind can push the
sail into stall conditions. Moreover, the aerofoils to be analysed in the
optimisation are expected to have different stall characteristics than the
D2R10. Therefore, a 15° AOA is deemed a realistic upper limit to evalu-
ate in this optimisation. The lower bound is set to « = 10°, as any angle
of attack smaller than this is unlikely to produce maximum thrust.

The analysis is limited to AWAs between 10° and 150°. Beyond 150°,
the drag starts to dominate the thrust (Zhu et al., 2023b) and a deep-
stall drag configuration becomes viable. Given its forward speed, a ship
encounters these drag-dominated wind angles less frequently than the
lift-dominated ones, making this condition less important to analyse.
The lower limit of the wind angle range is set to 10° because the wing
sails produce negligible thrust in headwind conditions and would thus
be retracted to minimise resistance. The incoming wind speed corre-
sponds to a Reynolds number of 1 x 107, equivalent to a 15 m/s wind
over a wing sail with a 14 m chord, as used in Zhu et al. (2023b). The
flow has a low Mach number of 0.04, and is therefore assumed to be
incompressible.

2.6. Optimisation process

The optimisation process is illustrated in Fig. 4, and its correspond-
ing algorithm is shown in Algorithm 1. The process begins by gener-
ating the initial dataset S, using simulation software. The best sample
in S,, defined as the one with the highest y, in this case C,, is se-
lected as ¢,,,. This initial dataset is then used to train the Gaussian
Process surrogate model GP,,. Both GP and ¢,,,, are passed to the min-
imize function from Scipy. To maximise UCB(¢), the function is set to
minimise a(¢p) = —UCB(¢,.), using the SLSQP algorithm (Virtanen et al.,
2020; Kraft, 1988). The minimize function returns the minimised sample
¢, The simulation software is then used to evaluate y,,,,,. If y,,, is
greater than y,,,, then ¢,,,, becomes the new ¢,,,,. Otherwise, ¢,,,
remains unchanged. In either case, the pair (¢,,.,;, ¥ .y;) is added to the
dataset to refine the surrogate model. In the next iteration, ¢,,,, is input
to the minimize function. This process is repeated for a fixed number of
100 iterations.

Algorithm 1: Bayesian optimisation using minimize.

Input: Initial dataset S,(¢,, y,), number of iterations T,
constraints C
Output: Best found point ¢,
1 Train Gaussian Process surrogate model GP,, on S,
2 Set ¢, < arg maxy cs, ¥,
3 fort < 1toT do

4 Set ¢O - ¢best

5 Define acquisition function a(¢,) = —UCB(¢,)
6 Prexs < Minimize(a(ep), ¢y, GPy, C)

7 Voot < Simulation software(e,,.,;)

8 if Ynext > w(¢bext) then

9 ‘ ¢bes1 « ¢nexr

10 end

11 Add (Pexss W rexr) to dataset

12 Retrain Gaussian Process on updated dataset
13 end

14 return ¢,

2.7. CFD Method - IDDES

To validate the optimisation results, both the optimised aerofoil
and the D2R10 reference aerofoil (Zhu et al., 2023b) are analysed in
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Fig. 4. The flowchart of the optimisation process.

three dimensions using Improved Delayed Detached Eddy Simulation
(IDDES) in STAR-CCM +, and the k — o SST turbulence model is used.
The simulation setup closely follows the methodology described by Zhu
et al. (2024, 2023a), where the current setup has been validated. The
Reynolds number is 1 x 107. In the present simulations with a time step
of 5x 1073, the fully developed flow fields were obtained after 100 pe-
riods of the flow passing through the aerofoil, where the period is cal-
culated based on the freestream flow speed and chord length. After the
flow fields were developed, the time-averaged values were calculated
based on the data over 150 periods.

The 3D wing sail model is generated by scaling the aerofoils to a
chord length of 14 m and extruding them vertically to a height of 72m
along the z-axis. The simulation domain, illustrated in Fig. 5, is a rect-
angular box measuring 600m in length, 300 m in width, and 360 m
in height. A velocity inlet boundary condition is applied to the front
face of the domain, while a symmetry boundary condition is imposed
on the bottom face. The remaining faces are assigned pressure outlet
boundary conditions. A no-slip wall condition is applied to the sur-
face of the wing sail, and its bottom end is fixed to the domain’s lower
boundary.

An unstructured mesh consisting of approximately 21 million cells
is employed for the simulation. To accurately resolve the boundary
layer, 65 prism layers are applied along the geometry walls, with a
total thickness of 0.5m. The setup results in y+ values around 1.0
near the wall. Contours of y+ are illustrated for the BN4 and D2R10
at 15° in Fig. 6, which are visualized with a logarithmic scale. As
can be seen, the majority of the wing sail surface shows small values
lower than 1.0. The maximum value is 1.6 and 1.9 for the BN4 and
D2R10, respectively, but the areas above 1.0 are very small and barely
visible.

The mesh is refined near critical regions, such as the leading and
trailing edges, with cell sizes around 0.08 m. Fig. 7 presents an overview
of the near-field mesh, along with a close-up view of the mesh refine-
ment at the leading edge, for the D2R10 and the optimised aerofoil ob-
tained with the present ML framework (see the discussion in the next
section of results and analysis).

3. Results and analysis
3.1. NeuralFoil validation of D2R10

In order to validate the predictions by NeuralFoil, the solver was
used to estimate C; and C, across AOA ranging from 0° to 20° for the

Pressure
outlet

\ Pressure

Pressure
outlet

D

Velocity inlet //
27

360 m

300 m

Fig. 5. Schematic of the CFD domain, including the dimensions and boundary
conditions. Note that the cylinder is representative of the wing sail.

D2R10. These predictions were then compared with the 3D unsteady
RANS results reported by Zhu et al. (2023b), as shown in Fig. 8. Above
10°, NeuralFoil’s predictions for C, closely match those from the 3D un-
steady RANS simulations, suggesting that NeuralFoil is capable of cap-
turing three-dimensional flow effects.

The discrepancy in drag prediction is notably larger, with the CFD
results indicating drag values up to 2.3 times higher than those pre-
dicted by NeuralFoil. The large discrepancies in the drag prediction are
attributed to several reasons. The boundary layer approximation used
in XFOIL can underestimate skin friction drag and flow separation. The
tool is also limited to 2D without spanwise flow effects, as well as the as-
sumption of steady flow. However, given the drag magnitudes are signif-
icantly smaller than the lift magnitudes, the inaccurate drag prediction
has a negligible contribution to the calculated C,. NeuralFoil estimates
a value of 1.30 for the D2R10, and even when drag is doubled, the value
increases only slightly to 1.31, indicating that drag has a minimal influ-
ence on this metric.
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Fig. 6. Contours of y+ near the walls of the BN4 and D2R10, visualized with a logarithmic color scale.
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Fig. 7. Cut-plane views of the meshes for the BN4 (the optimised foil using the present method) and the D2R10 (Zhu et al., 2023b) in the near field and around the
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Fig. 8. The lift coefficient (left) and the drag coefficient (right) as a function of AOA from present NeuralFoil and previous 3D unsteady RANS (Zhu et al., 2023b).

3.2. Optimal geometry

Fig. 9 plots both the current and best candidate at each iteration as
a green solid line and a red dashed line, respectively. The first point, at
iteration zero, is the best sample from the initial design space, referred
to as the Initial Aerofoil, with a 5, of 1.58. Then, in the first iteration,
the optimiser finds a sample with a significantly greater C, of 1.64. The
optimiser spends the first 17 iterations exploring the design space be-

fore settling down on an optimum. While exploring the design space,
the objective value does not deviate significantly, indicating that the
algorithm is more focused on exploitation than exploration.

The new aerofoil resulting from the optimisation is shown in Fig. 10,
alongside the Initial Aerofoil and the D2R10. The feature values for
the former two aerofoils are presented in Table 2. The most signifi-
cant change from the D2R10 to the two newly developed aerofoils is
the increased thickness away from the centre of the chord. In fact, y,
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Fig. 9. Predicted thrust results for each candidate aerofoil over 100 iterations
(dashed), along with the best candidate identified so far at each iteration (solid).

= D2R10
= Initial
— BN4

Fig. 10. The three foil profiles such as D2R10 (Zhu et al., 2023b), Initial Aero-
foil, optimised BN4.

Table 2
Geometrical parameters for the crescent foils.

I h, X, 2 X3 V3

Initial Aerofoil 7.59 15.21 20.36 12.4 34 9
BN4 8.0 14.29 17.00 129 43 8

for the optimised aerofoil is very close to its upper limit. Furthermore,
the edge has become more blunt. The difference between the optimised
aerofoil and the Initial Aerofoil is less pronounced. Like the D2R10, the
optimised aerofoil has the minimum allowable value for h,, whereas
the Initial Aerofoil is comparatively thicker. The latter also exhibits a
marginally smaller radius of curvature in the arch. Additionally, the op-
timised aerofoil has a larger y, value than the Initial Aerofoil. The pre-
dicted value for C, is 1.65, representing a 4% and 26 % improvement
over the Initial Aerofoil and D2R10, respectively, while maintaining the
same camber. The newly optimised aerofoil will hereafter be referred to
as the BN4.

3.3. Sensitivity

Fig. 11 illustrates the sensitivity of C, to various input features based
on a sample of 1000 data points. The analysis shows that x, and x;
have minimal influence on C,. In contrast, I exhibits a slight positive
correlation, while s, shows a slight negative correlation, which aligns
with the performance difference between the Initial Aerofoil and the
BN4. Among all variables, y, has the most significant impact, with C,
increasing notably as y, increases. This finding is consistent with the
previously discussed increase in thickness away from the chord centre,
as reflected by the higher y, value in the BN4. It may also explain why
the D2R10 achieves a lower C, than the Initial Aerofoil, despite being
thinner.

Lastly, y; does not show a clear trend in terms of increasing or de-
creasing E,, but instead appears to reduce the variability of its possible
values as y; increases. The reason for this reduction of variability is the
curvature constraints, since a higher y; moves CP3 upwards relative to
CP2, leading to an invalid S-shaped curve. This results in fewer possible
valid combinations and, thus, a clustering of the resulting C,.
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3.4. NeuralFoil results

The C,; and C, for all three aerofoils are plotted against « in Fig. 12.
The BN4 consistently exhibits the highest C;, followed closely by the
Initial Aerofoil, with the D2R10 trailing behind. In contrast, the D2R10
shows the highest C,, while the Initial Aerofoil and BN4 alternate. Up
to the AOA of a = 13°, the BN4 experiences higher drag than the Initial
Aerofoil. Beyond this point, the trend reverses. This behaviour may be
attributed to inaccuracies in drag prediction by NeuralFoil.

The distribution of the thrust coefficient, C,, over the AWA, 6,y,,
is presented in Fig. 13. The figure confirms that the BN4 not only has
the greatest average thrust but also has superior thrust over all 6, .
The thrust distribution for the Initial Aerofoil is slightly smaller, while
the one for the D2R10 is significantly smaller. The results confirm that,
within the AWA range from 10° to 150°, a higher lift production leads
to higher thrust.

The difference in thrust is most pronounced in the middle of the
AWA range, approximately for 6,y between 50° and 110°, and dimin-
ishes toward both ends of the range. This AWA range encompasses the
crosswind region, where wing sails can produce a large amount of thrust
through lift. This is where the BN4 and Initial Aerofoil can outshine the
D2R10 with their larger lift production. Outside this range, the influence
of the lift relative to the drag decreases. Since the absolute difference
in drag between the aerofoils is relatively small, it makes sense that the
difference in thrust production becomes less pronounced.

3.5. Flow comparison between BN4 and D2R10 using high-fidelity CFD

Table 3 presents C; and C, for the BN4 and D2R10 aerofoils, as pre-
dicted by NeuralFoil and IDDES at « = 10° and « = 15°. The data in-
dicate that NeuralFoil tends to over-predict C; for the BN4 and under-
predict it for the D2R10 while consistently under-predicting C, for both
aerofoils. In order to calculate C,, a linear interpolation of C, and C,
with respect to the AOA is applied to estimate the intermediate values
of C,. As illustrated by the NeuralFoil trends in Fig. 12, this linearity
assumption aligns more closely with the behaviour of C, than C,. Nev-
ertheless, as previously shown, variations in C, have limited influence
on C,. While NeuralFoil indicates a 26 % performance advantage for
the BN4 over D2R10, the CFD-based estimate suggests a more conser-
vative yet still meaningful improvement of 8%, underscoring a differ-
ence in magnitude but not in trend. The discrepancy in thrust prediction
between CFD and NeuralFoil can be attributed to the difference in lift
prediction. It is also worth noting that NeuralFoil predicts significantly
higher lift-to-drag ratios for the BN4 compared to the IDDES results and
notably higher ratios than those of the D2R10. However, the IDDES sim-
ulations indicate that both aerofoils have similar lift-to-drag ratios in 3D
CFD. This suggests that the lift-to-drag ratio may not reliably indicate
wing sail performance in these CFD contexts.

Fig. 14 shows streamline and velocity contours for the optimised and
reference wing sails at the AOAs of 10° and 15° in the cut-plane aligned
with the middle of the span, which are computed from the IDDES. For
both wing sails at the specified AOAs, a common phenomenon is that
no vortices formed at the leading edges. This is beneficial for the gener-
ation of lift force (Zhu et al., 2023b). Meanwhile, the optimised airfoil
exhibits a larger high-velocity region near the leading edge, indicating

Table 3
The NeuralFoil and IDDES results for the BN4 and D2R10.
NeuralFoil CFD
C/ Cd C‘I / Czl El C‘I Czl C‘l / Cd El
10° 2.01 0.05 37.67 1.80 0.17 10.59
BN4 15° 2.27 0.07 30.75 1.65 2.10 0.22 9.55 1.50
10° 1.65 0.07 23.92 1.72 0.15 11.47
D2R10 15° 1.82 0.10 18.38 1.30 1.95 0.21 9.29 1.39
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0 .y, for the three different foil profiles.

a lower pressure zone and, thus, greater lift generation. However, flow
separation exists on the sucktion side near the trailing edges, which are
detrimental to aerodynamic performance with increased drag force but
reduced lift force. The optimised wing sail, BN4, delays the onset of the
flow separations and consequently induces a smaller recirculation zone
in the wake compared to the reference wing sail D2R10. The delayed
separation leads to improved aerodynamic performance.

Fig. 15 shows contours of the time-averaged pressure coefficient, C_p,
on the sail surfaces at the two AOAs. For both of the optimised and
reference wing sails, negative Fp values are seen over the front two-
thirds of the suction side from the leading edge. It suggests that most of
the lift is generated in this region. In contrast, values in the aft third are
much closer to zero, so this part of the surface contributes less to the
lift. The sharp change between these regions at the two-thirds location
suggests the onset of the flow separation, as also seen in Fig. 14. The
sharp changing board shifts forward as the angle of attack increases from
10° to 15°. This means that the flow separation is aggravated when the
AOA increases. The low-lift region is more pronounced in the flow of
D2R10 than BN4, so its total lift is smaller than the other configuration.
Since the lift is the primary contributor to the thrust, the effects result in
larger thrust for the optimised configuration BN4. Interestingly, the low
C_p region does not span the entire wing. At the side edge of the wing,
its distribution is changed due to the influence of tip vortices, which is
a general aerodynamic mechanism. The tip vortices are responsible for
both decelerating and accelerating the flow near the side edge.

The time-averaged skin friction coefficients, C_f, for the aerofoils at
a = 10° and a = 15° are illustrated in Fig. 16. The contour distribution
of this variable is similar to the time-averaged pressure coefficients in
Fig. 15, but the regions of large and small magnitudes are oppositely dis-
tributed. Because of the flow separation, a sharp board is seen between
the regions. Tip vortices at the side edges of the configurations affect the
skin friction distribution. It should be noted that the magnitudes of the
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Fig. 14. Streamlines and contours of velocity magnitudes in the cut-plane at the middle span of the wing sails.
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Fig. 15. Contours of the time-averaged pressure coefficient, Fp, on the surfaces of the BN4 and the D2R10 wing sails at the AOAs of 10° and 15°.
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Fig. 16. Contours of the skin friction coefficient, C_f, on the surfaces for the wing sails, BN4 and D2R10, at the AOAs of 10° and 15°.

skin friction are significantly smaller than those of the pressure. Thus,
the contribution of the skin friction in the thrust generation is negligible
compared to the pressure differences between the pressure and sucktion
sides. This observation is in line with the results in Table 3.

Fig. 17 presents the pressure coefficient, C,, along the chordwise di-
rection for both AOAs at the spanwise positions of 17.5 m, 35.0 m, and
52.5 m counted from the wing sail root position, which are 25 %, 50 %,
and 75 % of the span length, respectively. The varying trends and ampli-
tudes of the coefficient at a specific AOA are nearly the same across the

three spanwise locations. Therefore, the symmetric boundary condition
of the computational domain, onto which the wing sail root is mounted,
has a limited influence on the pressure distribution. Despite the fact that
tip vortices are induced at the side edge, the pressure distributed at 75 %
of the span is not affected obviously. This indicates that the aerodynamic
performance of the wing sails is dominated by the middle section.

As shown in Fig. 17, on the pressure side, the pressure curves of
the two wing sails are similar. And they exhibit a peak value of one
at the leading edge, followed by a relatively constant value of approx-
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Fig. 17. The distributions of the surface pressure coefficient C, along the chordwise direction for the AOAs: (left) @ = 10° and (right) « = 15°. From top to bottom:
the spanwise positions are 25 %, 50 % and 75 % of the span length, corresponding to the distances of 17.5 m, 35.0 m, and 52.5 m to the wing sail root.

imately 0.6 along the chord. Beyond the mid-chord, the pressure dis-
tributions begin to diverge, with the D2R10 showing a more rapid de-
crease in C,. The C, of the BN4 catches up at the position around 97 %
chord. After the position, both sails show a reversing pressure peak,
with the D2R10 reaching a slightly lower minimum. This negative pres-
sure peak is attributed to flow separation near the trailing edge, as
shown in Fig. 14, which displays streamlines and velocity magnitude
contours at the middle of the span. This observation supports earlier
conclusions from Figs. 15 and 16. Vortices induced by the flow separa-
tion accelerate the local flow on the pressure surface, thereby reducing
the local pressure. The pressure distributions on the sucktion side are
significantly different between the two wing sails. The D2R10 presents
a sharp negative peak at the leading edge, caused by a local velocity
increase due to the small tip radius of the configuration, as seen in
Fig. 14. The pressure then sharply decreases towards the downstream
and reaches the minimum negative values at 40 % and 36 % chord for
the AOA of « = 10° and a = 15°, respectively. The BN4 has its smallest
pressure at approximately 15% chord for « = 10° and 12% chord for
a = 15°. The locations are much closer to the leading edge than those
of the D2R10. In the region downstream of the smallest pressure posi-
tion, the pressure coefficient gradually increases along the chord before
rising abruptly due to the flow separation. This abrupt increase occurs
earlier for the D2R10. This difference of the flow separation location is
also visible in Fig. 14. From Fig. 17, it is clear that the areas enclosed by
the pressure coefficient curves of the BN4 are larger than those of the
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D2R10. As a result, the BN4 generates larger lift. The figures also indi-
cate that the BN4 achieves its highest lift production closer to the leading
edge.

4. Conclusions

In this paper, a machine learning-based optimisation methodology
was developed to improve the aerodynamic performance of symmet-
rically cambered rigid wing sails, which have been considered as one
of the concepts with high potential for wind-assisted ship propulsion.
Given the special need to maximize the thrust force in multiple large
AOAs over a wide range of AWAEs, it is impossible to directly adopt con-
ventional optimisation methods that are designated to seek the largest
lift force or lift-to-drag in small AOAs. Sampling sectional profiles for
wing sails was performed through a novel shape parametrisation ap-
proach, in which the camber definition based on Bézier curves is com-
bined with the thickness distribution of modified NACA 4-digit series.
The aerodynamics data of the sampled profiles was obtained using Neu-
ralFoil, which is a rapid analysis tool using a neural network trained
based on XFOIL. A machine learning-based optimisation approach was
developed within a Bayesian optimisation framework. The Gaussian
Process was adopted to establish a probabilistic surrogate model that
provides both predictions of objective values and estimates of uncer-
tainty. This enables the optimiser to balance exploration and exploita-
tion within the design space.
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The applicability of NeuralFoil for real-world thrust prediction was
evaluated by comparing its results to those of the IDDES simulations
conducted by Zhu et al. (2023b) for a reference symmetrically cambered
aerofoil, called D2R10. The comparison showed that while NeuralFoil
provides accurate predictions of lift force, it is inaccurate in drag pre-
diction. This discrepancy is inherited from the method of XFOIL, which
produced the training data for the neural network of NeuralFoil. Never-
theless, it was addressed that drag has a minimal effect on the average
thrust prediction and, therefore, had little impact on the optimisation
outcomes.

The effectiveness of the current optimisation method was demon-
strated by analysing the D2R10 aerofoil as a benchmark. The objective
was to maximise the average thrust production in the AWA range from
10° to 150°, which represents the most common operation conditions of
wing sails encountered in practice. The optimised aerofoil obtained from
the current method is referred to as BN4. According to the predictions
using NeuralFoil, this optimised design achieved a 26 % increase in the
average thrust production. Sensitivity studies revealed that a more uni-
form thickness distribution along the chord significantly increases the
thrust. Moreover, increasing the radii of the leading and trailing edges
and reducing the maximum thickness contribute to a modest further
improvement.

To confirm the optimised aerodynamic performance, full-size wing
sails constructed based on the BN4 and D2R10 under a representative
wind speed in the real operation were analysed using the advanced CFD
technique of the IDDES. The typical AOAs investigated were 10° and
15°. It was found that the optimal wing sail with the BN4 profile allevi-
ates flow separation, as compared to the benchmark wing sail with the
D2R10 profile. Meanwhile, this optimal wing sail induces a larger neg-
ative pressure zone formed over the upstream two-thirds of the suction
side. And the optimisation leads to a more flattened pressure distribution
on the suction side. These effects are essentially beneficial for enhanc-
ing the thrust. Compared to XFOIL for NeuralFoil that couples potential
flow with boundary layer theory for efficient two-dimensional analy-
sis, IDDES has substantial advantages in modeling turbulence, since it
is able to resolve three-dimensional vortices, flow separation, and wake
dynamics. According to the present IDDES results, the optimised BN4
increases the thrust by 8 %. This value is smaller than the prediction
from NeuralFoil, and it is mainly attributed to the overestimation of the
lift. Nevertheless, NeuralFoil is effective in making rapid computations
while retaining moderate accuracy, which is essential for optimisation
involving a large number of samples.

The optimisation methodology in this study employing machine
learning techniques in the most computationally intensive steps is
demonstrated with the ability to generate aerofoil profiles for rigid wing
sails, with meaningful improvements in the average thrust production.
Future work is to extend the algorithms to support multi-objective op-
timisation, allowing for the inclusion of structural characteristics, such
as weight. Additionally, high-fidelity simulation methods can be inte-
grated to improve the accuracy of the surrogate model. The framework
can be developed to optimise layouts for multi-sail installation.

A limitation of this study is that no experiments were carried out. The
reason is that it is challenging to reproduce the flows at the current large
Reynolds number of 1.0 x 107 in model-scale wind tunnel tests, because
of significant changes in the Mach number and flow compressibility.
Nevertheless, future research of great interest is the implementation of
full-scale experiments.
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