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Light–Matter Interaction and Hot Carriers:
FromWeak to Strong Coupling

JAKUB FOJT
Department of Physics

Chalmers University of Technology

Abstract

Whenanobject is illuminated, it canboth scatter andabsorb the incoming light. Shortly
after absorption, hot carriers, which are electrons and holes with non–thermal ener-
gies, form in the material. Scattering, absorption and the formation of hot carriers are
fundamental for technologies such as sensing, photovoltaics, and photocatalysis. One
way toward better devices is the confinement of light to traditional cavities or metal-
lic nanoparticles. This increases the interaction strength, or coupling, between light
and matter. A recent development is the realization of strong coupling – interaction
strengths so large that hybrid light–matter states with new properties emerge. In prac-
tice, the design space of materials is large, and computational methods can serve as a
guide for their rational design, both in the weak and strong coupling regimes.

As part of this thesis, I have developed an analysis software. I use it to show that locally
alloying the surface of noble metal nanoparticles with less noble elements is a possible
way to control the energies of hot holes. I also show that the probability of generating
one hot carrier in the nanoparticle and its opposite carrier in a nearby molecule sensi-
tively and non–monotonically depends on adsorption site and distance, providing valu-
able insights into the understanding of hot–carrier devices.

In the context of strong coupling, I show that by coupling the nanoparticle to an op-
tical cavity, the absorption spectrum can be tuned to be more optimal for hot–carrier
generation. I also derive a computationally efficient and nearly–quantitative model for
optical spectra of strongly coupled nanoparticle–molecule assemblies, based on dipo-
lar coupling between moieties. Finally, I implement efficient machine learning models
for potential energy surfaces and dipole moments, and apply these to study chemical
kinetics under strong coupling conditions.

Keywords: nanoparticles, strong coupling, hot carriers, nanoplasmonics
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1
Introduction

Bright and shiny, colorful, transparent, or opaque – our first impression of any object
is shaped by its appearance. Light–matter interaction is responsible for not only our
ability to distinguish materials by sight but also many technological applications. Pho-
tovoltaic materials convert light into electric energy [1], photocatalysts and photoelec-
trocatalysts use light to steer chemical reactions or create fuels [2, 3], and optical sen-
sors measure material properties based on their scattering and absorption of light [4].
These technologies are promising for clean [1, 2] and safe [4] energy sources, and amore
efficient use of energy in industrial processes [3]. However, generally, only about 20 %
of the absorbed light is utilized by commercial solar cells, and roughly 10 % in photo-
catalytic hydrogen fuel production [5]. Considering the climate crisis [6], the effort to
improve materials for these purposes is worthwhile.

The appearance of amaterial is not everything – what is on the insidematters just as
much. Electrons in the material acquire the excess energy when visible or near ultravi-
olet (UV) light is absorbed. The excited electrons, and the holes they leave behind, are
called hot carriers (HCs), owing to their high energies compared to thermal equilibrium.
HCs can carry energy out of thematerial – through the electrodes of a solar cell, or into
reactants in the photocatalytic device. One of the main challenges for better devices is
to control the energies and spatial localization of HCs, so that they can be extracted be-
fore their energy is lost. Theoretical modeling can help us understand these processes.
However, practical computations are difficult due to the vastly different time scales of
electron dynamics and chemical reactions.

This thesis focuses on light–matter interactions in environments where light – or,
more precisely, the modes of the electromagnetic (EM) field – is confined to small vol-
umes. Such confinement enhances the coupling between light and matter, leading to
more effective energy exchange between the EM field and the matter degrees of free-
dom. The canonical example of confined light is a cavity formed by two closely spaced
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Chapter 1. Introduction

mirrors, but there are also other realizations. Metallic nanoparticles (NPs) are one such
realization. They effectively confine visible and near UV light to the volume of the NP,
thanks to a collective mode of electron motion known as the localized surface plasmon
(LSP). I recurrently use NPs as a platform for confinement of light, as their properties
easily can be tuned through size, shape and composition.

I address two distinct regimes of increased light–matter coupling [7]. These regimes
canbeused to categorizemywork into two themes. In theweakcoupling regime (Papers
I–II), the increased coupling leads to a higher rate of HC generation or nuclear motion.
In the strong coupling (SC) regime (Papers III–V), energy is coherently exchanged be-
tween the EM field and the material. Hybrid states of light and matter form, that have
energies that differ from the underlying EMmode and electronic or nuclear state(s) [7].
Besides a higher rate ofHCgeneration, theHCs are thus generated at different energies
in the SC regime. Additionally, as part of my research, I have written an open–source
software (Paper VI) that I have used to model HC generation throughout the thesis.

The aim of this thesis is to shed light on processes of technological importance re-
lated to the light–matter interaction – from the weak to the strong coupling regime. I
use computational models for the electronic structure in an attempt to answer several
questions. How should NPs be designed at the atomic scale to improve HC generation
rates? How should they be designed to control energies and spatial localization of HCs?
What are the novel improvements enabled by SC in this regard?

Modeling large assemblies and HC–induced chemical reactions remains challeng-
ing, as accurate electronic structure methods scale poorly with system size and are in-
tractable at the long time scales of nuclear motion. In this thesis, I also explore approx-
imate methodologies that aim to circumvent these limitations.

The structure of this thesis is such that I first discuss my work in relation to the ques-
tions posed above, and then provide a deeper theoretical background supporting this
work. I discuss HC generation in metallic nanoparticles in Chapter 2. Then I introduce
SC in Chapter 3 and demonstrate its role in modifying absorption spectra, HC gener-
ation rates, and chemical reaction rates. In both of these chapters I make references
to Chapter 4, where I review the fundamental theory and outline the computational ap-
proaches. Finally, I tie together Papers I–VI and provide a perspective on future work
in Chapter 5.
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2
Hot carrier generation in
metallic nanoparticles

The absorption of light by an object causes electrons in the material to become excited.
The energies of these excited electrons and holes exceed those found in equilibrium at
room temperature, which has given rise to the term hot carriers (HCs). In this chapter,
I give a background on the microscopic mechanisms for HC generation and transfer in
metallic nanoparticles (NPs). Then, I show a few examples from Papers I and II of how
HC formation can be controlled. A deeper theoretical background for this chapter is
provided in Chapter 4.

2.1 Electronic structure of metals andmolecules
In order to discuss the connection between atomic structure andHC generation inNPs,
a review of basic chemical principles is warranted. Following the book by Sutton [8],
I introduce the concept of atomic s, p, and d orbitals, and how they hybridize to form
molecular states and metal bands in many–atom systems. Relatively simple models,
such as the hydrogen atom and the non self-consistent linear combination of atomic
orbitals (LCAO)method, are enough to explainmuch of the chemistry in this thesis on a
qualitative level. At the end of this section, I calculate the electronic structure of AgNPs
using density–functional theory (DFT), the details of which are covered in Chapter 4.
These results are sufficiently accurate to, later in the chapter, serve as a foundation for
the discussion of HC generation.

3



Chapter 2. Hot carrier generation in metallic nanoparticles
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Figure 2.1: (a) Radial part of the first hydrogen orbitals. Nodes (zero crossings) are marked by
vertical lines. (b) Hybridization of the 1s orbital in a hydrogen dimer. Energies are shown rela-
tive to the energy of two infinitely separated 1s states. At large separation, there are two non–
overlapping 1s states centered around each nucleus with the same energy (shown by the inset to
the right). As the separation decreases, bonding and antibonding states form with lower and
higher energies compared to the 1s state at far separation (shown by the insets on the left). The
bonding state has lower energy because the electron density between the nuclei has an attractive
interaction with the nuclei charges. At the smallest distances, the energy of the bonding state
increases again due to the repulsion between the nuclei.

2.1.1 One atom
Atoms andmolecules aremadeupof electrons bound to atomic nuclei. Thenuclei can in
many cases be regarded as classical particles that provide an attractive potential for the
electrons¹, while the electrons are quantum particles that are found in discrete states.

Let us first consider one electron bound to an atomic nucleus [8, Chapter 1]. The al-
lowed states 𝜓𝑛 and energies𝐸𝑛 of the electron are the solutions to the Schrödinger equa-
tion

𝐻𝜓𝑛 = 𝐸𝑛𝜓𝑛, (2.1)

where𝐻 is theHamiltonian thathas the real–space representation (compare toEq. (4.2))

𝐻 = −ℏ
2∇2
2𝑚 + 𝑉 (𝒓). (2.2)

¹This is known as the Born–Oppenheimer [9] or clamped–nuclei approximation and works well for
the situations considered in this thesis [10, Chapter 3].
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2.1. Electronic structure of metals andmolecules

Thefirst term of the Hamiltonian is related to the kinetic energy of the electron and the
second term is the potential it feels from the nucleus. ℏ is the reduced Planck constant
and𝑚 the electronmass. At rest, the electron occupies the state with the lowest energy,
called thegroundstate, but interactionswith light canexcite the electron tohigher-lying
states. The states are represented in real space by the wave function 𝜓𝑛(𝒓), with |𝜓𝑛(𝒓)|2
being the electron density. The wave functions of such a single atom system are also
called orbitals. States are orthonormal so that the integral over all space ∫ 𝜓 ∗𝑛 (𝒓)𝜓𝑚(𝒓)d𝒓
is 1 if𝑚 and 𝑛 are the same state, and 0 otherwise.

For a spherically symmetric potential 𝑉 (𝒓) = 𝑉 (𝑟), the wave functions take the sepa-
rable form 𝜓(𝒓) = 𝑅(𝑟)𝑌 (𝜃, 𝜙), where 𝑅(𝑟) is a radial function and 𝑌 (𝜃, 𝜙) are spherical
harmonics. The exact forms of the latter can be found, e.g., in Sutton [8, Chapter 1] or
Ref. [10, AppendixK]. For this discussion it is sufficient to say that thefirst spherical har-
monic is uniform 𝑌 (𝜃, 𝜙) = 1, and all others are ordered by increasing complexity. For
historical reasons, the first spherical harmonics in order are denoted by the letters s, p
and d. There are 3 harmonics of p symmetry which are identical except for a rotation,
and there are 5 harmonics of d symmetry. The set of orbitals with the same spherical
harmonic and the same number of nodes is called a shell.

For the hydrogen atom, where 𝑉 (𝑟) is exactly the Coulomb potential of a point charge
(see Eq. (4.2)), there are closed–form solutions for the orbitals, which can be found in,
e.g., Ref. [11, Chapter 4]. These solutions are plotted in Fig. 2.1a. However, the following
properties will hold in general.² The lowest energy state must have the least varying
curvature, in order tominimize the second derivative ∇2 of the kinetic energy. This will
be satisfied by a smoothly decreasing radial part and the s spherical harmonic, called
the 1s orbital. The next s orbitals (called 2s, 3s, …) must have increasing numbers of
nodes (zero crossings) inorder to satisfy theorthogonality condition. Eachnode forces a
change in curvatureand thus results inahigher energy. Orbitalswithdifferent spherical
harmonics are orthogonal even if they have the same radial part, so the first p and d
orbitals have zero node crossings. The conventional numbering of the p orbitals starts
from2 and of d orbitals from3. Theprecise formof the potential determines the relative
energies of orbitals with different spherical harmonics, but often the order of the first
orbitals is [8, Chapter 1]

1s < 2s < 2p < 3s < 3p < 3d.
Of course, most atoms contain more than one electron. This renders the electronic

structure problem much more difficult. A common approach is to construct the elec-
tronic state from a set of single–electron orbitals. According to the so–called aufbau
principle, these orbitals are filled sequentially in order of increasing energy, with each
orbital accommodating at most two electrons (due to the two spin degrees of freedom).
Then the s, p, and d shells can be occupied by at most, 2, 6 and 10 electrons respec-
tively. In order for such a scheme to quantitatively give the right results, the potential

²At least if the magnitude of the potential is smoothly decreasing.
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Chapter 2. Hot carrier generation in metallic nanoparticles

in Eq. (2.2) needs to incorporate effects of electron–electron interaction. In fact, this
treatment can bemade formally exact, like inDFTwhich I discuss in Chapter 4, but nev-
ertheless in practice always involves some approximations. It is also a general property
of atoms, that when one shell is completely occupied by electrons, then its energy is con-
siderably lowered by the electron–electron interactions. Thanks to this property, most
electrons are bound so tightly to the nucleus that they do not form chemical bonds with
other atoms. Those are called core electrons, while the remainder are valence electrons.
For example, in Ag, core electrons occupy shells up to 4s, 4p, and 3d, and there are 10
valence electrons in the 4d orbitals and 1 valence electron in the 5s orbital.

2.1.2 Two atoms – hybridization of orbitals
Now,weconsider one electronaround twoatoms [8, Chapter 2]. This could, for example,
be the case of the ionized H2

+ molecule, but I will keep the calculations general. The
Hamiltonian for this system is (again, compare to Eq. (4.2))

𝐻 = −ℏ
2∇2
2𝑚 + 𝑉1(|𝒓 − 𝑹1|) + 𝑉2(|𝒓 − 𝑹2|) + 𝑒2

4𝜋𝜀0
𝑍1𝑍2

|𝑹1 − 𝑹2|
, (2.3)

where I have assumed that there are two spherical potentials around the positions of
the nuclei𝑹1 and𝑹2. The final term is the Coulomb repulsion between the nuclei where
𝑍1 and 𝑍2 are the atomic numbers of the nuclei, 𝜀0 the vacuum permittivity, and 𝑒 the
elementary charge. An approximate solution for the system can be obtained using the
LCAOmethod, where the states of this system are required to be linear combinations

𝜓 = 𝑐1𝜓1 + 𝑐2𝜓2 (2.4)

of one basis state each 𝜓1 and 𝜓2. I will use the LCAO method in a non self-consistent
fashion where 𝜓1 and 𝜓2 are simply taken to be solutions to a Hamiltonian of the form
Eq. (2.2) for atoms 1 and 2. The two basis states are not orthogonal but have a finite
overlap 𝑆12 = ⟨𝜓2|𝜓1⟩³. Since there are two basis states, there will be two solutions. They
can be found easily in the special case that atoms 1 and 2 are identical. Then, swapping
the indices 1 and 2 may not result in a change in electron density |𝜓 (𝒓)|2, and the only
two solutions are 𝑐1 = 𝑐2 and 𝑐1 = −𝑐2. Requiring the states to be normalized gives the
two solutions

𝜓𝑏 = 1
√2(1 + 𝑆12)

(𝜓1 + 𝜓2) (2.5)

𝜓𝑎 = 1
√2(1 − 𝑆12)

(𝜓1 − 𝜓2) , (2.6)

³Here, I have used the bra-ket notation where ⟨𝜓2|𝜓1⟩ = ∫ 𝜓 ∗2 (𝒓)𝜓1(𝒓)d𝑟 is the overlap integral of two
states and ⟨𝜓2|𝑂|𝜓1⟩ = ∫ 𝜓 ∗2 (𝒓)𝑂𝜓1(𝒓)d𝑟 denotes the integral with respect to an operator 𝑂.
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2.1. Electronic structure of metals andmolecules

corresponding to a bonding and anti–bonding state, respectively. In the bonding state,
there is electron density between the nuclei which lowers the electrostatic energy and
has a cohesive effect on the molecule, while the opposite is true for the anti–bonding
state (Fig. 2.1b; insets).

The energies of the two states can be found by projecting the Schrödinger equation
on the basis state for one of the atoms

⟨𝜓1|𝐻 |𝜓𝑏⟩ = 𝐸𝑏 |𝜓𝑏⟩ (2.7)
⟨𝜓1|𝐻 |𝜓𝑎⟩ = 𝐸𝑎 |𝜓𝑎⟩, (2.8)

which gives, after plugging in the solutions and rearranging,

𝐸𝑏 =
𝐻11 + 𝐻12
1 + 𝑆12

(2.9)

𝐸𝑎 =
𝐻11 − 𝐻12
1 − 𝑆12

. (2.10)

Here, I have introduced thematrix elements of theHamiltonian𝐻𝑖𝑗 = ⟨𝜓𝑗 |𝐻 |𝜓𝑖⟩ for 𝑖 and
𝑗 = 1, 2, which can be computed numerically for any given basis states. For this purpose,
it is convenient to use that the Hamiltonian Eq. (2.3) is the Hamiltonian of atom 1, plus
the potential from atom 2 and the Coulomb repulsion 𝐸nuclei of the nuclei, where

𝐸nuclei = 𝑒2
4𝜋𝜀0

𝑍1𝑍2
|𝑹1 − 𝑹2|

. (2.11)

Then the relation ⟨𝜓1|𝐻 = ⟨𝜓1|(𝐸0 + 𝐸nuclei) + ⟨𝜓1|𝑉2 holds, where 𝐸0 is the energy of the
basis states. This gives the energies

𝐸𝑏 = 𝐸0 + 𝐸nuclei +
⟨𝜓1|𝑉2|𝜓1⟩ + ⟨𝜓1|𝑉2|𝜓2⟩

1 + 𝑆12
(2.12)

𝐸𝑎 = 𝐸0 + 𝐸nuclei +
⟨𝜓1|𝑉2|𝜓1⟩ − ⟨𝜓1|𝑉2|𝜓2⟩

1 − 𝑆12
. (2.13)

The three overlap integrals 𝑆12, ⟨𝜓1|𝑉2|𝜓1⟩ and ⟨𝜓1|𝑉2|𝜓2⟩ canbenumerically computed,
which I have done for the hydrogen 1s orbitals. I have plotted the energies 𝐸𝑏 − 𝐸0 and
𝐸𝑎 − 𝐸0 in Fig. 2.1b as functions of distance. At far distances, there is little overlap be-
tween the hydrogenic orbitals, and the electrostatic attraction of the orbital to the op-
posite nucleus ⟨𝜓1|𝑉2|𝜓1⟩ is the dominating term, which is almost exactly cancelled by
𝐸𝑛. When the orbitals start to overlap significantly around 4Å, the energies of the two
states start to split, and the magnitude of this split increases with decreasing distance.

As in the one–atom system, the aufbau principle is used here to construct many–
electron systems. For a two–electron system, both electrons would occupy the bonding
state |𝜓𝑏⟩.

7



Chapter 2. Hot carrier generation in metallic nanoparticles

2.1.3 Many atoms – formation of bands
TheLCAOmethod canbeused for anynumber of nuclei, with anynumber of basis states,
in schemes of variable complexity. The procedure involves calculating overlap integrals
numerically and solving linear systems of equations. For the purpose of this thesis, I
will state one more result from the non self-consistent LCAO method, before I show
accurate calculations done usingDFT. If one considers𝑁 identical nuclei with one basis
state each, assumes the overlap integrals ⟨𝜓𝑗 |𝜓𝑖⟩ to be zero (this cannot hold exactly, but
simplifies the calculations), the on–siteHamiltonianmatrix elements ⟨𝜓𝑖|𝐻 |𝜓𝑖⟩ = 𝛼 and
next–neighbor elements ⟨𝜓𝑗 |𝐻 |𝜓𝑖⟩ = 𝛽, then the energies of the𝑁 states are [8, Chapter
3]

𝐸𝑛 = 𝛼 + 2𝛽 cos ( 𝑛𝜋
𝑁 + 1) , for 𝑛 = 1, … , 𝑁 . (2.14)

This shows that for systems with an increasing number of interacting atoms, the spac-
ing between energies of subsequent states decreases. As the number of atoms tends to
infinity, a continuum of states called a band forms between 𝐸 = 𝛼 − 2𝛽 and 𝛼 + 2𝛽. The
width of the band is controlled by the overlap between neighbors 𝛽, while the on–site
overlap 𝛼 determines its center.

Thenon self-consistent LCAOenergiesEq. (2.14) canbe compared to the energies 𝜀𝑛 of
a DFT calculation (Eq. (4.37)) for bulk Ag. I have made a series of such calculations with
various values of the lattice spacing. Fig. 2.2a shows thedensity of states (DOS),which is
simply a broadening of discrete energies onto a continuous grid, DOS(𝜀) = ∑𝑛 𝐺(𝜀 −𝜀𝑛).
For this plot, Gaussians 𝐺(𝜀) are defined

𝐺(𝜀) = (2𝜋𝜎2)−1/2 exp [−𝜀2/2𝜎2] , (2.15)

where 𝜎 = 0.05 eV. The energies in the plot are given with respect to the Fermi level,
which, in ametal, is the energy of the last occupied electron. Then states at negative en-
ergies are fully occupied, states at positive energies fully unoccupied and states at the
Fermi level partially occupied. As the Ag structure ismade artificially sparse (lattice con-
stant of 12.2Å, about three times the equilibrium value), there are only valence orbitals
4d, 5s, and 5p, like in an isolated Ag atom. The 4d orbital is occupied by 10 electrons per
atom and the 5s orbital is occupied by one electron per atom. Shrinking the structure,
the 5s and 5p orbitals are the first to hybridize. A qualitative comparison to Eq. (2.14)
can be made by imagining that the longer extent of those functions effectively gives a
finite 𝛽 already at 8Å. At the equilibrium lattice constant (4.1Å), the 5s and 5p states
have hybridized into a wide sp–band that has equal proportions of s and p character ev-
erywhere. The 4d orbital has hybridized into a much more narrow d–band, due to the
shorter extent of the atomic orbitals.

The narrow energetic extent of the d–band is directly related to a strong degree of
localization in real space. While the sp–states are delocalized over the entire metal, the
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Figure 2.2: DOS and projected density of states (PDOS) from DFT calculations. Energies are
givenwith respect to the Fermi level, so that states at negative energies are occupied andpositive
unoccupied. (a) DOS of bulk Ag, for different values of the lattice spacing. Colors indicate s, p
andd character of theDOS. (b–c) PDOS in the surface layer of a AgNP, as (b) the surface alloyant
is varied at a fixed 100 % surface concentration, and (c) the surface alloy concentration is varied
for a Pt alloyant. Colors indicate alloy concentration and species.

d states are localized to regions close to the atomic nuclei. This is illustrated in Paper I,
where series of Ag NPs with alloyed surfaces were constructed. These NPs consist of
269 atoms, and measure 1.2 nm–by–2.0 nm. The PDOS in the surface is obtained from
DFT calculations, and shown in Fig. 2.2b–c. This PDOS is defined similarly to the DOS,
PDOS(𝜀) = ∑𝑛 𝑤𝑛𝐺(𝜀−𝜀𝑛), with the additionalweight𝑤𝑛 between0 and 1 thatmeasures
whether the state is localized to the surface. From these plots, it is clear that shape of
the d–band in the surface PDOS is determined by the species in the surface, and not in
the bulk (which is always Ag).

In the series of 100 %-alloyed surfaceswith different alloy species (Fig. 2.2b), it is clear
how the d–band changes between the alloy species, while the sp–band remains almost
unchanged. Out of the consideredmetals, the group 11 elements Ag, Au andCuhave the
deepest d–bands (respectively 3.8, 2.5, and 1.8 eVbelow the Fermi level). These elements
have one electron per atom in an s state, which needs to fit below the Fermi level. This
pushes the d–band deep below the Fermi level. Pt and Pd are group 10 elements with
one electron fewer than the group 11 elements. Their d–bands end right at the Fermi
level. Rh, Ru and Re follow in groups 9–7 with partially unoccupied d–bands.

A series of NPs with varied Pt surface alloy concentration from 0 to 100 % was also
considered inPaper I.ThePDOS for this series (Fig. 2.2c) showsamixof theAgandPtd–
bands. Notably, at low concentrations, the Pt–peak of the d–band is relatively narrow,
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Chapter 2. Hot carrier generation in metallic nanoparticles

as most neighbors are Ag atoms, and hybridize to a lesser extent due to the energetic
misalignment. Later in this chapter, I show how the energetic and spatial localization
of the d states can be used to control HC distributions.

2.2 Interaction with light
In a metal, electrons in the sp–band are often called free electrons, because they can
easily be displaced by external electric fields [8, Chapter 7]. Free electrons are able to
move collectively in metal, and in a constrained geometry such as a NP, this mode of
motion can be excited by light [12]. Themode is known as the localized surface plasmon
(LSP). The LSP typically decays into HCs within less than 100 fs [13], or even few tens of
fs in a small NP [14–16].

A simple explanation of the LSP is provided through macroscopic theory, where the
electrons are treated as a continuum charge density within the material. In Sect. 2.2.1,
I use this macroscopic theory to calculate absorption spectra, showing that the absorp-
tion cross section becomes very large at frequencies resonantwith the LSP.However, to
describe the subsequent generation of HCs, it is necessary to account for the electronic
structure explicitly. To this end, I perform time–dependent density–functional theory
(TDDFT) calculations for a Ag NP, first obtaining absorption spectra in Sect. 2.2.2, and
then analyzing HC generation in Sect. 2.2.3.

2.2.1 Optical properties from the macroscopic perspective
Let us forget about the quantum states of electrons for a moment, and regard matter
as a continuum characterized by a frequency–dependent dielectric function (DF) 𝜀(𝜔).
Here, I follow Ref. [12], to show how the LSP appears in this picture. The fundamental
equation is Gauss’s law Eq. (4.16), which requires that

𝜀(𝜔)∇ ⋅ 𝑬(𝜔) = 0. (2.16)

In bulk materials, i.e., where the DF is spatially uniform everywhere, Eq. (2.16) can al-
waysbe satisfiedbyFourier componentsof theelectricfield𝑬(𝜔) that arepurely transver-
sal (∇⋅𝑬(𝜔) = 0). This corresponds to a propagatingwave, just like electromagnetic (EM)
radiation in vacuum. However, if 𝜀(𝜔) = 0 for some frequency, then also a longitudinal
mode∇⋅𝑬(𝜔) ≠ 0 is allowed. Thismode corresponds to thepolarization of free charge in
thematerial, i.e., a collective movement of electrons, and is called a bulk plasmon. This
condition can only be fulfilled by materials that have (almost) free electrons. A simple
model that describes suchmaterials is the Drude free–electronmodel, where the DF is
given by

𝜀(𝜔) = 1 − 𝜔2𝑝
𝜔2 + 𝑖𝛾𝜔 . (2.17)
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Figure 2.3: (a) DFs for the Drudemodel and experimentallymeasured for Ag [17]. (b) Absorption
cross sections for the twoDFs in panel (a), calculated in the long–wavelength limit ofMie theory.
The drawing illustrates thatMie theory gives a solution for the electric field for a sphere with DF
𝜀(𝜔) in an environment 𝜀𝑚.

ThemodelDFhas twoparameters: theplasma frequency𝜔𝑝 anddamping constant 𝛾 . At
the frequency 𝜔 = √𝜔2𝑝 − 𝛾 2 ≈ 𝜔𝑝 the real part of 𝜀(𝜔) is zero, allowing a bulk plasmon
mode. However, as the imaginary part of 𝜀(𝜔) is finite, themode is damped and cannot
sustain forever without an external driving force.

In the continuummatter picture, a NP can be modeled by considering a DF that has
the frequency dependence of our material of interest inside a sphere, and is constant
outside it, corresponding to vacuum (sketched in Fig. 2.3b). The solution to Eq. (2.16)
for this geometry is given byMie theory [18]. This yields an expressionwhere the field is
an infinite series of spherical harmonics, that can be numerically computed to arbitrary
order [19]. The dipolar part gives the polarizability [20]

𝛼(𝜔) = 4𝜋𝜀0𝑟3 𝜀(𝜔) − 1
𝜀(𝜔) + 2, (2.18)

where 𝑟 is the radius of the sphere, 𝑐 the speed of light, and 𝜀0 the vacuum permittiv-
ity. The imaginary part of the polarizability is related to the absorption cross section
through Eq. (4.28). For the Mie sphere, a resonance should appear for frequencies sat-
isfying

Re 𝜀(𝜔) = −2, (2.19)

assuming that the numerator 𝜀(𝜔)−1 varies slowly for those frequencies. This condition
is satisfied for 𝜔 = √𝜔2𝑝/3 − 𝛾 2 ≈ 𝜔𝑝/√3 in the Drudemodel. Fig. 2.3 shows the Drude
DF and the corresponding absorption, for a choice of parameters 𝜔𝑝 = √3 ⋅ 3.5 eV, ℏ𝛾 =
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Chapter 2. Hot carrier generation in metallic nanoparticles

0.2 eV, and 𝑟 = 0.8 nm. Indeed, the resonance condition is satisfied at 3.5 eV, which is
the LSP resonance, and the absorption spectrum is sharply peaked around this value.

A more realistic NP spectrum is obtained by replacing the Drude DF with an experi-
mentally measured DF for Ag [17] (Fig. 2.3). Due to the presence of bound d -electrons
and the possibility of electron emission, the imaginary part of the experimental Ag DF
is large at high frequencies. This leads to significant absorption at those frequencies,
unlike in the Drudemodel. Compared to othermetals, Ag actually has the sharpest LSP
resonance, due to having the lowest imaginary part of theDF at the resonance condition
[17, 21]. It is worth noting, that there are also solutions for similar geometries, such as
ellipsoids, that give other resonance conditions [22, Chapter 4]. An elongated particle
gives a redshifted resonance for polarization along the long axis [20].

2.2.2 Optical properties from the quantum perspective
Theabsorption spectrumcanalso be calculatedby considering the electrons as quantum
particles responding to a perturbation. If the electronic system is much smaller than
the wavelengths of interest (which are at least hundreds of nm), the perturbation can
be taken to be an electric field 𝑬(𝑡) spatially constant over the entire system. In TDDFT,
which is described in detail in Sect. 4.4, the single–particle density matrix in the basis
of ground state orbitals 𝛿𝜌𝑖𝑎(𝑡) = 𝜌𝑖𝑎(𝑡) − 𝜌𝑖𝑎(0), defined in Eq. (4.58), describes the
excitations in the system. The matrix element 𝛿𝜌𝑖𝑎 is related to the probability of an
excitation from an occupied state 𝑖 (where a hole can form) to an unoccupied state 𝑎
(to which an electron can be excited)⁴. For sufficiently weak perturbations, the system
response is linear and described by the differential equation (repeated in Eq. (4.62))

𝑖ℏ𝜕𝛿𝜌𝑖𝑎(𝑡)𝜕𝑡 = ℏ𝜔𝑖𝑎𝛿𝜌𝑖𝑎(𝑡) + 𝑓𝑖𝑎𝝁𝑖𝑎 ⋅ 𝑬(𝑡) + 𝑓𝑖𝑎 ∑
𝑗𝑏

𝐾𝑖𝑎,𝑗𝑏𝛿𝜌𝑖𝑎(𝑡). (2.20)

Here, 𝑓𝑖𝑎 is the occupation number difference between states 𝑖 and 𝑎 (which is atmost 2)
and ℏ𝜔𝑖𝑎 the difference between the corresponding single–particle energies. The tran-
sition dipolemoment 𝝁𝑖𝑎 describes the coupling strength of each excitation 𝑖 → 𝑎 to the
external perturbation. The coupling matrix 𝐾𝑖𝑎,𝑗𝑏 couples pairs of excitations 𝑖 → 𝑎 and
𝑗 → 𝑏.

Two different TDDFT methods are detailed in Sect. 4.4. In the method known as
Casida [23] or linear response TDDFT, one takes the Fourier transform (which I define
in Eq. (4.18)) of Eq. (2.20) and solves the linear system of equations Eq. (4.63) for 𝛿𝜌𝑖𝑎(𝜔).
It is easy to see that if the interactions between excitations are neglected (𝐾𝑖𝑎,𝑗𝑏 = 0),

⁴In the following, it is enough to consider states 𝑖 that have a larger occupation than states 𝑎 (see the
discussion in Sect. 4.4.1).
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then the solution is

𝛿𝜌𝑖𝑎(𝜔) =
𝑓𝑖𝑎

ℏ𝜔 − ℏ𝜔𝑖𝑎
𝝁𝑖𝑎 ⋅ 𝑬(𝜔). (2.21)

Equation (2.21) describes each transition in the non–interacting system as a harmonic
oscillator, which couples to the external perturbation through 𝑓𝑖𝑎𝝁𝑖𝑎.

The transition dipole moment can be calculated from a DFT calculation. As an exam-
ple, I perform such a calculation for the Ag NP used in Paper II. This NP is isotropic,
and has an effective radius of about 0.8 nm. The z–component 𝜇𝑧𝑖𝑎 of 𝝁𝑖𝑎 is visualized as
a transition contributionmap (TCM) in Fig. 2.4a. TheTCM is a tool for visualization [24]
where the quantity of interest, is mapped onto an occupied and an unoccupied energy
grid (𝜀occ and 𝜀unocc) by a convolution with Gaussians

TCM(𝜀occ, 𝜀unocc) = ∑
𝑖𝑎

𝑓𝑖𝑎𝜇𝑧𝑖𝑎𝐺(𝜀𝑖 − 𝜀occ)𝐺(𝜀𝑎 − 𝜀unocc) (2.22)

The same 𝜎 = 0.05 eV is used for the Gaussians as previously, and the DOS is plotted
together with the TCM. There are two groups of transitions that are significantly sus-
ceptible to the electric field – low energy transitions within the sp–band, and high–
energy transitions from the d–band (to the sp–band, making them interband transi-
tions). Most of the low–energy transitions fall in the interval 0.8 eV < ℏ𝜔𝑖𝑎 < 1.8 eV,
which is marked by diagonal lines in Fig. 2.4. The transitions from the d–band 𝜀𝑖 <
−3.8 eV are to the left of the vertical line in the plot.

The absorption spectrum can be computed from Eq. (4.65) and Eq. (4.26). The polar-
izability for the non–interacting system is then

𝛼(𝜔) = −2∑
𝑖𝑎

𝑓𝑖𝑎 |𝝁𝑖𝑎 |2 [
ℏ𝜔𝑖𝑎

(ℏ𝜔)2 − (ℏ𝜔)2𝑖𝑎
] , (2.23)

which is a sum of Lorentzians with weights 𝑓𝑖𝑎 |𝝁𝑖𝑎 |2. As there is no intrinsic damping to
the harmonic oscillators in TDDFTwithin the adiabatic approximation, the excitations
are infinitely sharp. It is customary to introduce an artificial damping through the sub-
stitution 𝜔 → 𝜔 + 𝑖𝜂, in order to plot the spectrum. Using 𝜂 = 0.05 eV, the absorption
spectrum is plotted in Fig. 2.4b. Thenon–interacting absorption spectrumhas themost
weight at those transitions that have the largest transition dipolemoments, which gives
an absorption maximum around 1.2 eV, much lower than the LSP predicted from Mie
theory.

By properly including the coupling between excitations𝐾𝑖𝑎,𝑗𝑏, the resonance frequen-
cies of the harmonic–oscillator type excitations are modified⁵. However, the spectrum
is still made up of a sum of Lorentzians. I calculate the fully interacting absorption

⁵An example of this phenomenon, which applies also here, is given in Sect. 3.1.1
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Figure 2.4: (a) Visualization of the transition dipole moment for the Ag NP in the form of a
TCM (Eq. (2.22)). The largest transition dipole moments are found between the diagonal lines
(0.8 eV < ℏ𝜔𝑖𝑎 < 1.8 eV) and to the left of 𝜀𝑖 < −3.8 eV. (b) Absorption spectrum computed with
non–interacting DFT and real–time time–dependent density functional theory (RT–TDDFT).
The former has been scaled down by a factor of 0.1. For reference, the Mie spectrum from
Fig. 2.3b is also included. The dashed lines in panels (a) and (b) mark the transitions within the
range 0.8 eV < ℏ𝜔𝑖𝑎 < 1.8 eV.

spectrum using the RT–TDDFT method, where the equations of state are propagated
forward in time. For the Ag NP with a few hundred atoms, with 11 valence electrons
per atom, this is computationally cheaper than the Casida method, and for sufficiently
weak perturbations yields the same results [25]. The interacting spectrum (Fig. 2.4b)
succeeds in capturing theLSP, givinga resonanceof3.8 eV. It shouldbepointedout that
it is a coincidence for this particular NP that the resonance is equal to the d–band onset,
other sizes and shapes of AgNPs canhave different resonances. TheLSP is slightly blue–
shifted compared to theMie result with the experimentallymeasuredDF,which is to be
expected given the lack of a non–local description of the DF inMie theory. Because the
part of thematerial near the surface experiences a different chemical environment than
the bulk, the DF should bemodified near the edges, resulting in a blue–shift compared
to the Mie prediction [26].

2.2.3 Hot–carrier generation
The RT–TDDFT method also gives direct access to time–resolved HC distributions, by
simulating the response of 𝛿𝜌𝑖𝑎(𝑡) to a Gaussian laser pulse

𝑬(𝑡) = 𝑬0 cos(𝜔0(𝑡 − 𝑡0)) exp (−(𝑡 − 𝑡0)2/2𝜏2) . (2.24)
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2.2. Interaction with light

The Fourier transform of a Gaussian pulse in the time domain is also a Gaussian in the
frequency domain

𝑬(𝜔) = 𝑬0√2𝜏2/𝜋 exp(𝑖𝜔𝑡0) exp (−(𝜔 − 𝜔0)2𝜏2/2) , (2.25)

and the parameters are chosen so that the envelope is centered at 𝑡0 = 7 fs, the full
width at half maximum (FWHM) in the time–domain is 2√2 ln 2𝜏 = 5.2 fs, and the
frequency ℏ𝜔0 = 3.8 eV is resonant with the LSP. Then, the FWHM in the frequency
domain 2√2 ln 2ℏ/𝜏 = 0.7 eV is comparable to the width of the LSP resonance. The tran-
sition probability (repeated in Eq. (4.66))

𝑃𝑖𝑎(𝑡) =
|𝛿𝜌𝑖𝑎(𝑡)|2

𝑓𝑖𝑎
. (2.26)

is used to calculate the probability of an electron in state 𝑎, or a hole in state 𝑖 as
𝑃electron𝑎 = ∑𝑖 𝑃𝑖𝑎 (2.27)

𝑃hole𝑖 = −∑𝑎 𝑃𝑖𝑎, (2.28)

where the summations are limited to states 𝑖 < 𝑎. Because the response of the system
is linear for weak perturbations, the induced dipolemoment is proportional to the field
strength |𝑬0|, and the number of HCs to the irradiance |𝑬0|2𝜀0𝑐/2. Therefore, I choose a
suitable 𝑬0 for the RT–TDDFT calculations, and refrain from showing absolute magni-
tudes of the computed quantities in the following plots.

Before computing the response to the pulse using RT–TDDFT, it is instructive to fig-
ure out the non–interacting response. If 𝐾𝑖𝑎,𝑗𝑏 = 0, then Eq. (2.20) is a first–order in-
homogeneous differential equation in time, for each matrix element separately. The
solution is

𝛿𝜌𝑖𝑎(𝑡) = 1
𝑖ℏ𝑒

−𝑖𝜔𝑖𝑎 𝑡𝑓𝑖𝑎𝝁𝑖𝑎 ⋅ ∫
𝑡

−∞
𝑬(𝜏)𝑒𝑖𝜔𝑖𝑎𝜏d𝜏 . (2.29)

During the duration of the pulse, each matrix element increases in magnitude. How-
ever, after the decay of the pulse, the limit in the integral can be taken to infinity, mak-
ing it exactly the Fourier transform of the perturbation, evaluated at the frequency of
the transition 𝑬(𝜔𝑖𝑎). Then, the transition probability of the non–interacting system
after the pulse decay is

𝑃𝑖𝑎 =
𝑓𝑖𝑎
ℏ2 |𝝁𝑖𝑎 ⋅ 𝑬(𝜔𝑖𝑎)|

2 . (2.30)

Only excitations resonant with the pulse remain. Each excitation contributes to a sinu-
soidally oscillating dipole at the frequency 𝜔𝑖𝑎, so the total dipole oscillates indefinitely
close to the center frequency of the pulse.
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Having computed the interacting response with RT–TDDFT, the induced dipole mo-
ment in the Ag NP is plotted in Fig. 2.5a together with the pulse 𝑬(𝑡). Like in the non–
interacting case, the dipole moment increases during the duration of the pulse, but in-
stead of oscillating indefinitely, it decays over the next 20 fs. The peak in the amplitude
of the oscillating dipole moment occurs 1.6 fs after the maximum of the pulse, this is
indicated by a vertical line in Fig. 2.5a and the label peak dipole. Similarly, the final time
of the 30 fs long simulation, is marked by the label HCs. The TCM for the transition
probability

∑𝑖𝑎 𝑃𝑖𝑎𝐺(𝜀𝑖 − 𝜀occ)𝐺(𝜀𝑎 − 𝜀unocc) (2.31)

is plotted in Fig. 2.5b–c for those two times. During the time of the peak dipolemoment
(Fig. 2.5b), most transitions present are the ones with the largest transition dipole mo-
ments (compare to Fig. 2.4a), as they are directly excited by the pulse. The low–energy
transitions (0.8 eV < ℏ𝜔𝑖𝑎 < 1.8 eV) make up the LSP in this system, and the interband
transitions (𝜀𝑖 < −3.8 eV) the associated screening from the d–band [27]. The collective
resonanceof these transitions is3.8 eV, despite the energydifferencesbeingaround1 eV
(for the low–energy transitions) and above 3.8 eV (for the d–electron screening). This is
possible through the large values of the coupling matrix 𝐾𝑖𝑎,𝑗𝑏 for pairs of such transi-
tions, and physically means that the transitions are strongly coupled to each other.

The excitations making up the screened plasmon are coupled to other excitations in
the system through the 𝐾𝑖𝑎,𝑗𝑏 matrix. Over the duration of the simulation, they decay
intoHCs in a process knownas Landaudamping. At the end of the simulation (Fig. 2.5c)
the HCs are resonant to the pulse, distributed within the width of the pulse to the line
ℏ𝜔𝑖𝑎 = ℏ𝜔0, where 𝜔0 is the center frequency of the pulse. The distinction between
excitations resonant and not–resonant with the pulse can be made more clear by the
following weighted distribution of transitions

∑𝑖𝑎 𝑃𝑖𝑎𝐺(ℏ𝜔𝑖𝑎 − ℏ𝜔), (2.32)

which is plotted as a function of ℏ𝜔 in Fig. 2.5d. The HCs at the end of the simulation
are indeed resonant with the pulse, and symmetrically distributed around the center
frequency of the pulse, while the plasmon consists of excitations at many different ℏ𝜔𝑖𝑎.

Theobservation that theHCs at the end of the simulation are resonantwith the pulse,
is related to the HCs being weakly coupled to other excitations through 𝐾𝑖𝑎,𝑗𝑏, and thus
being themost susceptible to oscillation at𝜔𝑖𝑎 (as opposed to the LSP that has a different
resonance fromtheunderlying𝜔𝑖𝑎 ’s). Thedistinctionbetweenstrongandweakcoupling
will become more clear when I return to this topic in Chapter 3. The linear response of
the system iswhy it is shape of the pulse |𝑬(𝜔)| in the frequency domain that determines
the frequenciesoffinal transitions–nonewfrequencies are introduced to the system(in
the adiabatic approximation). Effectively, the HCs at the end of the simulation should
obey a similar formula to Eq. (2.30), where instead of through𝝁𝑖𝑎, the transitions couple
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Figure2.5: (a) Gaussian laser pulse and the resulting dipolemoment induced in theNP.The time
corresponding to the peak amplitude in the oscillating dipole moment is marked by a vertical
bar and the label peak dipole. The final time in the simulation is marked by a vertical bar and the
label HCs. (b–c) TCMs for the density matrix at the peak dipole (b) and HCs (c) time instances.
The dashed lines in (b) are the same as in Fig. 2.4a and the dashed lines in (c) correspond to the
center frequency and FWHM of the pulse. The scale of the colormap is identical in both panels.
(d) Weighted sum of transitions Eq. (2.32) by transition energy ℏ𝜔𝑖𝑎 at the peak dipole and HCs
time instances. (e) HCs ℏ𝜔𝑖𝑎 distribution at theHCs time instance.

through the effective coupling𝑀𝑖𝑎 to the external field

𝑃𝑖𝑎 ∼ |𝑀𝑖𝑎 ⋅ 𝑬(𝜔𝑖𝑎)|2 . (2.33)

This is similar to Fermi’s golden rule type results that can be derived from other types of
theory [28].

I have also plotted the distribution of holes∑𝑖 𝐺(𝜀 − 𝜀𝑖)𝑃hole𝑖 and electrons∑𝑎 𝐺(𝜀 −
𝜀𝑎)𝑃electron𝑎 at the final time in the simulation Fig. 2.5e. Because the hot electron (HE)
and hot hole (HH) distributions are integrals of the TCM, the hottest electron that can
be produced is one at ℏ𝜔0 = 3.8 eV (the corresponding hole is at the Fermi level) and the
hottest hole is one at −ℏ𝜔0 = −3.8 eV (the corresponding electron is at the Fermi level).
TheHCdistributions in this smallNPconsist of discrete peaks in the entire energy range
between±ℏ𝜔0, but for larger NPs the HC distributions would approach that of bulk [15,
29, 30]. Theoretical predictions for extended surfaces [28, 31] and largeNPs [29, 30] show
twodistinct regimes; forℏ𝜔0 larger than thed–bandonset, transitions fromthed–band
to the sp–band dominate,meaning that the holes are at least as hot as the d–band onset
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(close to 2 eV for Au and Cu) while the electrons have relatively low energies [30]. In
Ag (d–band onset almost 3.8 eV) this effect is most extreme, where a single peak in the
HH distribution at the d–band, and a corresponding peak just above the Fermi level
in the HE distribution, dominate. For ℏ𝜔0 below the d–band onset only sp–intraband
transitions are possible, which generally results in broad HC distributions.

In order to utilize the HCs for technological applications, they need to be extracted
out of the NP. The HCs lose energy through scattering with other electrons and with
phonons. Some reports in the literature suggest that the time scale of equilibration is
100 fs to 1 ps for the former and several ps for the latter [13, 32–34]. Others, however, put
the electron–phonon scattering rates to similar short time scales as electron–electron
rates [28]. In either case, the HC distribution computed with RT–TDDFT about 20 fs
after the center of the pulse, can be considered realistic for at least a few tens of fs.

2.3 Controlling hot–carrier generation
There aremany demonstrations of HCs being useful for energy harvesting applications.
By sandwitchingplasmonicNPsbetween traditional electron- andhole extractionmate-
rials, a photovoltaic device can be created [35]. In such a device, HCs are generated due
to the decay of the LSP and rapidly extracted by the corresponding material, to drive
a photocurrent. A similar working principle has also been used to extract holes from
Au NPs to partake in redox reactions of fuels [36, 37]. The role of the NPs can either
be to make the electrically driven reaction selective towards one type of fuel [36], or to
drive the reaction without any external bias [38]. There are also plenty of examples of
NP-only (no electron or hole–collectionmaterials) plasmonic catalysts of commercially
important reactions [39–45]. It is generally thought that orbitals of a reactant molecule
are transiently occupied by a HC, which puts the molecule in an excited state [46, 47].
The energy of the excited state is not necessarily high enough to force the chemical reac-
tion of interest, but the reaction barrier is lowered enough to be able to be overcome by
thermal vibrations.

There are two distinct processes inwhichHCs are thought to be injected tomolecules
[46]. In indirect HC transfer, HCs are injected after formation [42, 48, 49]. Due to the
short lifetimes and mean free paths (few tens of nm [28, 49]) of HCs the window for
injection is short in this process. In direct HC transfer [14, 39, 50, 51] on the other hand,
the initial electron–hole pair to be created by the LSP decay consists of one carrier in the
NP and the other in the molecule.

2.3.1 Spatial and energetic control of hot holes
I have shown in Sect. 2.1 (specifically Fig. 2.2b–c) that local alloying has a large effect on
the d states due to their localized character. This promises an opportunity for control-
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ling the spatial localization (by alloying in the desired location) and energy distribution
(by choosing the alloy species) of HHs. The late transition metals have many more oc-
cupied d states than occupied s states, so it should be expected that control over the d
state energies would have an impact on the efficacy of HC devices. However, alloying
coinagemetalNP (Ag, Au,Cu)with less noblemetals (for examplePt, Pd, Ru, Rh, andRe)
broadens the LSP [52–54] and leads to less absorbed power. Based on these ideas, there
have been experimental realizations of alloyed or multicomponent nanostructures for
catalytic purposes [40, 45, 55–57]. These systems consist of a large coinage metal part
where the LSP forms, and a small amount of alloy elements. They have shown consider-
able improvements of catalytic activity compared to single–component systems.

In Paper I a systematic study of the effect of surface alloying on HH distributions
was carried out. A series of Ag NPs with varying concentrations of Au, Cu, Pt, Pd, Ru,
Rh, and Re alloyants in the surface was studied using RT–TDDFT. In the calculations, a
Gaussian laser pulse was simulated, with its frequency tuned to the LSP ℏ𝜔0 = 3.3 eV,
and the HC distributions after LSP decay were computed⁶.

These systems show an increase in the number of holes and a decrease in the number
of electrons at the surface, as the surface Pt concentration is increased (Fig. 2.6a). The
most drastic increase in holes occurs at low concentrations– adoubling of their number
between 0 and 17 %. The largest number of holes in the surface is generated for a sur-
face alloy concentration of 75 % and amounts to almost three times the value in pure Ag.
Further increase of the concentration up to 100 % then decreases the number of holes,
and the effect is not solely explained by a reduced absorption due to the broadening of
the LSP.The reduced generation of electrons is less dramatic, but this effect is also not
solely explained by the reduced absorption. It is also possible to control the energies of
HHs by alloying. The dependence of HH energies shown in Fig. 2.6b clearly mirrors the
dependence of the energetic position of the d–band on the alloy species (Fig. 2.2c). The
hottest holes are obtained using Au as alloyant with the coldest holes for Re.

The observations can be explained in the light of the previous section. The total num-
ber of holes in the surface is obtained as a sum over occupied and unoccupied states 𝑖
and 𝑎

𝑁HC = ∑𝑖𝑎 𝑃𝑖𝑎𝑤𝑖𝑎 (2.34)

∼ ∑𝑖𝑎 |𝑀𝑖𝑎 ⋅ 𝑬(𝜔𝑖𝑎)|2 𝑤𝑖𝑎, (2.35)

where Eq. (2.33) was used in the second line and 𝑤𝑖𝑎 is a weight that quantifies whether
the transition should be counted to the surface or not⁷. The factor 𝑬(𝜔𝑖𝑎) limits the
largest (negative) value for the occupied states in the sum to the frequency of the pulse,
which is 3.3 eV. Then, the holes in the Ag d–band can not be excited, but introducing Pt

⁶It should be noted that here the NPs are elongated along the polarization direction, and as such the
LSP is redshifted compared to the NP studied in Sect. 2.2.3.

⁷More precise definitions are given in Paper I and Paper II.
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Figure 2.6: HH distributions in the NP surface as (a) the surface concentration of Pt increases
and (b) as the alloy species is varied at afixed 100 % surface concentration. For the holes, the ener-
getic distribution is shown as colored segments and the total height of the bar is proportional to
the number of holes. For the electrons, bars proportional to the number of electrons are shown
in grey.

provides d states 1-2 eV below the Fermi level (Fig. 2.2b), which are within reach of the
pulse. The same principle applies for the other alloy species. This explains the drastic in-
crease ofHHat low concentrations. At higher alloyant concentrations the increase satu-
rates and eventually decreases. The reduction of absorption |𝑬(𝜔𝑖𝑎)|2 due to the broader
LSP only partially explains the reduction. Instead, it must be that the coupling strength
𝑀𝑖𝑎 is reduced, either by a change in the field of the LSP, or due to screening by the
other transitions from d states. The conclusion of Paper I is that small amounts of alloy-
ant, even less than one full surface layer aremost effective for HC generation. The same
conclusion has been also been drawn from semi–classical calculations of larger NPs in
Ref. [52].

2.3.2 Increasing the probability of direct transfer
Paper II is focused on the direct HC transfer process. Then, it is relevant to count the
numberof transitions fromanoccupied state 𝑖 localized to theNP toanunoccupied state
𝑎 localized to anearbymolecule (or the opposite transition). Equation (2.35) applies here
as well, where 𝑤𝑖𝑎 is now a weight that quantifies whether it is such a charge–transfer
transition. RT–TDDFT calculations with a Gaussian laser were performed for a Ag NP
(the same isotropic one as in Sect. 2.2.3) and a CO molecule. A range of distances be-
tween NP andmolecule were considered, along the approach to the high symmetry site
in the middle of the (111) face. The idea is to inject electrons to the lowest unoccupied
molecular orbital (LUMO) of themolecule, which is about 2.8 eV above the Fermi level of
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Figure 2.7: (a) Relative number of electrons injected into the COmolecule after resonant excita-
tion, as a function of distance between the NP and molecule. (b) PDOS of the molecule and HE
distribution corresponding to transitions to the molecule, for various distances. (c) Weighted
transition probability of charge–transfer excitations Eq. (2.37). The dashes lines indicate the
center frequency and FWHM of the pulse in the frequency domain. (d–f) TCMs for charge–
transfer excitations for selected distances.

the metal when the systems are far separated. The highest occupied molecular orbital
(HOMO) is too far from the Fermi level for hole injection from Ag to CO to be possible.

The relative number of electrons injected into the molecule after LSP decay is shown
in Fig. 2.7a, for a driving laser tuned in resonance the to the LSP (3.8 eV). This quantity
depends non–monotonically on the distance between NP andmolecule, in the range of
2 to 4.5Å. In fact, the maximum occurs at a distance of 3.3Å, which is outside the bind-
ing energy well (see Paper II for binding energy calculations), suggesting that adsorp-
tion is not strictly necessary for HE transfer. At further distances, the charge transfer
decreasesmonotonically until it reaches zero at 6Å. This, perhaps unintuitive, behavior
can be explained using the tools introduced in the previous parts of this chapter.

From a plot of the molecular PDOS (Fig. 2.7b) it is seen that the LUMO hybridizes
with the metal as the distance is decreased. The energy shifts closer to the Fermi level,
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starting from 2.8 eV at far distances. Around 4Å, it splits into several states due to hy-
bridizationwithmanymetal states. It should be noted, that theDOS of theNP is practi-
cally independent of distance, due to the much larger size of the NP. A HE distribution
projected on the molecule

∑𝑖𝑎 𝑃𝑖𝑎𝑤𝑖𝑎𝐺(ℏ𝜔𝑖𝑎 − ℏ𝜔) (2.36)

is calculated and plotted together with the PDOS. It seems then, that the projected HE
distribution is redistributed between the several hybridized peaks in the PDOS as the
distance is varied. For example, at 3.3Å, which is themaximumof injection, themiddle
of the threeprominentpeakshas themost electrons, but at 3.1Å the electrons are almost
uniformly spread out over the peaks in the PDOS.

Theanswer to thispuzzlingbehavior lies in the interplaybetween thecoupling strength
𝑀𝑖𝑎 and the factor 𝑬(𝜔𝑖𝑎) in Eq. (2.35). Because the weight 𝑤𝑖𝑎 is non zero only for exci-
tations to the molecule, and there are few available states in the molecule (one LUMO
which is split into a few states due to hybridization), then few states 𝑎 are contributing
to the sum Eq. (2.35). The donor states 𝑖 in the NP which are energetically aligned in or-
der to fulfill the alignment criterion (large values of 𝑬(𝜔𝑖𝑎), meaning 𝜔𝑖𝑎 ∼ 𝜔0), do not
necessarily have large coupling strength𝑀𝑖𝑎, and vice versa. This can be illustrated by
plotting the weighted sum of charge–transfer excitations by transition energy

∑𝑖𝑎 𝑃𝑖𝑎𝑤𝑖𝑎𝐺(𝜀𝑎 − 𝜀) (2.37)

in Fig. 2.7c. The electron–transfer transitions are for most distances not aligned to the
pulse, but slightly redshifted to it. By contrast, excitations for the system as a whole are
resonant with the pulse (Fig. 2.5d), because there are more combinations of possible
states that simultaneously have large values of𝑀𝑖𝑎 and 𝑬(𝜔𝑖𝑎).

Yet another visualization of the excitations, is to simply plot the TCMs of 𝑃𝑖𝑎𝑤𝑖𝑎 at a
few selected distances (Fig. 2.7d–f). The transitions occur at pointswhere themolecular
PDOS intersects the NP DOS for the combination of states with the most significant
values of𝑀𝑖𝑎. While the alignment criterion selects excitations close to resonance,many
excitations fall anywherewithin the FWHMof the pulse. With these observations, it can
be concluded that the non–monotonic distance dependence of electron injection is a
consequence of themore efficient (larger𝑀𝑖𝑎) excitations falling in and out of resonance
due to shifts in the PDOS.

In the alignment criterion Eq. (2.35), the exciting laser frequency acts as a handle de-
termining the energetic difference between generated electrons and holes. Transitions
that are misaligned to the pulse can be aligned by changing the pulse frequency. This
hypothesis is tested by mapping out the HE transfer on distance and laser frequency
(Fig. 2.8a). While the energy absorbed decreases by detuning the laser from the LSP
resonance, the absolute maximum of electron transfer occurs around 3.6 eV. The trend
seems to be quite consistent across the different distances. Then, focusing only on the
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Figure 2.8: (a) Relative number of electrons injected into the COmolecule, for selected distances
between the NP and molecule, as a function of laser frequency. (b) The fraction of electrons
injected for thedistance 3.1Å. (c)Weighted transitionprobability of charge–transfer excitations
Eq. (2.37), by laser frequency, for the distance 3.1Å. The horizontal lines in the plot indicate
the LSP resonance at 3.8 eV, the absolute maximum of electron injection (for most distances) at
3.6 eV, and the relative maximum (in other words themaximum of the injection fraction) of the
electron injection normalized by the number of carriers in total at 3.1 eV (for the distance 3.1Å).

3.1Å distance, an injection fraction is computed (Fig. 2.8a). This quantity is the num-
ber of injected electrons, divided by the number of electrons excited in the system as a
whole (the latter being roughly proportional to the amount of energy absorbed). This
quantity reaches 8 % at this particular distance, for laser frequencies of 3–3.1Å, which
should be compared to the value 2 % for a laser tuned to the LSP.

Paper II shows that the direct HC transfer process can be effective, and that it is sen-
sitive to the electronic structure of the hybridized molecular orbitals. In terms of num-
bers, the observations in Paper II are specific to this particular system (and even to the
site of approach). However, the underlying physics are general, and it should be ex-
pected that all similar systems can potentially suffer from this misalignment between
the frequency 𝜔𝑖𝑎 of the most effective charge transfer excitations, the frequency of the
laser 𝜔0 and the LSP resonance. For practical applications, it might be of interest to
excite the system by solar light, instead of a narrow–band laser pulse. Still, a misalign-
ment between 𝜔𝑖𝑎 and the LSP resonancemight remain. There is potentially a chance of
improving the efficiency of aHCdevice bymodifying its absorption spectrum, for exam-
ple by changing shape or embedding in dielectricmaterials [58]. Another, non intrusive
way, utilizing strong coupling is presented in the next chapter.
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3
Strong coupling

In the regime of strong light–matter coupling, the behavior of coupled systems is differ-
ent not only quantitatively, but also qualitatively, to the weakly coupled case. The most
sophisticated models of strong coupling (SC) belong to the formalism of quantum elec-
trodynamics [7] but thebasic ideas are seenalready in simple classicalmodels of coupled
harmonic oscillators [59]. In the first part of this chapter, I showhowSC emerges, start-
ing from amodel of two coupled harmonic oscillators. Thismodel is applicable both for
electronic transitions and vibrationalmotion,which iswhySCcanoccur both in the visi-
ble (coupling to electronic transitions) [60, 61] and infrared (coupling to nuclearmotion)
domains [62–64].

There are promising opportunities for improving sensing [61] and catalysis [62] with
SC, but the mechanisms behind observed improvements are not fully understood [65].
In the last part of this chapter, I focus on efficient theoretical methods for studying SC
in Papers III, IV and V.

3.1 Principles of strong coupling
In typical experiments where SC between molecules and light is observed, one takes
molecules that have a clearly peaked optical spectrum at 𝜔0, confines them in an opti-
cal cavity, and measures the optical spectrum [60]. The cavity should be tuned so that
its resonance frequency is close to 𝜔0. If SC occurs, the 𝜔0 peak splits into two peaks
(Fig. 3.1). The two peaks correspond to hybrid light–matter states called polaritons, the
lower polariton (LP) having frequencyΩ− < 𝜔0 and the upper polariton (UP)Ω+ > 𝜔0.

The confinement of the light to a small mode volume inside the cavity is responsible
for increasing the strength of the coupling between the molecular transition and the
electric field, which is otherwise very weak in the absence of a cavity. In theory, one can
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imagine turning the coupling strength 𝑔 between the molecule and the field up from
zero to a high value. This is demonstrated later in this chapter. Initially there is an in-
crease in amplitude seen in the spectrum of themolecule (Fig. 3.1). This is known as the
Purcell effect and characteristic of weak coupling [7]. Eventually the peak splits in two
polaritons, a signature of SC, the quantityΩ𝑅 = Ω+−Ω− being known as Rabi splitting.
SC is typically taken to be when the Rabi splitting is larger than the linewidth Ω𝑅 > 𝜂
[66], where 𝜂 is the linewidth.

No matter whether classical matter–classical light, quantum matter–classical light
or quantummatter–quantum light models are considered, theory predicts [66]

Ω𝑅 ∼ √𝑁/𝑉 . (3.1)

The certainmeans for increasing the coupling strength are thus to confine the light to a
smaller volume 𝑉 , and to increase the number ofmolecules𝑁 that collectively couple to
the cavity.

In quantummodels such as the Jaynes–Cummings two–statemodel [66, 67], 𝑔 is a di-
rect measure of the coupling strength between the electromagnetic (EM) field andmat-
ter. At resonance of the molecule and cavity, the Rabi splitting is related to 𝑔 and the
linewidths as

Ω𝑅 = √4𝑔2 − (𝜂molecule − 𝜂cavity)2. (3.2)

The coupling strength is in turn obtained from the transition dipole moment 𝜇 and the
vacuum field strength

ℏ𝑔 = √𝑁𝜇𝐸vac (3.3)

𝐸vac = √
ℏ𝜔0
2𝜖0𝑉

. (3.4)

3.1.1 Coupled harmonic oscillators
The key characteristics of SC can be illustrated by studying classical coupled harmonic
oscillators [59]. The following equation describes the motion of a damped harmonic
oscillator with a displacement coordinate 𝑥 :

̈𝑥(𝑡) + 2𝜂 ̇𝑥(𝑡) + 𝜔20𝑥(𝑡) = 𝐶 ⋅ 𝐸(𝑡). (3.5)

The oscillator could represent for example a localized surface plasmon (LSP) or an elec-
tronic transition. This model is even more simplistic than the small sphere of a free–
electron metal in Sect. 2.2.1, but the form can be phenomenologically motivated; the
second term is responsible for a friction that slows down the velocity ̇𝑥 and the third
term describes a restoring force to the displacement 𝑥. The constant 𝜂 is the strength
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of the friction, and 𝜔0 is the resonance frequency of the oscillator in the absence of fric-
tion. The oscillator is driven by the electric field 𝐸(𝑡) with proportionality constant 𝐶.
The same constant can also be assumed to relate the displacement to the dipolemoment

𝜇(𝑡) = 𝐶𝑥(𝑡). (3.6)

Taking the Fourier transform (defined in Eq. (4.18)) of Eq. (3.5) and rearranging the
terms yields the polarizability of the system

𝛼(𝜔) = 𝐶𝑥(𝜔)
𝐸(𝜔) = − 𝐶2

(𝜔 + 𝑖𝜂)2 − 𝜔̄20
, (3.7)

where 𝜔̄20 = 𝜔20 − 𝜂2. A polarizability of the form Eq. (3.7) is called a Lorentzian, and the
corresponding absorption ∼ 𝜔 ⋅ Im 𝛼 has a maximum at 𝜔̄0.

Now, two harmonic oscillators 1 and 2 that are coupled through their velocity are con-
sidered [59]. The equations of motion are

̈𝑥(1)(𝑡) + 2𝜂1 ̇𝑥(1)(𝑡) + 𝜔21𝑥(1)(𝑡) + 2𝑔 ̇𝑥(2)(𝑡) = 𝐶1 ⋅ 𝐸(𝑡) (3.8)

̈𝑥(2)(𝑡) + 2𝜂2 ̇𝑥(2)(𝑡) + 𝜔22𝑥(2)(𝑡) − 2𝑔 ̇𝑥(1)(𝑡) = 𝐶2 ⋅ 𝐸(𝑡). (3.9)

The only difference fromEq. (3.5) is the additional coupling of strength±2𝑔 to the veloc-
ity of the other oscillator. Thecoupled systemneeds tobe considered tofind the solution,
which is conveniently expressed as the matrix equation

[1 0
0 1] [

̈𝑥(1)(𝑡)
̈𝑥(2)(𝑡)] + 2 [ 𝜂1 𝑔

−𝑔 𝜂2] [
̇𝑥(1)(𝑡)
̇𝑥(2)(𝑡)] + [𝜔

21 0
0 𝜔22

] [𝑥
(1)(𝑡)

𝑥(2)(𝑡)] = [𝐶1𝐶2] ⋅ 𝐸(𝑡). (3.10)

Taking the Fourier transform and introducing the denominators of the Lorentzians

𝐿1 = (𝜔 + 𝑖𝜂1)2 − (𝜔21 − 𝜂21) (3.11)
𝐿2 = (𝜔 + 𝑖𝜂2)2 − (𝜔22 − 𝜂22), (3.12)

yields the matrix equation

[−𝐿1 −2𝑖𝜔𝑔
2𝑖𝜔𝑔 −𝐿2 ]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑨(𝜔)

[𝑥
(1)(𝜔)

𝑥(2)(𝜔)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝒙(𝜔)

= [𝐶1𝐶2]⏟
𝑪

𝐸(𝜔). (3.13)

The inverse of the matrix 𝑨 can be used to obtain the displacements of the individual
oscillators

𝒙(𝜔) = 𝑨−1(𝜔) 𝑪 𝐸(𝜔) (3.14)

𝑨−1(𝜔) = 1
det𝑨 [ −𝐿2 2𝑖𝜔𝑔

−2𝑖𝜔𝑔 −𝐿1 ] (3.15)

det𝑨(𝜔) = 𝐿1𝐿2 − 4𝜔2𝑔2. (3.16)
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Figure 3.1: Absorption spectrum of uncoupled, weakly coupled and strongly coupled harmonic
oscillators in the (a) exactly resonant and (b) almost resonant cases. The almost resonant case
shows clearly how the intensity of the higher frequency oscillator, which is small in the uncou-
pled case, is greatly enhanced for weak coupling (Purcell effect). For SC, Rabi splitting is clearly
visible.

Thesumof the individualdipolemoments is the total dipolemoment, andcanbewritten
𝑪𝑇𝒙. Then, the polarizability of the coupled system is

𝛼(𝜔) = 𝑪𝑇𝑨−1(𝜔) 𝑪. (3.17)

I have plotted the absorption (Eq. (4.28)) corresponding to the polarizability Eq. (3.17)
for an exactly resonant (𝜔1 = 𝜔2), and an almost resonant (𝜔2 = 1.2 ⋅ 𝜔1) system in
Fig. 3.1a and Fig. 3.1b, respectively. In these plots, the amplitudes are 𝐶1 = 10 ⋅ 𝐶2 and
the widths 𝜂1 = 𝜂2 = 0.1 ⋅ 𝜔1. For a weak coupling strength 𝑔 = 0.1 ⋅ 𝜔1, both plots show
an increase in amplitude compared to no coupling 𝑔 = 0, while the resonances remain
in their original positions. This is known as the Purcell effect. Choosing instead a large
coupling strength 𝑔 = 0.5 ⋅ 𝜔1, the peaks in the spectra shift to new positions, which is
known as Rabi splitting.

By making a few more assumptions, useful relations can be derived from Eq. (3.17).
Often, one of the systems couplesmuchmore strongly to the drivingfield than the other
(𝐶1 ≫ 𝐶2), for example if oscillator 1 is a cavity and oscillator 2 a small molecule. This
motivates setting 𝐶2 = 0. Then the polarizability is

𝛼(𝜔) = − 𝐶21𝐿2
𝐿1𝐿2 − 4𝜔2𝑔2 (3.18)

= − 𝐶21 (𝜔2 + 2𝑖𝜂2 − 𝜔22)
(𝜔2 + 2𝑖𝜂1 − 𝜔21) (𝜔2 + 2𝑖𝜂2 − 𝜔22) − 4𝜔2𝑔2 . (3.19)
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3.2. Exploiting strong coupling

If the two oscillators are exactly resonant 𝜔1 = 𝜔2 = 𝜔0, the denominator can be factor-
ized with some algebra, so that

𝛼(𝜔) = − 𝐶21𝐿2
𝐿+𝐿−

(3.20)

= 𝐶21𝐿2
2𝜔Ω𝑅

⋅ ( 1
𝐿−

− 1
𝐿+

) , (3.21)

where the following quantities have been introduced:

𝐿+ = 𝜔2 + 𝜔(2𝑖 ̄𝜂 + Ω𝑅) − 𝜔20 (3.22)
𝐿− = 𝜔2 + 𝜔(2𝑖 ̄𝜂 − Ω𝑅) − 𝜔20 (3.23)

̄𝜂 = (𝜂1 + 𝜂2)/2 (3.24)

Ω𝑅 = √4𝑔2 − (𝜂1 − 𝜂2)2 (3.25)

The expression Eq. (3.21) shows that the polarizability approximately behaves like the
difference of 1/𝐿− and 1/𝐿+. This form makes the distinction between the weak and
strong coupling regimes clear. Weak coupling occurs in the coupled oscillatormodel for
2𝑔 < |𝜂1 − 𝜂2|. ThenΩ𝑅 = 𝑖√(𝜂1 − 𝜂2)2 − 4𝑔2 is purely imaginary so that

𝐿± = 𝜔2 + 2𝑖𝜔 ( ̄𝜂 ± √(𝜂1 − 𝜂2)2/4 − 𝑔2) − 𝜔20 (3.26)

are the denominators of Lorentzians with resonance frequency 𝜔0 and a linewidth that
is changed compared to the uncoupled oscillators, according to the expression in the
bracket.

Strong coupling occurs in the coupled oscillatormodel for 2𝑔 > |𝜂1−𝜂2|. Then, the ex-
pression Eq. (3.25) forΩ𝑅 is purely real and identical to the expression for Rabi splitting
as in the Jaynes–Cummingsmodel Eq. (3.2). Then, 1/𝐿± are approximately Lorentizans
with linewidth ̄𝜂 and center frequencies 𝜔0 = √𝜔20 + Ω2𝑅/4 ± Ω𝑅/2, corresponding to a
slight blue–shift of both peaks and splitting by Ω𝑅. The coupled oscillator model thus
recovers the traditional Rabi splitting expression.

3.2 Exploiting strong coupling
SChasbeen successfully exploited tomodify chemical andphotochemical properties, by
coupling either electronic [60, 61] or vibrational [62–64] degrees of freedom to confined
EMmodes. However, computationalmodels that accurately reproduce experiments are
scarce, as the complexity of models grows large when electronic, nuclear, and EM de-
grees of freedom need to be included. Additionally, SC is known to be able to form po-
laritonic states delocalized over hundreds of thousands of molecules [7], which means
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Chapter 3. Strong coupling

that potentially large numbers of moieties need to be included. The common theme in
Papers III, IV and V is thus to find efficient models while keeping the detailed descrip-
tion of matter.

3.2.1 Dipolar coupling
In Paper III, amethod based on dipolar coupling (DC) of subsystems is derived in order
to study SC.Themethod relies on time–dependent density–functional theory (TDDFT)
(or other theory) input in the form of polarizabilities of individual subsystems, e.g.,
molecules and nanoparticles (NPs), but is otherwise computationally very cheap even
for large ensembles. The goal of the DC method is to find a macroscopic polarizabil-
ity 𝜶(𝜔) of the entire ensemble, expressed in the positions and polarizabilities of the
individual subsystems. This macroscopic polarizability is defined as the proportional-
ity constant between the external electric field 𝑬ext applied to the system and the total
dipole of the system (repeated in Eq. (4.26))

𝝁(𝜔) = 𝜶(𝜔)𝑬ext(𝜔). (3.27)

Themethod is considered in the electric dipole approximation, which is valid when the
system is smaller than the relevant wavelengths of light. Then, retardation effects are
neglected and the field responds instantaneously to changes in the charge density. The
external field 𝑬ext is taken to be spatially uniform (the same is, however, not true for the
internal fields in the ensemble).

In theDCmethod,𝑁 subsystems enumerated 1, 2, …,𝑁 are considered. It is assumed
that the only interaction between subsystems is that of interacting point dipoles. Each
subsystem 𝑖 has a polarizability 𝜶 (𝑖) that relates the total electric field at the position 𝒓(𝑖)
of the unit 𝑬(𝑖)tot(𝜔) = 𝑬tot(𝒓(𝑖), 𝜔) to the dipole of the unit

𝝁(𝑖)(𝜔) = 𝜶 (𝑖)(𝜔)𝑬(𝑖)tot(𝜔). (3.28)

This polarizability encodes all materials properties of the subsystem. For simplicity, it
is assumed that the subsystems are charge neutral. Thus the total dipolemoment of the
ensemble is obtained by summation

𝝁(𝜔) =
𝑁
∑
𝑖=1

𝝁(𝑖)(𝜔). (3.29)

The total electric field at each unit consists of a contribution from an external electric
field 𝑬ext(𝜔) and the field due to the dipoles of other units. Inserting the distance vector
𝒓(𝑖𝑗) = 𝒓(𝑖) − 𝒓(𝑗) into Eq. (4.25), the field at the position of unit 𝑖 due to the dipole of unit
𝑗 reads

𝑻 (𝑖𝑗)𝝁(𝑗), (3.30)
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3.2. Exploiting strong coupling

where the coupling is

𝑻 (𝑖𝑗) = 1
4𝜋𝜀0

(3𝒓
(𝑖𝑗)(𝒓(𝑖𝑗))T
|𝒓(𝑖𝑗)|5

− 1
|𝒓(𝑖𝑗)|3

) . (3.31)

The couplingmatrices 𝑻 (𝑖𝑗) are frequency independent due to the neglect of retardation,
which is a convenient simplification. The equations above can be summarized by the
following equation for the tensors 𝝁(𝜔), 𝜶 0(𝜔), 𝑬tot(𝜔) and 𝑬ext(𝜔)

⎡⎢⎢⎢
⎣

𝝁(1)(𝜔)
𝝁(2)(𝜔)

⋮
𝝁(𝑁 )(𝜔)

⎤⎥⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝝁(𝜔)

=
⎡⎢⎢⎢
⎣

𝜶 (1)(𝜔)
𝜶 (2)(𝜔)

⋱
𝜶 (𝑁 )(𝜔)

⎤⎥⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜶 0(𝜔)

⎡⎢⎢⎢⎢
⎣

𝑬(1)tot (𝜔)
𝑬(2)tot (𝜔)

⋮
𝑬(𝑁 )
tot (𝜔)

⎤⎥⎥⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑬tot(𝜔)

(3.32)

⎡⎢⎢⎢⎢
⎣

𝑬(1)tot (𝜔)
𝑬(2)tot (𝜔)

⋮
𝑬(𝑁 )
tot (𝜔)

⎤⎥⎥⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑬tot(𝜔)

=
⎡⎢⎢⎢
⎣

𝑬ext(𝜔)
𝑬ext(𝜔)

⋮
𝑬ext(𝜔)

⎤⎥⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑬ext(𝜔)

+
⎡⎢⎢⎢
⎣

0 𝑻 (12) … 𝑻 (1𝑁 )
𝑻 (21) 0 𝑻 (2𝑁 )
⋮ ⋱ ⋮

𝑻 (𝑁1) 𝑻 (𝑁2) … 0

⎤⎥⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑻

⎡⎢⎢⎢
⎣

𝝁(1)(𝜔)
𝝁(2)(𝜔)

⋮
𝝁(𝑁 )(𝜔)

⎤⎥⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝝁(𝜔)

. (3.33)

Having neglected retardation, the tensor for the external electric field consists of the
same value 𝑬ext(𝜔) repeated. By substituting Eq. (3.33) into Eq. (3.32) and solving for
the induced dipole moment, the dipole tensor is obtained

𝝁(𝜔) = [𝑰 + 𝜶 0(𝜔)𝑻]
−1 𝜶 0(𝜔)𝑬ext(𝜔), (3.34)

where 𝑰 is the identity tensor. The proportionality tensor is interpreted as a reducible
subsystem–wisepolarizability𝜶(𝜔),which is obtainedby solving the linear tensor equa-
tion

[𝑰 + 𝜶 0(𝜔)𝑻] 𝜶(𝜔) = 𝜶 0(𝜔). (3.35)

Themacroscopic polarizability is thus given by the double summation

𝜶(𝜔) =
𝑁
∑
𝑖

𝑁
∑
𝑗
[𝜶]𝑖𝑗(𝜔). (3.36)

The computationally most expensive part of the DCmethod is the solution of Eq. (3.35),
which has to be done once for every frequency of interest. Generally, the DC method
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Figure 3.2: (a) Optical spectra for the coupled system of the Al NP and 2 benzenemolecules with
different separations to themolecules. TheDCdata is ingoodagreement to the referenceTDDFT
calculations. (b) Coupling strengths obtained by fitting a coupled oscillatormodel to theDC and
TDDFT spectra. SC is achieved for small distances.

is still orders of magnitude faster than TDDFT calculations, as the size of the tensors
in Eq. (3.35) scale with the number of subsystem, while the size of the system in TDDFT
scaleswith thenumber of electrons. Generally, each subsystem in theDCmethodwould
be comprised of many electrons.

Using the DC method, I have computed the absorption spectrum for a system com-
prised of a 201–atom Al NP and two benzene molecules on each side. The NP has a LSP
resonance at 7.7 eV, which is close to the first bright excitation of themolecule at 7.1 eV.
Varying the distance between the molecules effectively modifies the coupling strength
between the molecular excitation and the LSP. This effect is visible in the spectra as in-
creased Rabi splitting of the LP with smaller distances (Fig. 3.2a). Fitting the obtained
spectra to the coupled harmonic oscillator model Eq. (3.19) the relationship to the cou-
pling strength is seen directly (Fig. 3.2b). The DC spectra are in good agreement with
TDDFT spectra fromRef. [68] (Fig. 3.2). Themost apparent differences in the spectra are
at small distances, where the DC method underestimates the position of the LP. Such
a shortcoming is to be expected at short distances, as the method does not allow the
systems to hybridize, and neglects charge transfer and near field effects. In contrast
to the spectra, the agreement in coupling strength 𝑔 between TDDFT and DC becomes
worse with increasing distance. This can be attributed to two effects: basis set superpo-
sition errors associated with localized basis sets in TDDFT lead to a blueshift of the LP
at far distances (in turn underestimating 𝑔), while the lack of orbital hybridization in
DC possibly underestimates 𝑔 at short distances.

I also vary the number of molecules around the NP (keeping them at the distance of
3Å). Theagreement in spectra (Fig. 3.3a) andcoupling strength (Fig. 3.3b) in comparison
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Figure 3.3: (a) Optical spectra for the coupled system of the Al NP and different numbers of ben-
zene molecules and (b) corresponding coupling strength obtained from fits to a coupled oscil-
lator model. The expected √𝑁 dependence is followed for small numbers of molecules, until it
saturates. A line is included to guide the eye.

to the TDDFT results from Ref. [68] is good. Up to 4 molecules or so, the signature √𝑁
dependence of SC is obeyed, and the deviation for more than 4 molecules is the same
in DC and TDDFT. Thus, the DC method efficiently and relatively accurately captures
material specific response in the optical domain of SC.

3.2.2 Increasing hot–carrier generation
InChapter2, Ihave shownhowthe injectionof electrons fromaAgNP intoaCOmolecule
via the direct hot carrier (HC) transfer process is hindered by a trade–off. Light is most
easily absorbed around the LSP resonance at 3.8 eV, while the transition energies of the
most effective charge–transfer excitations are closer to 3 eV. Due to this trade–off, the
highest probability of transfer, using a narrow–band laser, is achieved by choosing a
laser frequency of 3.6 eV. In this chapter I have demonstrated that optical resonances
can be shifted by strongly coupling to light. This suggests that it should be possible to
engineer a red–shifted resonance and inject more electrons to the molecule.

In Paper IV, the Ag NP from Paper II is studied under the influence of an optical cav-
ity. The NP and molecule are modeled using real–time time–dependent density func-
tional theory (RT–TDDFT).They are placed in an optical cavity, which ismodeled as one
idealized cavity mode. Not unlike the dipolar coupling method in Sect. 3.2.1, there are
two subsystems, the electronic system (which is describedwithRT–TDDFT) and the cav-
ity mode (which is described as a classical harmonic oscillator with a mode coordinate
Eq. (4.29)). Their interaction is through radiation–reaction, where the electronic dipole
acts on the cavity, which produces a field Eq. (4.30) that acts back on the system. By re-
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Figure 3.4: (a) Absorption spectrum of the Ag NP in an optical cavity. As the mode volume of
the cavity is decreased from values above thousands of nm3, where there is effectively no cou-
pling, the coupling strength increases and LP and UP appear. The energetic position of the
LP resonance very closely follows the curve 3.805 eV − 6.2425 eVnm3/2/√𝑉 , where 𝑉 is the cav-
ity volume. (b) Enhancement of electron injection for different setups. Because the principal
charge–transfer excitation is red–detuned relative to the LSP resonance, transferring the most
charge requires a trade–off between being tuned to the resonance (circles) and being tuned to
the charge–transfer excitation. The grey line is the injection for the no–cavity system, normal-
ized by the absorbed energy at every different frequency.

ducing the cavity to one mode of a simple form, the computational cost of this method
is no higher than the cost of the calculations in Paper II.

Across the different distances between the COmolecule andNP that were considered
in Paper II, the general trend for charge–transfer as a function of pulse frequency was
consistent. Therefore, Paper IV is focused the distance 3Å in particular. The cavity fre-
quencyℏ𝜔𝑐 = 3.8 eV is chosen to be resonantwith the LSP, and themode volumeparam-
eter 𝑉 is varied¹. In reality, there are different ways of realizing such a cavity, including
mirrors, bow–tie antennas [69], or picocavities [70], but the simple form of the cavity
qualitatively captures the physics in all of these domains. As the mode volume is de-
creased, the absorption spectrum of the system (Fig. 3.4a) shows a splitting into LP and
UP.The UP can be seen at largemode volumes in the plot, but becomes dark eventually,
so that the only bright resonance of the system is the LP. It is of similar width to the LSP

¹It should also be noted that in these simulations, the external field was setup to directly effect only
the matter subsystem, in order to decouple the analysis from the effect of increased of absorption cross
section overall, due to the inclusion of the cavity.
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in the cavity–free NP.The energetic position of the LP closely follows the fit

3.805 eV − 6.2425 eVnm3/2

√𝑉
. (3.37)

The 1/√𝑉 -dependence of the Rabi splitting is to be expected given Eqs. (3.2)–(3.4).
The enhancement in injection, which is defined as the number of electrons injected

into the CO molecule normalized by the value at resonant excitation without cavity, is
plotted in Fig. 3.4b. The black markers represent the electron injection without a cav-
ity, i.e. the situation in Paper II. The black circle represents resonant excitation (pulse
frequency equal to LSP frequency of 3.8 eV). It is placed at the frequency of the LSP
resonance along the horizontal axis, and the reference value 1 on the vertical axis. The
black triangle connected by a line to the black circle, represents the best enhancement
achieved using an off–resonant pulse, the position on the horizontal axis (3.6 eV) rep-
resents the frequency used, and the value on the vertical axis the enhancement, which
is 1.3. The solid line is a hypothetical enhancement calculated from the data without
a cavity, by scaling each off–resonant value so that the energy absorbed is the same as
for the resonant case. Each golden circle represents the result using a different cavity
volume. The position of the circle along the horizontal axis marks the LP frequency for
that particular cavity volume, and the position on the vertical axis the enhancement in
electron injection at resonant excitation. The triangles correspond to a more optimal
off–resonant excitation. It is interesting to see how the resonantly excited systems in
cavities fall closely to the hypothetical efficiency, at least for LP resonances of 3.2 eV and
higher. This suggests that the cavity and different frequency of the mode does not fun-
damentally change the coupling of the LSP, i.e. 𝑀𝑖𝑎 in Eq. (2.35), to the HCs. Of out all
cavity values considered, themaximumenhancement is 6.8 and occurs at 3.0 and 3.2 eV,
suggesting that resonance tuning using SC is promising for boosting the efficiency of
HC devices.

3.2.3 Modifying reaction rates through vibrational strong
coupling

In the concluding section of this chapter, I turn to vibrational SC.Thisfield has emerged
after experimental realizations of inhibition [71–73], steering [74], and catalysis [75] of
chemical reactions by tuning infrared (IR) cavities to the frequencies of certain vibra-
tional modes of molecules. However, due to the complexity of the nuclear, electronic
and cavity degrees of freedom, there are not yet any theoretical studies that successfully
describe these processes in agreement with experiment [65]. One framework for vibra-
tional SC simulations was developed in Ref. [76]. This framework numerically propa-
gates forward one idealized cavity coordinate according to Eq. (4.29), the electronic and
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Figure 3.5: (a) Rate of breaking of the Si–C bond under influence of the cavity. Compared to the
cavity–free case (Cavity frequency of 0, horizontal line), there are both catalyzing and inhibiting
frequency regions. (b) Difference in power spectrum of the Si–C bond length compared to the
cavity free case. Avoided crossings characteristic of SC are visible near the intersection of the
cavity frequency with the important mode frequencies.

nuclear states using RT–TDDFT with Ehrenfest dynamics² with an additional force on
the nuclei Eq. (4.34) due to the cavity. Ref. [76] sets up a simulation of the deprotection
reaction of 1–phenyl–2–trimethylsilylacetylene (PTA), and captures a resonance depen-
dence of the inhibition of the reaction that is in agreement with experiments [71, 72].

The big drawback of themethod in Ref. [76] is its computational cost, and in Paper V,
a simplifiedmethod based onmachine–learned surrogate models is developed. In this
model, the potential energy surface (PES) of PTA and a fluoride ion, which initiates the
reaction, is obtained from a surrogate model. Likewise, the total (ionic and electronic)
dipolemoment is obtained from a similar type ofmodel. Without going into the details
of the surrogate models, which are described in Paper V, I will state that these mod-
els predict values for the energy and dipole moment, given a set of nuclear coordinates,
and these values are close to values obtained by density–functional theory (DFT). Then,
nuclear and cavity coordinates are propagated forward in time self–consistently, calcu-
lating the acceleration on the nucelei from the sum of PES Eq. (4.5) and cavity Eq. (4.34)
force, and calculating the cavity coordinate from the dipole moment Eq. (4.29).

Simulations are made for a range of cavity resonance frequencies up to 40 THz (cor-
responding to 165meV), with 1000 different initial configurations for each cavity fre-
quency. In Fig. 3.5a, I have plotted the resulting reaction rate of Si–C bond breaking.
The rate is strongly dependent on the frequency of the cavity, with an inhibition re-

²In Ehrenfest dynamics the classical limit of nuclei is taken, similar to Eq. (4.5), except that the Born-
Oppenheimer approximation isnotmade [77, Chapter 17]. Thenuclei are subject to amean–fieldpotential
energy surface (PES) of the excited electronic state.
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3.2. Exploiting strong coupling

gion near a cavity frequency of 5 THz, and a catalyzing region near 15 THz. In have
also calculated the power spectrum of the Si–C bond length minus its no–cavity value.
This quantity (plotted in Fig. 3.5b) illustrates that indeed there are avoided crossings
near the intersections of frequencies of certain vibrational modes and the same cav-
ity frequencies. A deeper analysis, that can is provided in Paper V, reveals that the
biggest flaw of themodel is its missing dependence on the cavity coordinate. This likely
makes the model consequently predict too high rates for high cavity frequencies. Yet,
themachine–learning framework allows a future extension of themodel to include also
the dependence on the cavity coordinate.

37





4
Computational methods

Matter consists of negatively charged electrons and positively charged atomic nuclei.
Electronsare inherentlyquantumparticles. Therefore, itwouldbewrong todescribe the
state of an electron in a material by some well–defined position and velocity. Instead,
the state has to be defined by a probability distribution or density. On the other hand,
the quantum nature of nuclei can often be neglected. In the classical limit, the state of
nuclei is described bywell–defined positions and velocities evolving in time along some
trajectory.

In this chapter, I review the fundamental equations governing the interactions be-
tween electrons, nuclei and electromagnetic (EM) radiation on a level appropriate for
this thesis. For practical calculations, I introduce the following simplifications. In con-
tinuummatter electrodynamics, the electronic and nuclear response ismodeled byma-
terial specific linear response functions. In density–functional theory (DFT) and time–
dependent density–functional theory (TDDFT), an approximate scheme for calculating
interactions between electrons, nuclei and EM radiation is provided.

4.1 Fundamental equations
FollowingMartin [10, Chapter 3], I review the fundamental equations for electrons and
nuclei in this section. The starting point is the Born–Oppenheimer approximation [9],
which separates the governing equation for electrons and nuclei in two. This approxi-
mation works well for the purposes of this thesis [10, Chapter 3], and it is motivated by
the different time scales of electronic and nuclear motion, which is related to the large
ratio between the mass of nuclei and electrons.

Due to the separation of time scales, the electrons are instantaneously adapted to
the positions of nuclei, which are regarded frozen in some geometrical configuration.
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Chapter 4. Computational methods

Electrons obey the Schrödinger equation

𝐻BOΨ𝐼 = 𝐸𝐼Ψ𝐼 , (4.1)

where the Born–Oppenheimer Hamiltonian is

𝐻BO = − ℏ2
2𝑚𝑒

∑
𝑖
∇2𝑖 + 𝑒2

4𝜋𝜀0
(12 ∑𝑖≠𝑗

1
|𝒓𝑖 − 𝒓𝑗 |

−∑
𝑖,𝐼

𝑍𝐼
|𝒓𝑖 − 𝑹𝐼 |

+ 1
2 ∑𝐼≠𝐽

𝑍𝐼𝑍𝐽
|𝑹𝐼 − 𝑹𝐽 |

) . (4.2)

The first term corresponds to the kinetic energy of electrons, and the next three terms
to the potential energy of electron–electron, electron–nuclei and nuclei–nuclei interac-
tions. Here, 𝒓𝑖 are positions of electrons,𝑹𝐼 positions of nuclei, ∇𝑖 the gradient operator
in coordinate 𝒓𝑖, and 𝑍𝑖 the atomic numbers of nuclei. The constants in the equation are
the reduced Planck constant ℏ, the electron mass 𝑚𝑒, the vacuum permittivity 𝜀0, and
the elementary charge 𝑒.

The solutions to the Schrödinger equation Eq. (4.1) are a set of eigenstates Ψ𝐼 and
eigenenergies 𝐸𝐼 . They depend parametrically on the positions of all nuclei 𝑹𝐼 through
the parametric dependence of theBorn-OppenheimerHamiltonianEq. (4.2). The states
canbe represented in real spaceby thewave functionΨ𝐼 (𝒓1, … , 𝒓𝑁 ),where |Ψ𝐼 (𝒓1, … , 𝒓𝑁 )|2
is the probability distribution for the positions of the 𝑁 electrons. The total energy of
the electronic systemwhen the electrons are in an eigenstate 𝐼 is 𝐸𝐼 .

The total energy of the system consists of the energy of the electronic system 𝐸𝐼 and
the kinetic energy of the nuclei 𝑇𝑛. In the context of nuclear motion, the energy of the
electronic system is called the potential energy surface (PES). I will consider themotion
of nuclei when the electronic system is in its ground state, and define the ground state
PES

𝑉PES = 𝐸0. (4.3)

Further taking the classical limit for the nuclei, their kinetic energy is

𝑇n = ∑
𝐼

1
2𝑀𝐼 | ̇𝑹𝐼 |2, (4.4)

where𝑀𝐼 and ̇𝑹𝐼 aremasses and velocities of the nuclei. It can be shown that they follow
Newtons laws of motion, with a force on each nucleus

𝑭𝐼 = −∇𝐼𝑉PES, (4.5)

where ∇𝐼 is the gradient in the position coordinate of the nuclei 𝑹𝐼 .
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4.1. Fundamental equations

4.1.1 Interaction of nuclei and electrons with light
Electrons and nuclei also interact with EM radiation, or light. In this thesis, I focus
on systems that are much smaller than the wavelengths of interest (which are at least
hundreds of nm here). Then, the electric dipole approximation is valid, in which the
interaction ismediated through a time–dependent electric field 𝑬(𝑡), which is constant
over the entire matter system [77, Appendix H]. The Born–Oppenheimer Hamiltonian
is rendered time dependent by through the time–dependent electric field:

𝐻(𝑡) = 𝐻BO − 𝑒 [∑
𝐼
𝑍𝐼𝑹𝐼 −∑

𝑖
𝒓𝑖] ⋅ 𝑬(𝑡). (4.6)

Having used the Born–Oppenheimer approximation to separate the timescales of
electronic andnuclearmotion, it follows that tworegimesof frequencies shouldbe treated
differently. If the EM field oscillates at near-infrared (IR), visible or ultraviolet (UV) fre-
quencies, then the electronic system is excited, but the nuclei do not react during the
short time scales before the system returns to the ground state. The excitations of the
electronic systemare considered for a frozen configuration of nuclei. The electronic sys-
tem then obeys the time–dependent Schrödinger equation

𝑖ℏ𝜕Ψ𝐼 (𝑡)
𝜕𝑡 = 𝐻(𝑡)Ψ𝐼 (𝑡). (4.7)

If the EMfield oscillates at lower IR frequencies, then the electronic system responds
instantaneously by being statically polarized by the EMfield. The PES, determining the
motion of the nuclei, should then be modified to include the polarization of the elec-
tronic state

[𝐻BO + 𝑒∑
𝑖
𝒓𝑖 ⋅ 𝑬] Ψ𝐼 (𝑬) = 𝐸𝐼 (𝑬)Ψ𝐼 (𝑬). (4.8)

Now the wave functions and energies (including the PES) depend parametrically on the
electric field. The force on the nuclei is then

𝑭𝐼 (𝑡) = −∇𝐼𝑉PES(𝑬(𝑡)) + 𝑒𝑍𝐼𝑬(𝑡), (4.9)

The light canbeconsideredexternal, in the sense that it comes fromsomeaccelerating
chargedistribution far away fromthe systemof interest. But, inprinciple, themotionof
the charged electrons andnuclei also emits EMradiation. Including the back reaction is
known as the radiation reaction. In vacuum, this effect is generally negligible [78], but
in becomes important in confined environments such as ones described in Sect. 4.2.2.
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4.2 Continuummatter electrodynamics
Classical electrodynamics with a continuum description of matter describes the light–
matter interaction in termsof susceptibilities ofmaterials: linear functions that tell how
the material changes, e.g., its charge distribution in response to an electric field. For
practical calculations the susceptibilities can be obtained from other levels of theory,
experiment or as simple phenomenological models. In the dipolar limit, retardation
effects for the propagation of the EM field are neglected, which simplifies the theory.
The review of classical electrodynamics in this section follows Griffiths [79, Chapter 4].

Gauss’s law relates the charge distribution in space 𝜌(𝒓) to the electric field
𝜀0∇ ⋅ 𝑬(𝒓) = 𝜌(𝒓). (4.10)

The charge distribution is exactly zero in vacuum. In a material, bound charge can be
redistributed due to electric fields, as a so–called bound charge density

𝜌(𝒓) = −∇ ⋅ 𝑷(𝒓) (4.11)

The quantity 𝑷(𝒓) is called polarization and is zero in vacuum. Joining the above equa-
tions yields (and dropping the explicit (𝒓) from the notation)

∇ ⋅ (𝜀0𝑬 + 𝑷) = 0. (4.12)

The term displacement field is introduced for 𝑫 = 𝜀0𝑬 + 𝑷 , and the dielectric function
(DF) 𝜀 = (1 + 𝜒𝑒) is introduced. The latter is amaterials property that describes how the
material is polarized in response to an electric field. The susceptibility 𝜒𝑒 and DF relate
the electric field to the polarization and displacement field

𝑷 = 𝜀0𝜒𝑒𝑬 (4.13)
𝑫 = 𝜀0𝜀𝑬, (4.14)

so that Gauss’s law can be expressed in the convenient form

∇ ⋅ 𝑫 = 0. (4.15)

To describe time–dependent fields (light), dynamic DFs need to be considered. In
principle the DF can be an operator in the form of a convolution over the electric field
at all previous times (restricting the discussion to isotropic DFs that are local in space
and linear in frequency) [80, Chapter 9]. Hence, a description in the time domain is
unnecessarily complicated, and Gauss’s law can be expressed in the frequency domain

∇ ⋅ 𝑫(𝜔) = 0 (4.16)
𝑫(𝜔) = 𝜀0𝜀(𝜔)𝑬(𝜔). (4.17)
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4.2. Continuummatter electrodynamics

where the Fourier transform has been introduced¹

𝑓 (𝜔) = ∫
∞

−∞
𝑓 (𝑡)𝑒𝑖𝜔𝑡d𝑡 . (4.18)

Here, the dependence of fields on 𝒓 is implied, and the geometry ofmaterials is encoded
in the 𝒓-dependence of the DF 𝜀(𝜔). Each Fourier component at frequency 𝜔 can be
interpreted as a time–dependent field on the form

𝑬(𝑡) ∼ Re[𝑬(𝜔)e−𝑖𝜔𝑡]. (4.19)

The power per area is the irradiance 𝐼 . In a propagating wave 𝑬(𝑡) = 𝑬0 sin(𝜔𝑡) in vac-
uum it is

𝐼 = |𝑬0|2
2 𝜀0𝑐, (4.20)

where 𝑐 is the speed of light.

4.2.1 Dipole expansion of the electric field
For certain charge distributions the electric field has a very simple form. A point charge
𝑞 at the origin in vacuum has exactly the electric field [79, Chapter 3]

𝑬 = 𝑞
4𝜋𝜀0

𝒓
𝑟3 , (4.21)

¹This definition is used throughout the thesis and the same symbol is used for the variable in the time
domain and its Fourier transform.

Figure 4.1: Electric field lines and potential isolines for a point dipole.
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where 𝑟 = |𝒓| is the norm of the position vector. For arbitrary charge distributions 𝜌(𝒓)
the expression for the field can be complicated, but can always be expanded in a series
in powers of 1/𝑟

𝑬 = 1
4𝜋𝜀0

[ 𝑞𝑟3 𝒓 +
1
𝑟5 [3(𝝁 ⋅ 𝒓)𝒓 − 𝒅𝑟2] + … ] , (4.22)

where the charge 𝑞 and dipole moment 𝝁 are obtained from the charge density

𝑞 = ∫𝜌(𝒓)d𝒓 (4.23)

𝝁 = ∫𝜌(𝒓)𝒓d𝒓. (4.24)

The lowest terms in Eq. (4.22) (point charge term ∼ 1/𝑟2 and dipole term ∼ 1/𝑟3) domi-
nate at large distances from the charge distribution. This turns out to be useful, because
far from any localized charge distribution, i.e., any material, the field can be approxi-
mated as the field from a charged dipole (Fig. 4.1). The response of the material is char-
acterized by the response of the dipole moment. For a charge neutral material (𝑞 = 0),
the dipolemoment is independent of the choice of coordinate system. Usingmatrix no-
tation for the vectors (𝒓 is a one–columnmatrix, 𝒓T its transpose, 𝒓T𝒓′ an inner product
and 𝒓(𝒓′)T an outer product), the field of a dipole can bewritten (position and frequency
dependence is implied)

𝑬dipole = 1
4𝜋𝜀0

[3𝒓𝒓
T

𝑟5 − 1
𝑟3 ] 𝝁. (4.25)

For wavelengths larger than the objects in the system of interest, the field is approx-
imately constant over each object, and it is commonly assume that the following linear
relationship holds

𝝁(𝜔) = 𝜶(𝜔)𝑬(𝜔), (4.26)

where 𝜶(𝜔) is the polarizability. The polarizability is in general a tensor of rank two, so
that a field in one direction can induce a dipole in another direction. When the response
is isotropic, however, 𝛼(𝜔) can be treated as a scalar. Viewing a small object from a suffi-
cient distance, only thedipole radiation is significant. This leads to an expression for the
energy absorbed by the object [81, Chapter 6]. For particles smaller than thewavelength
of light, the absorption cross section 𝐶abs that relates the irradiance 𝐼 to the absorbed
energy per unit time𝑊abs

𝑊abs = 𝐶abs𝐼 , (4.27)

where 𝐶abs is given by
𝐶abs(𝜔) = 2𝜔

𝑐𝜀0
Im 𝛼(𝜔). (4.28)
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4.2.2 The single–photonic mode cavity
An idealized Fabry–Perot cavity can be constructed by considering two infinite parallel
perfectly conducting planes. Then, only discrete modes of the electric field are allowed,
with eachmode obeying the equation ofmotion of a harmonic oscillator. The lowest fre-
quencymode of the cavity is described by themode coordinate 𝑞(𝑡), which is dependent
on the history of the nuclear and electronic dipole moment 𝝁 through [82, 83]

𝑞(𝑡) = 1
𝜔𝑐

𝜺𝑐 ⋅ 𝝁(0)
√𝜀0𝑉

cos(𝜔𝑐 𝑡) + ∫
𝑡

0
𝜺𝑐 ⋅ 𝝁(𝑡′)
√𝜀0𝑉𝑐

sin(𝜔𝑐(𝑡 − 𝑡′)) d𝑡′ (4.29)

Here, 𝜔𝑐 is the frequency of the mode, 𝜺𝑐 the unit vector that describes the polarization
of the cavity, and 𝑉 the effective mode volume of the mode. This form ensures that the
mode momentum coordinate is zero ̇𝑞𝑐(0) = 0. The field in the center of the cavity is
[83]

𝑬(𝑡) = 𝜺𝑐 (
𝜺𝑐 ⋅ 𝝁(𝑡)
𝜀0𝑉

− 𝑞(𝑡)𝜔𝑐
√𝜀0𝑉

) (4.30)

The kinetic energy of the cavity is

𝑇𝑐 = 1
2 ̇𝑞2(𝑡) (4.31)

and the potential energy

𝑉pot,c = 1
2 (

𝜺𝑐 ⋅ 𝝁(𝑡)
√𝜀0𝑉𝑐

− 𝑞(𝑡)𝜔𝑐)
2
. (4.32)

Then the force from the cavity on nucleus 𝐼 is
𝑭𝑐,𝐼 = −∇𝐼𝑉pot,c (4.33)

= 1
√𝜀0𝑉𝑐

∇𝐼 [𝜺𝑐 ⋅ 𝝁] (𝜔𝑐𝑞(𝑡) −
𝜺𝑐 ⋅ 𝝁(𝑡)
√𝜀0𝑉𝑐

) (4.34)

4.3 Density functional theory
Unfortunately, the Schrödinger equation is practically not solvable if the material of in-
terest consists ofmore than a few electrons, because themany–body wave functionsΨ𝐼
are functions of the coordinates of all electrons. Any numerical discretization scheme
requires storing and operating on 𝑃3𝑁 coefficients, 𝑃 being the number of parameters
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per dimension (10 would be an optimistic estimate) and 𝑁 the number of electrons.
Clearly, this is impossible for more than a few electrons, a notion known as the expo-
nential wall [84].

Onestrategy inelectronic structure theory is to reformulate theSchrödinger equation
into a formwhere only the density of electrons

𝜌𝐼 (𝒓) = 𝑁 ∫ |Ψ𝐼 (𝒓, 𝒓2, … , 𝒓𝑁 )|2d𝒓2… d𝒓𝑁 (4.35)

appears (note that in the previous section 𝜌 denotes charge density), and eventually in-
troduce approximations making it computationally tractable. DFT is based on the two
Hohenberg–Kohn theorems [85]:

1. There is a one–to–one correspondence of the external potential (i.e. from the nu-
clei) experienced by the electronic system and its ground state electronic density
𝜌(𝒓).

2. There is a universal functional for the total energy of any density 𝐸[𝜌], exactly
equivalent to the Schrödinger equation, and the global minimum of the func-
tional

𝐸gs = min
𝜌(𝒓)

𝐸[𝜌] (4.36)

is the ground state energy, and the corresponding density the ground state den-
sity.

The theorems are valid for densities that can be formed from fermionic wave functions
(this property is calledN–representability) and that are the ground state density of some
external potential (V–representability) [10]. Compared to the Schrödinger equation, the
number of numeric coefficients is reduced from 𝑃3𝑁 to 𝑃3 whichmakes DFTmore use-
ful for large systems, such as those encountered inmaterials science. The following sec-
tion introduces a formalism with an explicit scheme for a density functional 𝐸[𝜌].

4.3.1 Kohn–Sham density functional theory
Kohn–Sham (KS)DFT [86] provides a tractable scheme for the evaluation of 𝐸[𝜌] by con-
sidering an auxiliary, non–explicitly–interacting system of particles instead of the true,
explicitly–interacting system of particles. The auxiliary system is governed by the equa-
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tions

𝐻KS𝜓𝑛 = 𝜀𝑛𝜓𝑛 (4.37)

𝐻KS = − ℏ2
2𝑚𝑒

∇2 + 𝑉eff[𝜌](𝒓) (4.38)

𝜌(𝒓) = ∑
𝑛
𝑓𝑛 |𝜓𝑛(𝒓)|2 , (4.39)

where 𝑓𝑛 is the occupation number of the KS states. In this thesis, I consider spin–
paired and non–periodic systems, so I have omitted the degrees of freedom for spin
and crystal momentum vectors, which otherwise are needed. In Eq. (4.38) 𝑉eff[𝜌](𝒓) is
an effective potential, and the KS ansatz is that 𝑉eff[𝜌](𝒓) can be chosen such that the
auxiliary system and the true system have the same ground state density. If the as-
sumption holds, which has not formally been proven [10, Chapter 7], it follows from the
Hohenberg–Kohn theorems that also the ground state energy of the true system can be
obtained from the auxiliary system. The strength of the KS ansatz is that Eq. (4.37) and
Eq. (4.38) effectively define a single–particle Schrödinger equation (compare to Eq. (4.1)
and Eq. (4.2)) requiring 𝑃3 coefficients to solve. The interactions of electrons are implic-
itly included through the functional 𝑉eff[𝜌](𝒓).

An expression for𝑉eff[𝜌](𝒓) is obtained byhiding the physics of the interactions in the
exchange–correlation (XC) energy functional 𝐸xc[𝜌], which is formally defined as the
difference between the kinetic and electron–electron interaction energies of the true
and auxiliary systems [10, Chapter 7]. Its functional derivative is the XC potential func-
tional

𝑣xc[𝜌](𝒓) =
𝛿𝐸xc[𝜌]
𝛿𝜌 . (4.40)

Then, the effective potential is comprised of the external potential (i.e. corresponding to
the electron–nuclei and nulcei–nuclei interactions in Eq. (4.2)), the Coulomb potential
from all electrons in the auxiliary system, and theXCpotential that contains everything
else [10, Chapter 7]

𝑉eff[𝜌](𝒓) = 𝑉ext(𝒓) + 𝑒2
4𝜋𝜀0 ∫

𝜌(𝒓′)
|𝒓 − 𝒓′|d𝑟

′ + 𝑣xc[𝜌]. (4.41)

The total energy functional in KS DFT is [77, Chapter 7]

𝐸[𝜌] = ∑
𝑛
𝑓𝑛𝜀𝑛 − 1

2 ∫
𝑒2

4𝜋𝜀0
𝜌(𝒓)𝜌(𝒓′)
|𝒓 − 𝒓′| d𝒓′d𝒓 + 𝐸xc[𝜌] − ∫ 𝑣xc[𝜌](𝒓)𝜌(𝒓)d𝒓. (4.42)

For practical calculations, the XC energy and potential functionals have to be approx-
imated, which I discuss in the next section. Self–consistent solutions to Eqs. (4.37)–
(4.42) can be found numerically, given functional forms for the XC functional for the
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energy, potential, and other observables of interest. Assuming that the KS ansatz is
valid and that the exact XC functional is available, this scheme is exactly equivalent to
the Schrödinger equation.

4.3.2 The exchange–correlation functional
With an approximate form for the XC functional, electronic structure calculations can
readily be carried out. The simplest form is the local density approximation (LDA) [87–
89], which is a local form for the XC functional, meaning that the value of the potential
at every point 𝒓 depends only on the density at that point. The actual form of the po-
tential is defined to be the same as for a homogeneous electron gas of density 𝑛, where
the exchange has an exact analytic expression [87, 88], and the correlation is fitted to
quantumMonte Carlo calculations [89].

Generalized–gradient approximation (GGA) functionals extend the LDA to depend
also on gradients of the density. There are a few different choices for the parametriza-
tion of the functional form, that satisfy different exact conditions in limiting cases [10,
Chapter 8]. The Perdew–Burke–Ernzerhof (PBE) [90] functional is one such example.

Meta-GGAs try to improve on GGAs by introducing a dependence on the wave func-
tions. The Gritsenko–van Leeuwen–van Lenthe–Baerends (GLLB) [91] functional be-
longs to this class, and incorporates a discontinuity in the XC potential at integer oc-
cupation numbers

Δxc = lim
𝛿→0

𝑣xc(𝒓, 𝑁 + 𝛿) − 𝑣xc(𝒓, 𝑁 − 𝛿) ≠ 0 (4.43)

which should be a feature of the true XC functional [92]. The GLLB-sc functional [93]
is a modification of GLLB with better description of solids and correlation. It greatly
improves the location of the d–band in noble metals, which is important for plasmonic
systems composed of these metals [25, 94, 95].

Another meta–GGA is the Hubbard +U correction [96], which is added on top of an-
other XC functional in order to change the degree of localization of orbitals. In the form
by Dudarev et al. [97] the correction reads

𝐸+𝑈 = 𝑈
2 ∑

𝑎
Tr [𝜌𝑎 (1 − 𝜌𝑎)] , (4.44)

where 𝑈 is a parameter and 𝜌𝑎 an atomic occupation matrix. It is defined such that
positive values of the parameter 𝑈 penalize partial localization of the KS orbitals. Gen-
erally, the sum over atoms 𝑎 is restricted to atoms of a certain species, and the atomic
occupationmatrix chosen to include only states of a certain symmetry (often d, in tran-
sition metals) [10, Chapter 8]. Then the parameter 𝑈 is chosen for that species in order
to reproduce some experimental or higher–level theory result.
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In practice to perform DFT and TDDFT calculations, I use the GPAW code [25, 27, 93,
98–100], relying on the Atomic Simulation Environment [101]. I use the GLLB-sc XC
functional formost calculations involving Ag. For calculations where Ag is compared to
transition metals, like in Paper I, I instead use PBE with +U corrections. I use the PBE
XC functional for calculations without any noble metals.

4.4 Time–dependent density functional theory
Optical absorption and hot carrier (HC) generation processes are not properties of the
ground state density, and thus outside of the scope of DFT. However, TDDFT, which
appears analogous to DFT, covers these excited state properties, and is the topic of this
section.

When the time–dependent Schrödinger equation is on the form

𝑖ℏ 𝜕
𝜕𝑡 Ψ(𝑡) = [𝐻0 + 𝑉1(𝑡)] Ψ(𝑡), (4.45)

the Runge–Gross theorem [102] formally proves the one–to–one correspondence be-
tween the scalar potential 𝑉1(𝑡) and initial condition Ψ(0) to the time–dependent elec-
trondensity𝜌(𝒓, 𝑡) (definedanalogously toEq. (4.35)). TheRunge–Gross theorem is thus
the time–dependent analogue of the Hohenberg–Kohn theorem. The analogy to the
Kohn–Sham ansatz is the van Leeuwen theorem [103] that is valid under most reason-
able circumstances [77, Chapter 3] and states that there is a time–dependent auxiliary
system that gives the exact time–dependent density

𝑖ℏ 𝜕
𝜕𝑡 𝜓𝑛(𝑡) = [𝐻KS(𝑡) + 𝑉1(𝑡)] 𝜓𝑛(𝑡) (4.46)

𝐻KS(𝑡) = − ℏ2
2𝑚𝑒

∇2 + 𝑉eff[𝜌](𝒓, 𝑡) (4.47)

𝑉eff[𝜌](𝒓, 𝑡) = 𝑉ext(𝒓) + 𝑒2
4𝜋𝜀0 ∫

𝜌(𝒓′, 𝑡)
|𝒓 − 𝒓′|d𝑟

′ + 𝑣xc[𝜌](𝑡), (4.48)

given some initial conditions on theKSwave functions𝜓𝑖(𝒓, 0) and their timederivatives.
The time–dependent effective potential Eq. (4.48) is similar to the time–independent
potential Eq. (4.41). Its first term is the external potential (which is time–independent
since thenuclei are considered frozen) and its second termis the instantaneousCoulomb
potential. However, the XC functional in the third term depends on the density at all
previous times and the initial condition [77, Chapter 4] (the latter condition is formally
relaxed by assuming that the potential is zero before 𝑡 = 0; then the initial condition is
that the system is in its ground state). The memory–dependence of the XC functional
is a complication that is often neglected. This is known as the adiabatic approximation,
which is exact when the external potential varies infinitely slowly (causing the system to
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always be in its ground state) [77, Chapter 4]. Then, the XC functional is taken to be the
ground state XC functional evaluated at the instantaneous density

𝑣xc[𝜌](𝑡) = 𝑣xc[𝜌(𝑡)]. (4.49)

Absorption spectra of metallic particles computed using the adiabatic approximation
have been shown to be consistent with experimental spectra [104, 105], motivating its
use in this thesis.

By comparison to Eq. (4.6), the time–dependent external potential is identified

𝑉1(𝒓, 𝑡) = −𝑒 [∑
𝐼
𝑍𝐼𝑹𝐼 𝛿(𝒓 − 𝑹𝐼 ) − 𝒓] ⋅ 𝑬(𝑡). (4.50)

Here, 𝑬(𝑡) can be an external field, or, for example, the field of a cavity Eq. (4.30). Given
a functional form for the XC functional, Eq. (4.46) and Eq. (4.47) can self–consistently
bepropagated forward in timenumerically. Thisdefines the real–time time–dependent
density functional theory (RT–TDDFT)method (asopposed to theCasidaTDDFTmethod
[23], which is described in Sect. 4.4.1).

4.4.1 Linear response
In this section, I derive a scheme for the response of the time–dependent KS systemun-
der linear response conditions, i.e. when the external perturbation 𝑬(𝑡) is sufficiently
weak. In this context, it ismoreconvenient toa formulationbasedon the single–particle
density operator, which is equivalent to Eq. (4.46). The single–particle density operator
is

𝜌(𝑡) = ∑
𝑘
𝑓𝑘 |𝜓𝑘(𝑡)⟩⟨𝜓𝑘(𝑡)|, (4.51)

where 𝑓𝑘 is the occupation number². Its time evolution is

𝑖ℏ𝜕𝜌(𝑡)𝜕𝑡 = 𝐻(𝑡)𝜌(𝑡) − 𝜌(𝑡)𝐻(𝑡). (4.52)

Equation (4.52) canbe solvedperturbatively [106], byexpanding theoperators inpower
series of the perturbation 𝑬(𝑡). Neglecting quadratic and higher order terms, the den-
sity operator is

𝜌 = 𝜌(0) + 𝛿𝜌, (4.53)

²For numerical reasons, non–integer occupation numbers between 0 and 2 are often used in DFT.
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where 𝜌(0) is the density operator of the unperturbed orbitals and 𝛿𝜌 is linear in the
perturbation 𝑬(𝑡). Likewise, 𝛿𝐻(𝑡) is taken to be linear in perturbation. For weak per-
turbations³ the approximation holds well. Inserting these expressions into Eq. (4.52),
and again, neglecting quadratic terms from products such as 𝛿𝐻(𝑡)𝛿𝜌(𝑡), yields

𝑖ℏ𝜕𝛿𝜌(𝑡)𝜕𝑡 = 𝐻0𝛿𝜌(𝑡) − 𝛿𝜌(𝑡)𝐻0 + 𝑒𝑬(𝑡) ⋅ [𝒓𝜌(0) − 𝜌(0)𝒓] + [𝛿𝐻𝜌(0) − 𝜌(0)𝛿𝐻] . (4.54)

It is useful to express Eq. (4.54) in the basis of the unperturbed orbitals (i.e. orbitals
𝜓 (0)𝑛 of the systemwithout the external perturbation), by operating on the equationwith
⟨𝜓 (0)𝑎 from the left and |𝜓 (0)𝑖 ⟩ from the right. To this end, I introduce the relations

𝐻 (0)|𝜓 (0)𝑛 ⟩ = 𝐸𝑛|𝜓 (0)𝑛 ⟩ (4.55)

𝜌(0)|𝜓 (0)𝑛 ⟩ = 𝑓𝑛|𝜓 (0)𝑛 ⟩, (4.56)

as well as the definitions of the transition energy ℏ𝜔𝑖𝑎 = 𝐸𝑎 − 𝐸𝑖 and the occupation
number difference 𝑓𝑖𝑎 = 𝑓𝑖 − 𝑓𝑎. The following equation is obtained

𝑖ℏ𝜕𝛿𝜌𝑖𝑎(𝑡)𝜕𝑡 = ℏ𝜔𝑖𝑎𝛿𝜌𝑖𝑎(𝑡) + 𝑓𝑖𝑎𝝁𝑖𝑎 ⋅ 𝑬(𝑡) + 𝑓𝑖𝑎𝛿𝐻𝑖𝑎(𝑡), (4.57)

where all operators have been expressed in the same basis

𝛿𝜌𝑖𝑎(𝑡) = ⟨𝜓 (0)𝑎 |𝛿𝜌(𝑡)|𝜓 (0)𝑖 ⟩ (4.58)

𝝁𝑖𝑎 = ⟨𝜓 (0)𝑎 |𝑒𝒓|𝜓 (0)𝑖 ⟩ (4.59)

𝛿𝐻𝑖𝑎(𝑡) = ⟨𝜓 (0)𝑎 |𝛿𝐻(𝑡)|𝜓 (0)𝑖 ⟩. (4.60)

In the adiabatic approximation 𝛿𝐻 depends only on the instantaneous density and can
be expressed as

𝛿𝐻𝑖𝑎 = ∑
𝑗𝑏

𝐾𝑖𝑎,𝑗𝑏𝛿𝜌𝑗𝑏 , (4.61)

where𝐾𝑖𝑎,𝑗𝑏 is a couplingmatrix which can be found, e.g., in Ref. [23]. Then, the govern-
ing equation is

𝑖ℏ𝜕𝛿𝜌𝑖𝑎(𝑡)𝜕𝑡 = ℏ𝜔𝑖𝑎𝛿𝜌𝑖𝑎(𝑡) + 𝑓𝑖𝑎𝝁𝑖𝑎 ⋅ 𝑬(𝑡) + 𝑓𝑖𝑎 ∑
𝑗𝑏

𝐾𝑖𝑎,𝑗𝑏𝛿𝜌𝑖𝑎(𝑡), (4.62)

³This includes the intensity of sunlight on earth, which is about 1000W/m2 or 6 × 10−12 eV/fs/nm2.
In a particle of absorption cross section 1 nm2, each femtosecond of illumination gives a probability of
exciting a few–eV electron hole pair on the order of 10−12.
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which is a coupled differential equation for the transitions. Because there are no prod-
ucts of 𝛿𝜌 or its derivative, and the perturbation 𝐸(𝑡), the differential equation is linear,
and the solution of 𝛿𝜌 should be proportional to the perturbation.

In the basis of the unperturbed orbitals, the densitymatrix elements 𝛿𝜌𝑖𝑎 can be inter-
preted as the probability of transition from state 𝑖 to state 𝑎. The transition dipole mo-
ment 𝝁𝑖𝑎 couples the transitions to the external perturbation, and 𝐾𝑖𝑎,𝑗𝑏 couples pairs
of transitions 𝑖 → 𝑎 and 𝑗 → 𝑏. For states with equal occupation numbers 𝑓𝑖𝑎 = 0,
the last two terms of Eq. (4.62) are zero and 𝛿𝜌𝑖𝑎 has only a trivial time dependence of
exp(−𝑖𝜔𝑖𝑎𝑡). This means that, to first order in the perturbation, transitions only occur
between states with different occupation numbers. In the following, it is only neces-
sary to consider pairs of occupied states 𝑖 (where holes can form) and unoccupied states
𝑎 (towhich electrons can be excited), because the opposite pairs are related by symmetry
𝛿𝜌𝑖𝑎 = 𝛿𝜌∗𝑎𝑖.

Taking the Fourier transformof Eq. (4.62), one obtains the linear systemof equations

[ℏ𝜔 − ℏ𝜔𝑖𝑎] 𝛿𝜌𝑖𝑎(𝜔) = 𝑓𝑖𝑎𝝁𝑖𝑎 ⋅ 𝑬(𝜔) + 𝑓𝑖𝑎 ∑
𝑗𝑏

𝐾𝑖𝑎,𝑗𝑏𝛿𝜌𝑖𝑎(𝜔). (4.63)

Solving this system of equations defines the Casida method [23, 107].

4.4.2 Efficient response calculation in the linear response regime
Since the time–dependent density contains all the information about the quantum sys-
tem in TDDFT, then the single–particle density matrix can be used to extract observ-
ables. The RT–TDDFT and Casida methods are equivalent when sufficiently weak per-
turbation are used in RT–TDDFT [25], so this method can be used to probe the linear
response of any system. Paper VI describes the open source software RHODENT, which
is used to process RT–TDDFT results obtained from GPAW in order to obtain observ-
ables. RHODENT efficiently loads the density matrix in the time or frequency domain,
and transforms it to the desired domain.

The induced dipole moment 𝛿𝜇 can be obtained as

𝛿𝜇(𝑡) = −∑
𝑖𝑎

𝜇𝑖𝑎𝛿𝜌𝑖𝑎(𝑡) (4.64)

= −∑
𝑖<𝑎

𝜇𝑖𝑎 [𝛿𝜌𝑖𝑎(𝑡) + 𝛿𝜌𝑎𝑖(𝑡)] , (4.65)

where, in the last line, the sum runs only over indices 𝑖 > 𝑎. Using second–order pertur-
bation theory, it can be shown that the transition probability [15]

𝑃𝑖𝑎 =
|𝛿𝜌𝑖𝑎(𝑡)|2

𝑓𝑖𝑎
. (4.66)
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gives the total number of holes in state 𝑖 and electrons in state 𝑎

𝑃hole𝑖 = −∑
𝑎
𝑃𝑖𝑎, and 𝑃electron𝑎 = ∑

𝑖
𝑃𝑖𝑎, (4.67)

where the summations are restricted to 𝑓𝑖 > 𝑓𝑎.
The linear response of the system can also be exploited to efficiently compute the re-

sponse to a narrow–bandwidth pulse, using the response to a broad–bandwidth per-
turbation. The broad–bandwidth perturbation can, for example, be a 𝛿-kick which is
constant in the frequency domain. In linear response, the density matrix is related to
the perturbation 𝑬(𝑡) through throgh a response function 𝜒𝑖𝑎. The relation in the fre-
quency domain is

𝛿𝜌𝑖𝑎(𝜔) = 𝜒𝑖𝑎(𝜔)𝑬(𝜔). (4.68)

Then, given the response 𝛿𝜌1,𝑖𝑎(𝑡) a broad–band perturbation 𝑬1(𝑡), the response to a
narrow–band perturbation 𝑬2(𝑡) is obtained as

𝛿𝜌2,𝑖𝑎(𝜔) = 𝜒𝑖𝑎(𝜔)𝑬2(𝜔) (4.69)

= 𝛿𝜌1,𝑖𝑎(𝜔)
𝑬1(𝜔)

𝑬2(𝜔). (4.70)
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5
Outlook

The aim of this thesis has been to understand and exploit light–matter interaction to
help design better materials. In particular, I have studied light–matter coupling in the
weak and strong regimes, in the context of hot carrier (HC) generation, optical proper-
ties, and chemical reactions.

There are a few connections between the attached papers that should be emphasized
here. Papers I and II both address HC transfer but in complementary pathways. In Pa-
per I, HCs generated in a metal nanoparticle (NP) are studied, which is of relevance to
indirect transfer. In Paper II, HCs separated by the NP–molecule interface are of inter-
est, which is related to direct transfer. Both these pathways are expected to contribute
to plasmonic catalysis, with the difference that in indirect transfer, one of the HCs gen-
erated in the NP needs to scatter to the orbitals of themolecule in a sequential step. The
methodology in Papers I and II is the same, which is manifestation of the versatility
of atomistic first–principles simulations like real–time time–dependent density func-
tional theory (RT–TDDFT).

The connection from Paper II to Paper IV is obvious, since the same process in the
same system is considered, but with the addition of an idealized cavity that modifies
the optical resonance of the system. Again, I used RT–TDDFT. During the work with
Papers I, II and IV I developed methods for efficient calculation of response with RT–
TDDFT.These include cheap calculation ofHCdistributions formanydifferent frequen-
cies of a narrow–band laser, using only one (expensive) underlying RT–TDDFT calcula-
tion. This work resulted in the RHODENT software, which is accompanied by Paper VI.

Since the optical resonance is shown to be an important handle for controlling HC
generation in the Ag – CO system, the computationally efficient method of dipolar cou-
pling (DC) from Paper III is relevant. In fact, a setup considered in Paper IV that I have
not shown in this thesis, consists of two identical NPs separated by a small distance
(without an idealized cavity), where the molecule approaches one of the NPs. The dis-
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tance then controls the resonance, and inorder tofind suitable geometries for this setup,
I used the method of Paper III to quickly estimate the response of the coupled system.

Paper V is the only paper that includes the motion of nuclei. Similar to Paper IV,
it also includes an idealized cavity. The simulations in Paper V are computationally
tractable, because the potential energy surface (PES) and molecular dipole are precom-
puted formany atomic configurations and stored inmachine learned surrogatemodels.
Then, the simulations are performedwith a time resolution that is too coarse to capture
the motion of electrons.

A possible extension to the methods of Papers I, II and IV would be to also include
nuclearmotion in order tomodel electron–phonon scattering and the long time scale of
HCthermalization. Likewise, an implementationofnonadiabatic exchange–correlation
(XC) functionals [108, 109] provides a way to model electron–electron scattering in RT–
TDDFT; the implementation of such a functionalwould enable the study of realistic elec-
tron scattering and the short time scales of HC thermalization. The inclusion of these
two effects would lead to more accurate HC distributions.

Many plasmonic catalysis experiments are done in reaction chamberswhere reaction
products are measured using chromatography [40, 47, 110–112], or photocurrents from
the collection ofHCs aremeasured [36, 113]. Developing a tractable complete theoretical
model for the photocatalysis of a chemical reaction, that takes into account intricacies
associatedwith atomic structure of thematerials, is tremendously challenging. Surface
hopping [114] has been used in Ref. [115] to model electron–phonon scattering and nu-
clearmotion, andwouldbe suitable to captureboth theHCthermalizationandchemical
kinetics.

Anotherpossibledirectionof futurework is theextensionof theDCmethod tohigher–
order multipoles, which should improve accuracy for NPs at short separations where
near–field gradients are strong. Once the coupled response is captured with sufficient
fidelity, one can pursue a mixed quantum–classical strategy: treat the chemically ac-
tive region (e.g., NP and molecule) quantummechanically to resolve HCs, while repre-
senting the system(s) in the environment classically, with the two (ormore) subsystems
exchanging fields self–consistently via electrodynamics. This “electrodynamic embed-
ding” would make simulations of very large assemblies computationally tractable, for
example to study realistic disordered systems, or ensembles of systems in collective
strong coupling (SC). Its main limitation is the absence of explicit hybridization across
the quantum–classical boundary, which sets a lower bound on realistic gap sizes.

Similar ideas of quantum–classical separation have been explored in the literature.
In Ref. [83], a framework has been derived for coupling of a RT–TDDFT subsystem to
any electromagnetic (EM) structure (as opposed to an idealized cavity) through a dyadic
Greens tensor that canbeobtainedwith standardEMsolvers. Another, slightly different
idea has been implemented in Ref. [116], where the spatially and temporally resolved
electric potential has been calculated in a two–NP system using quasi–electrostatics,
and HCs calculated quantummechanically using the precalculated potential.
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