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ABSTRACT ARTICLE HISTORY
Using methods from the theory of residue currents we provide Received 29 June 2024
asymptotic expansions of certain divergent integrals on complex Accepted 22 August 2025
manifolds. We express the .coeffict'ients in these expansions with COMMUNICATED BY
the conjugate Dolbeault residue, introduced by Felder and Kazh- J. Zhang

dan [Divergentintegrals, residues of Dolbeault forms and asymptotic

riemann mappings. Int Math Res Not. (8), 2016], and define a new KEYWORDS

residue which we call the Aeppli residue. Residues; divergent integrals;
currents

1. Introduction

Suppose X is a compact complex manifold of dimension d and D C X is a smooth
hypersurface. Motivated by perturbative string theory, in [1] Felder and Kazhdan discuss
regularisations of divergent integrals of the form

/Xa/\ﬁ

where a and f are (d, 0)-forms which are smooth on X \ D, a has a pole along D and S
has a pole of order one along D. In their paper they use cut-off functions, i.e. functions y
which are zero on D and otherwise positive, and prove the asymptotic expansion

/ a AB =logely+ I () + O(e)
xX=e

where I = fD Resa A Resf does not depend on the cut-off function (here Res denotes
the classical Leray residue which we discuss later). They also show that I; () depends lin-
early on y and give an explicit expression for it in terms of the conjugate Dolbeault residue,
Resp, defined in the same paper. In a second paper, [2], the same authors generalise these
results to smooth manifolds and forms which have singularities on submanifolds, where
the singularities are determined by Morse-Bott functions. As a special case they consider
the case of a complex manifold and a form with singularities on a complex hypersurface
with normal crossings. They also study analytic continuations of these divergent integrals.
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In this paper we take the analytic continuation of divergent integrals as starting point.
This means that we have a different method of regularising the divergent integrals and this
will give us more explicit formulas. We allow D to be a hypersurface with normal crossings
and o and S to be semi-meromorphic forms with poles along D of any order. If s : X — L
is a holomorphic section of some line bundle such that D = {s = 0} and | - | is a metric on
L we define a function by

RN / Is|%*a A B.
X

This function is a priori only defined for complex numbers 1 with Re/ large enough but
we will see that it has a meromorphic extension to C which is holomorphic when Re4 is
large enough. We get a Laurent expansion at 0, cf. Theorem 2.3,

/ IS0 A B = A Crp + -4+ 47101 + Co+ O() (1)
X

where « is defined in Section 2. Changing a A B to a A B A &, where & is a test func-
tion, we get currents C_;(¢) of bidegree (d, d). We will focus on the leading coefficient
C_x, which we call the canonical current associated to a A f, and we denote it by {a A S}.
The motivation for this construction comes from the study of residue currents in complex
geometry. Then one looks at so called semi-meromorphic forms a, i.e. locally a = @ /f
for some smooth form @ and some holomorphic function f such that f # 0. Given such a
form one can use this method to define the principal value current [a]. We will recall more
precisely how this is done in Section 2.

In the third section we discuss cohomological residues. Given a semi-meromorphic
(d,d — 1)-form a on X which has poles along a smooth hypersurface D the conju-
gate Dolbeault residue Resy(a) is a class in the conjugate Dolbeault cohomology group
Hg_l’d_l(D), see Definition 3.2. We then define a new residue, which we call the Aeppli
residue, and denote it by Res4. Given semi-meromorphic (d, 0)-forms  and £ which have
poles along D, the Aeppli residue Resa(a A f3) is a class in the Aeppli cohomology group
Hz_l’d_l (D). The definition of the Aeppli cohomology groups are recalled in Section 3.2
below. We relate these residues to the currents defined from analytic continuations of diver-
gent integrals. A more general statement is given in Theorem 3.9 but one result relating
canonical currents and the Aeppli residue is the following.

Theorem 1.1: For semi-meromorphic forms o and f, polar along a smooth hypersurface D,
we have for every test form &,

({a A B),E) = —27ri/ Resa(a A B AE).
D

Theorem 1 concerns the leading coefficient in expansions such as (1). In Section 4 we
use the previous results to describe the other coefficients, see Theorem 4.1. One of the main
points of Theorem 4.1 is the following informally stated result.

Theorem 1.2: The coefficient C_, in the asymptotic expansion (1) depends polynomially of
degree k — r on the chosen metric.
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We finally note that asymptotic expansions similar to (1) have been studied before, see
e.g.[3, 4], but to our understanding these results are not directly related to our residues.

2. Currents from singular forms

We recall some facts about semi-meromorphic forms and how to define principal value
currents from them. In Section 2.2 we define currents from more general forms. Through-
out X will be a complex manifold of dimension d.

2.1. Semi-meromorphic forms

We denote by SM(X) the semi-meromorphic forms, i.e. forms a which can be written
locally as a = @ /f where @ is a smooth form and f a holomorphic function such that
f £ 0. We write P(a) for the polar set of a, which consists of the points where a is not
smooth. Given the local description above we get P(a) C {f = 0}. For a hypersurface D
we write £(xD) for the semi-meromorphic forms which have a polar set contained in D
and EP1(xD) for the ones of bidegree (p, q). Since the pole of a semi-meromorphic form is
determined locally by a holomorphic function, locally the order of the pole is well defined.

One way to define principal value currents from semi-meromorphic forms is the fol-
lowing cf. [5-7]: suppose a € £(xD) has a hypersurface D with normal crossings as polar
setand D = {s = 0} where s : X — L is a holomorphic section of some line bundle L. Let
| - | be a metric on L and ¢ a test form of complementary degree. The function

A / |s|2’1a ANE
X

is a priori only defined when ReA > 1. One can show, however, that the function has an
analytic continuation to ReA > —¢ for some ¢ > 0. Thus we may define the principal value

current [a] by
([a),&) = (/ s a Aé)
X

The current does not depend on the choice of metric | - | or section s.

A=0

2.2. Quasi-meromorphic forms

We let QM (X) denote forms @ which can be written locally as @ = @/fg where @ is a
smooth form and f and g are holomorphic functions which are not identically zero. We
call these forms quasi-meromorphic and they are smooth forms except that they can have
real analytic singularities along (local) complex hypersurfaces.

For w € QM (X) we define its polar set, denoted by P(w), as the set of points where w is
not smooth. When w has a polar set contained in a hypersurface D we write w € & (xx*D),
we call D the polar set even though @ may be smooth on parts of D. We will focus on forms
in £(xxD), for some D, since it is notationally more convenient. We write £79(xxD) for
the forms in £ (**D) which have bidegree (p, q).

The polar set of a quasi-meromorphic form has different parts between which we need
to distinguish. We define the subset P1%(w) C P(w) as follows. A point x in the polar set is
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not in P1¥(w) if around this point there is holomorphic function g, with g # 0, such that
g is smooth. In the same spirit we define the set P%!(w) to be the subset of polar points
around which there is not a holomorphic function f, with f % 0, such that fw is smooth.
We say that P10(w) is the set where e has holomorphic singularities and P%! () is the set
where w has anti-holomorphic singularities. We have that

P(w) = PY*(w) U P*!(w)

but P1%(w) N P! (w) need not be empty; it is the set where @ has both holomorphic
and anti-holomorphic singularities. The order of the holomorphic (and anti-holomorphic)
pole is locally well defined.

If o € £(**D) then P (w) and P*!(w) are hypersurfaces contained in D and we tem-
porarily set H(w) to be the codimension one components of P () N P*!(w). Since this
is an analytic set there is a natural stratification, see Proposition I.5.6 in [8],

H(w)q C H(w)g—1 C --- C H(w)1 C H(w)o (2)
where
(i) H(w) =X,
(i) H(w); = H(w),

(iii) ifk =2,...,dthen H(w)g is (H(®)k—1)sing together with all the components of
H(w)k—1 with codimension greater than or equal to k.

Notice that H(w)x \ H(w)k+1 is a (d — k)-dimensional complex manifold which is
possibly empty.

Definition 2.1: With the stratification as above we define the integer x (@) to be the largest
number k such that H(w)y is non-empty. We further let E(w) := H(®)(w)-

The integer x(w) in some sense measures how bad the singularities of  are. By
definition E(w) is a complex submanifold of dimension d — x (w).

Example 2.1: To clarify these notions we give an example in C? in the case of normal
crossings. For

1
w = - =, < -
z1Z1(z1 — 1)2223

we have

P ={z1=0}U{z1 =1} U{z =0},

P* = {z; = 0} U {z3 = 0O}.
Thus PH N P%! = {z; = 0} U {z; = 1,23 = 0} and hence H(w) = {z; = 0}. Since this is
smooth we get that x (w) = 1 and E(w) = {z; = 0}.

For a semi-meromorphic form a we have H(a) = &. Hence all components except
H(a)o = X in the stratification are empty. Thus x (o) = 0 and E(a) = X.
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For a form w € £(x%D), where D has normal crossings, there is a more explicit descrip-
tion of ¥ (w). Around any point x € X there are local coordinates (zi, . . ., z;7) with D given
by z1z; - - - zr = 0. Then there are multi-indices ] and K so that ZZ%w is smooth. Choosing
J and K minimal we define

kx(w) =#{j:]j#0 and K;# 0}
and then
k(w) = max Ky ().

Now suppose s : X — L is a holomorphic section such that D = {s = 0} has normal cross-
ings and that w € £(x*D). Around any point x € X there are coordinates (z1, .. .,z4) so
that H(w) is given by z12; - - - z; = 0. In a local holomorphic frame the section is given by
s = z!¢ for some holomorphic ¢ which is non-vanishing on H(w). We define

4
0ux(s) =[] I (3)
j=1

and note that this does not depend on the choices of local coordinates or the frame.

Definition 2.2: For a holomorphicsections : X — L which defines a hypersurface D with
normal crossings and w € £ (x*D) we let

05 (S) = max 0y (8).
xeX

Notice that in (3) we only multiply by the vanishing order for s on the local components
on which w has both holomorphic and anti-holomorphic poles. For @ semi-meromorphic
04, (s) = 1 for all sections s since then the product is empty.

We are now assuming that the polar set of w is a hypersurface with normal crossings.
For a test form ¢ of complementary degree and 4 € C with Re(4) > 1 we let

F() =000 [ 10 AL, @
X
The following theorem gives a first description of the function Fe.

Theorem 2.3: Suppose w € QM (X) has a hypersurface D with normal crossings as a polar
set. The function F¢ has the following properties

(a) Fg has a meromorphic extension to C,
(b) the possible poles of Fz are at Q C R,
(c) the order of the pole of F¢ at the origin is < k(w).

To prove Theorem 2.3 we need the following lemma, the proof of which is a simple
exercise.
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Lemma 2.4: For 1 € C and multi-indices I, ], K such that if I; = 0 then J; = 0 and K; = 0

we have
|ZI|2)‘ h(/l) @H—Klzllu
JK T 0 0dozK
where
—1 —1
h) =[50 -0 GL =]+ 1) [T5G5-1- 0L -K+1)

Ji#0 Kj#0
andp = #{j: J; # 0} + #{j : K; # 0}.
Notice that this means that #(4) has poles in

2 i—1
I_ ..,]] for jwith J; > 1

and

2 K-l

— for]w1tth>1.
T

Proof of Theorem 2.3.: We may suppose that ¢ has support in a coordinate chart and so

we study the integral over, say, a polydisc A C C. Since D has normal crossings we may

. . . . I I .
find coordinates so that the section s is a monomial, say s = z/ =z - - - 2/ and we write

the metricas | - | = | - [e™ for some function ¢. Furthermore, we write
"4 _
G)AfZWdZ/\dZ, (5)
7z

where dz =dz; A --- Adzg and y is some smooth function with support in A. The
integral in (4) may now be written
F: (L ( 1 220 4z n i (6)
c(A) = 04 () N W wdz A dz.

We now prove (a). For integers N > 0 we can use Lemma 2.4 and Stokes’ theorem to
simplify the integral in (6) as

|2)+2N 21 _
Ff(l)—ow(S)/ m - ¢l//dZ/\dZ

Ow(s)h(/l) / aJ+K+2NI|ZII2,1+2N

—21¢ _
= o Nigk+Nr ¢ Y dzndz

- 1)|]+NI|+IK+NI|0 (s)h(/l)/| 2iqan OTHEEANT 249 y) dz A dz.

PN 07 +NI 5ZzK+NI (

The last integral in the above expression is holomorphic in ReA > —N — ¢ for some ¢ >
0. Furthermore, the function h, which is given by Lemma 2.4 but here depends on N, is
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meromorphic in C. Hence Fg has a meromorphic extension to C, as N may be chosen
arbitrarily large, and we have proven (a).

Now let us prove (b). The fact that the poles are located at rational numbers follows from
the proof of (a) and Lemma 2.4 which describes the locations of the poles of h.

Finally we prove (c). Choosing N = 0 gives

(=)l (5)h(2)
ey = COD 0 OMD, [ P oyyna

Notice that Lemma 2.4 in particular gives that & does not have a pole at 0. We define a
function g from the integral above by

e _
g(/l) = A |Z | W(e_ ¢l//) dz A dz.

Then g is holomorphic in Red > —¢ for some ¢. To show that Fs has a pole of order x we
need to show that g has a zero of order p — x at the origin. We have that

p—rx =#{j:]j # 00rK; # 0} = #{j : [; # O}.
Repeated use of the product rule for derivatives gives

k

+
00 =3 ()2 [ s G Heng

and using the multinomial theorem we get
(lo |zf|2)fﬂ( 0 dz A dz
L 08 sdok W

4 a 1 2\M; a]+K k—¢€ =
=3 (4 /. E(Ij 0815 () dz A 2. ©)

The sum is over multi-indices M = (M1, ..., M) such that [[=0 implies that M; =0, all
M; > 0and Zj M; = ¢. Thus we have to study integrals of the form

d

ot
/H(I log |zj1*)™ ]a T K(l//qﬁk %y dz A dz. (10)

j=1

Suppose first that I; # 0 but M; = 0. Then the integral in (10) may be written

d
. A
/A/ ]i!(ljlog |Zj|2)M] (/ aZ]aZK(W¢k f) le /\le) dZ /\dZ
j=

where A = A; x A’. But since Ij # 0 implies that J; # 0 or K; # 0 the inner integral
vanishes using Stokes’ theorem. Hence we get the following:

if I; # 0 but M;j = 0 then the integral in (10) vanishes.

Now we suppose k < p — x and we want to show that g(k) (0) = 0. From (8) and (9) we
know that g (0) is a sum of integrals as in (10). For each of these integrals there are an
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integer ¢ and a multi-index M such that

D Mj=1t<p—rx=4#j:I#0}

Hence, for each of the integrals, there is some j so that I; # 0but M; = 0. Then, as explained
above, all of the integrals are zero and thus ¥ (0) = 0 for k < p — . Therefore g has a zero
of order p — x at the origin which was what we wanted to prove. |

We use Theorem 2.3 (c) to make the following definition.

Definition 2.5: For w € £(*xD), where D has normal crossings, we define the canonical
current {w} associated to w by

({), &) = @ F:(2)]1=0.

A priori {w} depends on choice of s and | - |. Corollary 2.7, however, shows that this is
not the case.

Remark: In the case that @ is semi-meromorphic {w} is the principal value current of @
since then x (w) = 0 and 0, (s) = 1.

2.3. Local calculations

We will make some calculations of canonical currents associated to quasi-meromorphic
forms to hopefully clarify but also to show that they can behave a bit odd. Given a multi-
index J = (J1,...,Ja) we write 1; for the multi-index given by (1;); = 0 if J; = 0 and
(1y); = Lif J; # 0. We begin with a proposition.

Proposition 2.6: Forw € QM (C?) and a test function & in C? with support in A such that
o A& = (y/Z7ZX)dz A dz, see (5), we have

B (_1)P P a]-i—Kw B
({w}, &) = U= 1)K = 1K)!/A H log |zj] Wdz/\dz

j:Ji+Kj#0

where p is given by Lemma 2.4.

Proof: From the proof of Theorem 2.3 we know

Ow(s)(_l)IJIJrIKI

({0}, &) = 2 F: (D))= = h(0)g? <@ (0)

(P — x(w))!
and Lemma 2.4 gives
I+IKI B -
(=pVIHiR=?
hO ==t (115) (115
(ENICESSTA W) W )

Equation (8) gives an expression for g®*~*(@))(0) in terms of the integrals in (9). But just
as in the proof of Theorem 2.3 these integrals vanish if £ < p — x(w). For £ = p — k()
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we must have all M; = 1 for the integral not to vanish. Using this for k = p — x () we get

]+Kl//
————dzAdz.
0 ozK

g(P—K(w))(O) - H Ll @ —K(a)))!/ H 1Og|4’3j|2

jiI#0 A\ g0
This is the same integral as in the statement of the proposition. We only need to see what
constant we get in front of it. This constant is
-1 -1

(1
20O iy -z (LB TT5) | 115

ii#0 ) \ji#0 jKi£0

but since o0, (s) = H]-:]ﬁﬁo)Kj#O I this is precisely what is claimed. |

Corollary 2.7: The canonical current {w} does not depend on the choice of section s or metric
[ 1.

Proof: This follows immediately from Proposition 2.6 since the right-hand side in that
statement does not depend on the section s or the metric | - |, as J and K do not. Hence

(locally and thus also globally) this holds for {w}. |

Remark: We would not get the above corollary if we did not have the factor o,,(s) in the
definition of Fe.

When doing calculations we will get use of the following which is a consequence of
Cauchy-Green’s theorem: If i is a smooth function with compact supportin A C C then

1 oy
0)=—— [ 1 2 " dzadz 11
v (0) 2m/Aogm 7Y ez ()

Corollary 2.8: For o € QM (C?) and a test function & in C* with support in A we have

(a) ifoAné=(y/z]'z})dz A dz then

2ri 6m+n_21ﬂ _
({w}, &) = _—/ mdz//\dZ/,
(m =D n— D! Janiz =0y 02" 0Z]

() ifoné=(p/Z'.. 2% ... 5)dz A dz

(—2n i)k / a]_lll// " -1
, &) = —Fd d
({0}, &) (] _ 1])! ANz =m0} 07U zZ Ndz

wheredz AdZ =dzy Adzy A+ Adzg Adzganddz” AdZ" = dz g AdZgg i A A
dz; A dz,.

Proof: This follows from Proposition 2.6 and (11). |
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We now use Corollary 2.8 to make some explicit calculations.

Example 2.2: Let X = CP! with homogeneous coordinates [z : w] and let 0 be the point
where z = 0 and oo the point where w = 0. We let

dzadz dwAdw
= — = — forzw # 0,
2z ww

which means that ¥ (w) = 1. In view of Corollary 2.8 (a), given a test function &, we get
({w}, &) = —2mil(0) — 27ig(c0).

On the other hand, if X = U for some open set U C CP! which does not contain the origin
or oo then k (w) = 0 and therefore

(oher = [ “Ddnd
u lzl

Remark: The above example shows that for canonical currents we have the following
property: in general y{w} # {yw} for a smooth function y. This means that when we
define the canonical current associated to a form w it is important to decide on what
underlying space we consider it.

Example 2.3: If welet X = C and apply Corollary 2.8 with w = 1/(z™z") then we get that

1 1 1 1
z — 1 = - and — 1 = -
[zmzn] [zm—lzn} izmzn} {Zmzn—l }

for m,n > 2. On the other hand

1 1
zm[ _}:0 and E”{ _]:O
zZMmz" Zmzh

I

form,n > 1.

Theorem 2.3 (b) gives some insight about the poles of F¢ but the following proposition
gives more information.

Proposition 2.9: The poles of the function F; are located at rational numbers less than or
equal to

—1 K —1
maxImin[]]—,]—] :j=1,...,d].
Lo
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Proof: First suppose K; =0 or K; =1 for all i =1,...,d. We may assume that ¢ has
support in a local chart and so we can write down the integral locally as

|ZI|2 2]
Fé(/l) = Ow(S) W - ¢l// dz Adz
A
_ Q) [N 1
AP Ja o 0ZK J°
_ (—l)lth(/l) |ZI|21 aK 21¢W Ao n s
AP A 7 ozK

wdzAdz

We made a similar computation in the proof of Theorem 2.3, cf. Lemma 2.4, but now we
only considered the anti-holomorphic derivatives. Since these are of at most order one
the function h will not have any poles at all, see Lemma 2.4. But the integral in the last

expression above is the principal value current of 1/Z/ acting on “TW dz A dz. This is
known not to have any poles in the right half plane (and not at the origin). Hence Fg does
not have any poles in Re(4) > 0.

Note that the above result would also hold as long as J; < 1 or K; < 1 for all i. Now
suppose we are in the general case. Let x = 4 — M for some integer M. Then

|ZI|2A B |ZI|2,u+2M MIzMI

= — =
JzZK JzZK JzZK

and choosing M so that MI; > J; — 1 or MI; > K; — 1 for each i we get from the above that
F¢ has no poles in Re(x) > 0. That is, F¢ has no poles in Re(1) > M. Choosing M so that
this holds we get the proposition. |

One can note that by choosing higher powers I of the section s we can get the poles in the
right half-plane arbitrarily close to the origin. Suppose @ = a A f for semi-meromorphic
forms a and f. Proposition 2.9 gives us a hint that the situation is a bit more well behaved
when £ only has poles of order one since then the proposition says that Fs does not have
poles in the right half plane.

3. Cohomological residues

We will discuss the classical Leray residue, the conjugate Dolbeault residue and then define
aresidue for the Aeppli cohomology. Now X is assumed to be a compact complex manifold.

3.1. The conjugate Dolbeault residue

To define residues the classical setting is the following: suppose D is a smooth hypersurface
and o a d-closed form in X \ D with a holomorphic pole of order one along D. If z; = 0 is
a local equation for D then a may locally be written as

for some forms o and 7 such that 7 does not contain dz;. Certainly & is smooth but it is
well known that the closedness implies that 7 is smooth. One defines the Poincaré residue
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by Res(a) = a|p. It is easy to check that this gives a well defined closed form on D. If a is
any closed form on X \ D then there is a cohomologous form .’ with a pole of order one
along D, cf. [9, Thm. 6.3.3, p. 233]. The Leray residue is defined by

Res(a) = [Res(a’)]ar

which gives a map
Res : H'(X \ D) —» H* (D).

Since the groups EP4(xD) form a complex with the operator 0 we get cohomology groups
Hg’q(*D). In [1] the conjugate Dolbeault residue was constructed as a map

Res; : HY(«D) — HE (D).

We will give an alternative definition for forms in Hg’q(*D) which is quite explicit. Given
a (d,q)-form a in C4, with coordinates z = (z1,. . .,zg), which has a holomorphic pole
along z; = 0 we may write
dz; Aa
o= % (12)
Z

for some smooth form &, which does not contain dz;. To define a residue we need the
following lemma. We do not give the proof since it is very similar to the proof of Lemma 3.4.

Lemma 3.1: Let z and w be coordinates in C? such that z1/w1 is a non-vanishing holo-
morphic function and let D = {z; = 0}. Suppose o € E¥1(xD) has compact support and
write

dz; dw;

— A0z (2) =a = — Aa,(w),

i AT = = S AT

for some smooth forms a,(z) and a.,,(w) which does not contain dz; or dw;.

(a) If there is a form n € £(xD) with compact support such that o = on then there is a
smooth form i on D such that
am—l&z

m—1
0z,

= o7,
D

with supp(#) C supp(a) N D.
(b) There is a smooth form  on D whose support is contained in supp(a) N D such that

m—1-
0 a, Oy

m—1
0z,

am—l

+ 0B
D

m—1
D ow)

Now suppose a € £41(xD) and (p)) is a partition of unity subordinate to a cover of X
by charts with coordinates (z; = (21,22 . . ., zj,4)) such that D is locally given by z;; = 0.



COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 13

We write

dzi1 A ai(2)
o= ]z—mj on supp(p;),
il

and then define

m—1¢,.~.
Rp,z(CO) _ Z 1 0 (p]a])

-1
; (m—1)! 8zfl

Using Lemma 3.1 one can prove that, fora € £ d’q(*D),

(a) Rp,z(a) = R, w(a) + 0B,
(b) Ry,.(0n) = on.

The proof of (a) and (b) is very similar to the proof of Proposition 3.5. We can now make
the following definition.

Definition 3.2: For a class [a] € Hg’q(*D) we define its conjugate Dolbeault residue by
Ress(a) = [Rp,z(a)]a-

The claims (a) and (b) above give that Ress () is well defined and independent of the
choice of partition of unity and local coordinates. We now present a theorem which is not
very related to the rest of the paper, but we think it is a nice application of the conjugate
Dolbeault residue.

Theorem 3.3: If a € EP1(xD), where D is a smooth hypersurface, and & a test form of
bidegree (d — p,d — q — 1) then

(0lal, &) = ([0a], <) +27ti/DResa(a A&).

Proof: We may suppose ¢ has support contained in a coordinate chart which is biholomor-
phic to the unit polydisc A and that D is there given by z; = 0. We may further suppose
that ¢ = 77 dzp A dzg and ¢ = bdzg A dzg where |P| = p and |Q| = q. Then we get

1

b
AAE = (_1)q(d—P>+Sz—m dz A dzg A dzs,
1

a A éé—’ — Z(_l)(qul)(d—p)-i‘S-‘rtia__b dZ/\ dE,

p 2z 0z
_ oa b
da AE =D (=1)a6d-prtdtatstt 7~ g, A dz,
¢ Zk:( ) 0zZx Z{"

where s and ¢ are given by dzp A dzg = (—1)°dz and dzg A dzx A dzs = (—1)'dz (so ¢
depends on k but we suppress this). For k = 1 we have

(—=1)'dz = dzq A dz; A dzs = (—1)9dz; A dzg A dzs
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and hence
dZ :==dzp A+~ Adzg = (—1)T1'dzq A dzs.
This means that

(_l)q(d—p)+q+s+t om—1 (ab)

dz A dZ.
(m—1)! oz ‘ne

Resg(a A &) =

We write A’ = AN{z; =0} = AND. Using Proposition 2.6 and the remark after
Definition 2.5 we get

(0lal,&) = (=1)P*1*}([a], 6¢)
(- l)q(d—p)+q+d+s+t , om ob
_Z I /Alog|z1| @( ak)dzAdz

(_1)q(d—p)+q+d+s+t 5 om+1 (ab)
= / log |z1| T mAas
(m—1)! 0z]'07;

_1)id=prrgdste oM (a
-y &b /loglzllz—m (T“b) dz A dz
p (m—1)! A 0z \ oz

1

dz Adz

2ni(_1)q(d—p)+q+s+t/ om= l(ab)

T dz A dZ + ([0a], &)

621

= 271'1/ Resy (a0 A &) + ([6a],&)
D

3.2. Aresidue for the Aeppli cohomology

Recall that for a complex manifold X one defines the Bott—-Chern cohomology groups by

ker () N ker(d)

HEA(X) = =
5c) im(00)
and the Aeppli cohomology groups by
) ker(60
HY(X) = _ ker®9) (13)

im(8) + im(d)
Given a hermitian metric on X the induced Hodge star operator gives an isomorphism
HAX) - Hy PIX)

so in this sense the Aeppli cohomology is dual to the Bott—-Chern cohomology. We have
the following natural maps
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HEé(X)

RN

HEY(X) HEFY(X) HEY(X)

~ | 7

HE(X)

A

and for a manifold on which the 39-lemma holds all the outer maps are isomorphisms. In
particular this is true for Kihler manifolds. For a more elaborate discussion on these facts
we refer to [10-12].

Restricting our attention to forms in £ 4d(4%D), where D is a smooth complex hyper-
surface, we consider the cohomology group Hj’d(* *D). To define a residue we need the
following lemma.

Lemma 3.4: Let z and w be coordinates in C? such that z; /w1 is a non-vanishing holo-
morphic function and let D = {z) = 0}. Suppose & € E*¥(x*D) has compact support and
write

le AN dél - dW1 AN dlf_Vl ~
—m N0 (2) =0 = — A oy (W),
1~1 wy wy

for some smooth forms @, (z) and @, (w) which does not contain dz;, dz; or dwy, dw.

(a) If there are forms n,v € E(x*D) with compact support such that « = on + v then
there are smooth forms i and v on D such that

am+n—26z - _
=0n+ov,
D

oz oz !

with supp(77), supp(V) C supp(w) N D.
(b) There are smooth forms @ and § on D whose support is contained in supp(w) N D such
that

1 am-‘rn—Za’)Z

(m —Dl(n— D! oz ozi ™

1 6m+n—25w .
= oo+ op.
(m' = DI(n' = D! oy Lot =1 D +ou+ 0

D

Proof: We first prove (a) and suppose v = on. If

. dz; Adz; A1 + dz; A
zi”_lfz’f ’
where #; and 7, does not contain dz; or dzj, then

dZ1 /\dél 6772
®=0n=—"0 A (—(m — D +z10m + ag -
121 1
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and therefore

~ ona
W, = —(m— 1) + z10m + 21—
621

We get

6m+”_252 6m+n_2

= m—1-n—1
0z, "0z

am+n—2’72 8m+n_351’]1 am+n—2,72
= (m-1) _a m—15-n—1 + m—2A=n—1 + m—1,-n—1
z]' 0z 0z, "0z, 0z; "0z

m+n—3
_ a((m_ NS )
D

oz 2oz !
The case @ = dv is treated analogously. By linearity we get the case w = 95 + dv and
hence we have proven (a). Now we prove (b) and we first suppose (m,n) = (m’,n’). The

calculation
( 1 dz; A CT)Z) 1 dz; Adw,
w = —6 —_

m=1 g7z ) m=1

oz ozt 21

0
(—(”” =D+ z10m + Zla_’h)|
D

D

1 dz; Aa, 1 dz; Adz;; 0w,
= —0 m—13 + m—1- A
m—1 2] zi’ m—1 z] z’l" 0z1
may be iterated and so we can write
1 d21 AN dél 6m+n_252

m-=-Dn-1) ziz 8z;"_182'11_1 '

w=6a1+5ﬂ1+

Doing the same for the coordinate w we get that
dz; A dzy 6m+n_252 dwi A dwy am+”‘2&')w

= - =oda +0f
z1Z1 az;"—laz’f—l wiwg awT_IGWT_I

for some a and f. Using (a) we get

am+n—2a')z am+n—2a')w

+o0a+0p
D

m—1=n—1 = m—1-n—1
0z| 0z b ow] Tow,

which is what was to be proven. Now we treat the case that (m,n) # (m’,n’) and for
simplicity we suppose m’ > m and n’ > n. We get

m 4 =2 m' —m=n'—n~
1 0 z; zZ,

_ _ /_1 - /_1
(m' — D! —1)! oz" ~ ozt D

1 (m’ - 1)(n’ - 1) 8"‘/_”12'1"/_"’ 6”’_"2'11,_” omtn=25,

(' = DI = DI\’ —m) \w =) agm=m g ogmTaznT

D
1 am-l—n—Za')Z

~ (m—Dl(n—1)! oz oz !

D
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. . . . . m/—m
since the restriction to D forces the correct amount of derivatives to land on z] and
-n'—n .
zy ~". This proves (b). [ |

Let D be a smooth complex hypersurface on X. For aform @ € £%4(x%D) and a partition
of unity (p;) subordinate to a cover of X by charts with coordinates (zj = (zj1,zj2 - . . Zj,d))
such that D is locally given by z;; = 0 and

de,l A déj,l -
0= A @j(z) on supp(p)),
7,1%,1
we let
1 am+n—2 (P]@)
Res, (w) =
p(®) ; (m = Dln =D oz~ oz

Proposition 3.5: For a smooth complex hypersurface D C X and o € £ (x%D) we have

(a) Resp,z(w) = Besa,w(w) +_(30( + éﬂ’
(b) Res,.(0n+ 0v) = da + 0p.

Proof: We write

1 6m+”_2(pj5j)
—lazn—1
(m=Dl(n = )! ozl o2,

Res];,,z (w) =
D
so that

Res, - (w) = ZRes;,z(a)).
j

We have the following two identities:

(i) ReSL,z(qiw) = Resf},w(ﬂjw) + daij + 0B,
(ii) Res), , (@) = X, Res), . (5ic).

The first is basically Lemma 3.5 (b) and (ii) is just an interchange of the differentiation
and the sum. Using the claims we get

Res, ;(w) def Z Resi,,z(co)
j

@ Z Res],'),z(aico)
i

(é) Z Res;’w(pjw) +daij + é/)’i,j
ij

0:1) ZResff’W(w) + Zaai’j + éﬁi,j
i

i
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def -
= Resg (@) +0 [ D aij | +0 [ DB
y i

since a;j and f3; j has support contained in supp(p;o;). Thus we have proven (a). We further
have

Res, . (0n + ov) = Res, ;. (Z d(oin) + é(aiv))

1

= ZResp,z(a(Um) + 0(av))

which proves (b).
Using Proposition 3.5 we can give the following definition.

Definition 3.6: Let D be a smooth complex hypersurface on X. For w € Hj’d(* x*D) we
define the Aeppli residue by

Resa(w) = [Res, - (w)]4

Remark: Our definition of the Aeppli residue is very similar to the definition of the residue
map in [2]. They define this in a different context and for forms with, what they call, tame
singularities.

We thus have a map Resy : Hi’d(* *D) — Hi_l’d_l (D).

Proposition 3.7: Let D be a smooth complex hypersurface on X.
(a) Ifw e Hj’d(*iD) is semi-meromorphic then Resa (w) = 0.
(b) Ifa and f are meromorphic (d, 0)-forms with poles along a smooth hypersurface D and
the pole of f is of order one then
Resa(a A f) = (—1)d_1[Resaa A Resfi]a

where the right-hand side is a well defined class and Res f§ denotes the Poincaré residue.

Proof: We get (a) from Lemma 3.4 since we may choose n > 1. To prove (b) write locally
a = (a/z]")dzand f = (b/z1)dz. Thena A f = (—l)d_l(ab/(zinél)) dz; Adzy AdZ A
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dz’ and hence

_ am_la _
Resa(a A f) = (- | ——bde A dZ
0z, A
and Res; (a) ’?mm 1? dz’]5. The Poincaré residue Resf is meromorphic since £ is. Letting

m

R=2l

a m
representatlve of Resy (). If we choose a different representative, say R + 8y, of Resy(«)
we get

£ dz’ we get that (— 1)?R A Resf is a representative of Ress(a A f) and R is a

(R4 0y) AResfp = RAResf + 6(y A Resp)

and therefore [Ress a A Res 8] is well defined. |

The next theorem relates the Aeppli residue to the canonical currents defined in
Section 2.2. It gives an indication that canonical currents do not behave like principle value
currents but rather as residue currents.

Theorem 3.8: For w € £(x*D) with k(w) > 0 and D a smooth complex hypersurface we
have

{w}, &) = —27ri/ Resg(w A €).
D

Proof: Choose a partition of unity (p,) subordinate to a cover consisting of charts which
are mapped to the unit polydisc in which the hypersurface is given by z; = 0. Suppose the
holomorphic pole has order m and the anti-holomorphic pole order . Since x (w) > 0 by
assumption we have m, n > 0. Notice that x (w) > 0 together with that D is smooth implies
that x (w) = 1. Write locally w A & = y/(z]"z}) dz A dz. Then, using Proposition 2.6, (11)
and Definition 3.6 we get

1 1
({w}»@:Zm/lglll map:,l/dz/\dz

1 am-‘rn—Z
T S S L VRVIVE
~ (m — Dl(n — D! Janp 0z]" 0z}~

= —27ri/ Resg(w A &).
D

Theorem 3.8 immediately implies Theorem 1 in the introduction. Having found a for-
mula for the action of {w} when w € £(x**D) and D is smooth we shall now treat the case
when D has normal crossings. We need to define an Aeppli residue for such forms w.

Suppose that D = E U N, where E is a smooth hypersurface and N is a hypersurface with
normal crossings, and that w € Hj’d(* *D). The form w|x\n has poles along the smooth
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hypersurface E \ N and therefore its Aeppli residue is well defined. We let
Resﬁ (w) = Resa(w]x\N)- (14)

The residue is smooth on E\ N and has poles along ENN and therefore it is in
Hj_l’d_l(*i(E M N)). This makes it possible to inductively define residues for intersec-
tions of smooth hypersurfaces.

To be precise, we first let Resﬁ (w) = w. Assuming we have defined the Aeppli residue
for intersections of k smooth hypersurfaces we shall define it for an intersection of k + 1
smooth hypersurfaces. If E = D N --- N Dy, for smooth hypersurfaces Dy, ..., Diy1,
then we let

Resk (v) = Resﬁ1 (Resgzﬂmka“(w)).

Let us see what this amounts to. If E is locally given by z; = - - - = zp = 0 then

(dzy Adz)) A+ A(dze Adzp)

mi =n1 me—=ne
Zl Zl "'Zt; Zé’

Repeatedly taking the Aeppli residue with respect to the variable zy, . . ., zp gives that

1 am1+n1+---+mf+nf—25(g))

Rest (w) =

(my = Dl(m = D!+ (me = Dine = D4 o Moz =" oz oz ™|,

Recall from Section 2 that E(w) is the smallest non-empty strata of the hypersurface on
which w has both holomorphic and anti-holomorphic singularities. We have in particular
defined an Aeppli residue on this submanifold. But Resﬁ(w) (w) does not need to be smooth
since it may have either holomorphic or anti-holomorphic singularities. If this is the case
then Resﬁ(w) (w) is not even integrable. However, when the set of holomorphic singularities
PY0(w) and the set of anti-holomorphic singularities P*! () coincide then Resf;(w) (w)isa
smooth form. We are now ready to formulate the following generalisation of Theorem 3.8.

Theorem 3.9: For w € E(x%D) such that D has normal crossings we have
(0}, &)x = (=22 (Resy” (@ A O}, Do,

Proof: Take a partition of unity with the same properties as in the proof of Theorem 3.8,
but now the hypersurface will be given by z! = 0. Suppose E(w) is given by z; = --- =
z¢ = 0. Then we let dz’ = dzp4q A - - - A dz4. Let R be the multi-index which is 1 in the £
first positions and otherwise 0. If we write p = 2k (w) + p’ then

P =#{j:Jj = 0,K; # 0} + #{K; # 0,]; = 0}.
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Now, similar to the proof of Theorem 3.8, we get

{w}, <)

(—1)p / 2\ T py _
= loglz:2 | & 27
Z(}-1,)!(1<—1K)! Al [1 loglgl” | Zaze d=ndz

. (_1)2x(w)+p’ 5 OITK=2Rp ,
= (—27i)* > / [ loglgl’ | oomr 42 A dz
—~ (] — IDUK = 10)! Jark@) | ., 4% 7| 67 —RozK-R
J:J=0,K;#0

or ]j;éO,Kj:O

= (=27i)*@ Z(—I)P’ / H log |zj|* Resi(w)(w AEp)dZ A dZ
: ANE@) | j1i=0,K;£0
or Jj7#0,K;=0

= (—Zni)"(“’) ({Resi(w) (@ A&} 1) E(w)-

The right-hand side of Theorem 3.9 is a bit messy but with one extra assumption we get
a cleaner statement.

Corollary 3.10: For » € £(+*D) such that D has normal crossings and P**(w) = P*!(w)
we have

Hoh&) = (~27)"@ / ResE@ (0 A &),

E(w)

Proof: Under these assumptions Resi(w) (w A &) is smooth on E(w) so the statement
follows from Theorem 3.9. u

4. Analytic continuation of divergent integrals

We will use the results in the previous sections to describe asymptotic expansions com-
ing from analytic continuations of divergent integrals. In this section we drop the point
of view of currents of quasi-meromorphic forms. Instead we suppose we have two semi-
meromorphic forms a and f, on a compact complex manifold X, which have poles along
the same hypersurface D. As before we assume D to have normal crossings. We write

DgcC---C Dy CDy

for the natural stratification of D, cf. (2) in Section 2. Recall that Dy = X and D; = D.
Regularising the integral
/ anp
X
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we use Theorem 2.3 to get the asymptotic expansion

[ A= A 27 G O
where x = x(a A ). Interpreting Corollary 3.10 in this setting we get

C. — (=2mi)”

oG /DK Resa(a A B)

where 0(s) = 0,5 3(s). We will now make some calculations of the other coefficients and
we will in particular see how they depend on the metric. The coefficients also depend on
the choice of section but as long as we do not change the line bundle this can be seen as a
change of metric. The result is the following theorem.

Theorem 4.1: For the coefficients C_, in the asymptotic expansion
/ Is’%a A B =Cd™ 4+ C1A7 4+ Co+ O(A])
X
we have

(a) C_, depends polynomially of degree k — r on the metric. More precisely, if ¢ is the differ-
ence of two metrics then there are differential operators Q. j with integrable coefficients
such that

C_(¢) = ]:ZO /X Q).

(b) The term [y Qr—r(¢*™") may be written

(—27mi)* (=2)<~ o
T /D Resa (6"~ A ),

(c) C_, may be written as an integral over Dy, i.e. the codimension r components in the
stratification of D.

Proof: Similarly as in Section 2.2 we let

F(1) = o(s)/ s/ o A B
X
and from the proof of Theorem 2.3 we get

(=1)VI+Klp(s)

F() = ——————h(2)g(3)

where

12 9
g(A) = E /|Z| ———(e7"?y,)dz A dZ,
~ /A 0 0zK

w, is given by (y,/(ZZX)) dz A dz = p,a A f and hand p is given by Lemma 2.4. We may
choose J and K independent of ;. From now on we will suppress 1 and p,. Since we have
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assumed that o and £ have poles along the same hypersurface p = 2x. From the proof of
Theorem 2.3 we know that g% (0) = 0 for k = 0,...,p — x — 1. Taylor expanding hg we
get,forr=0,1...,x,

(—D)VIHIKE BT

_ P =Y Lo=r=k) () o0
Cr = 2 ( L )hl’ 0)g™(0).

k=p—x

Lemma 2.4 implies that the derivatives of h are combinatorial expressions involving J and
K. From the proof of Theorem 2.3 we also get

(k)(O _ k k (=2 k—¢ £ d - PNy oK ( oy g N
g )—Z};(f) ) %(M)/Ag jloglg*)" ——c (y¢"~") dz A dz

and hence we have proven the first part of (a), that C_, = fX 2. Q (¢) for some differ-
ential operators Q,;. We further see that the highest power of ¢ is obtained when k is as
large as possible and ¢ is as small as possible. Thus setting k = p—r, £ = x and collecting
the constants we get that the leading term is given by

(- 1)|]|+IK|( 2)<T

ho [ ] Hajlog|zj|) Al

(x —1)!
_ (—2mi)*(=2)*" K—r P
TRy p— /K Resa (¢ "o A B)

if we do a similar calculation as in the proof of Proposition 2.6. This proves the rest of (a)
and (b).

To prove (c) we may suppose that Iy,..., I, # 0 and Lc41,...,I; = 0. We must show
that we can reduce all the integrals in all the derivatives of g to an integral over D,. Let us

look at g for k = «, ..., p — r. In the expression for the derivative we have a multi-index
M such that Z]M] = {, where ¢ < k. We have seen that when M; = 1, so that we have
log |zi|? in the integral, we may reduce it to an integral over A N {z; = 0}.

First let My = --- = M, = 1. But then we need to add £ — x to these indices, i.e. at
most weneedtoadd p — r — k = x — r. Butif we add 1 to x — r different M; there are still
r number of M; which are equal to one. Furthermore, in these variables we may reduce the
integrals r times, hence to codimension r. Adding more than one to some M; only makes
it better. |

Theorem 4.1 points out why we call the currents defined from quasi-meromorphic
forms canonical; the currents come from the only coefficient in the asymptotic expansion
which is independent of the metric. In the special case that D is a smooth hypersurface we
get the following corollary.
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Corollary 4.2: If D is a smooth hypersurface then

/ Is”?a A B =A71C_1 + Co+ O(IA])
X

with C_y = —g(—”s)i JpResa(a A B) and

Co(@) = % /D Resa (da A ).
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