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 a b s t r a c t

The threat of climate change has renewed interest in sailing as a carbon-neutral propulsion method, with rigid 
wing sails emerging as promising auxiliary systems. A new class of wing sails that is symmetric about the half 
chord (also termed crescent-shape in the literature) has enabled the introduction of camber to enhance thrust 
production. They are particularly suited for wind-assisted ship propulsion, where performance across a wide 
range of apparent wind angles is critical. However, their aerodynamic shape remains largely unoptimised. To 
address this, an efficient aerodynamic optimisation method was developed by integrating a neural network-based 
aerofoil simulation tool and a Bayesian optimisation framework. The optimisation strategy guided the search for 
maximum average thrust across apparent wind angles from 10◦ to 150◦, using a Gaussian Process surrogate model 
to balance exploration and exploitation. Aerofoil profiles were sampled through hybrid geometry parametrisa-
tion that combines Bézier curve-specified camber and modified NACA 4-digit thickness distribution. Sensitivity 
analysis revealed that larger tip radii and reduced maximum thickness can improve thrust production. The op-
timised geometry, termed BN4, was adopted to construct a full-size wing sail configuration. This configuration 
together with a benchmark configuration were simulated using the Improved Delayed Detached Eddy Simulation 
(IDDES). The simulation results indicated that the optimisation alleviates flow separation and increases pressure 
magnitudes on the suction side of the profile. This work demonstrates a path for the use of machine learning 
techniques in aerodynamic optimisation for wing sails, and sheds light on geometric parameters dominating the 
specific thrust production.

1.  Introduction
Sailing was the primary form of transportation across water until 

combustion engines were widely equipped in the 19th century (Khan 
et al., 2021). However, with the increasing threat of climate change, 
the modern shipping industry endeavours to reincorporate wind power 
as auxiliary or main propulsion (Zhu et al., 2023b).

The auxiliary propulsion is collectively referred to as Wind-Assisted 
Ship Propulsion (WASP), and it encompasses various technologies. No-
table examples include Flettner rotors, kite rig propulsion, traditional 
soft sails, and rigid wing sails.

Soft sails provide an easily adjustable solution for varying wind con-
ditions, offering quick storage, simple repairs, and reliable performance 
in diverse operational scenarios (Neal et al., 2009). However, they re-
quire constant adjustment to maintain their shape, particularly near 
headwinds, which increases operational complexity and cost. Addition-
ally, their extensive rigging can interfere with deck activities such as 

∗ Corresponding author.
 E-mail addresses: stephan.vanreen@chalmers.se (S. van Reen), berken@chalmers.se (B. Serbülent), huadong@chalmers.se (H.-D. Yao).

cargo handling. Rigid sails address many limitations of soft sails Silva 
et al. (2019). Their nearly constant aerodynamic shape enables more 
efficient operation near headwind conditions. The structural stiffness 
can reduce wear and tear, and the higher lift-to-drag ratio can lead to 
smaller heeling moments.

The introduction of rigid wing sails in the 2010 America’s Cup 
marked a turning point in sail technology development due to their supe-
rior performance (Blakeley et al., 2012). Such a rigid sail consists of two 
foils, resembling an aircraft wing with a high-lift device. Blakeley et al. 
(2012) performed wind tunnel tests for a two-element wing sail. They 
showed that the size of the gap between the two foil elements signifi-
cantly affects the angle of stall. Later Furukawa et al. (2015) found that 
compared to the gap size and pivot point, flap deflection plays a domi-
nant role in the lift and drag generation. They also observed that at high 
camber and angle of attack (AOA), Reynolds numbers below 6 × 105 lead 
to early flow separation and poor aerodynamic performance. Li et al. 
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(2020) expanded the analysis using two- and three-dimensional (2D and 
3D) CFD simulations. They showed that at large flap deflections, stall 
can be delayed by moving the flap rotation axis aft and increasing the 
flap thickness. Especially the lift increases when the flap rotation axis is 
placed between 85-95% of the chord. Recent research by Hillenbrand 
et al. (2024) investigated stall behaviour through wind tunnel experi-
ments. A two-stage stall was revealed, and it involves an initial flap stall 
followed by full wing separation that exhibits hysteresis effects. Addi-
tionally, a wing sail design investigated by Jo et al. (2013) incorporates 
a morphing wing equipped with a hinged flap. By deflecting the flap, 
the lift is increased. This design is similar to the two-element one, while 
its flap is merged into the wing so that no gap is formed to affect the 
aerodynamic performance.

Alternatively, symmetrically cambered (also termed crescent-
shaped) wing sails have attracted growing interest. These are single-
element aerofoils that generate high thrust across a wide range of angles 
of attack  (van Reen et al., 2025). Their simple structure also allows for 
telescopic size adjustment to suit weather conditions  (Zhu et al., 2023b).
Ouchi et al. (2011) introduced the concept of a “motor-assisted sailing 
ship" equipped with nine telescopically adjustable symmetrically cam-
bered wing sails, projecting up to 50% energy savings when sailing 
with the Trade Winds. This concept evolved into the “Wind Challenger" 
(Ouchi et al., 2016), featuring four wing sails and estimated to reduce 
energy use by around 30% on a voyage between Yokohama and Seattle. 
In 2022, the bulk carrier Shofu Maru was fitted with a single Wind Chal-
lenger sail, installed on the forecastle (Ouchi et al., 2023). Fuel savings 
were estimated at 5% on routes between Japan and Eastern Australia, 
and 8% on routes to the west coast of North America (Ouchi et al., 
2023).

Expanding on the practical implementation of symmetrically cam-
bered wing sails, research into their aerodynamic performance has ad-
vanced significantly. Zhu et al. (2022) proposed a refinement to the 
basic crescent shape. They conducted a parametric study using the 
Computational Fluid Dynamics (CFD) method, the unsteady Reynolds-
Averaged Navier-Stokes (RANS) equations, to evaluate various geomet-
ric configurations. A geometry termed “D2R10" was identified with the 
best lift generation. Building on this, Zhu et al. (2023b) carried out a 
detailed numerical analysis of D2R10 using unsteady RANS, and it was 
further refined by Zhu et al. (2024) through Improved Delayed Detached 
Eddy Simulation (IDDES) to capture more complex flow behaviour. Ad-
ditionally, Zhu et al. (2023a) conducted wind tunnel tests on three in-
line D2R10 wing sails under varying wind speeds, apparent wind angles 
(AWAs), and AOAs. They found that the front sail generated the most 
thrust, the aft the least, and the middle sail experienced the highest 
structural vibrations.

To achieve efficient aerodynamic performance, sectional profiles of 
wing sails were optimised by scholars. Makram et al. (2023) optimised 
a flapped morphing wing sail configuration for a Suezmax tanker us-
ing the Taguchi method aided with RANS. There were 13 symmetrical 
profiles evaluated in the 2D XFOIL code (Drela, 1989), and one was 
selected for its high lift, low drag, low pitching moment, and smooth 
stall behaviour at moderate-to-high Reynolds numbers. This profile was 
applied to construct 9 configurations, varying in aspect ratio, taper ra-
tio, and number of wing sail pairs. The study also showed that neglect-
ing aerodynamic interferences between sails could significantly overesti-
mate performance.  Guzelbulut et al. (2024) optimised the D2R10 profile 
by varying three design parameters at three levels to enhance the thrust 
or reduce the propeller power. Using the Taguchi method, 9 out of 27 
combinations were selected for CFD simulations across a range of AOAs 
and wind directions. The best-performing angles were averaged for each 
design, and the results were used to train a second-order polynomial 
surrogate model. The thrust-optimised design increased the thrust by 
12.3%, while the power-optimised design reduced the required power 
by 22% compared to the original.

Aside from sectional profile optimisation, the optimisation of 
multiple-sail installation layout was investigated to minimise aerody-

namic interference effects between installed sails. Jo et al. (2013) in-
vestigated the optimal operating conditions for three morphing-wing 
sails arranged in a line. Using a Kriging surrogate model combined with 
a genetic algorithm, they optimised nine design parameters, including 
deflection angle, flap length and angle of attack. Their results predicted 
a 10% increase in thrust. Hussain and Amin (2021) used steady RANS 
to estimate the thrust generated by a bulk carrier equipped with five 
rigid wing sails. NACA 4412 was adopted as the sail profile, which is 
adaptive to winds from one board side. The simulations predicted a 
reduction in required brake power by 30% at zero drift and 20% at 
higher drift angles. Yasuda et al. (2024) numerically simulated inter-
actions between two symmetrically cambered rigid sails. Their work 
aimed to optimise AOAs for maximum thrust at AWAs of 150◦ and 
180◦. They found that a low fore and high aft angle of attack is opti-
mal at 150◦, while the reverse is more effective at 180◦, emphasising 
the role of sail configuration and control in enhancing propulsion ef-
ficiency. Malmek et al. (2024) extended the lifting line model devel-
oped by Malmek (2023) to simulate multiple wing sails. This enhanced 
model incorporates a potential flow-based interaction method and an 
optional boundary layer correction, enabling more accurate prediction 
of 3D aerodynamic forces in upwind conditions while maintaining com-
putational efficiency. van Reen et al. (2025) evaluated triple in-line 
and quad parallel layouts for symmetrically cambered sails, using a hy-
brid method that combines a genetic algorithm and a Kriging surrogate 
model to optimise sail spacing under a fixed total distance. The in-line 
layout showed only 4% to 6% thrust loss due to aerodynamic interfer-
ence, compared to up to 28% in the parallel layout. Although optimi-
sation yielded slight gains, relaxing spacing constraints appeared more
effective.

As the research into wing sail design matures and computing power 
increases, machine learning optimisation of wing sails has become a 
viable way to improve wing sail designs. Ma et al. (2019) proposed 
a coupled wing sail design that combines an arc-shaped wing with a 
NACA0018 aerofoil to improve aerodynamic performance. They used 
the modified PARSEC method to define 14 geometric parameters and 
applied the Particle Swarm Optimisation (PSO) to maximise the power 
factor, defined as 𝐶1.5

𝐿 ∕𝐶𝐷, across AOAs from -15◦ to 40◦. And an opti-
mal AOA was selected for each wind speed. The final metric, a weighted 
sum of power factors, showed a 30% improvement over the original 
arc-shaped sail in the optimal configuration. A notable aspect of Ma 
et al. (2019) is the maximization of the power factor, which implic-
itly penalizes drag and favours aerodynamic efficiency. This approach 
aligns with conventional aircraft optimisation strategies (Huang et al., 
2020a,b), which prioritize low drag and stall avoidance by operating at 
low AOAs.

However, such strategies are not directly applicable to wing sail 
design. Unlike aircraft wings that aim to generate lift, wing sails pro-
duce thrust from lift, drag, or both, depending on the AWA (Zhu et al., 
2023b; Hillenbrand et al., 2024). Consequently, they must perform 
across a broader range of AOAs, including deep-stall conditions. Wing 
sails are often operated under tailwinds or high-AOA scenarios to maxi-
mize thrust, making their optimisation more complex. Instead of avoid-
ing stall, the optimisation goal for wing sails should be to sustain high 
thrust under variable and unsteady wind conditions.

This study aims to optimise the aerodynamic performance of sym-
metrically cambered geometries for rigid wing sails. To address the 
unique challenges of wing sail design, this paper will propose an optimi-
sation framework tailored to their complex performance requirements. 
Given the wide range of apparent wind angles (AWAs) and the need for
extensive parametric sampling, machine learning techniques will be 
incorporated to reduce computational costs. Aerofoil profiles will 
parametrised using a hybrid camber and thickness definition featur-
ing six adjustable parameters. The sensitivity of the flow field to the 
parameters will be addressed. The optimised geometry and a bench-
mark geometry from a previous work (Zhu et al., 2023b) will then be 
assessed through the high-fidelity CFD method of the Improved Delayed 
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Fig. 1. Diagram of the AOA (𝛼), lift (𝐿), drag (𝐷), resultant aerodynamic force 
(𝐹𝑟𝑒𝑠) and thrust (𝑇 ) with respect to the apparent wind vector (𝑉𝐴𝑊 ) at the AWA 
(𝜃𝐴𝑊 ).

Detached Eddy Simulation (IDDES), to explore dominant aerodynamic 
mechanisms.

This paper is organized by starting with an overview of the optimi-
sation method and the setup of the high-fidelity simulations. The result 
section presents and discusses the method validation and the aerody-
namic performance of the optimised design in reference to the bench-
mark configuration. Lastly, the conclusions are drawn, and the future 
work is pointed out.

2.  Method

2.1.  Objective selection

The primary purpose of a sail is to provide thrust, which naturally 
makes it the most important optimisation objective to maximise. The 
thrust vector can be defined as the component of the resultant aerody-
namic force 𝐹𝑟𝑒𝑠 in the movement direction of the ship. This definition 
is shown in Fig. 1, where the AOA is 𝛼, 𝑉𝐴𝑊  is the apparent wind vector, 
𝐿 is the lift, 𝐷 is the drag, and 𝑇  is the thrust. From this definition, an 
equation for the thrust can be derived:
𝑇 = 𝐿(𝛼) ⋅ sin(𝜃𝐴𝑊 ) −𝐷(𝛼) ⋅ cos(𝜃𝐴𝑊 ) , (1)

where 𝜃𝐴𝑊  denotes the AWA, and 𝐿 and 𝐷 are dependent on 𝛼. When 
non-dimensionalised, the thrust, lift and drag coefficients are defined 
as: 
𝐶𝑡 =

𝑇
1
2𝜌𝑉

2
∞𝑐

, 𝐶𝑙 =
𝐿

1
2𝜌𝑉

2
∞𝑐

, 𝐶𝑑 = 𝐷
1
2𝜌𝑉

2
∞𝑐

, (2)

where 𝜌 is the air density, 𝑉∞ is the speed of the incoming flow and 𝑐 is 
the chord of the aerofoil.

The wind angle observed by an external observer is called the true 
wind angle (TWA). When the ship is stationary, the AWA and TWA are 
identical. Only the apparent wind needs to be considered for the purpose 
of aerodynamics, as this determines the wind force applied to sails (Kim-
ball, 2009). The AWA is counted as counter-clockwise when looking at 
the ship from above, as shown in Fig. 2.

According to Eq. 1, the thrust coefficient varies directly with the 
AWA and indirectly with the AOA through 𝐶𝑙 and 𝐶𝑑 . A wing sail can 
fully rotate in the horizontal plane, that is, be freely adjustable to any 
AOA. Thus, for an arbitrary AWA, the thrust is calculated for the AOA 
that provides the highest thrust. This thrust variance means that one 
cannot simply assign a single thrust value to a certain geometry. Instead, 
the optimisation objective is not strictly the thrust but the average thrust 

Fig. 2. Definition of the apparent wind angle 𝜃𝐴𝑊  from a top-down view, where 
the ship is in blue.

over a range of AWAs. This yields:

𝐶 𝑡 =
1
𝑁

𝑁
∑

𝑖=1
𝐶𝑡,𝑖 , (3)

where ‘𝑖’ represents the 𝑖th AWA of interest, and ‘𝑁 ’ is the total number 
of angels.

2.2.  Geometric parametrisation

In this study, a new hybrid parametrisation method for symmetri-
cally cambered aerofoils proposed by Yao (2025) will be used to gen-
erate various geometric samples during the optimisation process. The 
parametrisation is formulated in reference to NACA-series foils and cam-
bers.

The reference camber height distribution is based on the camber line 
definition of a NACA 4-digit aerofoil (Jacobs et al., 1933). For the cam-
ber section upstream of the position of the maximum camber height, the 
camber height 𝑦𝑐 is defined as:

𝑦𝑐
𝑐

=
ℎ𝑐
𝑐

[

2 𝑥
𝑥𝑐

−
(

𝑥
𝑥𝑐

)2
]

0 ≤ 𝑥 ≤ 𝑥𝑐 (4)

where ℎ𝑐 is the maximum camber height, 𝑥𝑐 the location of ℎ𝑐 , and 𝑐 the 
chord length. Since the camber of the crescent aerofoil is symmetric, we 
choose this upstream camber section to construct the crescent camber 
by setting 𝑥𝑐∕𝑐 = 0.5 and mirroring the upstream section to form the 
downstream one. This gives:
𝑦𝑐
𝑐

=
4ℎ𝑐
𝑐

[

𝑥
𝑐
−
(𝑥
𝑐

)2
]

0 ≤ 𝑥
𝑐
≤ 1. (5)

Note that this definition only requires ℎ𝑐 as an input. The camber 
parametrisation is constructed using a Bézier curve defined by four con-
trol points. These points shape the curvature of the front half of the cam-
ber line, while the rear half is generated by mirroring the front. Control 
Point 1 (CP1) is fixed at the leading edge of the foil with nondimen-
sionalised coordinates (𝑥, 𝑦) = (0, 0), and Control Point 4 (CP4) is fixed 
at (𝑥, 𝑦) = (0.5, ℎ𝑐 ). In contrast, Control Points 2 and 3 are left unfixed 
to allow flexibility in adjusting the curvature. The initial Bézier curve is 
obtained by fitting it to the reference camber line defined in Eq. 5. The 
fitting process employs the minimize function from the Python library 
Scipy (Virtanen et al., 2020). It finds the CP2 and CP3 coordinates that 
minimise the least-squares error between the reference camber line and 
the Bézier curve.

Next, the thickness distribution of the aerofoil is parametrised based 
on the modified NACA 4-digit series (Mason, 2018). The front half of 
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Fig. 3. A parameterized crescent airfoil with a camber that is symmetric about the middle point of the chord. The control points such as CP1–CP4 are used to define 
a Bézier curve for half of the camber line.

the thickness distribution is defined as:
𝑦𝑡
𝑐

= 5
(

ℎ𝑡
𝑐

)[

𝑎0

√

𝑥
𝑐
+ 𝑎1

(𝑥
𝑐

)

+ 𝑎2
(𝑥
𝑐

)2
+ 𝑎3

(𝑥
𝑐

)3
]

0 ≤ 𝑥
𝑐
≤ 0.5 (6)

where ℎ𝑡 is the maximum thickness. The coefficient 𝑎0 reads:
𝑎0 ≈ 0.296904 ⋅ 𝜒𝐿𝐸 (7)

and

𝜒𝐿𝐸 =
{

𝐼∕6 for 𝐼 ≤ 8
10.3933 for 𝐼 = 9

(8)

where 𝐼 is the index used to specify the leading edge radius. The other 
coefficients are:
𝑎1 ≈ 0.477 − 2.650𝑎0 (9)

𝑎2 ≈ −0.708 + 3.536𝑎0 (10)

𝑎3 ≈ 0.308 − 2.121𝑎0 (11)

According to Eqs. (6)–(11), the definition of the thickness distribu-
tion needs ℎ𝑡 and 𝐼 as inputs. Using the same method as for constructing 
the whole camber line, the front half of the thickness distribution is mir-
rored about 𝑥∕𝑐 = 0.5, to create a symmetric thickness distribution.

The new camber line and thickness distribution are then combined 
to create a symmetrically cambered aerofoil. A geometry example and 
its parameters are illustrated in Fig. 3. The adjustable parameters are the 
leading edge radius index 𝐼 , the maximum thickness ℎ𝑡, and the x and 
y-coordinates of the control points, CP2 and CP3, of the Bézier curve.

2.3.  Parameter constraints

The variation ranges of the geometric parameters for the proposed 
crescent foil are constrained with reference to the D2R10 foil studied 
by Zhu et al. (2023b), as its structural viability has been validated by 
the industry in prior studies. By doing this, the superior performance of 
the optimal geometry can be identified in comparison to D2R10.

The minimum thickness of the D2R10 was required to provide space 
for the mast, and it corresponds to 14.29% 𝑐. This value serves as the 
lower bound of the foil thickness ℎ𝑡, as well as its reference. The upper 
bound is set to 20% above the reference. The maximum camber height, 
ℎ𝑐 , is fixed at the same value as that of the D2R10 reference aerofoil, 
specifically 14.25% 𝑐 (Zhu et al., 2023b). This decision is motivated by 
preliminary studies indicating that ℎ𝑐 has a significant influence on the 
resulting aerodynamic forces. Since the primary goal of this study is 
to evaluate the effectiveness of the optimisation framework relative to 
the D2R10, it makes sense to maintain certain geometric features un-
changed. Therefore, ℎ𝑐 is held constant to focus on the effects of other 
design variables and ensure a fair comparison with the reference con-
figuration.

The control point coordinate bounds can vary 5% from the reference 
coordinates, which are obtained by fitting the Bézier curve to the ref-
erence NACA 4-digit camber line. The radius index of the leading and 
trailing edges (LE and TE) is bounded between 4 and 8. The constraints 
for each feature are summarised in Table 1.

In addition to the parameter constraints described above, curvature 
constraints are further set to filter abnormal geometries that consist of 
wavy curve segments (Yao et al., 2022). In these constraints, the slope 

Table 1 
The constraints of the geometrical parameters for the crescent foil.
 Variable  Feature  Lower bound  Reference  Upper bound
 LE/TE radius index 𝐼  4  -  8
 Foil thickness (% 𝑐) ℎ𝑡  14.29  14.29  17.15
 CP2, x-position (% 𝑐) 𝑥2  17  22  27
 CP2, y-position (% 𝑐) 𝑦2  3  8  13
 CP3, x-position (% 𝑐) 𝑥3  33  38  43
 CP3, y-position (% 𝑐) 𝑦3  8  13  18

of the front half of the camber line is always positive, and the second 
derivative along the front half changes sign no more than once. If a 
sample does not comply with the constraints, it is discarded and a new 
sample is generated until a suitable one is found.

2.4.  Optimisation method

The Bayesian optimisation method is employed in this study  (Snoek 
et al., 2012; Hebbal et al., 2021), where an objective function is min-
imised by approximating it with a probabilistic surrogate model, which 
in this case is a Gaussian Process (GP) (Snoek et al., 2012)

A GP is defined as a collection of random variables, where any finite 
subset of these variables has a joint Gaussian distribution (Rasmussen, 
2004; Hebbal et al., 2021). It is specified by a prior mean function 𝑚(𝝓)
and a prior covariance function 𝑘(𝝓,𝝓′), also known as a kernel, where 
𝝓 and 𝝓′ are inputs in the input space Φ:
𝑓 (𝑥) = 𝐺𝑃 (𝑚(𝝓), 𝑘(𝝓,𝝓′)) (12)

The mean function describes the prior belief about the trend of the func-
tion that the surrogate model seeks to approximate. If nothing is known, 
a constant mean function may be used. The covariance function captures 
the prior belief about the correlation between individual samples (Shan 
et al., 2025; Hebbal et al., 2021).

This study uses the Matérn kernel (Rasmussen and Williams, 2006), 
which is particularly suitable for modelling functions that are not overly 
smooth. The Matérn kernel with smoothness parameter 𝜈 = 5∕2 and a 
length scale 𝑙 = 1 is defined as (Rasmussen and Williams, 2006):

𝑘(𝝓,𝝓′) = (1 +
√

5 |𝝓 − 𝝓′
| +

√

5 (𝝓 − 𝝓′)2

3
) exp(−

√

5 |𝝓 − 𝝓′
|) (13)

The algorithm that creates a GP is called the Gaussian Process Regres-
sion (Rogers et al., 2023). When the GP observes sample data 𝑆𝑜(𝝓𝑜,𝝍𝑜), 
with observed inputs 𝝓𝑜 and observed objective values 𝝍𝑜, it updates its 
prior beliefs to form a posterior distribution. This posterior is defined by 
a predictive mean 𝜇∗(𝝓∗) and variance 𝜎2∗(𝝓∗) (Rasmussen, 2004). These
functions describe a Gaussian distribution over the objective value 
at any new input 𝝓∗ ∈ Φ, capturing both prediction and uncertainty 
(Snoek et al., 2012; Hebbal et al., 2021). The functions are defined as:
𝜇∗(𝝓∗) = 𝒌∗𝑇 (𝑲 + 𝜎2𝑛𝐼)

−1𝝍𝑜 (14)

𝜎2∗(𝝓∗) = 𝑘(𝝓∗,𝝓∗) − 𝒌∗𝑇 (𝑲 + 𝜎2𝑛𝐼)
−1𝒌∗ (15)

To guide the optimisation, an acquisition function is derived from 
the GP posterior. This function determines where to sample next by bal-
ancing exploration (uncertainty) and exploitation (high predicted value) 
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(Wang et al., 2023). The acquisition function used in this study is the 
Upper Confidence Bound (UCB) defined as:

UCB(𝝓∗) = (𝜇∗(𝝓∗) + 𝑘𝜎∗(𝝓∗)), (16)

The parameter 𝑘 controls the trade-off between exploration and ex-
ploitation  (Snoek et al., 2012). A higher value of 𝑘 encourages explo-
ration by favouring regions with high uncertainty, while a lower value 
promotes exploitation of regions with high predicted objective values. 
In this study, 𝑘 is set to 2.576, corresponding to the 99% confidence 
interval of a standard normal distribution.

The Bayesian optimisation algorithm was selected because of the 
complex nature of the relation between thrust and wing sail design. 
There is no closed-form expression to analyse, nor any gradient data, 
which makes gradient-based algorithms unusable. Instead, the optimiser 
must effectively explore the design space and balance this with exploita-
tion (Wang et al., 2023). There are other algorithms that can do this, 
such a genetic algorithms and particle swarm optimisation, but these 
generally require more evaluations from the aerodynamic solver than 
Bayesian optimisation to find an optimum (Wang et al., 2023). Given 
that the current goal is the develop an optimisation framework that can 
be generalised to multiple aerodynamic solvers, including high-fidelity 
CFD, it is essential to decrease the required number of function evalua-
tions.

The power of the Bayesian optimisation in this paper can largely 
be attributed to the GP surrogate model. The GP is a powerful algo-
rithm that is incorporated in multiple other optimisation methods, such 
as dimensionality reduction with the GP Latent Variable Model (Li and 
Chen, 2016), GP for classification (Nickisch and Rasmussen, 2008) or re-
inforcement learning with the Probalilistic Inference Learning Control 
algorithm (Deisenroth and Rasmussen, 2011). But these are not suit-
able for the use as a surrogate model for a complicated aerodynamic 
function that predicts the thrust. By contrast, the Bayesian optimisation 
algorithm is able to harness the prediction capability and uncertainty 
estimation of the GP surrogate model to efficiently recreate black-box 
functions.

2.5.  Training data acquisition

A hybrid sampling strategy is employed to generate the initial set of 
100 samples used for training the surrogate model. The process starts 
with Sobol sampling, which provides uniform coverage of the input 
space. Each sample, composed of 6 feature values and the objective 
value 𝐶 𝑡, is then subjected to constraint checks related to the camber 
line. Samples that do not satisfy these constraints are discarded and re-
placed with new ones, ensuring that only valid configurations are re-
tained. These validated samples form the basis for the initial surrogate 
model, which is further refined throughout the optimisation process.

The lift and drag coefficients used to calculate the thrust coefficient 
are computed using NeuralFoil (Sharpe, 2023), an aerofoil analysis soft-
ware written in Python that utilises a physics-informed neural network 
for its predictions. NeuralFoil was trained based on results from XFOIL 
and is suitable for two-dimensional viscous, steady, incompressible and 
compressible aerodynamic analysis.

The predictions made by NeuralFoil are similarly accurate to XFOIL, 
but NeuralFoil is significantly faster (Sharpe and Hansman, 2025). Fur-
thermore, convergence failure sometimes happens in XFOIL when it at-
tempts complicated simulation tasks (Sharpe and Hansman, 2025). As 
a result, XFOIL cannot provide the necessary training data for the wide 
variety of aerofoil geometries that are required in this study. By con-
trast, NeuralFoil provides an answer for a large range of geometries it 
is given to analyse. NeuralFoil also incorporates analytical relations de-
veloped by Truong (2020) in its framework. These relations include 𝐶𝑙
and 𝐶𝑑 predictions over a 360◦ AOA range and models for moderate to 
deep stall. This shows that NeuralFoil not only utilizes XFOIL data but 
also builds upon it with enhanced predictive capabilities.

Wing sails ideally operate at the AOA that provides the maximum 
thrust, which is often found near the AOA of the maximum lift 𝛼max
(Malmek et al., 2024). Previous 3D simulations by Zhu et al. (2023b) 
showed that 𝛼max for the D2R10 is 20◦. While a wing sail ideally op-
erates at the stall angle of attack, a sudden gust of wind can push the 
sail into stall conditions. Moreover, the aerofoils to be analysed in the 
optimisation are expected to have different stall characteristics than the 
D2R10. Therefore, a 15◦ AOA is deemed a realistic upper limit to evalu-
ate in this optimisation. The lower bound is set to 𝛼 = 10◦, as any angle 
of attack smaller than this is unlikely to produce maximum thrust.

The analysis is limited to AWAs between 10◦ and 150◦. Beyond 150◦, 
the drag starts to dominate the thrust (Zhu et al., 2023b) and a deep-
stall drag configuration becomes viable. Given its forward speed, a ship 
encounters these drag-dominated wind angles less frequently than the 
lift-dominated ones, making this condition less important to analyse. 
The lower limit of the wind angle range is set to 10◦ because the wing 
sails produce negligible thrust in headwind conditions and would thus 
be retracted to minimise resistance. The incoming wind speed corre-
sponds to a Reynolds number of 1 × 107, equivalent to a 15 m/s wind 
over a wing sail with a 14 m chord, as used in Zhu et al. (2023b). The 
flow has a low Mach number of 0.04, and is therefore assumed to be 
incompressible.

2.6.  Optimisation process

The optimisation process is illustrated in Fig. 4, and its correspond-
ing algorithm is shown in Algorithm 1. The process begins by gener-
ating the initial dataset 𝑆𝑜 using simulation software. The best sample 
in 𝑆𝑜, defined as the one with the highest 𝝍𝑜, in this case 𝐶 𝑡, is se-
lected as 𝝓𝑏𝑒𝑠𝑡. This initial dataset is then used to train the Gaussian 
Process surrogate model 0. Both 0 and 𝝓𝑏𝑒𝑠𝑡 are passed to the min-
imize function from Scipy. To maximise UCB(𝝓), the function is set to 
minimise 𝑎(𝝓) = −UCB(𝝓∗), using the SLSQP algorithm (Virtanen et al., 
2020; Kraft, 1988). The minimize function returns the minimised sample 
𝝓𝑛𝑒𝑥𝑡. The simulation software is then used to evaluate 𝝍𝑛𝑒𝑥𝑡. If 𝝍𝑛𝑒𝑥𝑡 is 
greater than 𝝍𝑏𝑒𝑠𝑡, then 𝝓𝑛𝑒𝑥𝑡 becomes the new 𝝓𝑏𝑒𝑠𝑡. Otherwise, 𝝓𝑏𝑒𝑠𝑡
remains unchanged. In either case, the pair (𝝓𝑛𝑒𝑥𝑡,𝝍𝑛𝑒𝑥𝑡) is added to the 
dataset to refine the surrogate model. In the next iteration, 𝝓𝑏𝑒𝑠𝑡 is input 
to the minimize function. This process is repeated for a fixed number of 
100 iterations. 

Algorithm 1: Bayesian optimisation using minimize.
Input: Initial dataset 𝑆𝑜(𝝓𝑜,𝝍𝑜), number of iterations 𝑇 , 

constraints 
Output: Best found point 𝝓𝑏𝑒𝑠𝑡

1 Train Gaussian Process surrogate model 0 on 𝑆𝑜
2 Set 𝝓𝑏𝑒𝑠𝑡 ← argmax𝝓𝑜∈𝑆𝑜

𝝍𝑜

3 for 𝑡 ← 1 to 𝑇  do
4 Set 𝝓0 ← 𝝓𝑏𝑒𝑠𝑡
5 Define acquisition function 𝑎(𝝓∗) = −UCB(𝝓∗)
6 𝝓𝑛𝑒𝑥𝑡 ← minimize(𝑎(𝝓),𝝓0,0,)
7 𝝍𝑛𝑒𝑥𝑡 ← Simulation software(𝝓𝑛𝑒𝑥𝑡)
8 if 𝝍𝑛𝑒𝑥𝑡 > 𝝍(𝝓𝑏𝑒𝑠𝑡) then
9 𝝓𝑏𝑒𝑠𝑡 ← 𝝓𝑛𝑒𝑥𝑡
10 end 
11 Add (𝝓𝑛𝑒𝑥𝑡,𝝍𝑛𝑒𝑥𝑡) to dataset
12 Retrain Gaussian Process on updated dataset
13 end 
14 return 𝝓𝑏𝑒𝑠𝑡

2.7.  CFD Method - IDDES

To validate the optimisation results, both the optimised aerofoil 
and the D2R10 reference aerofoil (Zhu et al., 2023b) are analysed in 
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Fig. 4. The flowchart of the optimisation process.

three dimensions using Improved Delayed Detached Eddy Simulation 
(IDDES) in STAR-CCM+, and the k − ω SST turbulence model is used. 
The simulation setup closely follows the methodology described by Zhu 
et al. (2024, 2023a), where the current setup has been validated. The 
Reynolds number is 1 × 107. In the present simulations with a time step 
of 5 × 10−5, the fully developed flow fields were obtained after 100 pe-
riods of the flow passing through the aerofoil, where the period is cal-
culated based on the freestream flow speed and chord length. After the 
flow fields were developed, the time-averaged values were calculated 
based on the data over 150 periods.

The 3D wing sail model is generated by scaling the aerofoils to a 
chord length of 14m and extruding them vertically to a height of 72m 
along the z-axis. The simulation domain, illustrated in Fig. 5, is a rect-
angular box measuring 600m in length, 300m in width, and 360m 
in height. A velocity inlet boundary condition is applied to the front 
face of the domain, while a symmetry boundary condition is imposed 
on the bottom face. The remaining faces are assigned pressure outlet 
boundary conditions. A no-slip wall condition is applied to the sur-
face of the wing sail, and its bottom end is fixed to the domain’s lower
boundary.

An unstructured mesh consisting of approximately 21 million cells 
is employed for the simulation. To accurately resolve the boundary 
layer, 65 prism layers are applied along the geometry walls, with a 
total thickness of 0.5m. The setup results in y+ values around 1.0 
near the wall. Contours of y+ are illustrated for the BN4 and D2R10 
at 15◦ in Fig. 6, which are visualized with a logarithmic scale. As 
can be seen, the majority of the wing sail surface shows small values 
lower than 1.0. The maximum value is 1.6 and 1.9 for the BN4 and 
D2R10, respectively, but the areas above 1.0 are very small and barely
visible.

The mesh is refined near critical regions, such as the leading and 
trailing edges, with cell sizes around 0.08m. Fig. 7 presents an overview 
of the near-field mesh, along with a close-up view of the mesh refine-
ment at the leading edge, for the D2R10 and the optimised aerofoil ob-
tained with the present ML framework (see the discussion in the next 
section of results and analysis).

3.  Results and analysis

3.1.  NeuralFoil validation of D2R10

In order to validate the predictions by NeuralFoil, the solver was 
used to estimate 𝐶𝑙 and 𝐶𝑑 across AOA ranging from 0◦ to 20◦ for the 

Fig. 5. Schematic of the CFD domain, including the dimensions and boundary 
conditions. Note that the cylinder is representative of the wing sail.

D2R10. These predictions were then compared with the 3D unsteady 
RANS results reported by Zhu et al. (2023b), as shown in Fig. 8. Above 
10◦, NeuralFoil’s predictions for 𝐶𝑙 closely match those from the 3D un-
steady RANS simulations, suggesting that NeuralFoil is capable of cap-
turing three-dimensional flow effects.

The discrepancy in drag prediction is notably larger, with the CFD 
results indicating drag values up to 2.3 times higher than those pre-
dicted by NeuralFoil. The large discrepancies in the drag prediction are 
attributed to several reasons. The boundary layer approximation used 
in XFOIL can underestimate skin friction drag and flow separation. The 
tool is also limited to 2D without spanwise flow effects, as well as the as-
sumption of steady flow. However, given the drag magnitudes are signif-
icantly smaller than the lift magnitudes, the inaccurate drag prediction 
has a negligible contribution to the calculated 𝐶 𝑡. NeuralFoil estimates 
a value of 1.30 for the D2R10, and even when drag is doubled, the value 
increases only slightly to 1.31, indicating that drag has a minimal influ-
ence on this metric.
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Fig. 6. Contours of y+ near the walls of the BN4 and D2R10, visualized with a logarithmic color scale.

Fig. 7. Cut-plane views of the meshes for the BN4 (the optimised foil using the present method) and the D2R10 (Zhu et al., 2023b) in the near field and around the 
leading edge at 𝛼 = 10◦.

Fig. 8. The lift coefficient (left) and the drag coefficient (right) as a function of AOA from present NeuralFoil and previous 3D unsteady RANS (Zhu et al., 2023b).

3.2.  Optimal geometry

Fig. 9 plots both the current and best candidate at each iteration as 
a green solid line and a red dashed line, respectively. The first point, at 
iteration zero, is the best sample from the initial design space, referred 
to as the Initial Aerofoil, with a 𝐶 𝑡 of 1.58. Then, in the first iteration, 
the optimiser finds a sample with a significantly greater 𝐶 𝑡 of 1.64. The 
optimiser spends the first 17 iterations exploring the design space be-

fore settling down on an optimum. While exploring the design space, 
the objective value does not deviate significantly, indicating that the 
algorithm is more focused on exploitation than exploration.

The new aerofoil resulting from the optimisation is shown in Fig. 10, 
alongside the Initial Aerofoil and the D2R10. The feature values for 
the former two aerofoils are presented in Table 2. The most signifi-
cant change from the D2R10 to the two newly developed aerofoils is 
the increased thickness away from the centre of the chord. In fact, 𝑦2
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Fig. 9. Predicted thrust results for each candidate aerofoil over 100 iterations 
(dashed), along with the best candidate identified so far at each iteration (solid).

Fig. 10. The three foil profiles such as D2R10 (Zhu et al., 2023b), Initial Aero-
foil, optimised BN4.

Table 2 
Geometrical parameters for the crescent foils.

𝐼 ℎ𝑡 𝑥2 𝑦2 𝑥3 𝑦3

 Initial Aerofoil  7.59  15.21  20.36  12.4  34  9
 BN4  8.0  14.29  17.00  12.9  43  8

for the optimised aerofoil is very close to its upper limit. Furthermore, 
the edge has become more blunt. The difference between the optimised 
aerofoil and the Initial Aerofoil is less pronounced. Like the D2R10, the 
optimised aerofoil has the minimum allowable value for ℎ𝑡, whereas 
the Initial Aerofoil is comparatively thicker. The latter also exhibits a 
marginally smaller radius of curvature in the arch. Additionally, the op-
timised aerofoil has a larger 𝑦2 value than the Initial Aerofoil. The pre-
dicted value for 𝐶 𝑡 is 1.65, representing a 4% and 26% improvement 
over the Initial Aerofoil and D2R10, respectively, while maintaining the 
same camber. The newly optimised aerofoil will hereafter be referred to 
as the BN4.

3.3.  Sensitivity

Fig. 11 illustrates the sensitivity of 𝐶 𝑡 to various input features based 
on a sample of 1000 data points. The analysis shows that 𝑥2 and 𝑥3
have minimal influence on 𝐶 𝑡. In contrast, 𝐼 exhibits a slight positive 
correlation, while ℎ𝑡 shows a slight negative correlation, which aligns 
with the performance difference between the Initial Aerofoil and the
BN4. Among all variables, 𝑦2 has the most significant impact, with 𝐶 𝑡
increasing notably as 𝑦2 increases. This finding is consistent with the 
previously discussed increase in thickness away from the chord centre, 
as reflected by the higher 𝑦2 value in the BN4. It may also explain why 
the D2R10 achieves a lower 𝐶 𝑡 than the Initial Aerofoil, despite being 
thinner.

Lastly, 𝑦3 does not show a clear trend in terms of increasing or de-
creasing 𝐶 𝑡, but instead appears to reduce the variability of its possible 
values as 𝑦3 increases. The reason for this reduction of variability is the 
curvature constraints, since a higher 𝑦3 moves CP3 upwards relative to 
CP2, leading to an invalid S-shaped curve. This results in fewer possible 
valid combinations and, thus, a clustering of the resulting 𝐶 𝑡.

3.4.  NeuralFoil results

The 𝐶𝑙 and 𝐶𝑑 for all three aerofoils are plotted against 𝛼 in Fig. 12. 
The BN4 consistently exhibits the highest 𝐶𝑙, followed closely by the
Initial Aerofoil, with the D2R10 trailing behind. In contrast, the D2R10 
shows the highest 𝐶𝑑 , while the Initial Aerofoil and BN4 alternate. Up 
to the AOA of 𝛼 = 13◦, the BN4 experiences higher drag than the Initial 
Aerofoil. Beyond this point, the trend reverses. This behaviour may be 
attributed to inaccuracies in drag prediction by NeuralFoil.

The distribution of the thrust coefficient, 𝐶𝑡, over the AWA, 𝜃𝐴𝑊 , 
is presented in Fig. 13. The figure confirms that the BN4 not only has 
the greatest average thrust but also has superior thrust over all 𝜃𝐴𝑊 . 
The thrust distribution for the Initial Aerofoil is slightly smaller, while 
the one for the D2R10 is significantly smaller. The results confirm that, 
within the AWA range from 10◦ to 150◦, a higher lift production leads 
to higher thrust.

The difference in thrust is most pronounced in the middle of the 
AWA range, approximately for 𝜃𝐴𝑊  between 50◦ and 110◦, and dimin-
ishes toward both ends of the range. This AWA range encompasses the 
crosswind region, where wing sails can produce a large amount of thrust 
through lift. This is where the BN4 and Initial Aerofoil can outshine the 
D2R10 with their larger lift production. Outside this range, the influence 
of the lift relative to the drag decreases. Since the absolute difference 
in drag between the aerofoils is relatively small, it makes sense that the 
difference in thrust production becomes less pronounced.

3.5.  Flow comparison between BN4 and D2R10 using high-fidelity CFD

Table 3 presents 𝐶𝑙 and 𝐶𝑑 for the BN4 and D2R10 aerofoils, as pre-
dicted by NeuralFoil and IDDES at 𝛼 = 10◦ and 𝛼 = 15◦. The data in-
dicate that NeuralFoil tends to over-predict 𝐶𝑙 for the BN4 and under-
predict it for the D2R10 while consistently under-predicting 𝐶𝑑 for both 
aerofoils. In order to calculate 𝐶 𝑡, a linear interpolation of 𝐶𝑙 and 𝐶𝑑
with respect to the AOA is applied to estimate the intermediate values 
of 𝐶𝑡. As illustrated by the NeuralFoil trends in Fig. 12, this linearity 
assumption aligns more closely with the behaviour of 𝐶𝑙 than 𝐶𝑑 . Nev-
ertheless, as previously shown, variations in 𝐶𝑑 have limited influence 
on 𝐶 𝑡. While NeuralFoil indicates a 26% performance advantage for 
the BN4 over D2R10, the CFD-based estimate suggests a more conser-
vative yet still meaningful improvement of 8%, underscoring a differ-
ence in magnitude but not in trend. The discrepancy in thrust prediction 
between CFD and NeuralFoil can be attributed to the difference in lift 
prediction. It is also worth noting that NeuralFoil predicts significantly 
higher lift-to-drag ratios for the BN4 compared to the IDDES results and 
notably higher ratios than those of the D2R10. However, the IDDES sim-
ulations indicate that both aerofoils have similar lift-to-drag ratios in 3D 
CFD. This suggests that the lift-to-drag ratio may not reliably indicate 
wing sail performance in these CFD contexts.

Fig. 14 shows streamline and velocity contours for the optimised and 
reference wing sails at the AOAs of 10◦ and 15◦ in the cut-plane aligned 
with the middle of the span, which are computed from the IDDES. For 
both wing sails at the specified AOAs, a common phenomenon is that 
no vortices formed at the leading edges. This is beneficial for the gener-
ation of lift force (Zhu et al., 2023b). Meanwhile, the optimised airfoil 
exhibits a larger high-velocity region near the leading edge, indicating 

Table 3 
The NeuralFoil and IDDES results for the BN4 and D2R10.

 NeuralFoil  CFD
𝐶𝑙 𝐶𝑑 𝐶𝑙∕𝐶𝑑 𝐶 𝑡 𝐶𝑙 𝐶𝑑 𝐶𝑙∕𝐶𝑑 𝐶 𝑡

BN4
10◦  2.01  0.05  37.67

1.65
 1.80  0.17  10.59

1.50
15◦  2.27  0.07  30.75  2.10  0.22  9.55

D2R10
10◦  1.65  0.07  23.92

1.30
 1.72  0.15  11.47

1.39
15◦  1.82  0.10  18.38  1.95  0.21  9.29
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Fig. 11. Sensitivity of 𝐶 𝑡 to the six parameters: ℎ𝑡, 𝐼 , 𝑥2, 𝑦2, 𝑥3 and 𝑦3.

Fig. 12. (left) The lift coefficient and (right) the drag coefficient of the D2R10, the Initial Aerofoil and the optimised BN4, predicted using NeuralFoil.

Fig. 13. The distribution of the thrust coefficient, 𝐶𝑡, as function of the AWA, 
𝜃𝐴𝑊 , for the three different foil profiles.

a lower pressure zone and, thus, greater lift generation. However, flow 
separation exists on the sucktion side near the trailing edges, which are 
detrimental to aerodynamic performance with increased drag force but 
reduced lift force. The optimised wing sail, BN4, delays the onset of the 
flow separations and consequently induces a smaller recirculation zone 
in the wake compared to the reference wing sail D2R10. The delayed 
separation leads to improved aerodynamic performance.

Fig. 15 shows contours of the time-averaged pressure coefficient, 𝐶𝑝, 
on the sail surfaces at the two AOAs. For both of the optimised and 
reference wing sails, negative 𝐶𝑝 values are seen over the front two-
thirds of the suction side from the leading edge. It suggests that most of 
the lift is generated in this region. In contrast, values in the aft third are 
much closer to zero, so this part of the surface contributes less to the 
lift. The sharp change between these regions at the two-thirds location 
suggests the onset of the flow separation, as also seen in Fig. 14. The 
sharp changing board shifts forward as the angle of attack increases from 
10◦ to 15◦. This means that the flow separation is aggravated when the 
AOA increases. The low-lift region is more pronounced in the flow of 
D2R10 than BN4, so its total lift is smaller than the other configuration. 
Since the lift is the primary contributor to the thrust, the effects result in 
larger thrust for the optimised configuration BN4. Interestingly, the low 
𝐶𝑝 region does not span the entire wing. At the side edge of the wing, 
its distribution is changed due to the influence of tip vortices, which is 
a general aerodynamic mechanism. The tip vortices are responsible for 
both decelerating and accelerating the flow near the side edge.

The time-averaged skin friction coefficients, 𝐶𝑓 , for the aerofoils at 
𝛼 = 10◦ and 𝛼 = 15◦ are illustrated in Fig. 16. The contour distribution 
of this variable is similar to the time-averaged pressure coefficients in 
Fig. 15, but the regions of large and small magnitudes are oppositely dis-
tributed. Because of the flow separation, a sharp board is seen between 
the regions. Tip vortices at the side edges of the configurations affect the 
skin friction distribution. It should be noted that the magnitudes of the 
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Fig. 14. Streamlines and contours of velocity magnitudes in the cut-plane at the middle span of the wing sails.

Fig. 15. Contours of the time-averaged pressure coefficient, 𝐶𝑝, on the surfaces of the BN4 and the D2R10 wing sails at the AOAs of 10◦ and 15◦.

Fig. 16. Contours of the skin friction coefficient, 𝐶𝑓 , on the surfaces for the wing sails, BN4 and D2R10, at the AOAs of 10◦ and 15◦.

skin friction are significantly smaller than those of the pressure. Thus, 
the contribution of the skin friction in the thrust generation is negligible 
compared to the pressure differences between the pressure and sucktion 
sides. This observation is in line with the results in Table 3.

Fig. 17 presents the pressure coefficient, 𝐶𝑝, along the chordwise di-
rection for both AOAs at the spanwise positions of 17.5 m, 35.0 m, and 
52.5 m counted from the wing sail root position, which are 25%, 50%, 
and 75% of the span length, respectively. The varying trends and ampli-
tudes of the coefficient at a specific AOA are nearly the same across the 

three spanwise locations. Therefore, the symmetric boundary condition 
of the computational domain, onto which the wing sail root is mounted, 
has a limited influence on the pressure distribution. Despite the fact that 
tip vortices are induced at the side edge, the pressure distributed at 75%
of the span is not affected obviously. This indicates that the aerodynamic 
performance of the wing sails is dominated by the middle section.

As shown in Fig. 17, on the pressure side, the pressure curves of 
the two wing sails are similar. And they exhibit a peak value of one 
at the leading edge, followed by a relatively constant value of approx-
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Fig. 17. The distributions of the surface pressure coefficient 𝐶𝑝 along the chordwise direction for the AOAs: (left) 𝛼 = 10◦ and (right) 𝛼 = 15◦. From top to bottom: 
the spanwise positions are 25%, 50% and 75% of the span length, corresponding to the distances of 17.5 m, 35.0 m, and 52.5 m to the wing sail root.

imately 0.6 along the chord. Beyond the mid-chord, the pressure dis-
tributions begin to diverge, with the D2R10 showing a more rapid de-
crease in 𝐶𝑝. The 𝐶𝑝 of the BN4 catches up at the position around 97% 
chord. After the position, both sails show a reversing pressure peak, 
with the D2R10 reaching a slightly lower minimum. This negative pres-
sure peak is attributed to flow separation near the trailing edge, as 
shown in Fig. 14, which displays streamlines and velocity magnitude 
contours at the middle of the span. This observation supports earlier 
conclusions from Figs. 15 and 16. Vortices induced by the flow separa-
tion accelerate the local flow on the pressure surface, thereby reducing 
the local pressure. The pressure distributions on the sucktion side are 
significantly different between the two wing sails. The D2R10 presents 
a sharp negative peak at the leading edge, caused by a local velocity 
increase due to the small tip radius of the configuration, as seen in 
Fig. 14. The pressure then sharply decreases towards the downstream 
and reaches the minimum negative values at 40% and 36% chord for 
the AOA of 𝛼 = 10◦ and 𝛼 = 15◦, respectively. The BN4 has its smallest 
pressure at approximately 15% chord for 𝛼 = 10◦ and 12% chord for 
𝛼 = 15◦. The locations are much closer to the leading edge than those 
of the D2R10. In the region downstream of the smallest pressure posi-
tion, the pressure coefficient gradually increases along the chord before 
rising abruptly due to the flow separation. This abrupt increase occurs 
earlier for the D2R10. This difference of the flow separation location is 
also visible in Fig. 14. From Fig. 17, it is clear that the areas enclosed by 
the pressure coefficient curves of the BN4 are larger than those of the 

D2R10. As a result, the BN4 generates larger lift. The figures also indi-
cate that the BN4 achieves its highest lift production closer to the leading
edge.

4.  Conclusions

In this paper, a machine learning-based optimisation methodology 
was developed to improve the aerodynamic performance of symmet-
rically cambered rigid wing sails, which have been considered as one 
of the concepts with high potential for wind-assisted ship propulsion. 
Given the special need to maximize the thrust force in multiple large 
AOAs over a wide range of AWAs, it is impossible to directly adopt con-
ventional optimisation methods that are designated to seek the largest 
lift force or lift-to-drag in small AOAs. Sampling sectional profiles for 
wing sails was performed through a novel shape parametrisation ap-
proach, in which the camber definition based on Bézier curves is com-
bined with the thickness distribution of modified NACA 4-digit series. 
The aerodynamics data of the sampled profiles was obtained using Neu-
ralFoil, which is a rapid analysis tool using a neural network trained 
based on XFOIL. A machine learning-based optimisation approach was 
developed within a Bayesian optimisation framework. The Gaussian 
Process was adopted to establish a probabilistic surrogate model that 
provides both predictions of objective values and estimates of uncer-
tainty. This enables the optimiser to balance exploration and exploita-
tion within the design space.
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The applicability of NeuralFoil for real-world thrust prediction was 
evaluated by comparing its results to those of the IDDES simulations 
conducted by Zhu et al. (2023b) for a reference symmetrically cambered 
aerofoil, called D2R10. The comparison showed that while NeuralFoil 
provides accurate predictions of lift force, it is inaccurate in drag pre-
diction. This discrepancy is inherited from the method of XFOIL, which 
produced the training data for the neural network of NeuralFoil. Never-
theless, it was addressed that drag has a minimal effect on the average 
thrust prediction and, therefore, had little impact on the optimisation 
outcomes.

The effectiveness of the current optimisation method was demon-
strated by analysing the D2R10 aerofoil as a benchmark. The objective 
was to maximise the average thrust production in the AWA range from 
10◦ to 150◦, which represents the most common operation conditions of 
wing sails encountered in practice. The optimised aerofoil obtained from 
the current method is referred to as BN4. According to the predictions 
using NeuralFoil, this optimised design achieved a 26% increase in the 
average thrust production. Sensitivity studies revealed that a more uni-
form thickness distribution along the chord significantly increases the 
thrust. Moreover, increasing the radii of the leading and trailing edges 
and reducing the maximum thickness contribute to a modest further 
improvement.

To confirm the optimised aerodynamic performance, full-size wing 
sails constructed based on the BN4 and D2R10 under a representative 
wind speed in the real operation were analysed using the advanced CFD 
technique of the IDDES. The typical AOAs investigated were 10◦ and 
15◦. It was found that the optimal wing sail with the BN4 profile allevi-
ates flow separation, as compared to the benchmark wing sail with the 
D2R10 profile. Meanwhile, this optimal wing sail induces a larger neg-
ative pressure zone formed over the upstream two-thirds of the suction 
side. And the optimisation leads to a more flattened pressure distribution 
on the suction side. These effects are essentially beneficial for enhanc-
ing the thrust. Compared to XFOIL for NeuralFoil that couples potential 
flow with boundary layer theory for efficient two-dimensional analy-
sis, IDDES has substantial advantages in modeling turbulence, since it 
is able to resolve three-dimensional vortices, flow separation, and wake 
dynamics. According to the present IDDES results, the optimised BN4 
increases the thrust by 8%. This value is smaller than the prediction 
from NeuralFoil, and it is mainly attributed to the overestimation of the 
lift. Nevertheless, NeuralFoil is effective in making rapid computations 
while retaining moderate accuracy, which is essential for optimisation 
involving a large number of samples.

The optimisation methodology in this study employing machine 
learning techniques in the most computationally intensive steps is 
demonstrated with the ability to generate aerofoil profiles for rigid wing 
sails, with meaningful improvements in the average thrust production. 
Future work is to extend the algorithms to support multi-objective op-
timisation, allowing for the inclusion of structural characteristics, such 
as weight. Additionally, high-fidelity simulation methods can be inte-
grated to improve the accuracy of the surrogate model. The framework 
can be developed to optimise layouts for multi-sail installation.

A limitation of this study is that no experiments were carried out. The 
reason is that it is challenging to reproduce the flows at the current large 
Reynolds number of 1.0 × 107 in model-scale wind tunnel tests, because 
of significant changes in the Mach number and flow compressibility. 
Nevertheless, future research of great interest is the implementation of 
full-scale experiments.
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