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Abstract

In the convergence of quantum computing and life science, we explore pro-
tein structure prediction and design on near-term intermediate-scale quantum
devices. We investigate the algorithmic and resource constraints of today’s
quantum computers, aiming to assess their potential in solving biologically rel-
evant problems. We describe key variational quantum algorithms, including
the problem-informed Quantum Approximate Optimization Algorithm and the
problem-agnostic Hardware-Efficient Ansatz. Additionally, quantum walks are
examined. The computationally complex coarse-grained lattice models in pro-
tein structure prediction and design are discussed. Quantum algorithms are
then applied to these models to address the utility and limitations of today’s
quantum computers. The thesis critically evaluates the limitations of quantum
methods in comparison to classical approaches, highlighting the trade-offs be-
tween resource requirements in today’s quantum devices and the performance
of quantum algorithms. Through this interdisciplinary investigation, the work
contributes to understanding how quantum algorithms may advance computa-
tional biology in today’s quantum computing landscape.

Keywords: life science, protein folding, protein structure prediction, protein
design, variational quantum algorithms, hardware-efficient ansatz, quantum ap-
proximate optimization algorithm, quantum walk, near-term intermediate-scale
quantum devices
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1 Introduction

Quantum computing as a con-
cept emerged in the late 20th
century as researchers began ex-
ploring how quantum mechan-
ics could revolutionize compu-
tation. In 1980, Paul Benioff
proposed a quantum mechani-
cal model of a Turing machine,
demonstrating that computa-
tion could be described within
the framework of quantum the-
ory [1]. This foundational
work established the possibil-
ity of quantum computers as
physical systems governed by
quantum dynamics. Building
on this, Richard Feynman ar-
gued that quantum computers
would be uniquely suited to sim-
ulate quantum systems, which
are notoriously difficult for clas-
sical computers to model effi-
ciently [2]. Around the same
time, Yuri Manin suggested
that quantum computers could
outperform classical ones in cer-
tain computationally intensive
tasks [3, 4]. In 1985, David
Deutsch formalized the notion
of a universal quantum com-
puter, showing that such a de-
vice could simulate any physi-
cal system governed by quan-
tum mechanics [5].

\?ﬁ‘om code to Unctiop,

DNA G“““ﬁuuc
wRNA gcwuguuc

Awno
=3 VJ

Pspt}de with
side chains 3
Coarse-grained ’_}
wodl ‘—)Hcah enersy

/N

Clossical search Quantuwm SearCh

*—9
o—%

$L0west energy
Figure 1.1: From DNA to mRNA to
amino acid sequence to functioning pro-
tein. But how do we most efficiently and
accurately predict what the protein will
look like?




1. Introduction

In 1994, Peter Shor introduced a groundbreaking quantum algorithm that,
when run on the right quantum device, would be capable of factoring large in-
tegers exponentially faster than the best-known classical algorithms [6], demon-
strating that quantum computers could, in theory, solve problems of significant
practical and cryptographic importance. Shortly after, Lov Grover developed a
quantum search algorithm that could theoretically provide a quadratic speedup
for unstructured search problems [7], showing that even tasks with minimal
structure could benefit from quantum acceleration. These results marked a
turning point, establishing that sufficiently large quantum computers could the-
oretically outperform classical ones in solving real-world problems. Quantum
computers of this scale and capability have yet to be built.

Even so, quantum computing has seen remarkable progress in recent years,
with advances in hardware, algorithms, and theoretical understanding [8-11].
The field of quantum algorithms can be broadly divided into two domains today.
First, those like Shor’s and Grover’s algorithm, which are theoretically proven
to outperform their classical counterparts running on quantum devices we an-
ticipate in the future. Second, the algorithms that are tailored for the quantum
computers we have today. Current quantum devices remain relatively small and
unstable compared to the demands of those early quantum algorithms. Their
limited scale and susceptibility to noise restrict the sizes of problem instances,
the duration of computations, and the reliability of the results. In the era
of the so-called noisy intermediate-scale quantum (NISQ) device [12], hybrid
quantum-classical algorithms have gained prominence. These algorithms uti-
lize a classical computer in conjunction with a quantum circuit, enabling us to
leverage quantum properties while mitigating hardware limitations. Applica-
tions span diverse domains, including machine learning [13], optimization [14],
and more, see Fig. 1.2.

Figure 1.2: Examples of application domains explored in quantum com-
puting research. These include flight scheduling in logistics [15], molecular
simulation in chemistry [16], and vehicle routing in transportation [17].

Trying to find yet more applications for quantum algorithms, this thesis be-
gan at the intersection of two dynamic fields: How quantum algorithms could be
used to improve any computation classically challenging in any problem within
the life sciences. The life sciences encompass a wide array of disciplines that
study living organisms, including biology, genomics, proteomics, biotechnology,
and more. The potential for finding an application within these fields seems
promising [18, 19].

Our early investigations focused on DNA sequencing, a cornerstone of ge-



nomics. However, after a year of exploration, we concluded that DNA sequenc-
ing may not be the most suitable application for current quantum computing
technologies. The limitations of today’s quantum devices make them better
suited for problems with small input domains and large search spaces. In con-
trast, a single DNA sample contains millions of nucleotides but only four distinct
types, resulting in a vast input space and relatively straightforward computa-
tional operations. We deemed it a poor candidate for quantum acceleration un-
der current hardware constraints. Despite our inability to identify a compelling
quantum advantage in this domain, the intersection of quantum computing and
genomics remains an open and evolving frontier [20-23].

The realization of the difficulties in applications in DNA sequencing led to a
pivot toward computational problems involving proteins, which not only align
better with the characteristics of today’s quantum computers but were, and
remain, a growing and impactful research area within quantum algorithms [24—
41]. The essence of the question is visualized in Fig. 1.1. Proteins are made
up of sequences of amino acids, and their biological roles are determined by the
way these chains fold into complex three-dimensional (3D) structures. Protein
structures govern how molecules interact, how cellular pathways operate, and
how biological systems behave. Understanding these structures is essential not
only for decoding life at the molecular level but also for enabling structure-
based drug design, which relies on accurate models of protein targets to develop
effective therapeutics [42, 43]. The protein structure prediction (PSP) prob-
lem, inferring a protein’s 3D conformation from its amino acid sequence, has
long stood as a central issue in computational biology, due to the intricate link
between molecular structure and biological function. The inverse problem of
determining amino acid sequences that would fold into a target structure is
called protein design. Proteins typically consist of a few hundred amino acids,
but the search space for possible foldings is astronomically ample due to the
many degrees of freedom [44]. This combination of a compact input space and
a vast search space makes PSP and protein design ideal candidates for quantum
computing.

While the theoretical promise of quantum computing is substantial, a cen-
tral question remains: what can be realistically achieved with current quantum
devices in the domain of PSP and protein design? As previously discussed,
today’s quantum hardware is currently constrained by limited scale, noise, and
short run time, and most existing implementations have primarily served as
proof-of-concept demonstrations rather than practical solutions.

In this thesis, we mainly examine the potential and limitations of modern
quantum devices through four interconnected avenues. First, discuss what has
been done in the field, give a detailed overview of the methods, i.e., quantum
algorithms, and the problem at hand, i.e., PSP and protein design. Second, we
investigate the scale of future quantum computers required to challenge classical
methods in protein-related tasks. Third, we explore the problem of protein
design, which may be more tractable than PSP and thus more amenable to
current quantum capabilities. Finally, we assess how far existing devices can be
pushed and try to reach outside proof-of-concept in PSP with NISQ algorithms.
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1. Introduction

These efforts naturally raise two key challenges. One concerns the encoding
of protein information from atomic-level data, translated into bitstring repre-
sentations suitable for input into a quantum computer. This is discussed in
Chapter 2, which provides an in-depth look at proteins, a brief description of
how to simulate protein dynamics, and how to predict the 3D structure or design
proteins. The second key challenge involves designing hybrid quantum-classical
algorithms, as explained in Chapter 3, together with a ground-up description of
quantum computing, where careful decisions must be made about which parts
of the computation are best handled by quantum resources and which should
remain in the classical domain. Furthermore, Chapter 4 brings it all together,
discussing the current state of the field and describing the paper contributions of
this thesis. Concluding the thesis, Chapter 5 provides a summary and outlines
potential future research directions based on our findings.



2 Computational problems in-
volving proteins

Proteins are fundamen-
tal to biological func-
tion, and understanding
their behavior is central
to many scientific and
medical challenges. This A
chapter explores compu-
tational approaches to »
protein-related problems,
beginning with an intro- S
duction to protein struc- N

ture and function.

- N\

. ‘ |
We.then examine coarse- | < |
grained models, as shown B | !
in Fig. 2.1, for sim- | \/i |

ulating protein folding
and predicting the pro-
tein’s 3D structure. The
chapter also covers pro-
tein design, engineering
novel proteins with de-
sired properties. Lastly,
the chapter reviews clas-
sical algorithms used to
tackle these tasks.

Figure 2.1: Fully atomistic depiction of a
four amino acid chain and the correspond-
ing coarse-grain model representations for
the side-chain conformation-based model (top),
coordinate-based lattice model (middle), and
turn-based lattice model (bottom) with the
square, tetrahedral, and body-centered cubic
(BCC) lattice (from left to right).

2.1 Protein structure and function

Proteins are fundamental to all biological processes, including, among many,
mobilizing the intracellular response, controlling cell dynamics, and cell shape.
These macromolecules exhibit significant diversity in form and function, which
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2. Computational problems involving proteins

is determined by their three-dimensional structure.

Proteins are composed of one or more long chains of amino acid residues. Al-
though over 500 amino acids exist in nature, only 22 a-amino acids are encoded
by the genetic code and used in protein synthesis within living cells. These are
referred to as canonical or natural amino acids [45, 46]. Each protein chain
consists of one or more polypeptides, typically comprising at least 50-100 amino
acids per chain. Human proteins have a median length of 375 amino acids [47],
and therapeutic targets average around 414 amino acids [48]. The organism’s
DNA determines the sequence of the amino acids in a protein (see Fig. 1.1), and
the amino acids are linked via peptide bonds between their amino (NHy) and
carboxyl (COOH) groups. Once incorporated into a chain, each amino acid is
referred to as a residue, and the repeating backbone of two carbon and a nitro-
gen forms the protein backbone. Each amino acid possesses a unique side chain
attached to one of the two backbone carbons, which contributes to the protein’s
chemical properties and interactions. These side chains can be classified based
on their polarity and charge, and are often abbreviated by a three-letter combi-
nation or just one letter. For example, Alanine in Fig. 1.1 is a non-polar amino
acid with a methyl group as its side chain and is abbreviated as Ala or A. In
the same figure, we also see Leucine (L) and Phenylalanine (F).

Broadly, proteins are classified into three categories: fibrous, membrane, and
globular proteins. Fibrous proteins, including those found in bone and muscle,
are elongated and generally insoluble. Membrane proteins, such as receptors
and ion channels, are embedded within cellular membranes and play critical
roles in signal transduction and transport. Globular proteins, such as enzymes
and signaling molecules, fold to bury hydrophobic residues within, forming a
hydrophobic core, and expose hydrophilic residues to water, forming a spherical
shape. These are discussed in Paper A and are the most studied in this thesis.

2.2 Protein folding

The functional form of a protein arises through a process known as folding,
whereby the linear amino acid chain adopts a specific 3D structure [49]. Most
proteins typically fold reliably into a single structure called the native state.
This folding is a spontaneous process within the crowded cell, determined by
the amino acids interacting with their surroundings, where factors such as sol-
vent (water or lipid bilayer), temperature, pH, salt concentration, and other
molecules present play a significant role. The folding in the cell is sometimes
facilitated by molecular chaperones, which assist in folding and prevent aggre-
gation (misfolding).

Levinthal’s paradox highlights the complexity of this process, formulated by
Cyrus Levinthal [50] in 1968. The paradox states that the number of possible
conformations (ways that the protein can fold), caused by the large number
of degrees of freedom, for an unfolded polypeptide chain is so astronomically
large that an exhaustive search for the native state would take longer than
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2.2. PROTEIN FOLDING

v ¢

W v

Figure 2.2: Protein folding begins with a high-energy, unfolded polypeptide
chain. As folding progresses through the four levels, entropy decreases and the
system transitions toward lower-energy, more stable configurations. Amino acid
chains will fold into, often unique, native structures.

the age of the universe. Noting that proteins fold much faster than a random
search would allow, Levinthal suggested that folding must proceed through a
sequence of semi-stable intermediate structures rather than by exploring all
possible conformations. As the protein folds, entropy decreases and the system
moves toward lower-energy configurations that are more compact, as shown in
Fig. 2.2. Although the energy landscape is rugged with many local minima
corresponding to partially folded intermediates, the funnel model [51] assumes
a bias toward the native state, enabling efficient folding despite the complexity.

The protein folding process is organized hierarchically into four distinct lev-
els, see Fig. 2.2, each contributing to the molecule’s final shape and function [49].

e The primary structure refers to the linear sequence of amino acids, which
is determined by the process of mRNA translation. This sequence dictates
how the protein will fold and ultimately function.

e The secondary structure arises from local interactions within the backbone,
forming recurring motifs such as a-helices and S-sheets through hydrogen
bonding. These elements serve as the building blocks for more complex
configurations.

e The tertiary structure describes the overall three-dimensional conforma-
tion of a single polypeptide chain, incorporating its secondary structural
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2. Computational problems involving proteins

elements and functional domains into a cohesive unit. The term is often
used synonymously with the term fold.

e The quaternary structure emerges when multiple polypeptide chains as-
semble into a larger, functional protein complex, often enabling coopera-
tive interactions and enhanced biological activity.

Correct folding is essential for protein function. Even a single amino acid
substitution can disrupt the folding process, leading to loss of function or dis-
ease. A well-known example is the inherited disorder sickle cell anemia, which
is caused by a single amino acid change out of a total of 574 amino acids in
hemoglobin, leading to rigid, sickle-shaped red blood cells that can obstruct
blood flow [52]. Other examples of diseases linked to improperly folded proteins
are neurological diseases like Alzheimer’s and Parkinson’s. Usually, sponta-
neously misfolded proteins are typically recognized and degraded by cellular
quality control mechanisms.

With this in mind, studying protein folding becomes essential for under-
standing disease mechanisms and advancing medical research, as it provides
a valuable approach to enhancing our understanding of protein interactions,
functions, and structures. However, simulating the protein folding process is a
formidable computational challenge. The rugged energy landscape requires a
highly detailed representation of amino acid interactions in their natural envi-
ronment [53, 54].

2.2.1 In silico protein structure prediction

Studying the native state of a protein can be considered a gateway problem
for understanding protein folding. One way to study proteins is through the
use of experimental techniques. Two often mentioned experimental techniques
are X-ray crystallography, which determines atomic-level structures by analyz-
ing diffraction patterns from protein crystals, and Nuclear magnetic resonance
(NMR) spectroscopy, which uses radiofrequency radiation to probe the magnetic
properties of atomic nuclei, revealing details about their electronic surround-
ings, thereby offering insights into molecular bonding [55]. More recently, cryo-
electron microscopy (cryo-EM) has emerged as a powerful method, enabling the
visualization of biomolecules in near-native states by flash-freezing samples and
imaging them with an electron beam, thus providing high-resolution structural
information without the need for crystallization. The experimental data of nu-
merous proteins is publicly accessible in the Protein Data Bank (PDB) [56], a
repository that archives experimentally determined 3D structures of proteins,
nucleic acids, and complex biomolecular assemblies. These techniques are gen-
erally applied to proteins in crystalline or ensemble states, providing only static
snapshots rather than capturing the full dynamics of the protein in its native
environment. As a result, they offer limited insight into how proteins interact
with their surroundings. NMR spectroscopy has the advantage of operating
under conditions closer to physiological temperatures, but it faces significant
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2.2. PROTEIN FOLDING

challenges when applied to large proteins, typically those exceeding 270-360
amino acids. Moreover, all these experimental methods are resource-intensive
and costly, both in terms of time and equipment.

One computational approach to this problem is protein structure prediction
(PSP), which aims to infer a protein’s secondary and tertiary structure from
its primary amino acid sequence. In silico PSP algorithms typically consist of
two tightly integrated components: the conformational search strategy and the
energy function. The conformational search explores the vast space of possible
protein structures, seeking the global energy minimum. Historically, methods
such as simulated annealing and molecular dynamics have been widely used for
this purpose [54, 57]. The energy function takes a protein conformation as input
and returns its associated energy, and the conformation corresponding to the
native state should be the minimum of the energy function. Energy functions
can be broadly categorized into two types: physics-based, which rely on funda-
mental physical principles, and knowledge-based, which incorporate statistical
and empirical data [58]. Hybrid approaches that combine both types of terms
also exist.

In strictly physics-based approaches, atomic interactions are modeled using
quantum mechanics and fundamental physical constants such as the electron
charge. Each atom is characterized by its type and electronic configuration,
enabling highly detailed and accurate simulations. However, performing such
all-atom quantum calculations is computationally prohibitive, making it nec-
essary to combine them with classical mechanics for practical applications. A
well-known example of an all-atom physics-based model is CHARMM, intro-
duced by Brooks et al. [59]. However, these models are computationally inten-
sive and quickly become impractical for large or complex systems, necessitating
simplifications. A practical starting point is to treat atoms as point particles
interacting through a defined potential form, or to group a few atoms in a pro-
cess called coarse-graining. An example of a coarse-grained physics-based model
is UNRES by Liwo et al. [60]. Coarse-grained models can also be constructed
using statistical data.

Furthermore, the knowledge-based approach relies on statistical models, evo-
lutionary information, and experimentally determined structures, often sourced
from the PDB, to infer likely conformations. Rather than simulating the folding
process, they predict static structures based on patterns observed in known pro-
teins. While experimental techniques offer high-resolution data, they are both
costly and time-consuming. Computational alternatives are therefore especially
valuable for studying mutations, such as single amino acid substitutions, with-
out the need for protein synthesis or extensive laboratory procedures.

More recently, knowledge-based methods have achieved a high rate of suc-
cess, with deep learning algorithms revolutionizing the field of PSP [61]. A
landmark development was the release of AlphaFold2 [62], a transformer archi-
tecture capable of predicting protein structures with near-experimental accu-
racy. AlphaFold2 employs a deep neural network trained on the PDB, utilizing
multiple sequence alignments (aligning biological sequences to identify regions
of similarity that may indicate functional, structural, or evolutionary relation-
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2. Computational problems involving proteins

ships) to predict torsion angles and inter-residue distances. The model gener-
ates distance maps and refines them via gradient descent, achieving remarkable
performance in the Critical Assessment of Structure Prediction (CASP) com-
petition. The CASP is a biennial global competition that evaluates the accu-
racy of computational methods for PSP and is widely regarded as the “world
championship” of PSP, providing a rigorous, double-blind benchmark for the
field [63]. Participants are tasked with predicting the 3D structures of pro-
teins whose experimental structures have been solved but not yet made publicly
available. Before AlphaFold2, the Rosetta software suite had long been a leading
tool in CASP, consistently ranking among the top-performing methods [64-67].
Rosetta’s fragment-based assembly, all-atomistic fine-tuning, and coarse-grained
sampling strategies combine physics-based and knowledge-based methods to lay
the groundwork for many of the innovations seen in modern structure prediction
pipelines. Both the success of AlphaFold2 and the Rosetta suite were recognized
with the 2024 Nobel Prize in Chemistry [68].

However, knowledge-based methods are limited by their reliance on experi-
mentally resolved structures, which are produced much more slowly than new
amino acid sequences are identified through genomic sequencing. This data im-
balance restricts their scalability and generalizability. Because these models are
trained on static structural snapshots, they may also struggle with tasks that
fall outside the distribution of their training data. For example, AlphaFold mod-
els have been shown to perform poorly on short peptide fragments and highly
flexible local domains, where limited sequence context and sparse evolutionary
information lead to structural ambiguity and reduced accuracy [69, 70].

In contrast, physics-based simulations offer an alternative that potentially
enables a better description of proteins with large unstructured regions. Fur-
thermore, knowledge-based models do not learn the folding process [71], which
may be better described using physics-based models. However, the study of
physics-based models is computationally challenging and would benefit from
advances in conformational search algorithms, an area where quantum opti-
mization techniques may offer promising solutions.

2.3 Coarse-grained models

Before the advent of fully atomistic simulations, where every atom and inter-
action is explicitly represented, including bond angles, torsion angles, and en-
vironmental effects such as solvent interactions, coarse-grained models played a
crucial role in protein folding research and remain essential in multiscale model-
ing. While fully atomistic models offer high accuracy, they are computationally
demanding due to the vast number of degrees of freedom. Using models that
simplify the system by grouping atoms into larger units, groups of atoms are
represented as single interaction centers or beads, which reduces computational
complexity significantly by lowering the degrees of freedom [72]. Coarse-grained
solutions often serve as initial guesses for more detailed simulations, signifi-
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2.3. COARSE-GRAINED MODELS

cantly reducing the overall runtime of folding algorithms and enabling the study
of large-scale protein dynamics, folding mechanisms, and structure prediction,
especially when fully atomistic simulations are infeasible. However, even coarse-
grained models become computationally intensive with increasing chain length.

A basic coarse-grained representation treats amino acids as beads on a string,
where each bead encodes specific properties of the corresponding residue. The
string of beads is then placed on a lattice in the lattice model [73, 74]. This
model enables efficient simulations, albeit at the expense of detailed information
regarding residue orientation and side-chain interactions. One of the simplest
examples is the HP model [75, 76], which classifies amino acids as either hy-
drophobic (H) or polar (P), capturing essential folding behavior through hy-
drophobic collapse. A more refined approach is the Miyazawa-Jernigan (MJ)
model [77], which assigns interaction energies to all 20 canonical amino acids
based on statistical potentials derived from known protein structures.

Other coarse-graining strategies increase resolution by using multiple beads
per amino acid. For instance, the CABS model, which uses a high-resolution
lattice with 800 possible orientations between virtual a-carbon atoms [78].

Some models don’t use a lattice, so-called off-lattice models. For example,
the AWSEM model [79], which employs three beads per residue, two for the
backbone and one for the side chain, and places particular emphasis on solvent
effects. Other notable off-lattice models (but can also be used with a lattice) in-
clude MARTINI [80], which is widely used for simulating biomolecular systems
with a four-to-one mapping of atoms to beads, and OPEP [81], which combines
coarse-grained potentials with implicit solvent models for folding and aggrega-
tion studies. These models vary in resolution and physical assumptions, offering
tailored solutions for different scales and types of protein simulations [72].

In this thesis, we focus on two coarse-grained models that have previously
been explored in the context of quantum computing: the lattice model with
various lattices [24-32, 38, 40, 41, 82-84] and the papers appended in this the-
sis Paper A, Paper D and Paper C. As well as the off-lattice side-chain based
model [35-37]. Paper A concerns both the lattice model and one simple off-
lattice model. While both models differ in resolution and complexity, they are
relatively simple and have been previously successfully translated into Hamilto-
nians (the term is explained in Chapter 3), making them suitable for quantum
optimization algorithms. However, as demonstrated in Paper C, such a trans-
lation is not strictly necessary, potentially opening the door to exploring more
complex coarse-grained models that were previously considered too complicated
for direct quantum encoding.

2.3.1 Lattice model

The lattice model discretizes physical space into a grid, where each amino acid
is represented as a bead s;, which indicates the type of the ith bead, e.g., H
or P in the HP model, occupying a lattice point. The accuracy of lattice-based
predictions depends on the resolution and geometry of the lattice. Despite its
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2. Computational problems involving proteins

simplicity, the lattice protein model is NP-complete [85, 86], i.e., computation-
ally challenging.

The protein chain is often modeled as a self-avoiding walk, where each bead
is placed sequentially based on a set of discrete turns that determine the position
of bead s;11 relative to bead s;. Overlaps are forbidden, reflecting the physical
constraint that no two residues can occupy the same space.

The level of structural detail captured in lattice-based protein models de-
pends on the specific lattice employed; higher-resolution lattices that allow
greater degrees of freedom, often characterized by higher coordination num-
bers and angles mirrored in nature, tend to produce more accurate and realistic
structural predictions [87, 88]. Here follows a selection of commonly used lattices
in quantum algorithms for PSP that illustrate these differences in resolution and
flexibility.

Square and Cubic lattices illustrated in Fig. 2.3, are widely used as a
starting point in lattice-based modeling due to their structural simplicity. Both
lattices are bipartite, allowing the constituent beads to be partitioned into two
alternating subsets, denoted as the A and B sublattices in Fig. 2.3. The square
lattice features a coordination number of four, meaning that each bead connects
to four neighbors, while the cubic lattice exhibits a coordination number of six.
The square and cubic lattice is discussed in Paper A and Paper B.

Figure 2.3: Unit cell representations of the square lattice (left) and cubic
lattice (right), in which each bead denotes an amino acid and each black edge
indicates a permissible directional turn. The bipartite nature of these lattices
is illustrated through the alternating A (black) and B (gray) sublattices.

Body-centered cubic lattice formed by adding a central point to each cube

in a standard cubic lattice and illustrated in Fig. 2.4, is employed in Paper C.
With a coordination number of eight, the BCC lattice provides greater flexibility
than the simple cubic lattice. Its characteristic bond angles, {70.53°,109.47°,180°},
allow for a wider range of conformational possibilities.

1,7
e

Figure 2.4: Unit cell representations of the BCC lattice in which each bead
denotes an amino acid and each black edge indicates a permissible directional
turn.

12



2.3. COARSE-GRAINED MODELS

Face-centered cubic lattice introduced for PSP using quantum algorithms
in Paper D and further employed in Paper C, features a coordination number
of 12 and supports a diverse set of turn angles: {60°,90°,120°,180°}. By in-
corporating additional points at the center of each face of the unit cell, the
face-centered cubic (FCC) lattice achieves a higher packing density than the
above-presented cubic lattices. This increased spatial resolution enables more
realistic approximations of protein structures and better captures the steric con-
straints inherent in biological molecules. A notable advantage of the FCC lattice
is its capacity to represent secondary structures with greater fidelity, particularly
a-helices. In such helices, the protein backbone adopts a right-handed coil, with
each residue contributing a 100° rotation along the helical axis, corresponding
to approximately 3.6 residues per turn [89]. Furthermore, the FCC lattice has
been shown to yield significantly lower energy configurations compared to other
coarse-grained lattice models [90].

R

Figure 2.5: Unit cell representations of the FCC lattice, where each bead
represents an amino acid and each black edge denotes an allowed directional
turn. The left panel shows the conventional perspective, while the right panel
emphasizes the coordination number more clearly.

Tetrahedral lattice also referred to as the diamond lattice and illustrated
in Fig. 2.6, is a structurally simple yet chemically meaningful model with a
coordination number of four.

P X

Figure 2.6: Unit cell representations of the tetrahedral lattice, where each
bead represents an amino acid and each black edge indicates an allowed direc-
tional turn. The bipartite nature of the lattice is illustrated by alternating A
(black) and B (gray) sublattices, which are shown separately on the left and
combined in the full lattice view on the right.

Like the square and the cubic lattices, it is bipartite, allowing the beads
to be partitioned into two alternating subsets. First introduced for PSP using
quantum algorithms in Robert et al. [31], and further examined in Paper A and
Paper C, the tetrahedral lattice is notable for its chemically plausible angular
constraints. Specifically, it enforces a fixed bond angle of 109.47° between any
two consecutively connected beads, reflecting the geometry of carbon atoms in
the backbone. Dihedral angles are restricted to either 60° or 180°, contributing
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2. Computational problems involving proteins

to a more realistic depiction of protein structure. Despite these strengths, the
lattice does not accommodate all naturally occurring bond geometries, limiting
its ability to capture certain structural motifs fully. The tetrahedral lattice
could also be used for modeling backbone and side-chain interactions.

2.3.2 Off-lattice model

Among the various off-lattice models, this thesis focuses on those with a fixed
backbone and with side-chain optimization as these have been previously ex-
plored in the context of quantum algorithms. The positioning of side chains
plays a critical role in protein folding [91], and is often referred to as the packing
problem. This problem is typically addressed in an iterative framework, where
backbone conformations are optimized in one step, followed by side-chain ad-
justments, and then further refinement, with the process iteratively alternating
between backbone optimization and side-chain adjustments.

Figure 2.7: A sketch of the rotamer model. The backbone remains fixed, and
the residues are grouped into beads (black) that can rotate.

Side chains vary in complexity depending on their length and chemical struc-
ture. Longer side chains possess more degrees of freedom, while shorter ones
have fewer components and thereby fewer angles to vary. These rotation an-
gles can be modeled either as continuous variables or discretized into sets of
torsion angles. The entire side chain can also be represented by a single bead,
like in Fig. 2.7. In discrete models, side-chain conformations can be represented
by predefined angle sets known as rotamers, rotational conformations, typically
derived from empirical frequency distributions such as those compiled by Dun-
brack and Karplus [92]. We can also have other side-chain conformations. The
combinatorial nature of the problem renders side-chain conformation selection
NP-complete, and the associated energy minimization task is NP-hard [93].

Rosetta software suite uses one of the most widely used implementations
of the rotamer model, as mentioned above [64-67, 94, 95]. Rosetta employs
both coarse-grained and all-atom representations of proteins, transitioning iter-
atively between low- and high-resolution models. The coarse-grained model en-
compasses all heavy backbone atoms and virtual atoms representing side chains.
Rosetta is a comprehensive platform for macromolecular modeling and is widely
used in tasks such as PSP, protein—protein docking, protein-ligand docking, an-
tibody modeling, refinement of experimental structures, and protein design,
among others.
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2.4. PROTEIN DESIGN

2.4 Protein design

A significant biophysical challenge in molecular biology is the inverse folding
problem, commonly referred to as protein design [96-98]. Unlike PSP, which
seeks to determine the 3D structure from a given amino acid sequence, protein
design aims to identify sequences that will reliably fold into a predefined target
structure. This task has gained significant momentum in recent years, driven in
part by advances in machine learning and computational modeling [57, 99, 100].

The field has matured to the point where some of its most promising ap-
plications lie in biomedicine, including the design of vaccines and protein-based
inhibitors [99], as well as in synthetic biology, where engineered proteins are used
to create novel biological functions [101]. A landmark achievement in the field
was the design, synthesis, and crystallographic validation of Top7, a 93-residue
protein with no detectable sequence similarity to any known natural protein [96].
This demonstrated that it is possible to design entirely novel proteins that fold
into stable, functional structures.

These achievements were achieved using coarse-grained off-lattice models,
such as the rotamer model discussed in Sec. 2.3.2. In this context, rotamer sets
can be extended to include mutational flexibility, allowing the exploration of
alternative sequences that may better stabilize a target structure. On-lattice
approaches have also been used to study simplified design dynamics [102, 103].
Despite these advances, the computational modeling of the biophysical princi-
ples underlying protein design remains a formidable challenge.

2.5 Protein structure prediction as an op-
timization problem

The PSP problem can be expressed as a combinatorial optimization problem
when the conformational space is discretized. Let us define the protein confor-
mation as a vector T, representing a 3D structure of an amino acid sequence §
of length N, the number of amino acids. Each amino acid s; can adopt a set
of possible conformations ﬁi, which can be indexed and, thereby, represented
as integers. This allows us to encode the entire protein structure as a sequence
of integers representing discrete choices. Given a choice r; € R; for each amino
acid, we create & = (rg,...,TN_1).

In Paper A, we introduce the cardinality vector, C = (n(Ry), ..., n(Rx_1)),
a vector with the cardinalities of the sets of conformations. This abstraction
simplifies the representation and manipulation of protein configurations, partic-
ularly when preparing the problem for encoding onto a quantum circuit.

For the lattice model, the conformations are the positions on the grid, e.g.,
first, second, third, seen from the upper left corner, and the cardinality vector
represents the number of positions on the grid for each bead. If the lattice
is bipartite, we can split the amino acid sequence and let half of it populate
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each sublattice, as mentioned above, which allows us to divide each element in
the cardinality vector by half. This can be described as the coordinate-based
encoding. Another way to represent a structure on the lattice is through a turn
sequence, a more compact encoding. This method, known as the turn-based
encoding, assigns an integer to each possible directional turn: for example,
turning up might be represented by one, left by two, down by three, and so on.

For the side-chain conformation model, the cardinality vector is simply the
number of conformations for each side chain in order, given by a statistical distri-
bution of the most probable side-chain conformations. An illustrative example
of a tripeptide is provided in Fig. 2.8.

An energy function E(Z) evaluates the stability of a given conformation
by assigning it an energy value. This function can be constructed using ei-
ther physics-based interaction potentials or knowledge-based scoring functions,
as discussed in previous sections. The energy function will contain the inter-
action energies between amino acids, such as nearest-neighbor or higher-order
connections, and constraints to ensure that the conformation is feasible. For
example, we do not want two amino acids to occupy the same position, caus-
ing overlap, and we aim to have only one conformation per amino acid. The
constraints can, e.g., be softly enforced by a penalty term, as in the example in
Fig. 2.8; other ways of implementing a constraint are discussed in Chapter 4.
In the coordinate-based model, we obtain another condition of chain continu-
ity, i.e., bead s;41 follows bead s;. The conformation with the lowest energy is
referred to as the native state, denoted T'ative, With its corresponding energy
E(Znative) = Egs with gs for the ground state. There can be more than one
ground state.

A simple example of an energy function is one where we can divide the
interactions into one-body energies, corresponding to the choice of a specific
conformation, and two-body energies, which represent the interaction energies
between the chosen conformations. This can be the formulation for the side-
chain conformation-based model

N-1 N—-1N-2
E(E) =Y O@)+ > Y T 7)), (2.1)
i=0 i=0 j<i

where O(Z;) depends in the side-chain conformation i and contains the one-body
energy for that conformation and T'(Z;,Z;) depends on the pair of side-chain
conformations ¢,j and contains the two-body energy between the pair. The
summation over ¢ < j ensures that each pair is only counted once.

The goal of in silico PSP is to identify Zpative from a given amino acid
sequence § = (8g,...,Snv—1). This task can be formally stated as an optimization
problem:

minimize  E(Z)

] E 2.2
subject to ¥ € Fiructures ( )

where Fitructure denotes the set of all valid conformations that satisfy the con-
straints of the protein model, e.g., chain continuity, non-overlapping residues,
and complete assignment of atomic positions.
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This formulation aligns PSP with well-known combinatorial problems such
as MAX-CUT, SAT, EXACT-COVER, and KNAPSACK [104], many of which are known
to be NP-complete. The inherent complexity of PSP makes it a promising
candidate for quantum optimization techniques, which may offer advantages
in exploring large and rugged energy landscapes more efficiently than classical
methods.

2.6 Protein design as an optimization prob-
lem

Protein design can be formulated as the inverse of the PSP problem. Instead
of identifying the most stable protein conformation for a given amino acid se-
quence, the goal is to find one or more sequences § = (sq,...,sy—1) that fold
into a predefined target structure .

Each amino acid s; in the sequence is selected from a set of possible residues,
which may include all 20 canonical amino acids or a restricted subset depending
on the design constraints. A candidate sequence s is thus a discrete assignment
of residues to each position in the structure.

Given a fixed target conformation Z, the energy function F(S,Z) evaluates
the compatibility of a sequence with the structure, typically based on interac-
tion potentials, packing efficiency, and other biophysical criteria. The objective
is to identify sequences that minimize this energy function while satisfying bio-
chemical and structural constraints.

Formally, the protein design problem can be stated as:

minimize  FE(S, %)

subject to §e€ Fsequence (23)

Here, Fyequence denotes the set of all valid amino acid sequences that satisfy
design constraints such as residue compatibility, structural stability, and func-
tional requirements. It may also be necessary to restrict the amino acid composi-
tion to prevent trivial homopolymer sequences. Furthermore, achieving minimal
energy in the target structure does not guarantee that an alternative structure
with even lower energy does not exist. Therefore, it is essential to verify whether
the optimized sequence actually folds into the intended structure. This inverse
formulation is computationally challenging due to the vastness of the sequence
space and the complexity of accurately evaluating sequence-structure compati-
bility.
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Figure 2.8: An example of a structure in the rotamer model with cor-
responding energy function. The solution (purple) is & = (1,3, 3), i.e., the first
rotamer for the first side chain which is the first rotamer, the third rotamer for
the second side chain which is the sixth rotamer, and the third rotamer for the
last side chain which is the eighth rotamer—which results in an energy (blue)
that consists of the two-body energies of the three rotamers pairwise and the
three one-body energies added up, from Eq. 2.1. If two rotamers for the same
amino acid are chosen, e.g., rotamers eight and nine that both correspond to
the third side chain, in the solution, then the solution energies are set to a high
value in order to avoid unfeasible solutions (red).
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3 Quantum computing

In this chapter, we will introduce quantum
states that provide the foundations for qubits,
which are manipulated using quantum gates.
This is followed by quantum algorithms, with
extra focus on variational quantum algo-
rithms.

3.1 Quantum basics

Quantum computing is just linear algebra in
disguise, albeit expressed through a formalism
unique to quantum mechanics. This math-
ematical framework enables the representa-
tion and manipulation of quantum informa-
tion, which is essential for the development
and analysis of quantum algorithms.

3.1.1 Quantum state

To describe quantum states, Dirac notation is
usually used, also known as bra-ket notation.
This notation provides a concise and expres-

Figure 3.1: The chandelier-
like cryostat cools quan-
tum processors, like su-
perconducting qubits. Al-
though not the quantum
computer itself, the cryo-
stat is often used as a sym-
bol for quantum hardware
and will be used in this con-
text throughout this thesis.

sive way to represent vectors and inner products in complex Hilbert spaces,

H [105, 106].

e A ket vector represents a quantum state, denoted as [¢), which corre-
sponds to a column vector in a complex vector space.

e The bra vector, written as (1|, is the Hermitian conjugate (complex con-
jugate transpose) of the ket vector and corresponds to a row vector.

e The term “bra-ket” originates from the inner product of two quantum
states, expressed as (¢|¢), which yields a complex scalar and encodes the
overlap or probability amplitude between the states [i) and |¢).
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3.1.2 Qubits

A quantum state of a two-level system is called a qubit (quantum bit), analo-
gous to the classical bit in conventional computing [106, 107], see Fig. 3.2. A
classical bit can exist in one of two discrete states: 1 or 0, physically represented
by high or low voltage in a wire. A qubit can exist in a continuous superpo-
sition of both states and is physically manifested through a quantum system.
There is more than one way of implementing a qubit, including ion traps [108],
superconducting circuits [109], and photonic systems [110].

Figure 3.2: Left: The classical bit can either be on, 1, or off, 0. The classical
computer is represented throughout this thesis by the screen, keyboard, and box
seen in the figure.

Right: The quantum bit, qubit, can be in a superposition of on, 1, and off, 0.
Bottom: The Bloch sphere, a way to visualize the states of the bits. A point
on the surface of the sphere represents a quantum state. Operations on the
qubit correspond to rotations of the point on the sphere. The north and south
poles correspond to the basis states |0) and |1), respectively, while all other
points represent superpositions of |1) and |0).

The Hilbert space of a qubit, g, is

Hase = (00101 ={ (3) - (1) }- 3.1)

Mathematically, the state of a qubit is represented as:

Q
) =alo+ 811 = [5]. (32)
where a, § € C are complex amplitudes satisfying the normalization condition

(W) = la +8]* = 1. (3-3)
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The squared magnitudes of these coefficients correspond to the probabilities of
measuring the qubit in the respective basis states: |a|? for |0) and |3|? for |1).

The Bloch sphere provides a geometric representation of a single qubit state.
Any pure qubit state can be visualized as a point on the surface of a unit sphere
in three-dimensional space. The north and south poles correspond to the basis
states |0) and |1), respectively, while all other points represent superpositions of
|1) and |0). Of particular interest are the phase states, located on the equator
of the Bloch sphere:

0) +[1) 0) — 1)
V2 V2

as these are unique to the qubit. The probability of the qubit measuring to 1
and 0 is 1/2 for both.

|+) = and |—)= (3.4)

3.1.3 Multi-qubit systems

In systems with multiple qubits, the state space grows exponentially. An M-
qubit system spans a 2*-dimensional Hilbert space, allowing for superpositions
over all possible classical bitstrings of length M. For example, a three-qubit
system has the basis:

H3—qubit = {]000), [001),...,[111)}, (3.5)

with the number of states in the Hilbert space being |Hs_qubit| = 2° = 8. A
general state of the system is written as:

2M_q

W)=Y cld), (3.6)
i=0
where ¢; € C and ), |¢;|? = 1, same as o and 3 above. The coefficients |¢;|?
represent the probabilities of measuring the system in the corresponding basis
state |Z;).

Unlike classical registers, which can only occupy one configuration at a time,
quantum registers encode information in the amplitudes of all basis states si-
multaneously. Storing these amplitudes classically would require 2 complex
numbers, highlighting the exponential advantage of quantum systems. Upon
measurement, the superposition collapses to a single basis state. To extract all
the probabilities |c;|?, repeated measurements of identically prepared systems
are necessary.

3.1.4 Quantum gates

Quantum gates are used to manipulate the probability amplitudes ¢; in the
quantum state |1)) defined in Eq. 3.6. To understand how quantum states are
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manipulated, we begin with the time evolution of a quantum system, which is
governed by the time-dependent Schréodinger equation:

L d
ih— [9(t) = H[$(1)), (3.7)

where H is the system’s Hamiltonian operator, whose eigenvalues correspond
to the energy levels of the system. In this thesis, we adopt natural units
and set Planck’s constant 7~ = 1 for simplicity. Solving the time-independent
Schrodinger equation,

H %) = E; |#), (3.8)
yields a set of eigenstates |Z;) and corresponding eigenvalues F;, which are real
since Hamiltonian operator is Hermitian. The lowest eigenvalue E defines the
ground state |Zy) of the system. In the energy basis, the Hamiltonian is diagonal:

oM _q

H = Z E; |23) (23] - (3.9)

If the Hamiltonian is time-independent, the solution to the Schrodinger equation
can be expressed using the unitary time-evolution operator:

Ut)=e" |u(t) = U) [¥(0)), (3.10)

where e? is defined via the matrix exponential and [)(0)) can be the initial
state of the quantum register. This formalism describes quantum gates, which
are unitary operators such as U, that preserve the norm of the quantum state
vector and ensure that the total probability remains normalized when acting on
quantum states, evolving them in time according to the system’s dynamics.

To introduce the concept of quantum gates and aid in understanding, it is
helpful to begin with their classical counterparts. In classical computing, logical
operations are carried out using gates such as NOT, AND, and OR, which
manipulate or operate on classical bits, as shown in Fig. 3.3. For example, the
one-bit NOT-gate, —, inverts the input bit, transforming a one into a zero:

-1 =0. (3.11)

The two-bit AND-gate, A, on the other hand, outputs one only if both input
bits are one:
1IAN1=1, but 1A0=0. (3.12)

A quantum gate that acts on a qubit can be visualized by rotations on the
Bloch sphere, see Fig. 3.2. Rotations around axis j by angle 8 are given by:
%)

Ri(0) = e 127 (3.13)

where o7, with j € {x,y, 2}, is one of the commonly used Hamiltonians called
Pauli matrices:

+ v _ |0 1 v v |0 —i . - |1 0
o —X—L O]’ o —Y—[i O]’ and O’—Z—lO _1]. (3.14)
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Figure 3.3: Classical logic circuit composed of multiple gates. The regis-
ter starts in the state 10, three gates act on the initial state in the order [AND,
NOT, OR], and the final readout after manipulation from the gates is 1.

For example, a rotation around the z-axis:

R,(0) = cos <§) I —isin (g) o (3.15)

A rotation of § = m around the z-axis yields the quantum NOT-gate (omitting
the global phase —i):

Ry(m) = 0", (3.16)
o 0 1] ][0 1
= [ =[1) =10 )
The Hadamard gate,
H = L 1 1 (3.18)
S 2 1) '

transforms basis states into phase states, enabling superposition of qubits, here
the probability of measuring |0) and |1) is both 50%, see Fig. 3.4. The Hadamard

(o)

Figure 3.4: Phase state from Eq. 3.4 on the equator of the Bloch sphere,
created with the Hadamard gate from Eq. 3.18. The probability of measuring
either |0) or |1) is 50%.

gate acting on |1) gives the |—):

SR YRR
and the |+) when acting on |0):
wo- St 20l e

23



3. Quantum computing

+
v

Figure 3.5: Entangled qubits in a superposition where measurement of one
affects the state of the other (left), regardless of spatial separation (right).

3.1.5 Multi-qubit gates and entanglement

In quantum computing, entangling gates are multi-qubit operations that gener-
ate quantum entanglement, non-classical correlations between qubits that can-
not be described by separable product states. These gates are essential for
leveraging the full computational capacity of quantum systems, as operations
on one qubit within an entangled register can influence the state of all entangled
qubits. This non-local behavior enables certain computations to be performed
more efficiently, often requiring fewer gate operations than their classical coun-
terparts.

Formally, a gate is said to be entangling if it can transform a product state
into an entangled state, one in which the individual qubits no longer possess
independent descriptions. A measurement of one qubit instantaneously affects
the state of the other, regardless of spatial separation, see Fig. 3.5. This non-
classical dependency is not due to any signal transmission, but rather reflects
the nature of quantum states.

For example, the controlled-NOT (CNOT) gate flips the target qubit only if
the control qubit, the first qubit, is in state |1):

CNOT [11) = [10) and CNOT|01) = |01). (3.21)

Further, we consider the application of a Hadamard gate followed by a CNOT
gate:
1 exor, 1

V2 V2

The resulting state is one of the four Bell states, which are maximally entangled
and form a complete basis for the two-qubit Hilbert space.

A universal gate set allows the construction of any quantum operation and
must be able to approximate any unitary operation to arbitrary precision. In
classical computing, the AND and NOT gates form a universal set of logic
gates together. In quantum computing, a universal gate set can be combined
to approximate any unitary operation on a multi-qubit quantum system. One
example of a quantum universal gate set is two of the rotational gates, e.g., R, ()
and R, (), but it can be any combination, together with the CNOT gate. The

100) 225 —(100) + [10)) (|00) + |11)), (3.22)
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gate set of a specific quantum device affects how an algorithm is compiled for
that device, which in turn influences the depth of the quantum circuit, i.e., the
number of sequential layers of gates that are executed. A deeper circuit typically
requires more time to run and is more susceptible to noise and decoherence.

Other entangling gates include the controlled-Z (CZ) gate and the iSWAP
gate. More complex multi-qubit gates, such as the three-qubit gate controlled-
controlled-NOT (ccNOT), often referred to as the Toffoli gate, enable smaller
circuit depths because the gate encapsulates multi-qubit logic in a single op-
eration, thereby reducing the need for decomposing it into multiple two-qubit
gates and improving computational efficiency in both simulation and hardware
execution.

3.2 Quantum algorithms

A quantum algorithm is typically implemented as a quantum circuit: a sequence
of quantum gates applied to an initial quantum state, followed by measurement.
As illustrated in Fig. 3.6, the circuit begins with state preparation, proceeds
through unitary operations, and concludes with measurements on each qubit.
To obtain the entire probability distribution over output bitstrings, which is
often necessary, we must execute the circuit multiple times. However, some
methods are more efficient and can extract useful information with significantly
fewer runs. This probabilistic nature is intrinsic to quantum computation and
forms the basis for potential algorithmic speedups.

s |

Figure 3.6: A quantum circuit consists of a sequence of quantum gates acting
on an initial register of qubits, followed by measurement. The register starts
in an initial state of |100), five gates operate on the initial state [H, CNOT,
CNOT, Toffoli, H], and finally a measurement of each qubit is performed to
give the state |101). By repeatedly executing the same circuit, one obtains a
probability distribution over the possible output bitstrings.

The long-term vision for quantum computing involves a large-scale, fault
tolerant quantum computer capable of executing complex algorithms with high
fidelity. The two most famous examples are Shor’s algorithm for prime fac-
torization [6] and Grover’s algorithm for unstructured search [7]. In theory,
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these two algorithms could provide exponential and polynomial speedups, re-
spectively, over their classical counterparts, if run on a fault tolerant quantum
computer. These algorithms highlight the potential of quantum computing and
have motivated global efforts to build scalable and robust quantum hardware.
However, both algorithms require fully error-corrected quantum devices, with
logical qubit counts that far exceed current technological capabilities, where
each logical qubit is encoded using multiple physical qubits to mitigate errors.
In the case of Shor’s algorithm, estimates suggest that approximately 20 mil-
lion noisy physical qubits, or around 6,000 logical qubits, would be required to
match the performance of modern classical cryptographic standards [111].

In today’s quantum systems, noise and decoherence represent two of the
most significant challenges to reliable quantum computation. Noise refers to
unwanted interactions between the quantum system and its environment, lead-
ing to stochastic errors in gate operations, state preparation, and measurement.
Decoherence, more specifically, refers to the loss of quantum coherence resulting
from these interactions. This process destroys superposition and entanglement,
undermining the computational advantage of quantum algorithms. The rate of
decoherence is typically characterized by relaxation times, which quantify the
dissipation of energy and the randomization of phase. Mitigating noise and de-
coherence is a central focus of quantum error correction, fault-tolerant circuit
design, and hardware engineering.

Until fault-tolerant quantum computers become available, research has fo-
cused on developing algorithms suitable for noisy intermediate-scale quantum
devices, quantum processors with 50 to a few hundred qubits and limited coher-
ence times [82, 112-114]. Despite their limitations, NISQ devices have shown
potential in outperforming classical systems for specific tasks, but have yet to
surpass the capabilities of classical computers.

Among the most prominent NISQ-era algorithms are the variational quan-
tum algorithms (VQAs) and two examples are the quantum approximate op-
timization algorithm (QAOA) [14], inspired by quantum annealing [115, 116],
and the hardware-efficient ansatz (HEA) [16], which tailors circuit structure to
the native gate set of the quantum processor. These approaches exemplify the
ongoing effort to extract meaningful computation from imperfect quantum hard-
ware by leveraging the combined strengths of quantum and classical resources,
a paradigm known as hybrid quantum computing. Hybrid quantum-classical al-
gorithms have attracted considerable attention lately and have the potential to
provide a quantum advantage for specific computational problems [117]. Hy-
brid algorithms are highly adaptable and thereby find applications in various
domains, including chemistry [16], machine learning [13], and optimization [14].

Other relevant modern algorithms for quantum PSP and design are the quan-
tum adiabatic algorithm [118] and the concept of quantum walk. To simulate
a quantum algorithm or run real quantum hardware, we need a quantum soft-
ware framework. Among these many, Qiskit [119] stands out as the most widely
adopted open-source platform, offering tools for circuit design, simulation, and
execution on IBM Quantum hardware. However, the ecosystem is diverse: al-
ternatives like PennyLane [120] emphasize hybrid quantum-classical workflows
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and machine learning integration, while Cirq [121], developed by Google, pro-
vides specialized tools for near-term quantum devices. Other platforms, such
as Amazon Braket [122], further expand the landscape, providing researchers
with the flexibility to choose the framework best suited to their algorithmic and
hardware requirements.

3.2.1 Quantum approximate optimization algorithm
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Figure 3.7: The Quantum Approximate Optimization Algorithm con-
structs a layered quantum circuit, where each layer alternates between problem-
specific gates in Hs and mixing operations in Hpjwer- The circuit is parame-
terized by a set of angles 7 and E , which are iteratively optimized by a classical
optimizer. At each step in the parameter optimization, the classical optimizer
queries the quantum circuit several times to evaluate the cost function, usually
the expectation value of H.s, and updates the parameters accordingly.

The quantum approximate optimization algorithm [14] is to solve combina-
torial optimization problems on NISQ devices, and has been studied extensively
for its potential advantages over classical methods both in terms of solution
quality and computational speed [123, 124]. Inspired by quantum annealing,
see sec. 3.2.4, it may be favorable for tackling NP-hard and NP-complete prob-
lems, where classical algorithms often struggle with scalability and efficiency.
QAOA is a hybrid quantum algorithm in which a parameterized quantum cir-
cuit is executed on a quantum processor, while a classical optimizer iteratively
updates the circuit parameters to maximize or minimize a problem-derived cost
function, see Fig. 3.7.

The standard QAOA circuit consists of an alternating sequence of two Hamil-
tonians: the cost Hamiltonian H.ost, which encodes the energy function of the
optimization problem FE, and the mizer Hamiltonian Hixer, Which introduces
quantum superpositions to explore the solution space. Given an initial state of
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the circuit |tg), the quantum state after p layers of the algorithm is given by:

p

/l/}p(f?, 5)> — H e_iﬁchoste_i’Ymeixer 1/}0> , (3‘23)
j=1
where ¥ = (y1,...,7p) and E = (B1,...,Bp) are variational parameters opti-

mized by the classical part of the algorithm, and ¢ is the imaginary unit in this
case. The objective function is often set to maximize or minimize the expecta-
tion value:

C(7.8) = (p(7,B)| Heost [0, 5) ) . (3.24)

The optimal parameters should yield a quantum state with a high probability
of measuring the ground state solution to the problem being implemented. See
Sec. 3.2.3 for more details on parameter optimization.

Cost Hamiltonian

To map a classical bitstring solution & = (b ...by;—1), with b; € {0,1}, each
classical binary variable b; maps to a quantum variable ¢} that can take values
{1,-1} as b; = (1 — 0)/2. The cost Hamiltonian can then be expressed as a
k-local spin Hamiltonian:

H st = Z hio? + Z Jijoios + Z Jijko; 0508 + ..o, (3.25)
i ij ijk
where h;, J;;, and J;;;, are coefficients representing single-qubit, two-qubit, and
higher-order interactions, respectively, and o7 is the Pauli Z-matrix acting on
qubit 7. The cost Hamiltonian guides the evolution of the quantum state toward
configurations that minimize the encoded energy function F(Z).
If the problem at hand can be formulated as a quadratic unconstrained
binary optimization (QUBO) problem:

M-—1
mjn Z Qz‘j bibj, (326)

i<j=0

where & = (bg...by_1) is a binary vector with b; € {0,1} and Q € RM*M ig 4
symmetric matrix of coefficients. The translation into an Ising Hamiltonian for
use as a cost Hamiltonian is easily accomplished, as shown in App. A.1. Many
NP-complete and NP-hard problems can be mapped to the Ising model [125].

The periodicity of the cost function landscape plays a critical role in the
optimization process. When the eigenvalues E; of the cost Hamiltonian are
rationally independent, the energy landscape becomes non-periodic, which can
complicate the search for optimal circuit parameters. If the eigenvalues are
integers, they are guaranteed to be rationally dependent, leading to a periodic
energy landscape that is easier to navigate. However, when the eigenvalues are
non-integer decimals, we can apply smoothing techniques or discretization, such
as truncation or rounding, to induce rational dependence and thereby facilitate
the identification of approximately optimal parameters.
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Mixer Hamiltonian
The mixer Hamiltonian introduces transitions between basis states. The
simplest choice is the X-mixer:

M—-1
HX—mixer - Z Uf; (327)
=0

which allows transitions between all computational basis states. More sophisti-
cated mixers, such as the XY -mixer [126], can preserve the Hamming weight of
the solution (the number of ones in the bitstring), thereby fulfilling a constraint
that can be expressed as a Hamming weight. The construction of the XY -mixer

is then: ]

Hxv —mixer = 3 Z (0fof + 05’0;’), (3.28)

1,j€e

where e denotes the set of edges of a graph defining allowed transitions. Two
examples are explored in Paper B. A fully connected graph, which allows inter-
actions between all qubit pairs, and a ring topology, which restricts interactions
to nearest neighbors in a cyclic arrangement. Using an XY-mixer can reduce
or eliminate the need for penalty terms for punishing unfeasible solutions in the
cost Hamiltonian. Initial states can be chosen either in a feasible solution or a
uniform superposition over all states in the feasible solution set. Such uniform

supersposition corresponds to a so-called Dicke state when the Hamming weight
is fixed.

3.2.2 Hardware-efficient ansatz

The hardware-efficient ansatz approach [16] is designed to reduce circuit depth
and gate complexity compared to other VQAs, making it particularly suitable
for implementation on NISQ devices. In this framework, quantum circuits are
constructed from alternating layers of parameterized single-qubit rotations and
entangling gates, e.g., CNOTs, arranged to reflect the native connectivity of
the quantum hardware. The parameters of the rotations are denoted 6, see
Fig. 3.8 for an illustration of the circuit and information flow. This structure
enhances hardware compatibility, while offering sufficient expressibility for many
variational tasks [117, 127].

Unlike problem-specific ansatzes such as QAQOAs, which incorporate knowl-
edge of the problem into the circuit design, HEAs can be problem-agnostic. This
means they can be applied to a broad class of optimization problems without
requiring structural tailoring, making them highly versatile for general-purpose
variational tasks and potentially reducing circuit depth, thereby lessening the
demand for a long coherence time.

A problem-informed HEA can use the same objective function as QAOA,
described in Eq. 3.24, the expectation value given parameters 0:

—

C(0) = ((0)] Heos

¢(5)> - (3.29)
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A
5

Figure 3.8: The Hardware-Efficient Ansatz consists of alternating layers of
parameterized single-qubit rotations and entangling gates arranged to match the
native connectivity of the quantum hardware. The parameters of the rotation
gates 0 are optimized by a classical optimizer to minimize a cost function, such
as the expectation value of a problem Hamiltonian or the energy function of the
problem.

However, the problem-agnostic HEA may utilize an objective function where
the output from the quantum computer running the parameterized circuit is
processed fully classically, thereby avoiding the use of ancilla qubits for slack
variables. This is used in Paper C.

A variety of problem-agnostic HEAs exist. The simplest version, called
RealAmplitudes [128] in the Qiskit package, consists of a single-layered cir-
cuit with a sequence of parameterized single-qubit rotations, typically R, gates,
followed by a layer of entangling gates, such as CNOTSs, and then another layer
of single-qubit rotations before measurement. The entangling gates are often
arranged in a reverse linear pattern, where the last qubit is entangled with the
second-to-last, and so on. In this configuration, both the circuit depth and the
number of trainable parameters scale linearly with the number of qubits. We
could also add another block of rotations after the CNOTSs in each layer, called
EfficientSU2 in the Qiskit package, in the pursuit of building an ansatz with
sufficient expressivity. Both of these ansatzes are used in the papers of this
thesis.

Designing a problem-agnostic ansatz presents a fundamental challenge in
quantum algorithm development. Much like selecting an architecture for a
neural network so that the untrained network can learn the symmetries and
constraints of the problem, the ansatz begins as a blank canvas before the pa-
rameters are optimized, and must have a structure that is trainable to express
the nuances inherent to the problem at hand. The choice of ansatz is critical: it
must be expressive enough to represent the solution space effectively, yet not so
complex that it introduces an overwhelming number of parameters. Excessive
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parameterization can lead to optimization difficulties.

3.2.3 Optimization of quantum circuit parameters
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Figure 3.9: Iterative training of quantum circuit parameters. The quan-
tum circuit parameters @, such as 7, 5 in QAOA or 0 in HEA, are optimized to
minimize a cost function C(&), e.g., the expectation value in Eq. 3.24. Successful
optimization results in a decreasing cost across iterations, yielding a probability
distribution where high-quality solutions are more likely to be observed.

The classical optimization of quantum circuit parameters in VQAs, visual-
ized in Fig. 3.9, is a central yet challenging task, known to be NP-hard [129].
This difficulty is compounded by the presence of noise and barren plateaus [130,
131], regions in the parameter landscape where gradients vanish and optimiza-
tion stagnates, see Fig. 3.10. These issues necessitate a careful balance between
circuit expressibility and depth, especially for ansatzes like HEA, which are
known to exhibit barren plateaus as system size increases due to circuits having
large expressibility [132] or generating large quantities of entanglement [133].

Even in scenarios where barren plateaus are absent, training variational
quantum circuits can still be hindered by other optimization challenges. The
parameter landscape may be highly irregular, with numerous suboptimal local
minima that make it challenging to identify the global optimum [134]. This issue
is intensified when the model lacks symmetry or when a suitable initialization
strategy is unavailable (we do not know a good starting point), both of which
can significantly reduce the likelihood of successful convergence. In such cases,
although the energy landscape may not be flat, its complexity can still render
the model effectively untrainable.

To mitigate these challenges, various optimization strategies have been de-
veloped. Gradient-based methods, such as gradient descent, were commonly
used initially but have been shown to be often inefficient. In contrast, gradient-
free approaches, like evolutionary algorithms, show more promise. In our work,
we found that the COBYLA algorithm [135] consistently performed very well, and
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we successfully applied it in both Paper B and Paper C.

One effective strategy is to optimize circuit parameters iteratively, layer by
layer [136]. Starting with a one-layer circuit, and initializing parameters to an
arbitrary value, such as 7 or a random value, then optimizing the parameters or
performing a grid search to obtain the optimal parameters. Performing a grid
search on only the first layer’s parameters is more feasible as it includes only a
handful of parameters, e.g, only two for QAOA. For each increment in depth,
the parameters from the previous layer are used to generate an initial guess for
the next via linear interpolation. This method is used for QAOA in Paper B.

Another approach involves initializing parameters based on quantum anneal-
ing schedules [137], which provides the optimizer with a good starting point
for initiating the optimization at a higher p. Yet another useful technique for
higher p is parameter donation [138-141], where optimized parameters from
smaller problem instances are reused as initial values for larger ones. This
method leverages structural similarities between instances to accelerate conver-
gence. This method is used for HEA in Paper B.

v e

Figure 3.10: Illustration of a barren plateau in the cost landscape, where
gradients vanish and hinder optimization, versus a smooth sloped landscape
that is easy to optimize.

Metrics of performance

To evaluate the performance of our quantum algorithms, we employ several
metrics, each offering distinct insights into the quality of the solutions produced.
The output of the quantum circuit is typically assessed relative to the energy of
the lowest-energy configuration, known as the ground state energy, Fqs. Even if
the exact ground state is not reached, proximity to it can be beneficial, as post-
processing techniques may help refine near-optimal solutions into exact ones.
For PSP, such post-processing could be using simulated annealing [142] or the
Rosetta suite [94].

The parameters optimized in a quantum circuit can be denoted generally by
@, which may correspond to i,,@ in QAOA or 0 in HEA, see Fig. 3.9. Given
an objective or cost function dependent on these parameters, C'(J), e.g., the
expectation value in Eq. 3.24 for QAOA and Eq. 3.29 for HEA, we can then
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evaluate and update @. An alternative to using the expectation value is the
Conditional Value at Risk [143] (CVaR) function, a risk-aware objective func-
tion that improves solution quality by focusing on the best-performing subset of
measurement outcomes. Instead of optimizing the full expectation value, CVaR
minimizes the average cost over the lowest-energy fraction of sampled states,
thereby reducing the influence of high-energy outliers and enhancing the proba-
bility of sampling near-optimal solutions. Since the ground state energy can be
computed classically, the best measurement outcome directly reflects the opti-
mal solution. Therefore, it is more practical to focus on improving the quality
of the best sampled solution rather than the average over all samples.

To quantify how close the sampled solutions are to the ground state energy,
we use the ratio of approzimation (RA), defined as:

C()

RA(@) = B (3.30)

where a value close to one indicates high-quality solutions [136].

For minimization problems, especially those where the optimal energy is
negative, the relative error (RE) is often more informative than RA. Tt is defined
as:

RE(@) =

‘M _ (3.31)

Eq

A relative error near zero implies that the quantum circuit produced a low-
energy state close to the ground state.

Another important metric is the success probability, overlap with the optimal
solution or hit rate, which measures the probability of sampling the correct
solution:

Pip(@) = [(Znative D (@) (3.32)

where |Zpative) 1S the basis state corresponding to the optimal solution, the
ground state.

In addition to scalar metrics, visualizing the energy distribution of sampled
states can provide valuable insights. It helps identify gaps in the optimization
process, such as insufficient exploration of certain energy regions or concentra-
tion around suboptimal local minima.

3.2.4 Quantum annealing

Quantum annealing [118] is a metaheuristic optimization technique that lever-
ages quantum superpositions to explore the solution space of combinatorial
problems. Unlike gate-based quantum algorithms described above, quantum an-
nealing employs a different hardware architecture with a unique type of qubit,
often referred to as an “annealing qubit”. Experimental implementations of
quantum annealers have been developed using various qubit architectures, in-
cluding ion traps [144], optical lattices [145], and, the most well-known from
D-Wave, using a type of superconducting qubit called a flux qubit [146, 147].
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Quantum annealing operates by slowly evolving a quantum system from an ini-
tial Hamiltonian Hj,;; with an easy-to-prepare ground state, often a uniform
superposition over all basis states, to a problem-specific cost Hamiltonian H gt
whose ground state encodes the optimal solution. The cost Hamiltonian is most
often formulated like an Ising Hamiltonian from a QUBO, namely the cost
Hamiltonian for the QAOA in Eq. 3.25 with only the one- and two-body terms.

The process of a quantum annealer relies on the adiabatic theorem, which
ensures that if the evolution is slow enough, the system remains in its ground
state throughout the process:

H(t) = [1 - S(t)]Hinit + S(t)Hcost> (333)

where s(t) is the annealing scheme, an often linear function following s(ty =
0) = 0 and $(tena = T'), with T being the total running time. The evolution is
slow enough if 7" is in the order of O(1/AE?2; ), where AFEy,, is the minimum
energy gap between the evolution’s two lowest eigenstate energies. Selecting an
appropriate annealing scheme is a research field within itself. The QAOA can be
seen as a discretized version of quantum annealing, with the initial Hamiltonian
corresponding to the mixer Hamiltonian. However, in comparison, QAOA can
learn non-adiabatic mechanisms once optimized.

Quantum annealing is particularly well-suited for problems with rugged en-
ergy landscapes. While it does not guarantee finding the global optimum, it
often provides high-quality approximate solutions. Examples in PSP and pro-
tein design with the quantum annealer have seen success [24-27, 35, 84]

3.2.5 Quantum walk

Quantum versions of random walks [148, 149] were introduced as quantum ana-
logues of classical random walks [150, 151], which have found widespread use
in modeling stochastic processes across disciplines [152-158]. This foundational
role inspired the development of quantum walks as algorithmic tools [159, 160],
with demonstrated advantages in specific graph traversal problems [161]. These
speed-ups have been linked to quantum transport phenomena, such as charge
and energy transfer in biological systems [162, 163].

Quantum walks have been proposed as a foundational mechanism for de-
signing quantum search algorithms, offering an alternative to amplitude am-
plification techniques such as Grover’s algorithm. In particular, discrete- and
continuous-time quantum walks have been shown to enable search on struc-
tured graphs with provable speed-ups over classical counterparts [159]. These
approaches exploit quantum interference to concentrate probability amplitudes
on marked vertices, potentially reducing the number of steps required to lo-
cate a target. Moreover, quantum walks have been demonstrated to support
universal quantum computation [164—-166], further reinforcing their theoretical
significance.

In Paper E, we model both classical and quantum walks on an undirected
graph G(e,v), where v is the set of nodes and e the set of edges. In the classical
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case, a continuous-time random walk (CTRW) begins at the start node and aims
to reach a target node. The walk is governed by a modified adjacency matrix A¢,
which prevents transitions out of the target node to simulate absorption. The
time evolution of the node occupation probabilities p(t) follows the equation

WO _ (0 1), (3.34)

where T;; = Af;/deg(j), and deg(j) is the degree of node j. The solution,

p(t) = T D1p(0), (3.35)

with p(0) = (1,0,...,0)T, allows estimation of the hitting time, the time it takes
for the particle to reach the target node with sufficient probability. For random
graphs, the characteristic path length is o< Inn, such that p¢, o ﬁ [167, 168].

In the quantum case, a continuous-time quantum walk (CTQW) is defined
on the same graph with Hilbert space Hg ey = {|0),...,|n — 1)} and Hamil-
tonian H = A. To avoid collapsing the quantum state during measurement, a
sink node is added, connected only to the target node. The Lindblad equation
describes the system’s dynamics so that we can model decay from the target to
the sink [169, 170]. The hitting time is then extracted from the population in
the sink node, starting from the initial state, in only the initial node.

The quantum walk framework described here shares conceptual similari-
ties with the Quantum Metropolis algorithm [171], which is commonly used in
quantum PSP [33, 172], particularly in its application of graph-based dynam-
ics to explore complex state spaces. In both cases, transitions between states
(nodes) are governed by adjacency relations, and the goal is to efficiently sam-
ple or reach specific configurations. The Quantum Metropolis algorithm adapts
the classical Metropolis sampling algorithm to quantum systems by employ-
ing controlled quantum walks and projective measurements to enforce detailed
balance and ensure convergence to a target distribution. While our quantum
walk model focuses on hitting times and absorption via a sink node, the un-
derlying mechanism (quantum evolution constrained by graph topology) aligns
with the Metropolis approach to navigating energy landscapes. However, unlike
the Metropolis algorithm, which is designed for sampling from thermal distribu-
tions, our model is tailored to directed search and does not inherently guarantee
equilibrium sampling. This distinction highlights both the versatility and the
limitations of quantum walks as algorithmic primitives in quantum simulation
and optimization.
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4 Structure and sequence on

NISQ devices

In this chapter, we present an integrated
view of how NIS(Q) devices can be used for
PSP and protein design. We then review
prior work in this domain, highlighting key
contributions that have shaped the field,
and also discuss the specific contributions
of the papers included in this thesis.

Figure 4.1 illustrates a typical work-
flow often proposed in the literature where
a quantum computer and a classical com-
puter work in tandem.

4.1 Overview of the
procedure

Applying quantum computing to PSP in-
volves a sequence of interdependent steps,
each requiring trade-offs between biologi-
cal accuracy and the limitations of today’s
quantum devices. These limitations in-
clude the number of available qubits, the
connectivity and allowed interactions be-
tween the qubits, and the achievable cir-
cuit depth given current gate fidelities.
The process begins with formulating
the biological problem as a mathematical
optimization problem. This step includes
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Figure 4.1: Hybrid
quantum-classical  work-
flow for PSP. Bitstrings
representing  protein  con-
formations, generated from
the quantum computer, are
processed by the classical com-
puter. The classical computer
evaluates the output and, with
an optimizer, updates the
quantum circuit parameters,
penalizing invalid configura-
tions and favoring feasible
low-energy conformations.
Towards the goal of finding
the native structure of the
protein.

selecting a suitable coarse-grained model and defining an energy function that
captures the relevant interactions and constraints. Once the problem is formu-
lated, it must be encoded into a representation suitable for quantum compu-
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tation. This involves mapping the protein conformation into a bitstring and
constructing a quantum circuit that implements the energy function, often, but
not necessarily, expressed as a Hamiltonian.

Next is the choice of quantum algorithm and hardware platform, which is
closely tied to these earlier decisions. For instance, if the hardware supports
only two-body interactions, a model with at most two-local interactions is al-
lowed; otherwise, the circuit must be decomposed into smaller gates, which
increases circuit depth and coherence time requirements. Similarly, the choice
of lattice model affects both the accuracy of the predicted structure and the
number of qubits and gates required, which in turn limits the size of the protein
instance that can be processed if the hardware is limited. Paper A explores
these trade-offs in detail, analyzing the long-term potential of quantum com-
puting for protein folding and evaluating resource requirements for simplified
yet computationally challenging models.

Finally, once the quantum computation is complete, and we have found a
good candidate structure or even the ground state structure of the model, the
coarse-grained structure can be converted into three-dimensional coordinates
and optionally refined. The predicted structure is then compared to a reference
from the PDB using metrics such as the Root Mean Square Deviation (RMSD):

1
MSD= [—— L —yil2, 4.1
RS \/ Fatoms 2 I v (4.)

where x; and y; are the coordinates of corresponding atoms in the predicted
and reference structures. Lower RMSD values indicate higher accuracy, with
values below 2 A generally considered good.

4.1.1 Problem Formulation

The first step in the workflow is to express PSP or protein design as an op-
timization problem, as discussed in Sec. 2.5. This requires defining an energy
function that captures the relevant interactions, such as HP or MJ potentials,
and imposing constraints to ensure physical feasibility, such as avoiding overlaps
and maintaining chain connectivity. The choice of model, whether lattice-based
or off-lattice, has a significant impact on both the accuracy of the representation
and the computational resources required. Paper A analyzes the effect of lattice
choice on resource requirements, discussing the number of qubits, interaction,
and two-qubit gates needed for various lattice and off-lattice models. Mean-
while, Paper C introduces a new lattice and compares three different lattice
types, demonstrating their influence on qubit counts.

4.1.2 Encoding

Problem formulation is closely intertwined with the encoding process, which
bridges the gap between the abstract optimization problem and its quantum
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implementation. We need a representation of the protein structure as a bit-
string. The string of integers representing the protein conformation, discussed
in Sec. 2.5, can be mapped to a bitstring & = (b, ... by —1), with b; € {0, 1}, if
we translate the integers into a binary number and concatenate them.

There are several ways of translating from an integer into a bitstring, either
by a Unary, sometimes called One-Hot, Binary, BUBinary, Domain wall, or
something else [173]. An example of how integers are translated into a bitstring
is given in the continued version of Fig. 2.8, which is shown in Fig. 4.2.
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Figure 4.2: Revisiting the example of a structure in the rotamer model
with the bitstring encoding. The solution (purple) is & = (1,3, 3), which results
in the bitstring 10000100010 in the Unary encoding. If two rotamers for the
same amino acid are chosen, e.g., rotamers eight and nine that both correspond
to the third side chain resulting in the last subbitstring 1100, in the solution. A
constraint we need to add is to keep the Hamming weight of each subbitstring
to one, so that only one rotamer is chosen per amino acid. The interaction
energies between the rotamers for the same amino acid are set to a high value
to avoid unfeasible solutions (red).

The cardinality vector, defined in Paper A and written in Sec. 2.5, helps us
allot the correct number of bits to encode the integer. For example: the Unary
encoding will need M = n(ﬁz) qubits and the Binary encoding will need M bits
so that 2M < n(ﬁz) Here, a choice arises regarding how to encode the integers,

presenting a trade-off between the number of needed qubits and the complexity
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of the resulting energy function. In Fig. 4.3, we give an example of how the
choice of the encoding affects the number of qubits. Comparing turn-based and
coordinate-based encodings can also be seen in Fig. 4.3. The choice of encoding
is the main topic of Paper A, analyzing the effect of choosing Unary, Binary, or
BUBinary.

4.1.3 Algorithm selection

The next step is to choose a quantum algorithm, possibly one from Sec. 3.2,
and construct a circuit that encodes the energy function. This can be done
using a problem-informed ansatz, where the circuit structure is derived from
the problem Hamiltonian, or a problem-agnostic ansatz, which is tailored to
the hardware and learns the energy function through optimization. Alternative
approaches may also be considered depending on the problem and hardware
constraints.

Constraints can be incorporated as penalty terms within the Hamiltonian.
While this approach is straightforward, it introduces an additional hyperparam-
eter: the penalty coefficient. This parameter must be carefully tuned; if set too
high, it can overshadow the objective function, whereas if too low, the algo-
rithm may favor violating constraints to minimize overall energy. In the case
of the QAOA, we can employ alternative strategies, such as relocating certain
constraints from the cost Hamiltonian to the mixer Hamiltonian, e.g., using an
XY-mixer as described in Sec. 3.2.1, which can reduce the total circuit depth.

Once a parameterized circuit is defined, the next challenge is to optimize
its parameters, a process discussed in Sec. 3.2.3. Consequently, the choice of
how the parameters are trained and which classical optimizer is used can have
a substantial impact on solution quality and convergence.

4.1.4 Quantum hardware

The final step in the workflow involves selecting an appropriate compiler and
quantum hardware. This choice is critical because the connectivity of the prob-
lem sets the needed connectivity of the gates, which directly influences the suit-
ability of the hardware. The compiler, analogous to its classical counterpart,
translates high-level quantum programs into low-level instructions executable
on the target device. Compilation itself is an active research area as it must ad-
dress several challenges, including transpiling, i.e., adapting to platform-specific
native gate sets. For example, if a required gate, such as the Toffoli, is not
natively supported, it must be decomposed into an equivalent subcircuit us-
ing the available gate set. Additional compilation tasks include qubit allocation
(mapping logical qubits to physical qubits), circuit routing (enabling interac-
tions between non-adjacent qubits), and gate compression (reducing overall gate
count and circuit depth). These steps are essential for minimizing errors and
ensuring that the circuit can be executed within the device’s coherence time.
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Figure 4.3: Encoding comparison of examples of lattices with coor-
dination number four. Turn-based encoding on a square lattice [25], the
coordinate-based encoding also on the square [27] and the turn-based encod-
ing on the tetrahedral lattice (3D) [31]. Both the Unary (orange) and Binary
(purple) encoding are shown for example protein conformations. It is clear to
see that the Unary encoding always results in more qubits than the Binary en-
coding. The turn-based encoding uses fewer qubits than the coordinate-based
encoding. It should be noted that the bitstrings shown in this example are only
for the conformation qubits.
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4. Structure and sequence on NISQ devices

Different quantum platforms offer distinct trade-offs. Superconducting qubit
systems, for instance, provide fast gate speeds and a solid-state platform but
typically feature limited connectivity and are restricted to two-qubit interac-
tions [109]. In contrast, trapped-ion systems offer superior qubit quality and
reconfigurable connectivity, enabling more flexible circuit layouts, but at the
cost of slower gate operations [108, 174]. Consequently, while some architec-
tures can support multi-qubit interactions with fewer qubits, others prioritize
scalability at the expense of connectivity. Selecting the optimal hardware, there-
fore, requires balancing these factors against the resource requirements of the
chosen algorithm and encoding strategy [175].

Paper A presents an estimate of the minimum quantum resources required,
namely, the number of qubits, interactions, and two-qubit gates, to implement
a heuristic quantum algorithm tailored to a specific PSP instance. Our analy-
sis focuses on the resources required to construct quantum operations derived
from the Hamiltonian representation of PSP models for a given amino acid
length, and plots these up to a hundred amino acids. In particular, we examine
the lattice-based models as well as the fixed-backbone side-chain conformation-
based model, evaluating their compatibility with current hardware constraints
under different bit-encoding schemes, including Unary, Binary, and BUBinary.
We compare the turn-based and the coordinate-based encoding. We conclude
that the large number of ancilla qubits for the turn-based encoding and the
large number of conformation qubits are the main obstacles for the models.
Our findings indicate that the qubit requirements are within the reach of ex-
isting quantum technologies. However, the primary bottleneck lies in the large
number of interactions present in the Hamiltonian, which translates into a gate
count far beyond the capabilities of today’s quantum devices.

4.2 Protein structure prediction on NISQ
devices

PSP using quantum computing is a relatively young but rapidly growing re-
search area, with a notable increase in publications in recent years. A com-
prehensive overview of the field in table format is provided in the appendix of
Paper D. Below, we present the field of quantum PSP and its evolution over
time, summarizing key contributions.

Before delving into the literature, it is worthwhile to clarify the terminol-
ogy. Early work in this field often used the term protein folding, whereas more
recent studies tend to adopt the term PSP. While these approaches do opti-
mize over bitstrings whose energies correspond to conformational energies, thus
favoring compact, folded structures, they do not solve the protein folding prob-
lem in its strict sense. Proper folding is a path-dependent process governed by
thermodynamics and kinetics, whereas quantum approaches to PSP are largely
path-agnostic.
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4.2. PROTEIN STRUCTURE PREDICTION ON NISQ DEVICES

The first proposal to address PSP on a quantum device was introduced by
Perdomo et al. [28] in 2008, who suggested a square HP-lattice model using the
coordinate-based encoding for the quantum annealer. Furthermore, Perdomo-
Ortiz et al. [29] employed the turn-based model in 2012 to fold small peptides
of up to six residues on a square MJ-lattice, running experiments on D-Wave
hardware with 81 superconducting qubits.

Building on this idea, in 2014, Babbush et al. [25] reduced the number of
quantum operations required for the turn-based encoding on the square lattice.
Followed by Babej et al. [26] in 2018, who optimized the arithmetic complexity
of the previous approach and demonstrated PSP of a ten-residue Chignolin pro-
tein and an eight-residue Trp-Cage peptide using 2D and cubic lattice models,
respectively, on D-Wave’s 2000Q quantum annealer with 2048 qubits. Later in
the same year, Fingerhuth et al. [30] extended this work into the gate-based
realm by adopting a unary turn-based encoding on a cubic lattice. This en-
coding simplified the Hamiltonian at the cost of requiring more qubits and a
non-trivial mixer. They successfully implemented the algorithm on a real quan-
tum computer, obtaining non-trivial results for a tripeptide.

Furthermore, the use of a BCC lattice in quantum PSP was first proposed
by Wong and Chang [40] in 2021, who combined Grover’s search algorithm with
the HP model to identify low-energy conformations. The same group later ran
Grover’s algorithm on the square lattice in Wong and Chang [41].

At the same time, a meta-study of the field was conducted by Outeiral et al.
[24] in 2021, where they investigated the potential for quantum speedup by
analyzing the scaling of the spectral gap in dense encodings as the chain length
increases. They observed exponentially closing gaps in worst-case scenarios, but
only polynomial scaling on average. They compared simulated annealing with
ideal quantum annealing through direct Schrodinger equation simulations for
short peptides.

The above-presented models and encodings rely on ancilla qubits to imple-
ment interaction terms, both for residue-residue interactions and for preventing
overlap. These extra qubits stem from turn-sequence-based conformational en-
codings, which require storing residue distance data. The core challenge lies in
computing the distances between residues. To combat this, Irbéck et al. [27]
introduced a new coordinate-based encoding in 2022 with the square HP-lattice
model without ancilla qubits.

A significant development was introduced by Robert et al. [31] in 2021, who
proposed the tetrahedral MJ-lattice, to better approximate realistic bond an-
gles while maintaining a coarse-grained representation. Their method was more
resource-efficient, and they successfully demonstrated the folding of a seven-
residue peptide on IBM’s quantum hardware and simulated a ten-residue se-
quence using a VQE variant with CVaR optimization. However, the method
scales poorly, as the number of qubits grows exponentially with the interac-
tion range, limiting practical implementations to nearest-neighbor interactions.
The problem of ancilla qubits remained. Despite these limitations, the tetrahe-
dral model gained traction, maybe due to its availability in Qiskit, prompting
further analyses and algorithmic adaptations. Subsequent studies highlighted
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weaknesses in overlap penalization, which can lead to infeasible structures for
sequences longer than ten residues.

Following the success of Robert et al. [31], recent works from 2023 and until
today have explored both algorithmic and practical aspects using the same tetra-
hedral MJ-lattice model. Boulebnane et al. [83] evaluated QAOA for PSP while
using a more complex Lennard-Jones cost function, reporting limited success
compared to classical methods, while encoding overlap constraint into the prob-
lem rather than the Hamiltonian for better scaling. Doga et al. [32] proposed a
framework to identify proteins that could benefit from quantum approaches,
particularly those with rugged energy landscapes and few homologues, and
demonstrated that for a proof-of-principle protein, a hybrid quantum-classical
approach achieved lower RMSD than AlphaFold2 after post-processing.

Scheiber et al. [176] introduced an adaptation of the coordinate-based model
on the tetrahedral grid for quantum annealers. Their analysis revealed that
turn-based models on cubic grids performed poorly across most metrics due to
the overhead of reducing high-order terms to two-local interactions; in contrast,
the tetrahedral turn-based model performed significantly better. Scaling studies
further indicated that coordinate-based models are more favorable for quantum
annealers, while turn-based approaches remain limited by locality.

Pamidimukkala et al. [177] enhanced the 3D cubic HP-lattice model by in-
corporating diagonal movements, expanding each bead’s degrees of freedom to
26. They employ the CVaR-VQE algorithm on both simulators and hardware.

Extensive research has continued on the tetrahedral lattice using various
quantum algorithms. Mustafa et al. [178] reported promising results using a
HEA with average cost and HEA with CVaR, while emphasizing the need for
robust encodings to prevent chain overlaps. More recently, Zhang et al. [39]
performed a large-scale comparison between tetrahedral lattice-based quantum
models and AlphaFold2, noting that extensive post-processing was required be-
cause quantum measurements often yielded states far from the ground state.
Chandarana et al. [82] ran the digitized counterdiabatic quantum algorithm,
which tackled a nine-amino-acid chain using two superconducting circuit gate-
based quantum devices and an ion-trap platform. Followed by Romero et al.
[38], who presents a bias-field digitized counterdiabatic quantum optimization
algorithm, on a fully connected trapped-ion quantum processor, tackling the
tetrahedral lattice for up to 12 amino acids. Finally, the most recent Li et al.
[179] explores the use of circuit cutting as a strategy to improve hardware effi-
ciency by decomposing large quantum circuits into smaller subcircuits, thereby
reducing overall routing and mapping overhead [180]. Their work applies this
technique to a counter-adiabatic circuit implemented on a tetrahedral lattice,
combined with Initial-State-Dependent Optimization. This framework adapts
quantum gate parameters based on the specific states encountered during ex-
ecution to minimize circuit depth. While the study demonstrates promising
reductions in circuit complexity, it does not include results on generating actual
protein conformations, focusing instead on depth optimization. Nevertheless,
the approach appears to be a promising direction for future research.

While the tetrahedral lattice is resource-efficient and thereby well-suited for
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NISQ devices, its main drawback is geometric: the protein chain can only extend
in four directions, and only one angle can be formed between two consecutive
turns. To assess its suitability for predicting secondary structures, a denser
lattice with a higher coordination number is needed.

Paper D introduces the first quantum encoding of the FCC lattice for PSP,
alongside a detailed comparison with the tetrahedral lattice. The FCC lattice
consistently yields lower RMSDs, demonstrating superior protein modeling ca-
pabilities. The paper also proposes two novel approaches for constructing the
problem Hamiltonian without ancilla qubits: one based on polynomial fitting,
which increases circuit depth due to exponential growth in Hamiltonian terms,
and another using Lagrangian duality, which avoids this growth and enhances
scalability. However, the latter requires careful hyperparameter tuning and a
deeper understanding of the cost landscape to ensure convergence. Paper D
takes one step towards a more resource-efficient algorithm and a more resource-
demanding but more accurate lattice model, and finally runs a six-amino acid
sequence on quantum hardware. Note: I had the pleasure of contributing to
discussions surrounding this excellent paper. However, my involvement in writ-
ing and coding was minimal; I’'m grateful to have participated in the exchange
of ideas.

Paper C continues the use of the FCC lattice, but uses a method to alto-
gether avoid ancilla qubits, hyperparameter tuning, and deep quantum circuits.
The paper employs a Hamiltonian-free approach to the quantum PSP problem
using a HEA. The ansatz is trained to minimize an entirely classic energy-based
cost function, enabling a more scalable solution compared to problem-informed
ansatzes. This design not only simplifies implementation but also facilitates the
inclusion of higher-order interactions, which are typically challenging to incorpo-
rate into quantum models and, to date, have not been run on real hardware. The
study evaluates this method across three lattice geometries, tetrahedral, BCC,
and FCC, demonstrating the approach’s flexibility. Benchmarking is performed
on a diverse set of proteins with up to 26 amino acids, incorporating interac-
tions up to the second-nearest neighbor, with potential for even higher-order
terms. Experiments are conducted on both noise-free simulators and real gate-
based quantum hardware, pushing the limits of current quantum methods by
targeting sequences significantly longer than those addressed in previous studies.
Overall, the results highlight the scalability and versatility of this Hamiltonian-
free framework while identifying key challenges that inform future algorithmic
improvements and hardware development.
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4.3 Protein design on NISQ devices

4.3.1 Lattice model

Irbdck et al. [84] formulated the design problem as a QUBO for the square
HP-lattice model in 2024, enabling its solution on quantum annealers.

Paper B builds on Irbéck et al. [84] and extends the approach to gate-based
quantum devices, exploring both QAOA and HEA. The study focuses on the
sequence optimization step, which is less resource-intensive than full folding
computations, making it a suitable candidate for current NISQ hardware. Both
the QAOA and HEA were used. While QAOA performs well in noiseless simu-
lations, its performance degrades significantly under simulated noise conditions.
Conversely, HEA shows improved robustness in both noisy and noiseless simu-
lations. However, when executed on real quantum hardware, performance de-
teriorates further, likely due to noise characteristics not captured by simulation
models, such as temporal noise correlations.

Panizza et al. [181], also in 2024, proposes a general protein design framework
that integrates machine learning with quantum-inspired optimization. Their
method iteratively learns an optimal physics-based scoring function using struc-
ture prediction algorithms, rather than relying on predefined interaction param-
eters. The sequence selection step is then mapped to a combinatorial QUBO
formulation, allowing the use of both advanced classical solvers and emerg-
ing quantum technologies. The study focuses on compact structures modeled
on a two-dimensional square lattice, demonstrating the potential of hybrid ap-
proaches that combine predictive modeling with quantum optimization.

Around the same time, Khatami et al. [182] investigated the use of Grover’s
algorithm for square lattice-based protein design. While theoretically appealing,
the analysis concludes that the quantum resource requirements are prohibitively
large for current NISQ devices, limiting their near-term applicability.

4.3.2 Off-lattice model

The first application of quantum computing to off-lattice protein design was
introduced by Mulligan et al. [35] in 2020, who integrated the Rosetta modeling
suite with D-Wave’s quantum annealer. Their QPacker algorithm reformulates
the side-chain packing problem as a QUBO, solved via quantum annealing and
supplemented by classical post-processing. Subsequent work by Maguire et al.
[36] introduced preprocessing techniques to reduce the number of rotamers,
thereby mitigating resource constraints.

More recently in 2025, Agathangelou et al. [37] explored the use of QAOA
with an XY -mixer for side-chain packing. Their analysis suggests a poten-
tial quantum advantage at a crossover point between 115 and 150 qubits, be-
yond which quantum optimization could outperform classical methods. This
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PREDICTION PROBLEM

finding underscores the importance of continued algorithmic and hardware im-
provements to make quantum approaches competitive for realistic protein design
tasks.

4.4 Quantum walk approaches to the pro-
tein structure prediction problem

One classical strategy for identifying the native conformation of a protein is to
perform a smarter version of a random walk in conformation space. Starting
from an initial configuration, the algorithm proposes local changes and accepts
or rejects them based on a criterion, typically whether the energy decreases, as
in the Metropolis algorithm. Quantum algorithms can enhance this process by
introducing quantum versions of either the sampling step, the acceptance step,
or both, potentially combining them into a fully quantum procedure.

One approach is to integrate quantum walks with classical acceptance rules.
For example, in 2023 Varsamis and Karafyllidis [172] proposed a quantum-
walk-assisted algorithm in which dihedral angles are encoded as phase factors
governing the evolution of the quantum walk. This method uses a variational
quantum circuit to explore a Hilbert space corresponding to different spatial
configurations of a given sequence. Their implementation adopts a simplified
representation, modeling one bead per side chain and approximating the back-
bone as a one-dimensional lattice.

A more ambitious strategy is to implement the entire process on a quantum
computer. In 2022, Casares et al. [33] introduced QFold, an algorithm that
employs a quantum Metropolis-Hastings approach to determine torsion angles
for a tetrapeptide. Unlike lattice-based models, QFold treats torsion angles as
continuous variables, allowing for finer structural resolution but significantly
enlarging the search space. The algorithm uses machine learning predictions as
initial guesses and relies on a precomputed oracle for energy evaluations. While
this avoids compiling the scoring function into a quantum circuit, it introduces a
conceptual limitation: the oracle effectively encodes the solution in advance by
calculating all conformational energies before the quantum run. Constructing
the underlying graph for the quantum walk also requires assigning transition
probabilities based on these energies, further reducing the algorithm’s practical
advantage.

Despite these challenges, integrating quantum walks with protein folding
remains an intriguing research direction, particularly when combined with ma-
chine learning techniques. However, the reliance on oracles and the overhead of
graph construction highlight the need for more scalable approaches.

Paper E explores how a classical neural network can detect the potential ad-
vantage of quantum walks over classical random walks. We employ a fully dense
network, a convolutional network, and a network with problem-informed layers
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together with dense layers. Our study demonstrates that enhancing the quality
of the training dataset can improve neural network performance; however, all
tested architectures encounter difficulties when classifying large random graphs
and transferring knowledge across different graph sizes. Achieving higher ac-
curacy could unlock valuable insights into quantum advantage, not only for
random walks but also for broader applications in quantum computing and
quantum transport.

We can hypothesize that quantum walks may outperform classical methods
when the initial conformation is far from the native state, based on Paper E,
as the quantum algorithm can exploit interference to accelerate the exploration
process. Conversely, when the starting point is close to the target, classical
random walks may remain more efficient. The relative performance also depends
on the density of the conformation space and the allowed moves within it. These
factors suggest that the benefits of quantum walks are highly problem-dependent
and warrant further investigation.
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5 Summary & outlook

This thesis has explored the current state of quantum approaches to PSP and
protein design on near-term quantum computers, with a particular focus on al-
gorithmic strategies, encoding schemes, and the trade-offs between accuracy and
resource requirements. We began by introducing the biological and computa-
tional foundations of PSP and protein design, followed by an overview of quan-
tum computing principles and algorithms relevant to these problems. Building
on this foundation, we examined how protein information can be translated from
atomic-level detail into bitstring representations suitable for quantum compu-
tation, and how these representations interact with the constraints of NISQ
hardware.

5.1 Future

The field is transitioning from proof-of-principle demonstrations to tackling
larger and, hopefully soon, biologically relevant proteins. However, this progress
depends on four key factors:

Exploring alternative coarse-grained models: Future work could inves-
tigate more sophisticated coarse-grained models and interaction potentials, in-
cluding those derived from learning methods [183], which can capture com-
plex patterns from large structural datasets. Beyond the MJ model, alter-
native energy matrices could improve biological realism. Comparing different
interaction models against experimentally determined structures could maybe
help refine modeling strategies and guide the integration of quantum methods.
With problem-agnostic ansatz, previously unattainable models, e.g., CABS [78],
AWSEM [79], MARTINI [80], or OPEP [81], may become a new path to ex-
plore.

Advancing quantum algorithms: Beyond the HEA, other problem-agnostic
approaches, such as the Instantaneous Quantum Polynomial ansatz [184, 185],
may offer advantages in scalability and trainability. Circuit cutting [180], where
large quantum circuits are broken down into smaller subcircuits to minimize
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routing complexity and reduce mapping overhead, is another promising tech-
nique for reducing circuit depth. Empirical studies suggest that even when
large quantum machines are available, reducing circuit size can improve fi-
delity [186, 187].

The challenge of trainability, discussed in Sec. 3.2.3, highlights the need
for approaches that strike a balance between hardware efficiency and problem-
specific structure. While fully problem-agnostic and fully problem-informed
ansatz represent two extremes, hybrid strategies may offer the best compromise.
For example, a semi-agnostic ansatz could combine a problem-inspired layer
with a problem-agnostic layer [188], analogous to pre-trained and dense layers
in neural networks. Variable-structure ansatz, such as ADAPT-VQE [189] and
its extensions [190], provide another avenue by iteratively growing or pruning
circuits based on empirical performance, potentially improving scalability and
tackling barren plateaus.

Identifying quantum utility: Rather than seeking full quantum advantage
in the near term, it is pragmatic to identify niches where quantum resources
can complement classical methods. These include scenarios where quantum
subroutines reduce wall-clock time or energy consumption [191], even if they
do not outright outperform classical algorithms. Such hybrid workflows may
deliver tangible benefits in life sciences before fault-tolerant quantum computing
becomes available.

Integration across the quantum stack: The performance of quantum al-
gorithms depends on the entire computational stack, encompassing hardware
as well as compilers and error mitigation. Advances in software frameworks,
such as Qiskit Runtime [119], and improvements in error correction will be
critical for realizing the potential of quantum algorithms in PSP and protein
design. Progress will require close collaboration between quantum computing
specialists, computational biologists, and algorithm developers to ensure that
innovations at each layer of the stack translate into practical gains.

5.2 Final remarks

The intersection of quantum computing and life sciences is a rapidly evolving
research frontier. While significant challenges remain, the progress documented
in this thesis demonstrates that quantum computing approaches to PSP and
protein design are slowly moving beyond theoretical curiosity toward practi-
cal relevance. Continued interdisciplinary collaboration and open exchange of
ideas will be essential to unlock the full potential of quantum technologies in
computational biology.
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A Appendix

A.1 Quadratic unconstrained binary opti-
mization (QUBO) into the Ising model

Starting from the QUBO objective in Eq. 3.26 with & = by ...by;_1, a binary
vector with b; € {0,1}, and Q € RM*M ' a4 symmetric matrix of coefficients,

min Z Qij bibj, (A.1)
T o<i<j<M—1
we map binary variables to spin variables 07 = —1 +— b; = 1 and 07 = +1 —
b; = 0 using
1—-o07
b, = L. A2
i (A2)

This implies, for any pair (4, 7),

1— o7 1—o07 1

Substituting Eq. A.3 into the QUBO sum yields an Ising-form Hamiltonian:

1
Himg = Y. Qi (1= 07 —0i +0i07). (A.4)
0<i<j<M—1

Collecting constants, single-spin (linear) terms, and two-spin (quadratic) cou-
plings, we can write

M—1
Hiing = co + »_ hio} + > Jyoio}, (A.5)
i=0 0<i<j<M—1
with coefficients
1 1
o = 7 Z Qij + 3 Z Qii (A.6)
0<i<y<M-1 =0
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A. Appendix

1 1M—1
hi = —5Qiui — i AT
LI DL (A7)
J#
1
Jij = ZQZ‘]’, 0<i<yi<M-—1. (AS)

Notes:

e The constant shift ¢y does not affect the minimizer, but it does matter for
absolute energies and for comparing spectra across models.

e The linear terms h; correspond to one-body interactions, and the quadratic
terms J;; correspond to two-body interactions, as illustrated in Fig. 4.2.
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