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ABSTRACT
Using methods from the theory of residue currents we provide
asymptotic expansions of certain divergent integrals on complex
manifolds. We express the coefficients in these expansions with
the conjugate Dolbeault residue, introduced by Felder and Kazh-
dan [Divergent integrals, residues of Dolbeault forms and asymptotic
riemann mappings. Int Math Res Not. (8), 2016], and define a new
residue which we call the Aeppli residue.
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1. Introduction

Suppose X is a compact complex manifold of dimension d and D ⊂ X is a smooth
hypersurface. Motivated by perturbative string theory, in [1] Felder and Kazhdan discuss
regularisations of divergent integrals of the form∫

X
α ∧ β

where α and β are (d, 0)-forms which are smooth on X \ D, α has a pole along D and β
has a pole of order one along D. In their paper they use cut-off functions, i.e. functions χ
which are zero on D and otherwise positive, and prove the asymptotic expansion∫

χ�ε
α ∧ β = log εI0 + I1(χ)+ O(ε)

where I0 = ∫
D Resα ∧ Resβ does not depend on the cut-off function (here Res denotes

the classical Leray residue which we discuss later). They also show that I1(χ) depends lin-
early on χ and give an explicit expression for it in terms of the conjugate Dolbeault residue,
Res∂ , defined in the same paper. In a second paper, [2], the same authors generalise these
results to smooth manifolds and forms which have singularities on submanifolds, where
the singularities are determined by Morse–Bott functions. As a special case they consider
the case of a complex manifold and a form with singularities on a complex hypersurface
with normal crossings. They also study analytic continuations of these divergent integrals.
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2 M. LENNARTSSON

In this paper we take the analytic continuation of divergent integrals as starting point.
This means that we have a different method of regularising the divergent integrals and this
will give us more explicit formulas. We allowD to be a hypersurface with normal crossings
and α and β to be semi-meromorphic forms with poles along D of any order. If s : X → L
is a holomorphic section of some line bundle such thatD = {s = 0} and | · | is a metric on
L we define a function by

λ �→
∫
X

|s|2λα ∧ β̄ .
This function is a priori only defined for complex numbers λ with Reλ large enough but
we will see that it has a meromorphic extension to C which is holomorphic when Reλ is
large enough. We get a Laurent expansion at 0, cf. Theorem 2.3,∫

X
|s|2λα ∧ β̄ = λ−κC−κ + · · · + λ−1C−1 + C0 + O(λ) (1)

where κ is defined in Section 2. Changing α ∧ β̄ to α ∧ β̄ ∧ ξ , where ξ is a test func-
tion, we get currents C−j(ξ) of bidegree (d, d). We will focus on the leading coefficient
C−κ , which we call the canonical current associated to α ∧ β̄ , and we denote it by {α ∧ β̄}.
The motivation for this construction comes from the study of residue currents in complex
geometry. Then one looks at so called semi-meromorphic forms α, i.e. locally α = α̃/f
for some smooth form α̃ and some holomorphic function f such that f �≡ 0. Given such a
form one can use this method to define the principal value current [α]. We will recall more
precisely how this is done in Section 2.

In the third section we discuss cohomological residues. Given a semi-meromorphic
(d, d − 1)-form α on X which has poles along a smooth hypersurface D the conju-
gate Dolbeault residue Res∂(α) is a class in the conjugate Dolbeault cohomology group
Hd−1,d−1
∂ (D), see Definition 3.2. We then define a new residue, which we call the Aeppli

residue, and denote it by ResA. Given semi-meromorphic (d, 0)-forms α and β which have
poles along D, the Aeppli residue ResA(α ∧ β̄) is a class in the Aeppli cohomology group
Hd−1,d−1
A (D). The definition of the Aeppli cohomology groups are recalled in Section 3.2

below.We relate these residues to the currents defined from analytic continuations of diver-
gent integrals. A more general statement is given in Theorem 3.9 but one result relating
canonical currents and the Aeppli residue is the following.

Theorem 1.1: For semi-meromorphic forms α and β, polar along a smooth hypersurface D,
we have for every test form ξ ,

〈{α ∧ β̄}, ξ〉 = −2π i
∫
D
ResA(α ∧ β̄ ∧ ξ).

Theorem 1 concerns the leading coefficient in expansions such as (1). In Section 4 we
use the previous results to describe the other coefficients, see Theorem 4.1. One of themain
points of Theorem 4.1 is the following informally stated result.

Theorem 1.2: The coefficient C−r in the asymptotic expansion (1) depends polynomially of
degree κ − r on the chosen metric.
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We finally note that asymptotic expansions similar to (1) have been studied before, see
e.g.[3, 4], but to our understanding these results are not directly related to our residues.

2. Currents from singular forms

We recall some facts about semi-meromorphic forms and how to define principal value
currents from them. In Section 2.2 we define currents frommore general forms. Through-
out X will be a complex manifold of dimension d.

2.1. Semi-meromorphic forms

We denote by SM(X) the semi-meromorphic forms, i.e. forms α which can be written
locally as α = α̃/f where α̃ is a smooth form and f a holomorphic function such that
f �≡ 0. We write P(α) for the polar set of α, which consists of the points where α is not
smooth. Given the local description above we get P(α) ⊂ {f = 0}. For a hypersurface D
we write E(∗D) for the semi-meromorphic forms which have a polar set contained in D
and Ep,q(∗D) for the ones of bidegree (p, q). Since the pole of a semi-meromorphic form is
determined locally by a holomorphic function, locally the order of the pole is well defined.

One way to define principal value currents from semi-meromorphic forms is the fol-
lowing cf. [5–7]: suppose α ∈ E(∗D) has a hypersurface D with normal crossings as polar
set and D = {s = 0} where s : X → L is a holomorphic section of some line bundle L. Let
| · | be a metric on L and ξ a test form of complementary degree. The function

λ �→
∫
X

|s|2λα ∧ ξ

is a priori only defined when Reλ � 1. One can show, however, that the function has an
analytic continuation to Reλ > −ε for some ε > 0. Thus wemay define the principal value
current [α] by

〈[α], ξ〉 =
(∫

X
|s|2λα ∧ ξ

)∣∣∣∣
λ=0

.

The current does not depend on the choice of metric | · | or section s.

2.2. Quasi-meromorphic forms

We let QM(X) denote forms ω which can be written locally as ω = ω̃/f ḡ where ω̃ is a
smooth form and f and g are holomorphic functions which are not identically zero. We
call these forms quasi-meromorphic and they are smooth forms except that they can have
real analytic singularities along (local) complex hypersurfaces.

Forω ∈ QM(X)we define its polar set, denoted by P(ω), as the set of points whereω is
not smooth. When ω has a polar set contained in a hypersurface D we write ω ∈ E(∗∗̄D),
we callD the polar set even thoughωmay be smooth on parts ofD. We will focus on forms
in E(∗∗̄D), for some D, since it is notationally more convenient. We write Ep,q(∗∗̄D) for
the forms in E(∗∗̄D) which have bidegree (p, q).

The polar set of a quasi-meromorphic form has different parts between which we need
to distinguish. We define the subset P1,0(ω) ⊂ P(ω) as follows. A point x in the polar set is
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not in P1,0(ω) if around this point there is holomorphic function g, with g �≡ 0, such that
ḡω is smooth. In the same spirit we define the set P0,1(ω) to be the subset of polar points
around which there is not a holomorphic function f, with f �≡ 0, such that fω is smooth.
We say that P1,0(ω) is the set where ω has holomorphic singularities and P0,1(ω) is the set
where ω has anti-holomorphic singularities. We have that

P(ω) = P1,0(ω) ∪ P0,1(ω)

but P1,0(ω) ∩ P0,1(ω) need not be empty; it is the set where ω has both holomorphic
and anti-holomorphic singularities. The order of the holomorphic (and anti-holomorphic)
pole is locally well defined.

If ω ∈ E(∗∗̄D) then P1,0(ω) and P0,1(ω) are hypersurfaces contained in D and we tem-
porarily set H(ω) to be the codimension one components of P1,0(ω) ∩ P0,1(ω). Since this
is an analytic set there is a natural stratification, see Proposition II.5.6 in [8],

H(ω)d ⊂ H(ω)d−1 ⊂ · · · ⊂ H(ω)1 ⊂ H(ω)0 (2)

where

(i) H(ω)0 = X,
(ii) H(ω)1 = H(ω),
(iii) if k = 2, . . . , d thenH(ω)k is (H(ω)k−1)sing together with all the components of

H(ω)k−1 with codimension greater than or equal to k.

Notice that H(ω)k \ H(ω)k+1 is a (d − k)-dimensional complex manifold which is
possibly empty.

Definition 2.1: With the stratification as above we define the integer κ(ω) to be the largest
number k such that H(ω)k is non-empty. We further let E(ω) := H(ω)κ(ω).

The integer κ(ω) in some sense measures how bad the singularities of ω are. By
definition E(ω) is a complex submanifold of dimension d − κ(ω).

Example 2.1: To clarify these notions we give an example in C3 in the case of normal
crossings. For

ω = 1
z1z̄1(z1 − 1)z2z̄3

we have

P1,0 = {z1 = 0} ∪ {z1 = 1} ∪ {z2 = 0},
P0,1 = {z1 = 0} ∪ {z3 = 0}.

Thus P1,0 ∩ P0,1 = {z1 = 0} ∪ {z1 = 1, z3 = 0} and hence H(ω) = {z1 = 0}. Since this is
smooth we get that κ(ω) = 1 and E(ω) = {z1 = 0}.

For a semi-meromorphic form α we have H(α) = ∅. Hence all components except
H(α)0 = X in the stratification are empty. Thus κ(α) = 0 and E(α) = X.
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For a formω ∈ E(∗∗̄D), whereD has normal crossings, there is a more explicit descrip-
tion of κ(ω). Around any point x ∈ X there are local coordinates (z1, . . . , zd) withD given
by z1z2 · · · zk = 0. Then there are multi-indices J andK so that zJ z̄Kω is smooth. Choosing
J and K minimal we define

κx(ω) = #{j : Jj �= 0 and Kj �= 0}

and then

κ(ω) = max
x∈X κx(ω).

Now suppose s : X → L is a holomorphic section such thatD = {s = 0} has normal cross-
ings and that ω ∈ E(∗∗̄D). Around any point x ∈ X there are coordinates (z1, . . . , zd) so
that H(ω) is given by z1z2 · · · z� = 0. In a local holomorphic frame the section is given by
s = zIφ for some holomorphic φ which is non-vanishing on H(ω). We define

oω,x(s) =
�∏

j=1
Ij. (3)

and note that this does not depend on the choices of local coordinates or the frame.

Definition 2.2: For a holomorphic section s : X → Lwhich defines a hypersurfaceDwith
normal crossings and ω ∈ E(∗∗̄D) we let

oω(s) = max
x∈X oω,x(s).

Notice that in (3) we only multiply by the vanishing order for s on the local components
on which ω has both holomorphic and anti-holomorphic poles. For ω semi-meromorphic
oω(s) = 1 for all sections s since then the product is empty.

We are now assuming that the polar set of ω is a hypersurface with normal crossings.
For a test form ξ of complementary degree and λ ∈ C with Re(λ) � 1 we let

Fξ (λ) = oω(s)
∫
X

|s|2λω ∧ ξ . (4)

The following theorem gives a first description of the function Fξ .

Theorem 2.3: Suppose ω ∈ QM(X) has a hypersurface D with normal crossings as a polar
set. The function Fξ has the following properties

(a) Fξ has a meromorphic extension to C,
(b) the possible poles of Fξ are at Q ⊂ R,
(c) the order of the pole of Fξ at the origin is � κ(ω).

To prove Theorem 2.3 we need the following lemma, the proof of which is a simple
exercise.
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Lemma 2.4: For λ ∈ C and multi-indices I, J, K such that if Ij = 0 then Jj = 0 and Kj = 0
we have

|zI|2λ
zJ z̄K

= h(λ)
λp

∂ J+K |zI|2λ
∂zJ∂ z̄K

where

h(λ) =
⎛⎝∏

Jj �=0

Ij(λIj − 1) · · · (λIj − Jj + 1)

⎞⎠−1 ⎛⎝ ∏
Kj �=0

Ij(λIj − 1) · · · (λIj − Kj + 1)

⎞⎠−1

and p = #{j : Jj �= 0} + #{j : Kj �= 0}.

Notice that this means that h(λ) has poles in

λ = 1
Ij
,
2
Ij
, . . . ,

Jj − 1
Ij

for j with Jj > 1

and

λ = 1
Ij
,
2
Ij
, . . . ,

Kj − 1
Ij

for j with Kj > 1.

Proof of Theorem 2.3.: We may suppose that ξ has support in a coordinate chart and so
we study the integral over, say, a polydisc � ⊂ Cd. Since D has normal crossings we may
find coordinates so that the section s is a monomial, say s = zI = zI11 · · · zIdd and we write
the metric as | · | = | · |e−φ for some function φ. Furthermore, we write

ω ∧ ξ = ψ

zJ z̄K
dz ∧ dz̄, (5)

where dz = dz1 ∧ · · · ∧ dzd and ψ is some smooth function with support in �. The
integral in (4) may now be written

Fξ (λ) = oω(s)
∫
�

|zI|2λ
zJ z̄K

e−2λφψ dz ∧ dz̄. (6)

We now prove (a). For integers N ≥ 0 we can use Lemma 2.4 and Stokes’ theorem to
simplify the integral in (6) as

Fξ (λ) = oω(s)
∫
�

|zI|2λ+2N

zJ+NIz̄K+NI e
−2λφψ dz ∧ dz̄

= oω(s)h(λ)
λpN

∫
�

∂ J+K+2NI|zI|2λ+2N

∂zJ+NI∂ z̄K+NI e−2λφψ dz ∧ dz̄

= (−1)|J+NI|+|K+NI|oω(s)h(λ)
λpN

∫
�

|zI|2λ+2N ∂ J+K+2NI

∂zJ+NI∂ z̄K+NI (e
−2λφψ) dz ∧ dz̄.

The last integral in the above expression is holomorphic in Reλ > −N − ε for some ε >
0. Furthermore, the function h, which is given by Lemma 2.4 but here depends on N, is
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meromorphic in C. Hence Fξ has a meromorphic extension to C, as N may be chosen
arbitrarily large, and we have proven (a).

Now let us prove (b). The fact that the poles are located at rational numbers follows from
the proof of (a) and Lemma 2.4 which describes the locations of the poles of h.

Finally we prove (c). Choosing N = 0 gives

Fξ (λ) = (−1)|J|+|K|oω(s)h(λ)
λp

∫
�

|zI|2λ ∂ J+K

∂zJ∂ z̄K
(e−2λφψ) dz ∧ dz̄. (7)

Notice that Lemma 2.4 in particular gives that h does not have a pole at 0. We define a
function g from the integral above by

g(λ) =
∫
�

|zI|2λ ∂
J+K

∂zJ∂ z̄K
(e−2λφψ) dz ∧ dz̄.

Then g is holomorphic in Reλ > −ε for some ε. To show that Fξ has a pole of order κ we
need to show that g has a zero of order p − κ at the origin. We have that

p − κ = #{j : Jj �= 0orKj �= 0} = #{j : Ij �= 0}.
Repeated use of the product rule for derivatives gives

g(k)(0) =
k∑
�=0

(
k
�

)
(−2)k−�

∫
�
(log |zI|2)� ∂

J+K

∂zJ∂ z̄K
(ψφk−�) dz ∧ dz̄ (8)

and using the multinomial theorem we get∫
�
(log |zI|2)� ∂

J+K

∂zJ∂ z̄K
(ψφk−�) dz ∧ dz̄

=
∑
M

(
�

M

) ∫
�

d∏
j=1
(Ij log |zj|2)Mj

∂ J+K

∂zJ∂ z̄K
(ψφk−�) dz ∧ dz̄. (9)

The sum is over multi-indicesM = (M1, . . . ,Md) such that Ij = 0 implies thatMj = 0, all
Mj ≥ 0 and

∑
j Mj = �. Thus we have to study integrals of the form∫

�

d∏
j=1
(Ij log |zj|2)Mj

∂ J+K

∂zJ∂ z̄K
(ψφk−�) dz ∧ dz̄. (10)

Suppose first that I1 �= 0 butM1 = 0. Then the integral in (10) may be written∫
�′

d∏
j=2
(Ij log |zj|2)Mj

(∫
�1

∂ J+K

∂zJ∂ z̄K
(ψφk−�) dz1 ∧ dz̄1

)
dz′ ∧ dz̄′

where � = �1 ×�′. But since Ij �= 0 implies that J1 �= 0 or K1 �= 0 the inner integral
vanishes using Stokes’ theorem. Hence we get the following:

if Ij �= 0 but Mj = 0 then the integral in (10) vanishes.

Now we suppose k < p − κ and we want to show that g(k)(0) = 0. From (8) and (9) we
know that g(k)(0) is a sum of integrals as in (10). For each of these integrals there are an
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integer � and a multi-indexM such that∑
Mj = � < p − κ = #{j : Ij �= 0}.

Hence, for each of the integrals, there is some j so that Ij �= 0 butMj = 0. Then, as explained
above, all of the integrals are zero and thus g(k)(0) = 0 for k < p − κ . Therefore g has a zero
of order p − κ at the origin which was what we wanted to prove. �

We use Theorem 2.3 (c) to make the following definition.

Definition 2.5: For ω ∈ E(∗∗̄D), where D has normal crossings, we define the canonical
current {ω} associated to ω by

〈{ω}, ξ〉 = λκ(ω)Fξ (λ)|λ=0.

A priori {ω} depends on choice of s and | · |. Corollary 2.7, however, shows that this is
not the case.

Remark: In the case that ω is semi-meromorphic {ω} is the principal value current of ω
since then κ(ω) = 0 and oω(s) = 1.

2.3. Local calculations

We will make some calculations of canonical currents associated to quasi-meromorphic
forms to hopefully clarify but also to show that they can behave a bit odd. Given a multi-
index J = (J1, . . . , Jd) we write 1J for the multi-index given by (1J)j = 0 if Jj = 0 and
(1J)j = 1 if Jj �= 0. We begin with a proposition.

Proposition 2.6: Forω ∈ QM(Cd) and a test function ξ inCd with support in� such that
ω ∧ ξ = (ψ/zJ z̄K) dz ∧ dz̄, see (5), we have

〈{ω}, ξ〉 = (−1)p

(J − 1J)!(K − 1K)!

∫
�

⎛⎝ ∏
j:Jj+Kj �=0

log |zj|2
⎞⎠ ∂ J+Kψ

∂zJ∂ z̄K
dz ∧ dz̄

where p is given by Lemma 2.4.

Proof: From the proof of Theorem 2.3 we know

〈{ω}, ξ〉 = λκ(ω)Fξ (λ)|λ=0 = oω(s)(−1)|J|+|K|

(p − κ(ω))!
h(0)g(p−κ(ω))(0)

and Lemma 2.4 gives

h(0) = (−1)|J|+|K|−p

(J − 1J)!(K − 1K)!

⎛⎝ ∏
j:Jj �=0

Ij

⎞⎠−1 ⎛⎝ ∏
j:Kj �=0

Ij

⎞⎠−1

.

Equation (8) gives an expression for g(p−κ(ω))(0) in terms of the integrals in (9). But just
as in the proof of Theorem 2.3 these integrals vanish if � < p − κ(ω). For � = p − κ(ω)
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we must have allMj = 1 for the integral not to vanish. Using this for k = p − κ(ω) we get

g(p−κ(ω))(0) =
⎛⎝ ∏

j:Ij �=0

Ij

⎞⎠ (p − κ(ω))!
∫
�

⎛⎝ ∏
j:Ij �=0

log |zj|2
⎞⎠ ∂ J+Kψ

∂zJ∂ z̄K
dz ∧ dz̄.

This is the same integral as in the statement of the proposition. We only need to see what
constant we get in front of it. This constant is

oω(s)
(−1)p

(J − 1J)!(K − 1K)!

⎛⎝ ∏
j:Ij �=0

Ij

⎞⎠⎛⎝ ∏
j:Jj �=0

Ij

⎞⎠−1 ⎛⎝ ∏
j:Kj �=0

Ij

⎞⎠−1

but since oω(s) = ∏
j:Jj �=0,Kj �=0 Ij this is precisely what is claimed. �

Corollary 2.7: The canonical current {ω} does not depend on the choice of section s ormetric
| · |.

Proof: This follows immediately from Proposition 2.6 since the right-hand side in that
statement does not depend on the section s or the metric | · |, as J and K do not. Hence
(locally and thus also globally) this holds for {ω}. �

Remark: We would not get the above corollary if we did not have the factor oω(s) in the
definition of Fξ .

When doing calculations we will get use of the following which is a consequence of
Cauchy–Green’s theorem: Ifψ is a smooth function with compact support in� ⊂ C then

ψ(0) = − 1
2π i

∫
�
log |z|2 ∂

2ψ

∂z∂ z̄
dz ∧ dz̄. (11)

Corollary 2.8: For ω ∈ QM(Cd) and a test function ξ in Cd with support in� we have

(a) if ω ∧ ξ = (ψ/zm1 z̄
n
1) dz ∧ dz̄ then

〈{ω}, ξ〉 = − 2π i
(m − 1)!(n − 1)!

∫
�∩{z1=0}

∂m+n−2ψ

∂zm−1
1 ∂ z̄n−1

1
dz′ ∧ dz̄′,

(b) if ω ∧ ξ = (ψ/zJ11 . . . z
Jk
k z̄1 . . . z̄k) dz ∧ dz̄

〈{ω}, ξ〉 = (−2π i)k

(J − 1J)!

∫
�∩{z1=···=zk=0}

∂ J−1Jψ

∂zJ−1J
dz′′ ∧ dz̄′′

wheredz′ ∧ dz̄′ = dz2 ∧ dz̄2 ∧ · · · ∧ dzd ∧ dz̄d anddz′′ ∧ dz̄′′ = dzk+1 ∧ dz̄k+1 ∧ · · · ∧
dzd ∧ dz̄d.

Proof: This follows from Proposition 2.6 and (11). �
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We now use Corollary 2.8 to make some explicit calculations.

Example 2.2: Let X = CP1 with homogeneous coordinates [z : w] and let 0 be the point
where z = 0 and ∞ the point where w = 0. We let

ω = dz ∧ dz̄
zz̄

= dw ∧ dw̄
ww̄

forzw �= 0,

which means that κ(ω) = 1. In view of Corollary 2.8 (a), given a test function ξ , we get

〈{ω}, ξ〉 = −2π iξ(0)− 2π iξ(∞).

On the other hand, ifX = U for some open setU ⊂ CP1 which does not contain the origin
or ∞ then κ(ω) = 0 and therefore

〈{ω}, ξ〉 =
∫
U

ξ(z)
|z|2 dz ∧ dz̄.

Remark: The above example shows that for canonical currents we have the following
property: in general χ{ω} �= {χω} for a smooth function χ . This means that when we
define the canonical current associated to a form ω it is important to decide on what
underlying space we consider it.

Example 2.3: If we let X = C and apply Corollary 2.8 withω = 1/(zmz̄n) then we get that

z
{

1
zmz̄n

}
=

{
1

zm−1z̄n

}
and z̄

{
1

zmz̄n

}
=

{
1

zmz̄n−1

}
form, n ≥ 2. On the other hand

zm
{

1
zmz̄n

}
= 0 and z̄n

{
1

zmz̄n

}
= 0

form, n ≥ 1.

Theorem 2.3 (b) gives some insight about the poles of Fξ but the following proposition
gives more information.

Proposition 2.9: The poles of the function Fξ are located at rational numbers less than or
equal to

max
{
min

{
Jj − 1
Ij

,
Kj − 1

Ij

}
: j = 1, . . . , d

}
.



COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 11

Proof: First suppose Ki = 0 or Ki = 1 for all i = 1, . . . , d. We may assume that ξ has
support in a local chart and so we can write down the integral locally as

Fξ (λ) = oω(s)
∫
�

|zI|2λ
zJ z̄K

e−2λφψ dz ∧ dz̄

= h(λ)
λp

∫
�

∂K |zI|2λ
∂ z̄K

1
zJ
e−2λφψ dz ∧ dz̄

= (−1)|K|h(λ)
λp

∫
�

|zI|2λ
zJ

∂Ke−2λφψ

∂ z̄K
dz ∧ dz̄.

We made a similar computation in the proof of Theorem 2.3, cf. Lemma 2.4, but now we
only considered the anti-holomorphic derivatives. Since these are of at most order one
the function h will not have any poles at all, see Lemma 2.4. But the integral in the last
expression above is the principal value current of 1/zJ acting on ∂Ke−2λφψ

∂ z̄K dz ∧ dz̄. This is
known not to have any poles in the right half plane (and not at the origin). Hence Fξ does
not have any poles in Re(λ) > 0.

Note that the above result would also hold as long as Ji ≤ 1 or Ki ≤ 1 for all i. Now
suppose we are in the general case. Let μ = λ− M for some integerM. Then

|zI|2λ
zJ z̄K

= |zI|2μ+2M

zJz̄K
= |zI|2μ z

MIz̄MI

zJ z̄K

and choosingM so thatMIi � Ji − 1 orMIi � Ki − 1 for each iwe get from the above that
Fξ has no poles in Re(μ) > 0. That is, Fξ has no poles in Re(λ) > M. ChoosingM so that
this holds we get the proposition. �

One can note that by choosing higher powers I of the section swe can get the poles in the
right half-plane arbitrarily close to the origin. Suppose ω = α ∧ β̄ for semi-meromorphic
forms α and β . Proposition 2.9 gives us a hint that the situation is a bit more well behaved
when β only has poles of order one since then the proposition says that Fξ does not have
poles in the right half plane.

3. Cohomological residues

Wewill discuss the classical Leray residue, the conjugate Dolbeault residue and then define
a residue for the Aeppli cohomology. NowX is assumed to be a compact complexmanifold.

3.1. The conjugate Dolbeault residue

To define residues the classical setting is the following: supposeD is a smooth hypersurface
and α a d-closed form in X \ D with a holomorphic pole of order one along D. If z1 = 0 is
a local equation for D then α may locally be written as

α = dz1
z1

∧ α̃ + τ

for some forms α̃ and τ such that τ does not contain dz1. Certainly α̃ is smooth but it is
well known that the closedness implies that τ is smooth. One defines the Poincaré residue
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by Res(α) = α̃|D. It is easy to check that this gives a well defined closed form on D. If α is
any closed form on X \ D then there is a cohomologous form α′ with a pole of order one
along D, cf. [9, Thm. 6.3.3, p. 233]. The Leray residue is defined by

Res(α) = [Res(α′)]dR

which gives a map

Res : Hk(X \ D) → Hk−1(D).

Since the groups Ep,q(∗D) form a complex with the operator ∂ we get cohomology groups
Hp,q
∂ (∗D). In [1] the conjugate Dolbeault residue was constructed as a map

Res∂ : H
p,0
∂ (∗D) → Hp−1,0

∂ (D).

We will give an alternative definition for forms in Hd,q
∂ (∗D) which is quite explicit. Given

a (d, q)-form α in Cd, with coordinates z = (z1, . . . , zd), which has a holomorphic pole
along z1 = 0 we may write

α = dz1 ∧ α̃z
zm1

(12)

for some smooth form α̃z which does not contain dz1. To define a residue we need the
following lemma.Wedonot give the proof since it is very similar to the proof of Lemma3.4.

Lemma 3.1: Let z and w be coordinates in Cd such that z1/w1 is a non-vanishing holo-
morphic function and let D = {z1 = 0}. Suppose α ∈ Ed,q(∗D) has compact support and
write

dz1
zm1

∧ α̃z(z) = α = dw1

wm
1

∧ α̃w(w),

for some smooth forms α̃z(z) and α̃w(w) which does not contain dz1 or dw1.

(a) If there is a form η ∈ E(∗D) with compact support such that α = ∂η then there is a
smooth form η̂ on D such that

∂m−1α̃z

∂zm−1
1

∣∣∣∣∣
D

= ∂η̂,

with supp(̂η) ⊂ supp(α) ∩ D.
(b) There is a smooth form β on D whose support is contained in supp(α) ∩ D such that

∂m−1α̃z

∂zm−1
1

∣∣∣∣∣
D

= ∂m−1α̃w

∂wm−1
1

∣∣∣∣∣
D

+ ∂β .

Now suppose α ∈ Ed,q(∗D) and (ρj) is a partition of unity subordinate to a cover of X
by charts with coordinates (zj = (zj,1, zj,2 . . . , zj,d)) such that D is locally given by zj,1 = 0.
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We write

α = dzj,1 ∧ α̃j(z)
zmj,1

on supp(ρj),

and then define

Rρ,z(ω) =
∑
j

1
(m − 1)!

∂m−1(ρjα̃j)

∂zm−1
j,1

∣∣∣∣∣∣
D

.

Using Lemma 3.1 one can prove that, for α ∈ Ed,q(∗D),

(a) Rρ,z(α) = Rσ ,w(α)+ ∂β ,
(b) Rρ,z(∂η) = ∂η̂.

The proof of (a) and (b) is very similar to the proof of Proposition 3.5.We can nowmake
the following definition.

Definition 3.2: For a class [α] ∈ Hd,q
∂ (∗D) we define its conjugate Dolbeault residue by

Res∂(α) = [Rρ,z(α)]∂ .

The claims (a) and (b) above give that Res∂(α) is well defined and independent of the
choice of partition of unity and local coordinates. We now present a theorem which is not
very related to the rest of the paper, but we think it is a nice application of the conjugate
Dolbeault residue.

Theorem 3.3: If α ∈ Ep,q(∗D), where D is a smooth hypersurface, and ξ a test form of
bidegree (d − p, d − q − 1) then

〈∂̄[α], ξ〉 = 〈[∂̄α], ξ〉 + 2π i
∫
D
Res∂ (α ∧ ξ).

Proof: Wemay suppose ξ has support contained in a coordinate chart which is biholomor-
phic to the unit polydisc � and that D is there given by z1 = 0. We may further suppose
that α = a

zm1
dzP ∧ dz̄Q and ξ = b dzR ∧ dz̄S where |P| = p and |Q| = q. Then we get

α ∧ ξ = (−1)q(d−p)+s ab
zm1

dz ∧ dz̄Q ∧ dz̄S,

α ∧ ∂̄ξ =
∑
k

(−1)(q+1)(d−p)+s+t a
zm1

∂b
∂ z̄k

dz ∧ dz̄,

∂̄α ∧ ξ =
∑
k

(−1)q(d−p)+d+q+s+t ∂a
∂ z̄k

b
zm1

dz ∧ dz̄,

where s and t are given by dzP ∧ dzR = (−1)sdz and dz̄Q ∧ dz̄k ∧ dz̄S = (−1)tdz̄ (so t
depends on k but we suppress this). For k = 1 we have

(−1)tdz̄ = dz̄Q ∧ dz̄1 ∧ dz̄S = (−1)qdz̄1 ∧ dz̄Q ∧ dz̄S
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and hence

dz̄′ := dz̄2 ∧ · · · ∧ dz̄d = (−1)q+tdz̄Q ∧ dz̄S.

This means that

Res∂(α ∧ ξ) = (−1)q(d−p)+q+s+t

(m − 1)!
∂m−1(ab)
∂zm−1

1
dz′ ∧ dz̄′.

We write �′ = � ∩ {z1 = 0} = � ∩ D. Using Proposition 2.6 and the remark after
Definition 2.5 we get

〈∂̄[α], ξ〉 = (−1)p+q+1〈[α], ∂̄ξ〉

=
∑
k

(−1)q(d−p)+q+d+s+t

(m − 1)!

∫
�
log |z1|2 ∂

m

∂zm1

(
a
∂b
∂ z̄k

)
dz ∧ dz̄

= (−1)q(d−p)+q+d+s+t

(m − 1)!

∫
�
log |z1|2 ∂

m+1(ab)
∂zm1 ∂ z̄1

dz ∧ dz̄

−
∑
k

(−1)q(d−p)+q+d+s+t

(m − 1)!

∫
�
log |z1|2 ∂

m

∂zm1

(
∂a
∂ z̄k

b
)
dz ∧ dz̄

= 2π i(−1)q(d−p)+q+s+t

(m − 1)!

∫
�′
∂m−1(ab)
∂zm−1

1
dz′ ∧ dz̄′ + 〈[∂̄α], ξ〉

= 2π i
∫
D
Res∂(α ∧ ξ)+ 〈[∂̄α], ξ〉

�

3.2. A residue for the Aeppli cohomology

Recall that for a complex manifold X one defines the Bott–Chern cohomology groups by

Hp,q
BC(X) = ker(∂) ∩ ker(∂̄)

im(∂∂̄)

and the Aeppli cohomology groups by

Hp,q
A (X) = ker(∂∂̄)

im(∂)+ im(∂̄)
. (13)

Given a hermitian metric on X the induced Hodge star operator gives an isomorphism

∗ : Hp,q
BC(X) → Hn−p,n−q

A (X)

so in this sense the Aeppli cohomology is dual to the Bott–Chern cohomology. We have
the following natural maps
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and for a manifold on which the ∂∂̄-lemma holds all the outer maps are isomorphisms. In
particular this is true for Kähler manifolds. For a more elaborate discussion on these facts
we refer to [10–12].

Restricting our attention to forms in Ed,d(∗∗̄D), where D is a smooth complex hyper-
surface, we consider the cohomology group Hd,d

A (∗∗̄D). To define a residue we need the
following lemma.

Lemma 3.4: Let z and w be coordinates in Cd such that z1/w1 is a non-vanishing holo-
morphic function and let D = {z1 = 0}. Suppose ω ∈ Ed,d(∗∗̄D) has compact support and
write

dz1 ∧ dz̄1
zm1 z̄

n
1

∧ ω̃z(z) = ω = dw1 ∧ dw̄1

wm′
1 w̄n′

1
∧ ω̃w(w),

for some smooth forms ω̃z(z) and ω̃w(w) which does not contain dz1, dz̄1 or dw1, dw̄1.

(a) If there are forms η, ν ∈ E(∗∗̄D) with compact support such that ω = ∂η + ∂̄ν then
there are smooth forms η̂ and ν̂ on D such that

∂m+n−2ω̃z

∂zm−1
1 ∂ z̄n−1

1

∣∣∣∣∣
D

= ∂η̂ + ∂̄ ν̂,

with supp(̂η), supp(̂ν) ⊂ supp(ω) ∩ D.
(b) There are smooth forms α̂ and β̂ on D whose support is contained in supp(ω) ∩ D such

that

1
(m − 1)!(n − 1)!

∂m+n−2ω̃z

∂zm−1
1 ∂ z̄n−1

1

∣∣∣∣∣
D

= 1
(m′ − 1)!(n′ − 1)!

∂m+n−2ω̃w

∂wm′−1
1 ∂w̄n′−1

1

∣∣∣∣∣
D

+ ∂α̂ + ∂̄ β̂ .

Proof: We first prove (a) and suppose ω = ∂η. If

η = dz1 ∧ dz̄1 ∧ η1 + dz̄1 ∧ η2
zm−1
1 z̄n1

,

where η1 and η2 does not contain dz1 or dz̄1, then

ω = ∂η = dz1 ∧ dz̄1
zm1 z̄

n
1

∧
(

−(m − 1)η2 + z1∂η1 + z1
∂η2

∂z1

)
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and therefore

ω̃z = −(m − 1)η2 + z1∂η1 + z1
∂η2

∂z1
.

We get

∂m+n−2ω̃z

∂zm−1
1 ∂ z̄n−1

1

∣∣∣∣∣
D

= ∂m+n−2

∂zm−1
1 ∂ z̄n−1

1

(
−(m − 1)η2 + z1∂η1 + z1

∂η2

∂z1

)∣∣∣∣∣
D

= (m − 1)

(
− ∂m+n−2η2

∂zm−1
1 ∂ z̄n−1

1
+ ∂m+n−3∂η1

∂zm−2
1 ∂ z̄n−1

1
+ ∂m+n−2η2

∂zm−1
1 ∂ z̄n−1

1

)∣∣∣∣∣
D

= ∂

(
(m − 1)

∂m+n−3η1

∂zm−2
1 ∂ z̄n−1

1

∣∣∣∣∣
D

)
.

The case ω = ∂̄ν is treated analogously. By linearity we get the case ω = ∂η + ∂̄ν and
hence we have proven (a). Now we prove (b) and we first suppose (m, n) = (m′, n′). The
calculation

ω = −∂
(

1
m − 1

dz̄1 ∧ ω̃z

zm−1
1 z̄n1

)
− 1

m − 1
dz̄1 ∧ ∂ω̃z

zm−1
1 z̄n1

= −∂
(

1
m − 1

dz̄1 ∧ ω̃z

zm−1
1 z̄n1

)
+ 1

m − 1
dz1 ∧ dz̄1
zm−1
1 z̄n1

∧ ∂ω̃z

∂z1

may be iterated and so we can write

ω = ∂α1 + ∂̄β1 + 1
(m − 1)!(n − 1)!

dz1 ∧ dz̄1
z1z̄1

∧ ∂m+n−2ω̃z

∂zm−1
1 ∂ z̄n−1

1
.

Doing the same for the coordinate w we get that

dz1 ∧ dz̄1
z1z̄1

∧ ∂m+n−2ω̃z

∂zm−1
1 ∂ z̄n−1

1
− dw1 ∧ dw̄1

w1w̄1
∧ ∂m+n−2ω̃w

∂wm−1
1 ∂w̄n−1

1
= ∂α + ∂̄β

for some α and β . Using (a) we get

∂m+n−2ω̃z

∂zm−1
1 ∂ z̄n−1

1

∣∣∣∣∣
D

= ∂m+n−2ω̃w

∂wm−1
1 ∂w̄n−1

1

∣∣∣∣∣
D

+ ∂α̂ + ∂̄ β̂

which is what was to be proven. Now we treat the case that (m, n) �= (m′, n′) and for
simplicity we supposem′ � m and n′ � n. We get

1
(m′ − 1)!(n′ − 1)!

∂m
′+n′−2zm

′−m
1 z̄n

′−n
1 ω̃z

∂zm
′−1

1 ∂ z̄n
′−1

1

∣∣∣∣∣
D

= 1
(m′ − 1)!(n′ − 1)!

(
m′ − 1
m′ − m

)(
n′ − 1
n′ − n

)
∂m

′−mzm
′−m

1

∂zm
′−m

1

∂n
′−nz̄n

′−n
1

∂ z̄n
′−n

1

∂m+n−2ω̃z

∂zm−1
1 ∂ z̄n−1

1

∣∣∣∣∣
D

= 1
(m − 1)!(n − 1)!

∂m+n−2ω̃z

∂zm−1
1 ∂ z̄n−1

1

∣∣∣∣∣
D
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since the restriction to D forces the correct amount of derivatives to land on zm
′−m

1 and
z̄n

′−n
1 . This proves (b). �

LetD be a smooth complex hypersurface onX. For a formω ∈ Ed,d(∗∗̄D) and a partition
of unity (ρj) subordinate to a cover ofX by charts with coordinates (zj = (zj,1, zj,2 . . . , zj,d))
such that D is locally given by zj,1 = 0 and

ω = dzj,1 ∧ dz̄j,1
zmj,1z̄

n
j,1

∧ ω̃j(z) on supp(ρj),

we let

Resρ,z(ω) =
∑
j

1
(m − 1)!(n − 1)!

∂m+n−2(ρjω̃j)

∂zm−1
j,1 ∂ z̄n−1

j,1

∣∣∣∣∣∣
D

.

Proposition 3.5: For a smooth complex hypersurface D ⊂ X and ω ∈ Ed,d(∗∗̄D) we have

(a) Resρ,z(ω) = Resσ ,w(ω)+ ∂α + ∂̄β ,
(b) Resρ,z(∂η + ∂̄ν) = ∂α + ∂̄β .

Proof: We write

Resjρ,z(ω) = 1
(m − 1)!(n − 1)!

∂m+n−2(ρjω̃j)

∂zm−1
j,1 ∂ z̄n−1

j,1

∣∣∣∣∣
D

so that

Resρ,z(ω) =
∑
j
Resjρ,z(ω).

We have the following two identities:

(i) Resjρ,z(σiω) = Resiσ ,w(ρjω)+ ∂αi,j + ∂̄βi,j,
(ii) Resjρ,z(ω) = ∑

i Res
j
ρ,z(σiω).

�

The first is basically Lemma 3.5 (b) and (ii) is just an interchange of the differentiation
and the sum. Using the claims we get

Resρ,z(ω)
def=

∑
j
Resjρ,z(ω)

(ii)=
∑
j,i

Resjρ,z(σiω)

(i)=
∑
i,j

Resiσ ,w(ρjω)+ ∂αi,j + ∂̄βi,j

(ii)=
∑
i
Resiσ ,w(ω)+

∑
i,j
∂αi,j + ∂̄βi,j
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def= Resσ ,w(ω)+ ∂

⎛⎝∑
i,j
αi,j

⎞⎠ + ∂̄

⎛⎝∑
i,j
βi,j

⎞⎠
since αi,j and βi,j has support contained in supp(ρjσi). Thus we have proven (a).We further
have

Resρ,z(∂η + ∂̄ν) = Resρ,z

(∑
i
∂(σiη)+ ∂̄(σiν)

)

=
∑
i
Resρ,z(∂(σiη)+ ∂̄(σiν))

=
∑
i
∂αi

= ∂

(∑
i
αi

)
.

which proves (b).
Using Proposition 3.5 we can give the following definition.

Definition 3.6: Let D be a smooth complex hypersurface on X. For ω ∈ Hd,d
A (∗∗̄D) we

define the Aeppli residue by

ResA(ω) = [Resρ,z(ω)]A

Remark: Our definition of the Aeppli residue is very similar to the definition of the residue
map in [2]. They define this in a different context and for forms with, what they call, tame
singularities.

We thus have a map ResA : Hd,d
A (∗∗̄D) → Hd−1,d−1

A (D).

Proposition 3.7: Let D be a smooth complex hypersurface on X.

(a) If ω ∈ Hd,d
A (∗∗̄D) is semi-meromorphic then ResA(ω) = 0.

(b) If α and β are meromorphic (d, 0)-forms with poles along a smooth hypersurface D and
the pole of β is of order one then

ResA(α ∧ β̄) = (−1)d−1[Res∂α ∧ Resβ]A

where the right-hand side is a well defined class and Resβ denotes the Poincaré residue.

Proof: We get (a) from Lemma 3.4 since we may choose n ≥ 1. To prove (b) write locally
α = (a/zm1 ) dz and β = (b/z1) dz. Then α ∧ β̄ = (−1)d−1(ab̄/(zm1 z̄1)) dz1 ∧ dz̄1 ∧ dz′ ∧
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dz̄′ and hence

ResA(α ∧ β̄) = (−1)d−1

[
∂m−1a
∂zm−1

1
b̄ dz′ ∧ dz̄′

]
A

and Res∂ (α) = [ ∂
m−1a
∂zm−1

1
dz′]∂ . The Poincaré residue Resβ is meromorphic since β is. Letting

R = ∂m−1a
∂zm−1

1
dz′ we get that (−1)dR ∧ Resβ is a representative of ResA(α ∧ β̄) and R is a

representative of Res∂ (α). If we choose a different representative, say R + ∂γ , of Res∂ (α)
we get

(R + ∂γ ) ∧ Resβ = R ∧ Resβ + ∂(γ ∧ Resβ)

and therefore [Res∂ α ∧ Resβ]A is well defined. �

The next theorem relates the Aeppli residue to the canonical currents defined in
Section 2.2. It gives an indication that canonical currents do not behave like principle value
currents but rather as residue currents.

Theorem 3.8: For ω ∈ E(∗∗̄D) with κ(ω) > 0 and D a smooth complex hypersurface we
have

〈{ω}, ξ〉 = −2π i
∫
D
ResA(ω ∧ ξ).

Proof: Choose a partition of unity (ρι) subordinate to a cover consisting of charts which
are mapped to the unit polydisc in which the hypersurface is given by z1 = 0. Suppose the
holomorphic pole has orderm and the anti-holomorphic pole order n. Since κ(ω) > 0 by
assumption we havem, n>0. Notice that κ(ω) > 0 together with thatD is smooth implies
that κ(ω) = 1.Write locally ω ∧ ξ = ψ/(zm1 z̄

n
1) dz ∧ dz̄. Then, using Proposition 2.6, (11)

and Definition 3.6 we get

〈{ω}, ξ〉 =
∑
ι

1
(m − 1)!(n − 1)!

∫
�
log |z1|2 ∂

m+nριψ

∂zm1 ∂ z̄
n
1

dz ∧ dz̄

= −2π i
∑
ι

1
(m − 1)!(n − 1)!

∫
�∩D

∂m+n−2ριψ

∂zm−1
1 ∂ z̄n−1

1
dz′ ∧ dz̄′

= −2π i
∫
D
ResA(ω ∧ ξ).

�

Theorem 3.8 immediately implies Theorem 1 in the introduction. Having found a for-
mula for the action of {ω} when ω ∈ E(∗∗̄D) and D is smooth we shall now treat the case
when D has normal crossings. We need to define an Aeppli residue for such forms ω.

Suppose thatD = E ∪ N, whereE is a smooth hypersurface andN is a hypersurfacewith
normal crossings, and that ω ∈ Hd,d

A (∗∗̄D). The form ω|X\N has poles along the smooth
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hypersurface E \ N and therefore its Aeppli residue is well defined. We let

ResEA(ω) = ResA(ω|X\N). (14)

The residue is smooth on E \ N and has poles along E ∩ N and therefore it is in
Hd−1,d−1
A (∗∗̄(E ∩ N)). This makes it possible to inductively define residues for intersec-

tions of smooth hypersurfaces.
To be precise, we first let ResXA(ω) = ω. Assuming we have defined the Aeppli residue

for intersections of k smooth hypersurfaces we shall define it for an intersection of k+ 1
smooth hypersurfaces. If E = D1 ∩ · · · ∩ Dk+1, for smooth hypersurfaces D1, . . . ,Dk+1,
then we let

ResEA(ω) = ResD1
A (Res

D2∩···∩Dk+1
A (ω)).

Let us see what this amounts to. If E is locally given by z1 = · · · = z� = 0 then

ω = (dz1 ∧ dz̄1) ∧ · · · ∧ (dz� ∧ dz̄�)
zm1
1 z̄n11 · · · zm�� z̄n��

∧ ω̃.

Repeatedly taking the Aeppli residue with respect to the variable z1, . . . , z� gives that

ResEA(ω) = 1
(m1 − 1)!(n1 − 1)! · · · (m� − 1)!(n� − 1)!

∂m1+n1+···+m�+n�−2�(ω̃)

∂zm1−1
1 ∂ z̄n1−1

1 . . . ∂zm�−1
� ∂ z̄n�−1

�

∣∣∣∣∣
E

.

Recall from Section 2 that E(ω) is the smallest non-empty strata of the hypersurface on
which ω has both holomorphic and anti-holomorphic singularities. We have in particular
defined an Aeppli residue on this submanifold. But ResE(ω)A (ω) does not need to be smooth
since it may have either holomorphic or anti-holomorphic singularities. If this is the case
then ResE(ω)A (ω) is not even integrable. However, when the set of holomorphic singularities
P1,0(ω) and the set of anti-holomorphic singularities P0,1(ω) coincide then ResE(ω)A (ω) is a
smooth form.We are now ready to formulate the following generalisation of Theorem 3.8.

Theorem 3.9: For ω ∈ E(∗∗̄D) such that D has normal crossings we have

〈{ω}, ξ〉X = (−2π i)κ(ω)〈{ResE(ω)A (ω ∧ ξ)}, 1〉E(ω).

Proof: Take a partition of unity with the same properties as in the proof of Theorem 3.8,
but now the hypersurface will be given by zI = 0. Suppose E(ω) is given by z1 = · · · =
z� = 0. Then we let dz′ = dz�+1 ∧ · · · ∧ dzd. Let R be the multi-index which is 1 in the �
first positions and otherwise 0. If we write p = 2κ(ω)+ p′ then

p′ = #{j : Jj = 0,Kj �= 0} + #{Kj �= 0, Jj = 0}.
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Now, similar to the proof of Theorem 3.8, we get

〈{ω}, ξ〉

=
∑
ι

(−1)p

(J − 1J)!(K − 1K)!

∫
�

⎛⎝ ∏
j:Jj+Kj �=0

log |zj|2
⎞⎠ ∂ J+Kριψ

∂zJ∂ z̄K
dz ∧ dz̄

= (−2π i)κ(ω)
∑
ι

(−1)2κ(ω)+p′

(J − 1J)!(K − 1K)!

∫
�∩E(ω)

⎛⎜⎜⎜⎝ ∏
j:Jj=0,Kj �=0
or Jj �=0,Kj=0

log |zj|2

⎞⎟⎟⎟⎠ ∂ J+K−2Rριψ

∂zJ−R∂ z̄K−R dz′ ∧ dz̄′

= (−2π i)κ(ω)
∑
ι

(−1)p
′
∫
�∩E(ω)

⎛⎜⎜⎜⎝ ∏
j:Jj=0,Kj �=0
or Jj �=0,Kj=0

log |zj|2

⎞⎟⎟⎟⎠ResE(ω)A (ω ∧ ξρι) dz′ ∧ dz̄′

= (−2π i)κ(ω)〈{ResE(ω)A (ω ∧ ξ)}, 1〉E(ω).
�

The right-hand side of Theorem 3.9 is a bit messy but with one extra assumption we get
a cleaner statement.

Corollary 3.10: For ω ∈ E(∗∗̄D) such that D has normal crossings and P1,0(ω) = P0,1(ω)
we have

〈{ω}, ξ〉 = (−2π i)κ(ω)
∫
E(ω)

ResE(ω)A (ω ∧ ξ).

Proof: Under these assumptions ResE(ω)A (ω ∧ ξ) is smooth on E(ω) so the statement
follows from Theorem 3.9. �

4. Analytic continuation of divergent integrals

We will use the results in the previous sections to describe asymptotic expansions com-
ing from analytic continuations of divergent integrals. In this section we drop the point
of view of currents of quasi-meromorphic forms. Instead we suppose we have two semi-
meromorphic forms α and β , on a compact complex manifold X, which have poles along
the same hypersurface D. As before we assume D to have normal crossings. We write

Dd ⊂ · · · ⊂ D1 ⊂ D0

for the natural stratification of D, cf. (2) in Section 2. Recall that D0 = X and D1 = D.
Regularising the integral ∫

X
α ∧ β̄
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we use Theorem 2.3 to get the asymptotic expansion∫
X

|s|2λα ∧ β̄ = λ−κC−κ + · · · + λ−1C−1 + C0 + O(|λ|)

where κ = κ(α ∧ β̄). Interpreting Corollary 3.10 in this setting we get

C−κ = (−2π i)κ

o(s)

∫
Dκ

ResA(α ∧ β̄)

where o(s) = oα∧β̄ (s). We will now make some calculations of the other coefficients and
we will in particular see how they depend on the metric. The coefficients also depend on
the choice of section but as long as we do not change the line bundle this can be seen as a
change of metric. The result is the following theorem.

Theorem 4.1: For the coefficients C−r in the asymptotic expansion∫
X

|s|2λα ∧ β̄ = C−κλ−κ + · · · + C−1λ
−1 + C0 + O(|λ|)

we have

(a) C−r depends polynomially of degree κ − r on the metric. More precisely, if φ is the differ-
ence of two metrics then there are differential operators Qr,j with integrable coefficients
such that

C−r(φ) =
κ−r∑
j=0

∫
X
Qr,j(φ

j).

(b) The term
∫
X Qr,κ−r(φ

κ−r)may be written

(−2π i)κ(−2)κ−r

o(s)(κ − r)!

∫
Dκ

ResA(φκ−rα ∧ β̄),

(c) C−r may be written as an integral over Dr, i.e. the codimension r components in the
stratification of D.

Proof: Similarly as in Section 2.2 we let

F(λ) = o(s)
∫
X

|s|2λα ∧ β̄

and from the proof of Theorem 2.3 we get

F(λ) = (−1)|J|+|K|o(s)
λp

h(λ)g(λ)

where

g(λ) =
∑
ι

∫
�

|zI|2λ ∂ J+K

∂zJ∂ z̄K
(e−2λφψι) dz ∧ dz̄,

ψι is given by (ψι/(zJ z̄K)) dz ∧ dz̄ = ρια ∧ β̄ and h and p is given by Lemma 2.4. We may
choose J and K independent of ι. From now on we will suppress ι and ρι. Since we have
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assumed that α and β have poles along the same hypersurface p = 2κ . From the proof of
Theorem 2.3 we know that g(k)(0) = 0 for k = 0, . . . , p − κ − 1. Taylor expanding hg we
get, for r = 0, 1 . . . , κ ,

C−r = (−1)|J|+|K|

(p − r)!

p−r∑
k=p−κ

(
p − r
k

)
h(p−r−k)(0)g(k)(0).

Lemma 2.4 implies that the derivatives of h are combinatorial expressions involving J and
K. From the proof of Theorem 2.3 we also get

g(k)(0) =
k∑
�=κ

(
k
�

)
(−2)k−�

∑
M

(
�

M

) ∫
�

d∏
j=1
(Ij log |zj|2)Mj

∂ J+K

∂zJ∂ z̄K
(ψφk−�) dz ∧ dz̄

and hence we have proven the first part of (a), that C−r = ∫
X

∑
Qr,j(φ

j) for some differ-
ential operators Qr,j. We further see that the highest power of φ is obtained when k is as
large as possible and � is as small as possible. Thus setting k = p−r, � = κ and collecting
the constants we get that the leading term is given by

(−1)|J|+|K|(−2)κ−r

(κ − r)!
h(0)

∫
�

d∏
j=1
(Ij log |zj|2)Mj

∂ J+K

∂zJ∂ z̄K
(ψφκ−r) dz ∧ dz̄

= (−2π i)κ(−2)κ−r

o(s)(κ − r)!

∫
Dκ

ResA(φκ−rα ∧ β̄)

if we do a similar calculation as in the proof of Proposition 2.6. This proves the rest of (a)
and (b).

To prove (c) we may suppose that I1, . . . , Iκ �= 0 and Iκ+1, . . . , Id = 0. We must show
that we can reduce all the integrals in all the derivatives of g to an integral over Dr. Let us
look at g(k) for k = κ , . . . , p − r. In the expression for the derivative we have a multi-index
M such that

∑
j Mj = �, where � � k. We have seen that when Mi = 1, so that we have

log |zi|2 in the integral, we may reduce it to an integral over� ∩ {zi = 0}.
First let M1 = · · · = Mκ = 1. But then we need to add �− κ to these indices, i.e. at

most we need to add p − r − κ = κ − r. But if we add 1 to κ − r differentMj there are still
r number ofMj which are equal to one. Furthermore, in these variables we may reduce the
integrals r times, hence to codimension r. Adding more than one to someMj only makes
it better. �

Theorem 4.1 points out why we call the currents defined from quasi-meromorphic
forms canonical; the currents come from the only coefficient in the asymptotic expansion
which is independent of the metric. In the special case that D is a smooth hypersurface we
get the following corollary.
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Corollary 4.2: If D is a smooth hypersurface then∫
X

|s|2λα ∧ β̄ = λ−1C−1 + C0 + O(|λ|)

with C−1 = − 2π i
o(s)

∫
D ResA(α ∧ β̄) and

C0(φ) = 4π i
o(s)

∫
D
ResA(φα ∧ β̄).
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