
 Accuracy for Differentially Private Quotients by Fractional Uncertainties

Downloaded from: https://research.chalmers.se, 2025-11-03 09:09 UTC

Citation for the original published paper (version of record):
Russo, A., Lobo Vesga, E., Gaboardi, M. (2025). Accuracy for Differentially Private Quotients by
Fractional Uncertainties. CCS - Proceedings of the 2025 ACM SIGSAC Computer and
Communications Security. http://dx.doi.org/10.1145/3719027.3744799

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Accuracy for Differentially PrivateQuotients by Fractional
Uncertainties

Alejandro Russo

Chalmers University of Technology

and Gothenburg University

Gothenburg, Sweden

DPella AB

Gothenburg, Sweden

russo@chalmers.se

Elisabet Lobo-Vesga

DPella AB

Gothenburg, Sweden

lobo@dpella.io

Marco Gaboardi

Boston University

Boston, USA

DPella AB

Gothenburg, Sweden

gaboardi@bu.edu

Abstract
Differential Privacy (DP) is a cornerstone for ensuring privacy in

data analysis by injecting carefully calibrated noise into statistical

queries. While numerous DP tools focus on privacy protection,

few provide accuracy information, specially for data-dependent

computations like averages or quotients of DP-sums. This paper

introduces a novel approach to compute confidence intervals, i.e.,

𝛼-𝛽 accuracy, for these computations, leveraging principles from

uncertainty propagation. Our method identifies conditions under

which analytical error can be predicted, revealing two key invari-

ants: the analytical error improves with large dataset sizes, and

addition of values with higher variability require larger dataset

sizes for accurate estimation. To simplify adoption, we also pro-

pose accuracy tuners to enable rapid determination of minimum

dataset sizes and explore trade-offs between privacy budgets and

the possibility to perform accuracy estimations. Our theoretical

contributions are validated through an empirical evaluation that

explores the applicability of fractional uncertainties for computing

concrete 𝛼-𝛽 error across diverse scenarios.
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1 Introduction
In today’s digital era, vast quantities of individual data are collected

daily for research or statistical purposes. However, privacy con-

cerns surrounding the individuals who contribute their data restrict

how this information can be utilized and disseminated. In response

to these challenges, Differential Privacy (DP) [9] is increasingly rec-

ognized as an effective solution for releasing statistical information

about populations while safeguarding the privacy of data subjects.

A common approach to implementing DP involves adding sta-

tistical noise to the output of a data analysis. When carefully cali-

brated, this noise ensures privacy protection while still allowing for

meaningful insights about the population from which the data are

drawn. The quantitative formulation of DP, defined by parameters

𝜖 and 𝛿 , provides a robust mathematical framework for rigorously

assessing the privacy-accuracy trade-offs. It is worth noting that

the accuracy requirement is not an inherent aspect of DP; rather, it

becomes explicitly relevant when designing a differentially private

analysis for a specific task.

In recent years, there has been a proliferation of DP tools. Most

of them focus on providing privacy protection by the implementa-

tion of DP mechanisms (e.g., [3, 16, 23, 31, 33, 34, 36–38, 42]). Only

a handful of them provide accuracy information to data analysts

writing queries [13–15, 26, 32]. Such tools use probability bounds
to report analytical error bounds for query results under DP [11].

Specifically, 𝛼-𝛽 accuracy provides a probabilistic upper bound on

the error of a query’s result. Concretely, for given parameters 𝛼 (er-

ror threshold) and 𝛽 (failure probability), a DP mechanism ensures

that the probability of the query’s error exceeding 𝛼 is at most 𝛽 .

Intuitively, when noise gets added to ensure privacy, the inverse
cumulative distribution function (iCDF) of the noise distribution can

be used to determine the accuracy information as a probabilistic

bound. While these probability bounds are a great tool to reason

about privacy about a single query, they pose challenges when ap-

plied to the composition of multiple queries, such as additions [26]

or data-dependent analysis.

Averages are inherently data-dependent in a DP setting because

their sensitivity—the maximum change in the output caused by

modifying a single input—depends on the size of the dataset itself,

which might not always be a publicly available value. Specifically,

the sensitivity of an average decreases as the dataset size increases.

Since DP mechanisms rely on adding noise calibrated to the sensi-

tivity, the amount of noise required for privacy protection changes

with the dataset size. The following pseudocode snippet illustrates

how to compute the average age (from 0 to 120 years old) in a
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DP setting using a Laplace mechanism (i.e., drawing noise from

a Laplace distribution). In this example, the sum of ages (nSum) is
privatized with 𝜖 = 1, and the result is divided by the dataset size

(rows) to obtain the average. This approach assumes a bounded

notion of DP [22], where the dataset size explicitly known—a criti-

cal requirement for noise calibration, note how the dataset size is

directly accessed in line 6, bypassing any DP mechanism.

Listing 1: Average for bounded DP (naive)
1 query dataset = do

2 nSum <- dpSum Laplace{epsilon = 1}

3 Args{min_v = 0, max_v = 120}

4 dataset

5 return (nSum / rows) -- average calculation

6 where rows = length dataset -- free fact

In this code, the noise is calibrated to the sensitivity of the sum,

i.e., 120. However, that is not the actual sensitivity of the average:

the average changes at most 120/𝑛 if we change one row in the

dataset, which is much less than 120!—observe the free use of 𝑛 in

the sensitivity calculation. Taking advantage of the free availability

of 𝑛, DP averages can be computed with a special primitive that

takes the size of the dataset as an argument:

Listing 2: Average for bounded DP
1 query dataset = do

2 nAvg <- dpAvg rows

3 Laplace{epsilon = 1}

4 Args{min_v = 0, max_v = 120}

5 dataset

6 return nAvg -- noisy average

7 where rows = length datasets -- free fact

This approach is followed by popular DP libraries like DiffPrivLib

[16] and Opacus [41]. We argue that bound DP is not a realistic

choice for a programming framework where operations such as

filtering or joining data can alter the size of the dataset.

When the dataset size itself is private—such as after filtering

some rows or using unbounded DP notions [22]—reasoning about

𝛼-𝛽 accuracy becomes significantly more challenging. This com-

plexity arises from the interaction between the noises added to the

numerator (the differentially private sum) and the denominator

(the differentially private dataset size), which together influence

the accuracy of the final output. The following pseudocode high-

lights this challenge by calculating an average working-age of the

population in a given the dataset (dataset'). In this example, the

Laplace mechanism is used to privatize both, the sum of the ages

(with 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 1), and the size of filtered dataset (with 𝜖 = 0.1)

containing only the working-age population.

Listing 3: Average for transformed datasets
query dataset = do

let dataset ' = filter working_age dataset

nSum <- dpSum Laplace{epsilon = 1}

Args{min_v = 0, max_v = 120}

dataset '

nRows <- dpCount Laplace{epsilon = 0.1}

Args{}

dataset '

return (nSum / nRows) -- iCDF?

where working_age row = (row ^. age >= 18)

&& (row ^. age <=65)

The code describes the most common way to calculate the av-

erage, i.e., as post-processing operation between two DP queries:

a noisy sum (nSum) and a noisy count (nRows). This approach is

adopted by well-known DP libraries like OpenDP [13], SmartNoise

SQL [36], Qrlew [34], and PipelineDP [37].

Unlike simpler caseswhere iCDFs provide analytical error bounds,

deriving accuracy bound for the average in Listing 3 requires ana-

lytically determining the distribution of the quotient of two Laplace-

distributed random variables (i.e., nSum / nRows). This process is
non-trivial and introduces significant mathematical complexity. In

turn, this added complexity makes it challenging to use iCDFs to de-

duce accuracy bounds for the final result, particularly in scenarios

involving data transformations such as filtering or joining.

The difficulty of reasoning about 𝛼-𝛽 accuracy for the code in

Listing 3 is further underscored by the lack of support for such

computations in existing tools. As an approximation, OpenDP [13]

proposes eliminating one random variable to compute the accuracy

of averages. In this approach, the data analyst provides an estimated

dataset size, e, which the system uses to sample or impute data. If the

estimate is smaller than the actual dataset size, the system samples

the specified number of records. If the estimate is larger, the system

imputes additional records using a provided default value. The noisy

sum is then computed over the sampled or imputed dataset, and

the noisy average is calculated as the noisy sum over the estimated

record count. Since the record count is treated as constant and

the noise distribution of a random variable divided by a constant

is known, error estimation for the average calculation becomes

straightforward—recall Listing 1. While a resourceful approach, it

introduces its own challenges. The accuracy of this method relies

on the quality of the analyst’s guess, which may be unreliable due to

their limited knowledge of the dataset. Additionally, this approach

does not account for errors arising from incorrect guesses, further

complicating the accuracy guarantees for averages.

The pursuit of accuracy estimations under noisy quantities ex-

tends beyond Differential Privacy. In physics, understanding mea-

surement errors and how they propagate through operations is

known as uncertainty propagation (e.g., [40]). This theory provides

equations to handle uncertainties in measurements and their op-

erations, particularly in determining error in the quotients of two

measurements with uncertainties, assuming instrument errors are
both independent and small. In this work, we draw a novel parallel

between noisy sums and counts in DP and physical measurements

with uncertainties, enabling the use of uncertainty propagation

principles to estimate the accuracy of a noisy average or quotients

of DP-sums. However, in the context of DP, the noise introduced

to ensure privacy may not always align with the assumptions of

small uncertainties. The magnitude of DP noise can vary signifi-

cantly, posing challenges to directly applying classical uncertainty

propagation techniques.

The novelty of this paper is the adaptation of uncertainty prop-

agation to 𝛼-𝛽 accuracy in the context of unbounded Differential

Privacy. We outline sufficient conditions under which fractional
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uncertainties can be employed to analytically estimate the errors in

calculating averages and quotients of DP-sums. Our approach is ap-

plicable to both the Laplace and Gaussian mechanisms, offering—to

the best of our knowledge—the first analytical accuracy predictions
for quotients under these mechanisms.

Our method identifies the conditions under which uncertainty
propagation can be applied to provide an analytical error and uses a
noisy count for the accuracy calculations. Intuitively, a noisy count

can be used to reason probabilistically about the bounds of the

DP-sums, thus offering a structured way to estimate the sensitivity

of the average or the quotients of two DP-sums. This, in turn,

facilitates 𝛼-𝛽 accuracy estimations. Our mathematical equations

reveal two critical invariants: the more records there are in the

dataset, the more likely it is to provide analytical error bounds; and

the greater the variability (range) of the elements involved in the

sum, the larger the dataset needs to be to ensure analytical error

bounds can be derived.

We also present accuracy tuners designed to aid data analysts in

understanding and managing the conditions necessary for provid-

ing accurate estimation; conditions related to the noisy count, its

error bound, the domains of the elements contributing to the DP-

sums, along with their privacy settings and error bounds. Since we

do not expect data analysts to have all these conditions in mind, our

tuners provide an intuitive way to evaluate the trade-offs among

the necessary parameters. Specifically, the tuners are useful in the

following scenarios:

⊲ Unknown dataset size: Given the privacy parameters for counting

the numbers of rows, the tuners quickly determine the minimum

number of records and the minimum privacy budget required for

the DP-sum(s) in order to estimate the accuracy of the average

(or quotient of DP-sums).

⊲ Known dataset size: For a given noisy count of the number of

records, the tuners identify the minimum privacy budget for the

DP-sum(s) needed to provide accuracy of the average (or quotient

of DP-sums).

⊲ Budget optimization: given a privacy budget for the average (or

quotient of DP-sums), the tuner suggests how to distribute the

budget between the noisy count and the DP-sum(s) to ensure

that accuracy can be analytically predicted.

In addition to our theoretical contributions, we include an evalu-

ation section that explores concrete scenarios and parameter values

under which our hypotheses about using fractional uncertainties

for computing 𝛼-𝛽 error hold. This empirical analysis provides

practical insights into the conditions required for the successful

application of our methods. We examine various combinations of

dataset sizes, ranges of DP-sums, and privacy parameters to show-

case when fractional uncertainties yield accuracy estimations. Our

evaluation validates the sufficient conditions for applying fractional

uncertainties, illustrating the impact various elements have on their

practical applicability. These results not only reinforce the sound-

ness of our approach but also provide actionable guidance for data

analysts aiming to balance privacy guarantees and accuracy in their

computations.

In summary, the contributions of this work are as follows:

⊲ Theoretical Framework for Analytical Accuracy: we provide a

novel approach to compute 𝛼-𝛽 accuracy for averages and quo-

tients of DP-sums. Our novel method identifies conditions under

which uncertainty propagation can be applied, enabling accurate

error estimation despite the challenges of noise interactions.

⊲ Accuracy Tuners: we introduce accuracy tuners to simplify the

practical application of our methods.

⊲ Empirical Validation: through an evaluation section, we validate

our theoretical hypotheses and demonstrate when and how frac-

tional uncertainties can be leveraged to compute analytical errors

with concrete parameters values, providing actionable guidance

for balancing privacy and accuracy in real-world scenarios.

2 Preliminaries
Differential Privacy (DP) is a quantitative notion of privacy that

bounds how much a single individual’s private data can affect the

result of a data analysis. Formally, differential privacy is a prop-

erty of a randomized query 𝑄̃ (·) representing the data analysis, as

follows.

Definition 2.1 (Differential Privacy [11]). A randomized query

𝑄̃ (·) : db→ R satisfies (𝜀, 𝛿)-differential privacy if and only if for

all pairs of neighboring datasets 𝐷1 and 𝐷2 in db differing in at

most one element, and for all measurable sets 𝑆 in the range of 𝑄̃

(i.e., 𝑆 ⊂ R), it holds that

Pr

[
𝑄̃ (𝐷1) ∈ 𝑆

]
≤ 𝑒𝜀 Pr

[
𝑄̃ (𝐷2) ∈ 𝑆

]
+ 𝛿.

In the definition above, the parameters (𝜀, 𝛿) determine a bound

on the distance between the distributions induced by 𝑄̃ (·) when
adding or removing an individual from the dataset. When the pa-

rameter 𝛿 = 0, the definition above is known as pure-DP, while

when 𝛿 > 0 is called approximated-DP.

To protect all the different ways in which an individual’s data

can affect the result of a query, the noise needs to be calibrated to

the maximal change that the result of the query can have when

changing an individual’s data. This is formalized through the notion

of sensitivity.

Definition 2.2 (Sensitivity [11]). The (global) sensitivity of a deter-
ministic query is a measure of howmuch the result of the query can

change when adding or removing an individual from the dataset.

Concretely the sensitivity of a query 𝑄 (·) : db→ R is defined as

the quantity:

Δ𝑄 = max{|𝑄 (𝐷1) −𝑄 (𝐷2) |}
for 𝐷1, 𝐷2 differing in at most one row.

A well-known method for implementing pure DP queries is the

Laplace mechanism, which relies on noise drawn from the Laplace

distribution.

Theorem 2.3 (Laplace Mechanism [11]). Let 𝑄 (·) : db→ R be
a deterministic query with sensitivity Δ𝑄 . Let 𝑄̃ (·) : db → R be a
randomized query defined as

𝑄̃ (𝐷) = 𝑄 (𝐷) + Lap
(
Δ𝑄

𝜀

)
,
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where Lap(Δ𝑄/𝜀) denotes the Laplace distribution with mean 𝜇 = 0

and scale 𝑏 =
Δ𝑄

𝜀 . Then, 𝑄̃ (·) is (𝜀, 0)-differentially private, or simply
𝜀-differentially private.

A standard approach to achieve approximate-DP is based on

the addition of noise sampled from the Gaussian distribution, this

method is known as the Gaussian mechanism.

Theorem 2.4 (Gaussian Mechanism [11]). Let 𝑄 (·) : db→ R
be a deterministic query with sensitivity Δ𝑄 . Let 𝑄̃ (·) : db→ R be a
randomized query defined as

𝑄̃ (𝐷) = 𝑄 (𝐷) + N ©­«
√︄
2 ∗ log

(
1.25

𝛿

)
∗
Δ𝑄

𝜀

ª®¬ ,
where 𝜖, 𝛿 ∈ (0, 1), and N

(√︁
2 ∗ log (1.25/𝛿) ∗ (Δ𝑄/𝜀)

)
denotes the

Gaussian distribution with scale mean 𝜇 = 0 and standard devia-
tion 𝜎 =

√︁
2 ∗ log(1.25/𝛿) ∗ (Δ𝑄/𝜀). Then, 𝑄̃ (·) is (𝜀, 𝛿)-differentially

private.

In general, the notion of 𝛼-𝛽 accuracy using confidence intervals
can be defined as follows.

Definition 2.5 (Accuracy [11]). Given an (𝜀, 𝛿)-differentially pri-

vate query 𝑄̃ (·), a target deterministic query 𝑄 (·), a distance func-
tion d(·), a bound 𝛼 , and the probability 𝛽 ; 𝑄̃ (·) is (d(·), 𝛼, 𝛽)-
accurate with respect to 𝑄 (·) if and only if for any dataset 𝐷 , it

holds that

Pr

[
d(𝑄̃ (𝐷), 𝑄 (𝐷)) > 𝛼

]
≤ 𝛽

This definition allows one to express data-independent error

statements such as: with probability at least 1 − 𝛽 the result of the

query 𝑄̃ (·) diverges from the result of𝑄 (·), in terms of the distance

d(·), for at most 𝛼 . Then, we will refer to 𝛼 as the error, 𝛽 as the

confidence probability, and [−𝛼, 𝛼] as the confidence interval. For
the rest of the document, the considered distance function is that on

real numbers: d(𝑥,𝑦) = |𝑥 − 𝑦 |. There are known results about the

accuracy of queries using the Laplace and Gaussian Mechanisms.

Definition 2.6 (Accuracy for the Laplace Mechanism [11]). Given
an 𝜀-differentially private query 𝑄̃ (·) : db→ R implemented with

the Laplace Mechanism, it holds that:

Pr

[��𝑄̃ (𝐷) −𝑄 (𝐷)�� > log

(
1

𝛽

)
∗
Δ𝑄

𝜀

]
≤ 𝛽

Definition 2.7 (Accuracy for the Gaussian Mechanism [11]). Given
a (𝜀, 𝛿)-differentially private query 𝑄̃ (·) : db → R implemented

with the Gaussian Mechanism where 𝜖, 𝛿 ∈ (0, 1), it holds that:

Pr


��𝑄̃ (𝐷) −𝑄 (𝐷)�� > 𝜎 ∗√︄2 ∗ log

(
2

𝛽

) ≤ 𝛽
whit standard deviation 𝜎 =

√︁
2 ∗ log (1.25/𝛿) ∗ (Δ𝑄/𝜀).

These definitions use the inverse cumulative distribution func-

tion (iCDF) of the noise distribution to provide the corresponding

error bounds. Concretely, from the definitions above we have that

the iCDF of the Laplace distribution is given by icdf(Δ𝑄 , 𝜖, 0, 𝛽) =
log (1/𝛽) ∗ Δ𝑄/𝜀, and the iCDF of the Gaussian distribution is given

by icdf(Δ𝑄 , 𝜖, 𝛿, 𝛽) = 𝜎 ∗
√︁
2 ∗ log (2/𝛽). We note that the iCDF of

Laplace is exact while the one for Gaussian noise is an approxi-

mation. There is work on obtaining tighter bounds and relaxing

the restriction of 𝜖 < 1 [2] called analytical Gaussian Mechanism.

In this work, however, we focus on the Gaussian Mechanism as

described in [11] and leave extending our approach to the analytical

Gaussian as future work.

In the field of physics, reasoning about the uncertainties in mea-

surements and how they propagate through operations is a fun-

damental task [40]. Uncertainty propagation assuming small and

independent errors on the measurements being combined. In par-

ticular, we have the following uncertainty propagation formula for

the quotient of two independent measurements.

Definition 2.8 (Error propagation for the quotien of two measure-
ments [40]). Given two measurements 𝑥 and 𝑦 with uncertainties

𝛿𝑥 and 𝛿𝑦 , the error propagation for the quotient 𝑟 = 𝑥̃/𝑦̃ is given
by:

𝛿𝑟 = |𝑟 | ∗
(
𝛿𝑥

|𝑥 | +
𝛿𝑦

|𝑦 |

)
with 𝛿𝑥/|𝑥̃ | and 𝛿𝑦/| 𝑦̃ | being small.

In the definition above, 𝛿𝑥/|𝑥̃ | and 𝛿𝑦/| 𝑦̃ | are known as fractional

uncertainties.

3 Fractional uncertainties for DP quotients
In this section, we will demonstrate the originality of our approach

for calculating the 𝛼-𝛽 accuracy for noisy averages and quotients

involving noisy sums. In a nutshell, our methodology involves

initially determining a noisy count of the records used in the com-

putation of the noisy sums. Unlike the bounded case, where the

original size of the dataset is freely available, our approach approx-

imates the accuracy of the averages or quotients between sums by

utilizing a noisy count and static information about the range of

possible values for each element in the sums. For clarity, we first

focus on the accuracy of averages before extending the discussion

to quotients.

3.1 Accuracy of averages
We define the differentially private average as the ratio of two

differentially private queries: a count and a sum. Concretely, we

define the DP average and its privacy guarantees as follows:

Definition 3.1 (Differetially Private Average ). Given a (𝜀𝑐 , 𝛿𝑐 )-
differentially private count 𝑐 and an (𝜀𝑠 , 𝛿𝑠 )-differentially private

sum 𝑠 . Then ˜avg = 𝑠
𝑐
is an (𝜀𝑐 + 𝜀𝑠 , 𝛿𝑐 + 𝛿𝑠 )-differentially private

average of the dataset.

We aim to compute the error bound, 𝛼avg, for the noisy average,

˜avg. Specifically, we seek to determine 𝛼avg such that for a given

probability 𝛽 , the following holds:

Pr

[
| ˜avg − avg| > 𝛼avg

]
≤ 𝛽

However, analytically determining the distribution of ˜avg is chal-

lenging, as it arises from the ratio of two random variables. In

light of this difficulty, we propose an alternative approach: using

uncertainty propagation for the quotient of two measurements to
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analytically estimate 𝛼avg. Recalling Definition 2.8, we would like

to obtain an 𝛼-𝛽 accuracy guarantee as follows:

Pr

[���� 𝑠𝑐 − 𝑠𝑐 ���� > ���� 𝑠𝑐 ���� ∗ (𝛼𝑐|𝑐 | + 𝛼𝑠|𝑠 | )] ≤ 𝛽 (1)

where 𝑠 and 𝑐 are the true sum and count of the dataset, respec-

tively. Furthermore, 𝑐 is a (𝜀𝑐 , 𝛿𝑐 )-differentially private count with

error bound computed as 𝛼𝑐 = icdf(1, 𝜀𝑐 , 𝛿𝑐 , 𝛽𝑐 ), and 𝑠 is a (𝜀𝑠 , 𝛿𝑠 )-
differentially private sum with error bound computed as 𝛼𝑠 =

icdf(Δ𝑠 , 𝜀𝑠 , 𝛿𝑠 , 𝛽𝑠 ). The challenge about equation (1) is that we need

to reason about the distribution of the random variable 𝑠/𝑐, which
is something far from trivial. To simplify the problem, we could

simply sample from both random variables, i.e., 𝑣𝑐 ← 𝑐 and 𝑣𝑠 ← 𝑠 ,

and then compute the error of the average as indicated by Defi-

nition 2.8, i.e., 𝛼avg =

��� 𝑣̃𝑠𝑣̃𝑐 ��� ∗ ( 𝛼𝑐
| 𝑣̃𝑐 | +

𝛼𝑠
| 𝑣̃𝑠 |

)
. For that, however, the

fractional uncertainties 𝛼𝑐/| 𝑣̃𝑐 | and 𝛼𝑠/| 𝑣̃𝑠 | need to be small, but what
does small mean? Furthermore, how does the requirement of being

small affect any of the parameters of the mechanism for the noisy

count and sum?

To answer the first question, we will introduce 0 < 𝛾 < 1 as a

small constant, and require that, when we sample from the mech-

anisms, i.e., 𝑣𝑐 ← 𝑐 and 𝑣𝑠 ← 𝑠 , then it holds (with certain prob-

ability) that 𝛾 is an upper bound to the ratios 𝛼𝑐/| 𝑣̃𝑐 | and 𝛼𝑠/| 𝑣̃𝑠 |,
representing the fractional uncertainty of the count and sum, re-

spectively. By doing that, the product of relative uncertainties, i.e.,

𝛼𝑐/| 𝑣̃𝑐 | · 𝛼𝑠/| 𝑣̃𝑐 | can be neglected, thus being able to apply the for-

mula in Definition 2.8. More technically, any values 0 < 𝛾 < 1

that allow to approximate the binomial theorem 1/1−𝑧 = ∑∞
𝑖=0 𝑧

𝑖
by

1/1−𝑧 ≈ 1 + 𝑧 works [40]—in our case, 𝑧 = 𝛼𝑐/| 𝑣̃𝑐 |.
The subsequent propositions address the second question for

both the Laplace and Gaussian mechanism. In simpler term, the

ability to apply the uncertainty propagation formula 𝛼avg is affected

by (i) the size of the dataset, (ii) the privacy budget, and (iii) the

sensitivity of the sum—detailed proofs can be found in the extended

version of this paper. The following proposition states that the

more rows a dataset has, the more likely to make the fractional

uncertainty 𝛼𝑐/|𝑐 | small, that is, every time that we sample 𝑣𝑐 ← 𝑐 ,

it is likely to hold that 𝛼𝑐/| 𝑣̃𝑐 | ≤ 𝛾 .

Proposition 3.2. Given 0 < 𝛾 < 1, and a (𝜀𝑐 , 𝛿𝑐 )-differentially
private count 𝑐 with error bound computed as 𝛼𝑐 = icdf(1, 𝜀𝑐 , 𝛿𝑐 , 𝛽𝑐 ),
then it holds with probability 1 − 𝛽𝑐 that

𝑐 ≥ 𝛼𝑐 ∗ (1 + 𝛾)
𝛾

⇒ 𝛼𝑐/|𝑐 | ≤ 𝛾

where 𝑐 is the number of records in the dataset.

For the fractional uncertainty 𝛼𝑠/|𝑠 | to be small, the following

proposition indicates that most of the budget for the average must

be used on the sum rather than the count when 𝑎 is much smaller

than 𝑏—see hypothesis 𝑏/𝜀𝑠 ≤ 𝑎/𝜀𝑐 . As the proposition shows, our

results hold for sums computed from positive values. We also see

that the amount of records in the dataset (𝑐) times the minimum

value of the sum (𝑎) is bigger than the error of it (𝛼𝑠 ).

Proposition 3.3. Given 0 < 𝛾 < 1, 𝛼𝑐 = icdf(1, 𝜀𝑐 , 𝛿, 𝛽), and
the privacy parameters (𝜀𝑠 , 𝛿) for a differentially private sum to be
performed with error bound computed as 𝛼𝑠 = icdf(Δ𝑠 , 𝜀𝑠 , 𝛿, 𝛽), where

Δ𝑠 = max{𝑎, 𝑏}, 𝑎 > 0, 𝑎 and 𝑏 being the lower and upper bounds of
the values to be added, respectively, and 𝑐 as the number of records in
the dataset, then it holds with probability (1 − 𝛽)2 that

(𝑐 ∗ 𝑎 > 𝛼𝑠 ) ∧
(
𝛼𝑐

𝑐 − 𝛼𝑐
≤ 𝛾

)
∧
(
𝑏

𝜀𝑠
≤ 𝑎

𝜀𝑐

)
⇒ 𝛼𝑠/|𝑠 | ≤ 𝛾 (2)

Observe that the propositions above require access to the true

count 𝑐 , which is not available in practice—recall the motivation

from Section 1. Instead, wewould like to use the value of a differentially-

private count 𝑣𝑐 , where 𝑣𝑐 ← 𝑐 , to provide a lower and upper bound

on the result of the sum (with certain probability). In that manner,

a data analyst can first spend some budget into performing a DP-

count to obtain the size of the database for then obtaining the

accuracy of the average before sampling from the DP-sum. In other

words, we will be able to compute the average’s error bound (and

its preconditions) using only a concrete DP-count value.

The constraint 𝑐 ∗ 𝑎 > 𝛼𝑠 is required to avoid division by zero

in our mathematical development, which then implies that 𝑎 > 0.

Furthermore, the proposition utilizes the fact that 𝑎 > 0 to provide

upper and lower bounds for |𝑠 | in terms of the real count 𝑐 and the

limits 𝑎 and 𝑏, which then enables to bound 𝛼𝑠/|𝑠 |.

Proposition 3.4. Given a (𝜀𝑐 , 𝛿𝑐 )-differentially private count 𝑐
with error bound computed as 𝛼𝑐 = icdf(1, 𝜀𝑐 , 𝛿, 𝛽𝑐 ), 𝑣𝑐 ← 𝑐 , the
privacy parameters (𝜀𝑠 , 𝛿) for a differentially private sum with error
bound computed as 𝛼𝑠 = icdf(Δ𝑠 , 𝜀𝑠 , 𝛿, 𝛽𝑠 ), where Δ𝑠 = max{𝑎, 𝑏},
𝑎 > 0, 𝑎 and 𝑏 being the lower and upper bounds of the values to be
added, respectively, then it holds with probability (1 − 𝛽𝑐 ) · (1 − 𝛽𝑠 ):

𝛼𝑠

|𝑠 | ≤
𝛼𝑠

𝑎 ∗ (|𝑣𝑐 | − 𝛼𝑐 ) − 𝛼𝑠
(3)

This proposition provides an upper bound to the fractional un-

certainty of the differentially-private sum about to be performed

based on a given noisy count.

The following proposition indicates under which conditions, and

based on the available noisy count, when the fractional uncertainty

of the differentially-private sum is likely to be small.

Proposition 3.5. Given 0 < 𝛾 < 1, a (𝜀𝑐 , 𝛿𝑐 )-differentially pri-
vate count 𝑐 with error bound computed as 𝛼𝑐 = icdf(1, 𝜀𝑐 , 𝛿, 𝛽),
𝑣𝑐 ← 𝑐 , such that 𝛼𝑐/| 𝑣̃𝑐 | ≤ 𝛾 , the privacy parameters (𝜀𝑠 , 𝛿) for
a differentially private sum with error bound computed as 𝛼𝑠 =

icdf(Δ𝑠 , 𝜀𝑠 , 𝛿, 𝛽), where Δ𝑠 = max{𝑎, 𝑏}, 𝑎 > 0, 𝑎 and 𝑏 being the
lower and upper bounds of the values to be added, respectively, then
it holds with probability (1 − 𝛽)2:

𝑏

𝜀𝑠
≤ 𝑎

𝜀𝑐
∗
(
1 − 𝛾
1 + 𝛾

)
⇒ 𝛼𝑠

|𝑠 | ≤ 𝛾

Under the assumptions of Proposition 3.5, and that 𝛼𝑐/| 𝑣̃𝑐 | is also
small, we can apply the uncertainty propagation equations in Defi-

nition 2.8 to estimate 𝛼avg. Unfortunately, calculating 𝛼avg requires

to sample from the DP-sum. Can we obtain an error estimate for

the average without sampling from the DP-sum?

With that in mind, we propose a new equation for the error

bound of the average that does not depend on the result of the

DP-sum but rather on an approximation in terms of the noisy DP-

count.

To attain our goal, we need to determine an upper bound for

the error for the mean as dictated by Definition 2.8 when sampling
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from the DP-sum, i.e., when obtaining 𝑣𝑠 ← 𝑠 , then 𝛼𝑠/| 𝑣̃𝑠 | ≤ 𝛾 and

𝛼avg = |𝑣̃𝑠/𝑣̃𝑐 | ∗ (𝛼𝑐/| 𝑣̃𝑐 | + 𝛼𝑠/| 𝑣̃𝑠 |).
In what follows, we keep using 𝑠 since we want our reasoning

to hold (with certain probability) for any given sampling of the DP-

sum. Informally, we proceed as follows where 𝑎 > 0 and 𝛽𝑐 = 𝛽𝑠 :���� 𝑠𝑣𝑐
���� ∗ ( 𝛼𝑐|𝑣𝑐 | + 𝛼𝑠|𝑠 |

)
≤
���� 𝑠𝑣𝑐

���� ∗ ( 𝛼𝑐|𝑣𝑐 | + 𝛼𝑠

𝑎 ∗ (|𝑣𝑐 | − 𝛼𝑐 ) − 𝛼𝑠

)
; by Proposition 3.4

≤ |𝑠 ||𝑣𝑐 |
∗
(
𝛼𝑐

|𝑣𝑐 |
+ 𝛼𝑠

𝑎 ∗ (|𝑣𝑐 | − 𝛼𝑐 ) − 𝛼𝑠

)
; by properties of |·|

≤ 𝑏 ∗ 𝑐 + 𝛼𝑠|𝑣𝑐 |
∗
(
𝛼𝑐

|𝑣𝑐 |
+ 𝛼𝑠

𝑎 ∗ (|𝑣𝑐 | − 𝛼𝑐 ) − 𝛼𝑠

)
; by upper bound of |𝑠 | with prob. (1 − 𝛽𝑠 )

≤ 𝑏 ∗ (|𝑣𝑐 | + 𝛼𝑐 ) + 𝛼𝑠|𝑣𝑐 |
∗
(
𝛼𝑐

|𝑣𝑐 |
+ 𝛼𝑠

𝑎 ∗ (|𝑣𝑐 | − 𝛼𝑐 ) − 𝛼𝑠

)
= 𝛼∗

avg

; by upper bound of 𝑐 with prob. (1 − 𝛽𝑐 )

where we obtain the error for the average 𝛼∗
avg

which does not

depend on the result of the (to be performed) noisy sum but rather

the (already performed) noisy count.

Proposition 3.6. Given 0 < 𝛾 < 1, the privacy parameters
(𝜀𝑐 , 𝛿) for a differentially private count with error bound computed as
𝛼𝑐 = icdf(1, 𝜀𝑐 , 𝛿, 𝛽), 𝑣𝑐 ← 𝑐 , the privacy parameters (𝜀𝑠 , 𝛿) for
a differentially private sum with error bound computed as 𝛼𝑠 =

icdf(Δ𝑠 , 𝜀𝑠 , 𝛿, 𝛽), where Δ𝑠 = max{𝑎, 𝑏}, 𝑎 > 0, 𝑎 and 𝑏 being the
lower and upper bounds of the values being added, respectively, and
• 𝛼𝑐/| 𝑣̃𝑐 | ≤ 𝛾
• 𝑏

𝜀𝑠
≤ 𝑎

𝜀𝑐
∗
(
1−𝛾
1+𝛾

)
then it holds

Pr

[���� 𝑠𝑣𝑐 − 𝑠𝑐
���� > 𝛼∗avg] ≤ 2𝛽

where

𝛼∗avg =
𝑏 ∗ (|𝑣𝑐 | + 𝛼𝑐 ) + 𝛼𝑠

|𝑣𝑐 |
∗
(
𝛼𝑐

|𝑣𝑐 |
+ 𝛼𝑠

𝑎 ∗ (|𝑣𝑐 | − 𝛼𝑐 ) − 𝛼𝑠

)
From this result, we can derive several observations. First, that

both reducing 𝛼𝑐 and 𝛼𝑠 or a big noisy count minimizes the overall

error bound 𝛼∗
avg

. Second, smaller ranges 𝑎 and 𝑏 also improve error

estimation, highlighting the importance of tight data bounds during

analysis. Third, allocating privacy budgets effectively between the

noisy count and the sum is crucial. Lastly, when real counts 𝑐 are

significantly larger than 𝛼𝑐/𝛾 , it is likely that |𝑣𝑐 | ≥ 𝛼𝑐/𝛾 , which im-

plies 𝛼𝑐/| 𝑣̃𝑐 | ≤ 𝛾—which allows us to provide accuracy bounds most

of the time when the constraints around the epsilons are satisfied.

Extending the proposition above to consider non-positive elements

would require case-specific analyses to derive the corresponding

preconditions, which might not end up in a compact, elegant for-

mulation that is independent of the DP mechanism—thus we leave

it as future work.

In our empirical evaluation, we took 𝛾 = 0.1, corresponding to

a 10% threshold on fractional uncertainties, as a reasonable and

intuitive baseline for determining when uncertainty propagation

yields error bounds. However, this choice is not fundamental, but

it can affect the applicability of our approach. We further explore

the implications of varying 𝛾 in Section 5.

3.2 Accuracy for quotients of DP-sums
Using analogous steps for estimating accuracy for averages, in this

section we show that we can approximate the accuracy of quotients

computed from two DP-sums. Concretely, let 𝑠1 and 𝑠2 be the DP-

sums of two different queries over the same dataset or two datasets

with the same number of records 𝑐 . Let 𝑠1 be computed over values

in the range [𝑎1, 𝑏1] and 𝑠2 over values in the range [𝑎2, 𝑏2], where
𝑎𝑖 > 0. Then, the noisy ratio of these two sums defined as 𝑠1/𝑠2 has
an error bound 𝛼 ˜𝑠

1/ ˜𝑠2 that can be formulated in function of a noisy

count.

Given a comparison to the average scenario, the following propo-

sition for quotients of DP-sums is simply derived by imposing fur-

ther constraints to the parameters of 𝑠2 in the same way as we did

for the privacy parameters of 𝑠1.

Proposition 3.7. Given 0 < 𝛾 < 1, the privacy parameters
(𝜀𝑐 , 𝛿𝑐 ) for a differentially private count with error bound computed
as 𝛼𝑐 = icdf(1, 𝜀𝑐 , 𝛿, 𝛽), 𝑣𝑐 ← 𝑐 , 𝑖 ∈ {1, 2}, the privacy parameters
(𝜀𝑠𝑖 , 𝛿) for a differentially private sum with error bound computed as
𝛼𝑠𝑖 = icdf(Δ𝑠𝑖 , 𝜀𝑠𝑖 , 𝛿, 𝛽), where Δ𝑠𝑖 = max{𝑎𝑖 , 𝑏𝑖 }, 𝑎𝑖 > 0, 𝑏𝑖 being
the lower and upper bounds of the values in the dataset, respectively,
and

• 𝛼𝑐/| 𝑣̃𝑐 | ≤ 𝛾
• 𝑏𝑖

𝜀𝑠𝑖
≤ 𝑎𝑖

𝜀𝑐
∗
(
1−𝛾
1+𝛾

)
,

then it holds

Pr

[����𝑠1𝑠2 − 𝑠1𝑠2
���� > 𝛼∗˜𝑠1/ ˜𝑠2 ] ≤ 3𝛽 + 𝛽3

where

𝛼∗
˜𝑠
1/ ˜𝑠2 =

𝑏1 ∗ (|𝑣𝑐 | + 𝛼𝑐 ) + 𝛼𝑠
𝑎2 ∗ (|𝑣𝑐 | − 𝛼𝑐 ) − 𝛼𝑠2

∗(
𝛼𝑠1

𝑎1 ∗ (|𝑣𝑐 | − 𝛼𝑐 ) − 𝛼𝑠1
+

𝛼𝑠2

𝑎2 ∗ (|𝑣𝑐 | − 𝛼𝑐 ) − 𝛼𝑠2

)
As with the prediction of accuracy of averages, larger dataset

sizes improves error approximation, as do tight sensitivity bounds

for the sums (𝑖 .𝑒 ., 𝑎𝑖 , 𝑏𝑖 ). However, there is a notable distinction

here. The term 𝑏1∗( | 𝑣̃𝑐 |+𝛼𝑐 )+𝛼𝑠/𝑎2∗( | 𝑣̃𝑐 |−𝛼𝑐 )−𝛼𝑠
2
in 𝛼∗

˜𝑠
1/ ˜𝑠2

highlights

the critical role of the ratio 𝑏1/𝑎2. A large 𝑏1 relative to 𝑎2 can inflate

the error estimation. To address this, it is beneficial to balance the

scales of the two sums, e.g., by rescaling. It might also be benefi-

cial to place the sum with the smaller 𝑏𝑖 as the numerator when

computing the quotient.

4 Tuners
The findings in Section 3 outline several prerequisites for estimat-

ing the precision of quotients, which may pose a challenge for

data analysts. To alleviate this issue, we provide here a series of

tuners that facilitate the validation of average error estimation un-

der these conditions. The tuners are designed to work in three

different modes of exploration, each of which is useful for different

scenarios. For simplicity, we show the tuners for averages that can

be easily extended to work on quotients of DP sums. We assume
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that the lower and upper limits for the range of values of the sum

lies in the positive interval [𝑎, 𝑏].

4.1 Mode I: Unknown dataset dimension
This mode is designed to help users determine the minimal number

of records required to likely satisfy the precondition 𝛼𝑐/| 𝑣̃𝑐 | ≤ 𝛾 in

Proposition 3.6 and 3.7 for a desired level of privacy for the count (𝜀c,
𝛿𝑐 ). In this mode, the tuner takes as input the desired label of privacy

for the count (𝜀c, 𝛿𝑐 ) and its confidence parameter 𝛽𝑐 , then, the

tuner provides the minimal number of records 𝑐min. Additionally,

the tuner suggests the minimal privacy parameter for the sum 𝜀𝑠min

such that it satisfies the precondition(s) 𝑏/𝜀𝑠
min
≤ 𝑎/𝜀𝑐 ∗ (1−𝛾/1+𝛾).

Algorithm 1: Tuner Mode I

Function modeI(𝛾, 𝜀𝑐 , 𝛿𝑐 , 𝛽𝑐 , 𝑎, 𝑏):

𝑐min ←
⌈
𝛼𝑐 (1 + 𝛾)

𝛾

⌉
⊲ by Prop. 3.2;

𝜀𝑠min
← 𝑏𝜀𝑐

𝑎
·
(
1 + 𝛾
1 − 𝛾

)
⊲ by hypothesis in Prop. 3.5;

𝛿𝑠 ← 𝛿𝑐 ;

𝛽𝑠 ← 𝛽𝑐 ;

return (𝑐min, (𝜀𝑠min
, 𝛿𝑠 ), 𝛽𝑠 );

Algorithm 1 describes the tuner running in mode I. We have

already seen in Proposition 3.3 that the minimal number of records

𝑐min can be determined based on the desired privacy level for the

count 𝜀𝑐 and the count’s parameter 𝛽𝑐 in such a way that the con-

dition 𝛼𝑐/|𝑐 | ≤ 𝛾 is likely to hold. To determine the minimal pri-

vacy parameter for the sum 𝜀𝑠min
, we elaborate on the condition

𝑏/𝜀𝑠
min
≤ 𝑎/𝜀𝑐 ∗ (1−𝛾/1+𝛾), which applies for both the Laplace and

Gaussian mechanisms.

𝜀𝑐 𝛽𝑐 𝑐min 𝜀𝑠min

0.001

0.05 33.0K 0.01

0.1 25.3K 0.01

0.05

0.05 661 0.61

0.1 508 0.61

0.09

0.05 368 1.1

0.1 283 1.1

Table 1: Example for tuner
Mode I.

4.1.1 An example. To il-

lustrate the tuner’s func-

tionality in this mode, let’s

consider several values for

the count’s privacy param-

eter 𝜀𝑐 ∈ [0.001, 0.1) and
its confidence parameter

𝛽𝑐 ∈ 0.05, 0.1, 𝑎 = 1, 𝑏 =

10, and 𝛾 = 0.1. We assume

we will use the Laplace

mechanism so 𝛿𝑐 = 0, and

we omit it in what follows. For each combination 𝜀𝑐 and 𝛽𝑐 , we

use the tuner to provide the minimal number of records 𝑐min and

the minimal privacy parameter for the sum 𝜀𝑠min
. Table 1 shows

some of the results obtained. As we can see, the minimal number of

records 𝑐min decreases as the privacy level for the count 𝜀𝑐 and the

confidence parameter 𝛽𝑐 increases. On the other hand, the minimal

privacy parameter for the sum 𝜀𝑠min
increases proportionally to the

privacy level for the count 𝜀𝑐 .

4.2 Mode II: Known dataset dimension
This mode is designed for when the user has already obtained infor-

mation about of the number of records in the dataset by performing

a DP-count and is interested in determining the privacy parameters

for the sum such that the preconditions for the average’s error

estimation are likely valid. As such, the tuner takes as input the

result of the DP-count 𝑣𝑐 together with the used privacy budget

(𝜀𝑐 , 𝛿𝑐 ), and produces 𝜀𝑠min
such that 𝑏/𝜀𝑠

min
≤ 𝑎/𝜀𝑐 ∗ (1−𝛾/1+𝛾) is

likely satisfied.

Algorithm 2: Tuner Mode II

Function modeII(𝛾, 𝜀𝑐 , 𝛿𝑐 , 𝛽𝑐 , 𝑎, 𝑏, 𝑣𝑐):
if

𝛼𝑐

|𝑣𝑐 |
> 𝛾 then

return Error: Condition not met

else
(𝑐min, (𝜀𝑠min

, 𝛿𝑠 ), 𝛽𝑠 ) ← modeI(𝛾, 𝜀𝑐 , 𝛿𝑐 , 𝛽𝑐 , 𝑎, 𝑏)

return ((𝜀𝑠min
, 𝛿𝑠 ), 𝛽𝑠 )

Algorithm 2 describes the tuner running in mode II. This mode

primarily ensures that the fractional uncertainty of the noisy count

is minimal, triggering a transition to the tuner in mode I while

discarding the reported minimum number of records.

𝜀𝑐 𝑐 𝑣𝑐 𝜀𝑠min

0.001

10K 8899 unsat cond

100K 99937 0.12

0.05

10K 9971 6.11

100K 99979 6.11

0.09

10K 9999 11

100K 100004 11

Table 2: Example for tuner Mode II.

4.2.1 An example.
Similar as we did

before, to illustrate

the tuner’s function-

ality in this mode,

let us consider sev-

eral values for the

count’s privacy pa-

rameter 𝜀𝑐 ∈ {0.001,
0.05} and its confi-

dence parameter 𝛽𝑐 = 0.05, 𝑎 = 1, 𝑏 = 100, and 𝛾 = 0.1. We

consider datasets with real counts 𝑐 ∈ {10.000, 100.000, 1.000.000}
records. We assume we will use the Laplace mechanism so 𝛿𝑐 = 0,

and we omit it in what follows. Table 2 shows the results obtained.

The table indicates that, under the given privacy parameters,

the dataset with a real count of 10𝐾 records are not enough to be

able to provide error estimations when the epsilon is too small, e.g.,

𝜀𝑐 = 0.001, 𝑐 = 10𝐾 , and 𝑣𝑐 = 8899. However, average accuracy

estimation are likely possible with datasets with real counts are

higher (e.g., 100𝐾 and 1𝑀) or the privacy parameter epsilon for the

noisy count is bigger.

The table also shows that the more budget we spend on the noisy

count, the higher the budget that we need for the noisy sum—some

𝜀𝑠 are higher than those recommend by good practices, but they

have been selected for making this point clear. This behavior comes

from the requirement
𝑏
𝜀𝑠
≤ 𝑎

𝜀𝑐
∗
(
1−𝛾
1+𝛾

)
. Observe that the higher the

𝜀𝑐 , the smaller
𝑎
𝜀𝑐
∗
(
1−𝛾
1+𝛾

)
, hence 𝜀𝑠 needs to increase to make

𝑏
𝜀𝑠

smaller and satisfy the inequality. Alternatively, the dataset can be

manipulated so that the lower bound of the sum 𝑎 gets increased so

that the inequality holds with a possible small budget requirements

for the sum.
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4.3 Mode III: Budget optimization
This mode is designed to help users explore different privacy allo-

cation of the budget for both the DP-count and DP-sum so that the

preconditions to report the accuracy of the average are likely to

be satisfied. This mode deviates from its predecessors by requiring

users to estimate or forecast the total number of records within the
dataset—this requirement aligns with the methodology suggested

by OpenDP when operating under an unbounded Differential Pri-

vacy model.

In this mode, the tuner takes a range of maximal values for

average’s privacy level Eavg = {(𝜀avg
1

, 𝛿avg
1

), (𝜀avg
2

, 𝛿avg
2

), . . . ,
(𝜀avg𝑛 , 𝛿avg𝑛 )} as well as a range of estimates for the number of

records 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑚}. The tuner then provides the minimal

privacy parameters for the count 𝜀𝑐min
and the sum 𝜀𝑠min

for each

combination ((𝜀avg𝑖 , 𝛿avg𝑖 ), 𝑐 𝑗 ) with 1 ≤ 𝑖 ≤ 𝑛; 1 ≤ 𝑗 ≤ 𝑚 such that

the preconditions for the average’s error estimation are likely to

be satisfied provided that the budget 𝜀avg𝑖 is enough. Algorithm 3

Algorithm 3: Tuner Mode III (Laplace mechanism)

Function oneStep(𝛾, 𝑐, 𝜀avgmax
, 𝛽, 𝑎, 𝑏):

𝜀𝑐min
←

log

(
1

𝛽/2

)
(1 + 𝛾)

𝑐 · 𝛾 ⊲ by 𝛼𝑐/(𝑐−𝛼𝑐 ) ≤ 𝛾 in Prop. 3.3

(𝑐min, (𝜀𝑠min
, 𝛿𝑠 ), 𝛽𝑠 ) ← modeI(𝛾, 𝜀𝑐min , 0, 𝛽/2, 𝑎, 𝑏)

𝜀avg
min

← 𝜀𝑐min
+ 𝜀𝑠min

if 𝜀avgmin
> 𝜀avgmax

then
return {} ⊲ not enough budget

return {(𝜀𝑐min
, 𝜀𝑠min

, 𝜀avg
min

)}

Function modeIII(𝛾, 𝐶, Eavg, 𝛽, 𝑎, 𝑏):
𝑅 ← ∅
foreach (𝑐, 𝜀avg) ∈ 𝐶 × Eavg do

𝑅 ← 𝑅 ∪ oneStep(𝛾, 𝑐, 𝜀avg, 𝛽, 𝑎, 𝑏)

return 𝑅

defines the tuner for the Laplace mechanism. Different from Algo-

rithm 1 and 2, the code for the tuner is mechanism-specific when it

comes to calculating 𝜀𝑐min
. The algorithm performs the Cartesian

product of the privacy budgets proposed for the average E and the

predicted sizes of the dataset 𝐶 . For each element in this product,

the tuner computes the minimum epsilon for the counter and then

uses that to call the tuner in Mode II to obtain the minimum epsilon

for the sum.

For reasons of space, we do not present this mode for the Gauss-

ian mechanism. It is very similar to Algorithm 3 excepts that it

needs to account for the 𝛿 . In short, given a desired 𝛿avg, it splits it

in two and uses 𝛿avg/2 when calling Algorithm 1 rather than 0.

While ourmethodology computes each (𝜀avg, 𝛿avg) configuration
independently, we allow the tuner to take a list Eavg of such tuples

to facilitate tabular exploration of how different privacy budgets in-

teract with varying record count estimates. This design choice sup-

ports practical scenarios where analysts wish to compare trade-offs

across multiple budget configurations at once—something particu-

larly useful during the planning or tuning phase of a DP analysis.

For users interested in a single configuration, our formulation still

accommodates this by passing a singleton set—thus without adding

complexity for simpler use cases.

4.3.1 An example. To illustrate the aid that the tuner can provide,

we present an example where we consider the Laplace mechanism,

𝛽
th

= 0.05, 𝑎 = 1, 𝑏 = 10, 𝛾 = 0.1, 𝜀avg
max

∈ {0.041, 0.081}, and
𝑐 ∈ {10𝐾, 100𝐾, 1𝑀}. For each combination of 𝜀avg

max

and 𝑐 , the

tuner suggests values for the count and sum privacy parameters,

𝜀𝑐min
and 𝜀𝑠min

, following the procedure described in Algorithm 3:

𝜀avg
max

𝑐 𝜀𝑐min
𝜀𝑠min

𝜀avg
min

Satisfied

conditions

0.041

10K 4.06e-03 4.96e-02 5.37e-02 False

100K 4.10e-04 4.96e-03 5.37e-03 True

1M 4.10e-05 4.97e-04 5.38e-04 True

0.081

10K 4.10e-03 4.96e-02 5.37e-02 True

100K 4.10e-04 4.96e-03 5.37e-03 True

1M 4.10e-04 4.97e-03 5.38e-03 True

Table 3: Example for tuner Mode III.
Each row demonstrates how, for a given combination of 𝜀avg

max

and 𝑐 , the tuner suggests values for 𝜀𝑐min
and 𝜀𝑠min

, and whether

the conditions for the privacy protection are satisfied. In particular,

we can see that for 𝜀avg
max

= 0.041 and 𝑐 = 10𝐾 the conditions are

not satisfied since the minimal privacy parameter for the average

exceeds the maximum allowed value—see the extended version of

this work for a more detailed exploration of parameters when using

this tuner.

Overall, the tuner proves to be a valuable tool for practitioners,

offering a clear pathway for setting privacy parameters in the error

estimation of averages. However, it is crucial to remember that

the tuner is not a one-size-fits-all solution, and users must take

responsibility for ensuring that any estimations or assumptions

made are aligned with the actual characteristics of the dataset.

5 Evaluation
To assess the utility of the proposed error bound for the quotient

of random variables, we conducted a series of experiments. These

experiments focused on validating the assumptions and theoretical

predictions under varying conditions, with particular emphasis on

the correctness and applicability of the derived bounds.

5.1 Fractional uncertainties in a DP setting
Firstly, we are interested in verifying the soundness of the error

estimation by fractional uncertainties for differentially private av-

erages as proposed in equation (1). That is, if we have a noisy count

𝑣𝑐 ← 𝑐 and a noisy sum 𝑣𝑠 ← 𝑠 with small fractional uncertain-
ties, does it hold that the error of the average can be approximated

by |𝑣̃𝑠/𝑣̃𝑐 | ∗ (𝛼𝑐/| 𝑣̃𝑐 | + 𝛼𝑠/| 𝑣̃𝑠 |) with certain confidence? To answer

that question involves comparing the theoretical error bounds—as

provided by fractional uncertainties—with empirical observations.

The goal is to determine whether the theoretical error bounds pro-

vide an upper limit on the actual error observed in practice when

the preconditions that ensure small fractional uncertainties are
satisfied—recall Proposition 3.5.

In our evaluation, we compare the theoretical error bound with

the empirical error computed from the noisy average. Specifically,
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𝛽avg: Empirical vs Theoretical

Figure 1: Soundness of error estimation for averages with
𝜀𝑐 = 0.02 and 𝜀𝑠 = 0.8

for a given dataset with 𝑐 records, and privacy parameters 𝜀𝑐 and

𝜀𝑠 (for the count and sum under pure-DP, respectively), we take

the confidence parameter 𝛽 , called 𝛽
th
, to vary between the range

[0.005, 0.3]. For each value of 𝛽
th
, we compute several DP-counts

and DP-sums, together with their corresponding error bounds 𝛼𝑐
and 𝛼𝑠 with 𝛽𝑐 = 𝛽𝑠 = 𝛽th/2, and then calculate the empirical and

theoretical values for 𝛼avg. Concretely, the empirical error is defined

as the absolute value of the difference between the noisy average

and the true average, while the theoretical error is determined by

the uncertainty propagation formula from Definition 3.1.

𝛼avg-emp =

���� 𝑣𝑠𝑣𝑐 − 𝑠𝑐
����

𝛼
avg-th

=

���� 𝑣𝑠𝑣𝑐
���� ∗ ( 𝛼𝑐|𝑣𝑐 | + 𝛼𝑠

|𝑣𝑠 |

)
Moreover, for each pair of sampled (𝑣𝑐 , 𝑣𝑠 ), our evaluation also

checks whether the conditions from Proposition 3.5 are satisfied

and provide validity percentages of all the samples defined as:

valid𝑐 =
# of noisy count samples where 𝛼𝑐/| 𝑣̃𝑐 | ≤ 𝛾

# of noisy count samples

valid𝑠 =
# of noisy sum samples where 𝛼𝑠/| 𝑣̃𝑠 | ≤ 𝛾

# of noisy sum samples

We can then calculate an empirical value for 𝛽 , called 𝛽emp,

by checking the proportion of empirical errors 𝛼avg-emp that are

above the theoretical bound computed using the non-parametric

formula 𝛼
avg-th

. A correct estimation of the error bound by frac-

tional uncertainties should yield 𝛽emp ≤ 𝛽th, indicating that the

error estimation is indeed an upper bound of the real error.

Figure 1 shows the result of our evaluation. Concretely, the

experiments are conducted with 𝑎 = 1, 𝛾 = 0.1, 𝜀𝑐 = 0.02, and

𝜀𝑠 = 0.8 while choosing different configurations for the count 𝑐

𝑐 𝑎 𝑏 𝛽
th

𝛽emp valid𝑐 valid𝑠

3200 1 105

0.005 0.004 100% 100%

0.05 0.019 100% 100%

0.3 0.131 100% 100%

10 1 2

0.005 0.331 0% 0%

0.05 0.404 0% 0%

0.3 0.526 0% 0%

Table 4: Results for the experiments in Fig. 1

and data’s range upper limit 𝑏. Points marked with • represent the
cases where the configuration is set as 𝑐 = 32000, 𝑏 = 105, while

those marked with ▲ represent the cases where 𝑐 = 10, 𝑏 = 2. The

points filledwith green represent the values of 𝛽emp obtained from

1000 samples, where the conditions necessary for achieving small

fractional uncertainties are typically met. Specifically, this occurs

when at least 90% of the samples fulfill the required preconditions.

In contrast, the points filled with red indicate that at least a 10%

of the samples do not satisfy the preconditions. The diagonal line

represents the boundary between the theoretical and empirical 𝛽s.

A more detailed depiction of some of the results obtained in this

evaluation can be found in Table 4. Importantly, it includes a more

granular overview of the validity percentages for each precondition

serving as indicators of the overall reliability of the error estimation.

As evident in these results, the configuration with a larger data

size (32000) always yields a correct error estimation as the values

of 𝛽emp remain lower than those of 𝛽
th
, i.e., below the diagonal

line. Interestingly, the validity percentages for both conditions are

100%, indicating that the preconditions are always satisfied. On the

other hand, the configuration with a smaller data size (10) does

not satisfy the preconditions—even though the data variability is

significantly lower—as indicated by the assigned color and the

validity percentages are 0% on each condition. Furthermore, the

error estimation is incorrect since we see that the empirical error

always surpasses the empirical bound, i.e., it is above the diagonal

line.

This experiment demonstrates that indeed the proposed error

estimation using propagation of uncertainties is an upper bound for

the empirical error when the preconditions are satisfied. Moreover,

the experiment also underscores that the preconditions are neces-

sary to ensure the applicability of the error estimation by using

fractional uncertainties.

5.2 Error estimations
As show in Section 3, the average’s error bound can be approxi-

mated by applying fractional uncertainties with a noisy count and

theoretical error bounds (i.e., 𝛼𝑐 and 𝛼𝑠 ) for the count and the sum.

In what follows, we check that the error estimation described in

Proposition 3.6 is a sound approximation of the empirical error.

To do so, we take several values for the privacy parameters 𝜀𝑐
and 𝜀𝑠 , importantly, we only consider the cases where 𝜀𝑠 > 𝜀𝑐 since

we need to satisfy the inequality 𝑏/𝜀𝑠 ≤ 𝑎/𝜀𝑐 ∗ (1−𝛾/1+𝛾).
For each pair of privacy parameters, we compute the minimal

number of records 𝑐min required to satisfy that the fractional un-

certainty of the noisy count is small—recall Proposition 3.2. We

then generate a synthetic dataset with 𝑐min records with values

sampled uniformly within the range [𝑎, 𝑏]. We compute the real
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𝛼𝑐

| 𝑣̃𝑐 | ≤ 𝛾 ∧ 𝑏
𝜀𝑠
≤ 𝑎

𝜀𝑐
∗
(
1−𝛾
1+𝛾

)
⇒ Pr

[
| ˜avg − avg | > 𝛼∗

avg

]
≤ 𝛽

th

(a) Varying data’s upper limit (𝑏)

(b) Varying the “small” threshold (𝛾 )

Figure 2: Soundness of 𝛼∗avg with 𝑎 = 1, 𝛽th = 0.05

and noisy averages under the Laplace Mechanism for this dataset,

using the corresponding counts and sums. Then, we compare the

theoretical error bound, 𝛼∗
avg

, with the empirical error. As with the

previous experiment, when analyzing the proportion of empirical

errors surpassing the theoretical error bound, we expect to have

𝛽emp ≤ 𝛽th.

In Figure 2a we show the results of the experiments for the

average’s error estimation 𝛼∗
avg

. Concretely, the first matrix depicts

𝑏 𝜀𝑐 𝜀𝑠 𝑐min 𝛼𝑐 𝛼𝑠 valid𝑐 valid𝑠

10

0.004

0.20

9898 900

184 98% True

0.14 26 99% True

0.009

0.20

4461 405

184 99% True

0.14 26 100% True

100

0.004

0.20

9898 900

1844 99% False

0.14 263 99% True

0.009

0.20

4461 405

1844 98% False

0.14 263 99% True

Table 5: Results for the experiments in Fig. 2a

the case where 𝑎 = 1, 𝑏 = 10, 𝛾 = 0.1, and 𝛽
th

= 0.05. In this

case, we can see that all cases satisfy the first condition 𝛼𝑐/| 𝑣̃𝑐 | ≤𝛾
with high probability, as the validity percent is always above 98%

(i.e., there are no cells marked in orange ). However, this is not

the case for the second condition, as there are some cells marked

in yellow indicating that 𝑏/𝜀𝑠 > 𝑎/𝜀𝑐 ∗ 𝑌 where 𝑌 = (1−𝛾/1+𝛾)
and consequently rendering the error estimation invalid for those

(𝜀𝑠 , 𝜀𝑐 ) pairings.
These results highlight the importance of correctly distribut-

ing the privacy budget between the count and the sum to ensure

the applicability of the error estimation. Observe that for those

cases where the conditions hold (i.e., the cell is not marked in

grey , yellow , or orange ), the empirical error remains below

the theoretical one as desired, marked in green , suggesting that

the conditions are a sufficient constraint to ensure the correctness

of the error estimation.

The second matrix in Figure 2a shows the case where the range

of data is increased to 𝑏 = 100, the effect of this change is that

there are more cases where the second precondition 𝑏/𝜀𝑠 ≤ 𝑎/𝜀𝑐 ∗ 𝑌
is not satisfied, leading to a higher proportion of cells marked in

yellow, this is because sum’s sensitivity is determined by the upper

bound 𝑏, i.e., the bigger 𝑏, the bigger 𝜀𝑠 should be in order to reduce

𝑏/𝜀𝑠 . However, for those cases where the conditions hold, the error
estimation remains correct.

Table 5 highlights key results from these experiments, illustrat-

ing the interplay between the privacy parameters 𝜀𝑐 and 𝜀𝑠 and

the dataset range 𝑏 in meeting the conditions required for accurate

error estimation of the average. For 𝑏 = 10, the conditions are satis-

fied for most parameter combinations, with validity percentages

consistently exceeding 98%, and always satisfying the inequality

𝑏/𝜀𝑠 ≤ 𝑎/𝜀𝑐 ∗ 𝑌 for both 𝜀𝑐 = 0.004 and 𝜀𝑐 = 0.009. However, when

the dataset range increases to 𝑏 = 100, the validity of the second

condition declines, as indicated by the higher number of invalid

cases (marked as False). This decline occurs because a larger range

increases the sum’s sensitivity, requiring a proportionally higher

privacy budget 𝜀𝑠 to satisfy the condition. These findings underscore

the critical importance of distributing the privacy budget effectively

between the count and the sum, particularly for datasets with wider

ranges, to ensure the applicability of the error estimation.

Lastly, we aim to investigate the effect of the parameter 𝛾 on

the soundness of the error estimation. To this end, we performed

similar experiments as before but where the value of 𝛾 was varied

among 0.001, 0.5, while keeping the other parameters fixed as fol-

lows: 𝑎 = 1, 𝑏 = 10, and 𝛽
th

= 0.05. The results of this evaluation
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𝑐 mean

standard

deviation

𝛽emp valid𝑐 valid𝑠

1K 8.38e-02 2.04e-04 1e-04 100% 100%

10K 7.93e-03 1.75e-06 2e-04 100% 100%

100K 7.86e-04 1.76e-08 2e-04 100% 100%

1M 7.86e-05 1.73e-10 5e-04 100% 100%

10M 7.86e-06 1.76e-12 1e-04 100% 100%

Table 6: Relative uncertainty (𝛼∗avg/| ˜𝑎𝑣𝑔 |) analysis

are presented in Figure 2b. Our findings show that the soundness of

the error estimation remains unaffected by the value of 𝛾 . However,

we observe that different values of 𝛾 lead to varying applicability

restrictions. Specifically, increasing 𝛾 does not necessarily result

in a higher number of valid combinations of (𝜀𝑐 , 𝜀𝑠 ) values. This
can be explained by the fact that, while increasing 𝛾 makes the

first condition easier to satisfy, the second condition becomes more

restrictive. As 𝛾 approaches zero, the expression 1−𝛾/1+𝛾 tends to

zero, which imposes stricter constraints on the values of 𝜀𝑠 .

5.3 Estimation tightness
The proposed error estimation for the average has been shown

to be sound, and the conditions necessary for its applicability are

sufficient. The remaining question is whether the error estimation

is sufficiently tight, meaning whether the provided bounds are

small enough to be practical in real-world scenarios. To assess the

tightness of the error estimation, we compute the average’s relative

uncertainty 𝛼∗
avg/| ˜avg |. A lower ratio indicates a tighter bound.

To evaluate the relative uncertainty, we revisit the example from

Section 1 about calculating the average over the working-age pop-

ulation (see Listing 3). Our goal is to determine whether the error

estimation in this context is practical. For this evaluation, we vary

the dataset size while keeping the parameters fixed as follows:

𝜀𝑐 = 0.1, 𝜀𝑠 = 1, 𝑎 = 18, 𝑏 = 65, 𝛾 = 0.1, and 𝛽
th

= 0.05.

For each dataset size, we conduct 10,000 iterations, calculating

the relative uncertainty for each sample, and then report the mean

and standard deviation across all samples. Additionally, we provide

the proportion of samples that satisfy the preconditions. Table 6

summarizes the findings were several trends are evident. The rel-

ative uncertainty decreases steadily with increasing dataset size,

highlighting the scalability of the method. Importantly, the relative

uncertainty remains below 1 across all dataset sizes, demonstrat-

ing practical tightness even for small datasets. Additionally, the

standard deviation of the uncertainty diminishes sharply for larger

datasets, reflecting increased reliability. The empirical confidence

(𝛽emp) remain lower than that of the theoretical one as expected,

indicating that the error estimation is consistently an upper bound

on the empirical error. These findings underline the robustness and

practicality of the proposed estimation technique across various

dataset scales and real world scenarios.

Finally, considering a concrete instance of evaluating the error

in the average operation from Listing 3, let’s assume we have a

dataset of 1k (10k) records (after applying the age range filter) and

a corresponding noisy count of 𝑣𝑐 = 998 (𝑣𝑐 = 10006). In this

case, we can say with 95% confidence that the error of the average

working-age population is 𝛼∗𝑎𝑣𝑔 = 3.44 (𝛼∗𝑎𝑣𝑔 = 0.32). Therefore, the

𝜀𝑐 𝑐 𝑠/𝑐 𝑣̃𝑠/𝑣̃𝑐 proposed basic

0.0001

100 52.04 -2.03 - (−∞,∞)
1K 50.51 1.75 - (−∞,∞)
10K 49.98 76.6 - (−∞,∞)
100K 50.49 46.84 - [34.75, 71.53]
1M 50.51 50.4 [44.56, 56.24] [48.59, 52.35]
10M 50.5 50.51 [49.95, 51.07] [50.32, 50.7]
100M 50.5 50.52 [50.46, 50.57] [50.5, 50.54]
1G 50.5 50.5 [50.49, 50.51] [50.5, 50.5]

0.00001

100 51.77 -0.02 - (−∞,∞)
1K 49.97 -0.61 - (−∞,∞)
10K 50.85 3.8 - (−∞,∞)
100K 50.6 8.83 - [5.36, 24.81]
1M 50.49 45.59 - [34.19, 68.39]
10M 50.49 49.68 [45.72, 53.64] [47.94, 51.55]
100M 50.5 50.6 [50.21, 50.99] [50.42, 50.79]
1G 50.5 50.5 [50.46, 50.54] [50.48, 50.52]

Table 7: Comparison against the basic approach with 𝑎 = 1,
𝑏 = 100, 𝛾 = 0.1, and 𝜀𝑠 = 0.02

true average of the working-age population lies within the range

[ ˜𝑎𝑣𝑔−3.44, ˜𝑎𝑣𝑔+3.44] ([ ˜𝑎𝑣𝑔−0.32, ˜𝑎𝑣𝑔+0.32]) with 95% confidence.

5.4 Comparison with a basic approach for CI
To provide a clear picture regarding the advantages of the proposed

method, we consider a basic approach for estimating the error of the

average. This approach consists of deriving the confidence interval

(CI) of the average using those of the noisy count and noisy sum

together with the result of both queries. Specifically, given a noisy

count 𝑣𝑐 , a noisy sum 𝑣𝑠 , and their corresponding error bounds 𝛼𝑐
and 𝛼𝑠 , the CI for the average can be approximated by evaluating

the extreme values of the count and sum. This involves determining

the boundary cases for the ratio 𝑠/𝑐 as follows:

min𝑐 = 𝑣𝑐 − 𝛼𝑐 max𝑐 = 𝑣𝑐 + 𝛼𝑐
min𝑠 = 𝑣𝑠 − 𝛼𝑠 max𝑠 = 𝑣𝑠 + 𝛼𝑠

minavg = min

{
min𝑠

min𝑐
,
max𝑠

min𝑐
,
min𝑠

max𝑐
,
max𝑠

max𝑐

}
maxavg = max

{
min𝑠

min𝑐
,
max𝑠

min𝑐
,
min𝑠

max𝑐
,
max𝑠

max𝑐

}
⇒ 𝑠

𝑐
∈
[
minavg,maxavg

]
= basic (4)

Importantly, if the interval for the count (𝑐 ∈ [min𝑐 ,max𝑐 ]) con-
tains zero, the average 𝑠/𝑐 becomes unbounded, and we assume

𝑠/𝑐 ∈ (−∞,∞).
To compare our error bound with this basic approach, we take

fixed values for the parameters 𝑎, 𝑏, 𝜀𝑠 , and 𝛾 , and choose differ-

ent values for the count’s privacy parameter 𝜀𝑐 and the size of the

dataset 𝑐 . For each dataset size, we generate a synthetic dataset

with values sampled uniformly within the range [𝑎, 𝑏]. We then

compute the noisy count 𝑣𝑐 and the noisy sum 𝑣𝑠 , along with their

corresponding error bounds 𝛼𝑐 and 𝛼𝑠 . Consequently, we com-

pute the average’s error 𝛼∗
avg

using the noisy count and the sum’s

privacy parameter, then we determine the CI for the average as

553



CCS ’25, October 13–17, 2025, Taipei, Taiwan. Alejandro Russo, Elisabet Lobo-Vesga, and Marco Gaboardi

proposed =

[
𝑣

˜avg
− 𝛼∗

avg
, 𝑣

˜avg
+ 𝛼∗

avg

]
, where 𝑣

˜avg
= 𝑣̃𝑠/𝑣̃𝑐—it is im-

portant to note that the noisy average is used solely for constructing

comparable CIs, and it is not required to provide the error estima-

tion with our method. Lastly, we compute the basic approach’s CI

for the average as described in Equation 4, and we compare the two

intervals.

Table 7 shows the results of this comparison for different dataset

sizes 𝑐 and privacy parameters 𝜀𝑐 with fixed values of 𝑎 = 1, 𝑏 = 100,

𝜀𝑠 = 0.02, and 𝛾 = 0.1. While the basic approach is conceptually

simple and requires only elementary calculations, making it ap-

pealing for quick estimates, it suffers from several important limi-

tations in practice. As shown in Table 7, the intervals it produces

are often either uninformative or misleading, particularly for small

dataset sizes or when the privacy budget is heavily constrained.

From these results we can highlight three important observations

when comparing the two methods. First, it is important to note

that the basic approach requires executing both the count and sum

queries, thereby fully consuming the privacy budget allocated for

the average—even in cases where the resulting CI is uninforma-

tive (e.g., when it becomes unbounded). In contrast, our method

provides CIs only when its preconditions are met, offering early

feedback and enabling practitioners to reallocate the privacy budget

more effectively, particularly toward the sum.

Second, the basic approach can yield intervals that are not valid.

For instance, when 𝜀𝑐 = 0.00001 and 𝑐 = 100K, it produces an

interval of [5.36, 24.81] which does not contain the true average

of 50.6, leading to erroneous conclusions. While our method can

be conservative—sometimes yielding no interval even when the

basic approach provides a seemingly valid one (e.g., for 𝜀𝑐 = 0.0001,

𝑐 = 100K or 𝜀𝑐 = 0.00001, 𝑐 = 1M)—this can be seen as the price to

pay for ensuring the correctness of the output.

Finally, as the dataset size increases, the CIs calculated using

our approach naturally converge to those obtained with the ba-

sic method, providing tight intervals while maintaining privacy

guarantees, and notably, without consuming additional privacy bud-

get for the sum. This scalability makes our approach particularly

attractive in large-scale data analysis scenarios.

These observations are consistent across different variations of

the parameters. However, the applicability of our method is highly

dependent on the relationship among the parameters. For instance,

it cannot be employed when the privacy requirements for the count

and the sum are uniform. To further investigate this dependency,

we explore the applicability regions in the next set of experiments.

5.5 Applicability exploration
To assess the applicability of our proposed error estimation method,

we systematically explore the parameter space defined by 𝑎, 𝑏, 𝑐 ,

𝜀𝑐 , 𝜀𝑠 , and 𝛾 . The goal is to identify regions where the conditions

for the validity of the error estimation are met and as such un-

derstanding the practical scenarios in which the method can be

effectively applied. Our approach involves iterating through various

combinations of the parameters. For a given 𝛾 and 𝑎, and for each

combination of (𝑏, 𝑐, 𝜀𝑐 , 𝜀𝑠 ), we generate a uniformly distributed

dataset of size 𝑐 with values in the range [𝑎, 𝑏]. Next, we compute

the noisy count 𝑣𝑐 along with its corresponding error bound 𝛼𝑐 ,

as well as the error bound 𝛼𝑠 for the noisy sum. Using these val-

ues, we calculate the error estimation for the average, 𝛼∗
avg

, and

verify whether the conditions for validity are satisfied. Parameter

combinations that meet the conditions are marked as part of the

applicability region, providing a clear picture of where the error

estimation method can be reliably applied.

Figure 3 illustrates the applicability regions for large-scale (i.e.,

𝑐 = 1000 and 𝑐 = 1000000) and small-scale (i.e., 𝑐 = 100 and 𝑐 = 300)

datasets under different privacy regimes. In these graphs, the x-axis

represents the privacy parameter 𝜀𝑐 , while the y-axis represents

𝜀𝑠 . Each shaded region represents combinations of (𝜀𝑐 , 𝜀𝑠 ) where
the conditions are likely to hold, assuming the dataset values fall

within the range [1, 𝑏]. As such, these regions depict the space

where the error estimation is expected to be valid. We also note

that the regions are not mutually exclusive: for a given value of

𝑏, all points lying above the corresponding line represent valid

combinations of parameters where our method can be applied.

In the first scenario, depicted in Figure 3a, we examine a mixed

privacy regimewhere the count is subject to stricter privacy require-

ments (𝜀𝑐 ≤ 1) compared to the sum (𝜀𝑠 > 1). The results reveal that

the applicability regions expand significantly for smaller values

of 𝑏. This indicates that lower variability in the data (i.e., reduced

sensitivity of the sum) allows for stronger privacy guarantees for

both the sum and the count.

In the second scenario, shown in Figure 3b, we focus on a high

privacy regime where both the count and the sum are subject to

stricter privacy limits. This scenario provides a more detailed view

of the parameter space, highlighting the interplay between different

configurations. For instance, by observing the starting points of the

regions for various values of 𝑏, we can see that as the dataset size

decreases, stricter privacy limits are no longer suitable for both the

sum and the count. Notably, the dataset size directly influences the

privacy budget that can be allocated to the count. Smaller datasets

make it more challenging to satisfy the precondition 𝛼𝑐/| 𝑣̃𝑐 | ≤ 𝛾 ,
thereby restricting the minimal privacy target that can be enforced

on the count. This is evident when comparing the starting points

of the regions on the x-axis among different dataset sizes.

𝜀𝑐 𝑏 𝑐min 𝜀𝑠min

0.25

2

164

0.61

10 3.06

30 9.17

68 20.78

120 36.67

0.75

2

56

1.83

10 9.17

30 27.50

68 62.33

120 110.00

Table 8: Tuner Mode I with
𝛾 = 0.1, 𝑎 = 1

In the third scenario, de-

picted in Figure 3c, we con-

sider a mixed privacy regime

with smaller datasets (𝑐 =

100 and 𝑐 = 300). Compared

to previous scenarios, the ap-

plicability regions are signif-

icantly smaller, highlighting

the increased difficulty in sat-

isfying the constraints under

limited data availability. This

reduction in applicability re-

gions emphasizes how limited

dataset sizes affect the fea-

sible parameter space, espe-

cially under conditions of high

data variability. As dataset size decreases, the method becomes less

capable of accommodating wide data ranges under the same privacy

budgets.
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(a) Mixed privacy regimes,
medium/large-scale datasets

(b) High privacy regime,
medium/large-scale datasets

(c) Mixed privacy regime,
small-scale datasets

Figure 3: Applicability regions with 𝛾 = 0.1, 𝑎 = 1

To further analyze the limitations imposed by the dataset size

and the data variability, we explore tuner’s suggestions under this

restricted scenario. Table 8 contains the tuner’s recommendations

for various values of 𝑏 and two choices of 𝜀𝑐 , with fixed parameters

𝑎 = 1 and 𝛾 = 0.1. We observe that the minimum dataset size 𝑐min

remains constant across all values of𝑏 for a given 𝜀𝑐 . This constancy

does not imply a lack of interaction between dataset size and data

range; rather, it reflects the tuner’s internal logic: 𝑐min is determined

by the error bound for the count and the chosen “small” threshold.

As such, the influence of 𝑏 is channeled instead into adjustments of

the required minimum privacy budget 𝜀𝑠min
.

The monotonic increase of 𝜀𝑠min
with 𝑏 illustrates how expanding

the data range demands greater privacy resources. For example,

when 𝜀𝑐 = 0.25, increasing 𝑏 from 10 to 68 results in a seven-

fold increase in 𝜀𝑠min
(from 3.06 to 20.78). This insight explains

why, in Figure 3c, no applicability regions exist for certain (𝑐, 𝑏)
combinations—specifically, when 𝑐 = 100 and 𝑏 = 30, 68, 120—as

the dataset is too small to support the corresponding privacy re-

quirements. Moreover, when 𝑏 = 68 and 𝜀𝑐 = 0.25, the required

𝜀𝑠min
exceeds the maximal privacy budget of 10, rendering the en-

tire configuration inapplicable under any of the considered dataset

sizes. This serves as a critical reminder: under high variability and

limited data, the parameter space rapidly becomes infeasible, thus

requiring a relaxation of the privacy targets.

In the final set of experiments we focus on analyzing the effect

of the parameter 𝛾 on the applicability regions of the proposed

error estimation method. Recall that 𝛾 serves as a threshold for the

fractional uncertainty of the noisy count, influencing the conditions

under which the error estimation is valid. For these experiments,

the dataset size is fixed at 𝑐 = 1000000, and a high privacy regime

is considered for both the count and the sum. Two values of 𝛾 are

analyzed: a strict value of 𝛾 = 0.001 and a relaxed value of 𝛾 = 0.5.

The results of these experiments are illustrated in Figure 4, which

shows the applicability regions for the two selected values of 𝛾 .

As expected, when𝛾 is tightened, the applicability regions shrink

due to the stricter condition 𝛼𝑐/| 𝑣̃𝑐 | ≤ 𝛾 , which limits the range

of valid combinations for the privacy parameter 𝜀𝑐 . Conversely,

Figure 4: Applicability regions with 𝑐 = 1000000, 𝑎 = 1

relaxing 𝛾 expands the applicability regions by making it easier to

satisfy this condition. However, this comes at a cost: the second

condition, 𝑏/𝜀𝑠 ≤ 𝑎/𝜀𝑐 ∗ (1−𝛾/1+𝛾), becomes more restrictive as 𝛾

increases, reducing the flexibility of valid 𝜀𝑠 values.When compared

to the intermediate case of 𝛾 = 0.1 shown in Figure 3b, it becomes

evident that increasing 𝛾 reduces the space of valid 𝜀𝑠 values as the

threshold’s slope becomes steeper as the value of 𝛾 increases. This

trade-off highlights the delicate balance between the two conditions

and the importance of carefully selecting 𝛾 based on the dataset

size, privacy requirements, and data variability.

6 Related work
Statistical mean estimations. In a statistical setting, the goal is

to estimate the error of approximating the population mean using

finite samples (e.g, [4, 6, 8, 17, 19, 21]). We refer the reader to the
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work by Kamath and Ullman for a comprehensive view on pri-

vate statistical estimation [20]. More recently, PLAN [1] introduces

variance-aware noise budgeting, providing tighter error bounds

by allocating noise to dimensions with higher variance. Working

with mean estimators in a DP setting is far from trivial. In fact,

there is an inherent trade-off between bias, accuracy, and privacy

of mean estimators: no algorithm can simultaneously have low bias,

low error, and low privacy loss for arbitrary distributions (of the

underlying data) [18]. Our work focuses on error estimations in

the non-distributional, empirical setting. Unlike statistical settings,

which often assume distributional properties of the data and focus

on sampling-based error estimations, our approach addresses sce-

narios where the noise stems solely from the privacy mechanism.

Statistical mean estimators have a similarity to our approach in

the sense that they provide accuracy guarantees under a certain

minimum number of samples while our approach does it on the

noisy size of datasets.

Empirical setting. This setting exclusively concentrates on the

noise generated by the privacy mechanism, rendering it particularly

appropriate for systems such as SQL-based query engines. We ob-

serve that certain statistical mean confidence interval mechanisms

[21] can be adapted to operate within the empirical framework.

However, to achieve that, strong assumptions on the distribution of

the underlying data are needed (i.e., normality). The closest work

to ours is a recent-unpublished manuscript [12]. Focused on im-

proving the accuracy of averages, Fitzsimons et al. show how two

DP sums, where one is carefully crafted, can be used to derive a

noisy size of the dataset without spending any budget. Authors

then show how to compute the variance of both sums and the

derived noisy size. However, no variance calculation is provided

for the average itself. Different from our work, their technique

only focuses on averages with a notion of mean square error for
Gaussian noise, where accuracy estimations are done empirically.
Instead, we focus on 𝛼-𝛽 accuracy with analytical error estima-

tions for averages or quotients of DP sums for both the Laplace

and Gaussian mechanisms. The work by Sun et al. shows how to

provide private-preserving confidence intervals (i.e., 𝛼-𝛽 accuracy)

for the Exponential mechanism [30] (EM) and the Sparse vector

technique [10] (SVT). Their methodology employs additional pri-

vacy budget to compute CI bounds, relying on carefully designed

utility functions for the EM and thresholds for the SVT. Authors

provide CI for averages using CIs for SVT where four DP-queries

need to be performed and bound DP is assumed. Interestingly, the

work shows that for any DP mechanism, if the CI has a confidence

level ≥ 2/3 ≈ 0.66, then the size of the interval must be at least 𝑁/𝑛,
where 𝑁 is the maximum non-negative number of the elements

of the sum and 𝑛 is the size of the dataset—which coincides with

the numbers we obtained in our evaluation. Different from them,

we support unbounded DP and accuracy for quotients of DP-sums.

Recently, Lin et al. address the challenge of constructing CIs for

population proportions in a DP setting—which requires mathemati-

cally sophisticated techniques[25]. Our current formulations do not

apply in these settings, as the quantities involved are typically not

computed over the same dataset: the numerator corresponds to an

aggregate over a filtered subset, while the denominator refers to the

full population. In such cases, the relationship between numerator

and denominator is no longer straightforward, making it difficult to

bound the sum in terms of the noisy denominator—a limitation that

presents an interesting direction for future work. We remark that

our method is not intended as a one-size-fits-all solution but rather

as a valuable addition to the practitioner’s toolbox for computing

DP quotients’ accuracy under unbounded DP settings.

Accuracy in DP tools. PSI [14] provides a user interface that al-
lows for the selection of either the desired level of accuracy or

the imposed level of privacy. The error estimates provided by PSI

are expressed in terms of 𝛼-𝛽 accuracy. Unfortunately, PSI only

supports a restricted set of transformations and primitives, offering

𝛼-𝛽 accuracy solely at a single noisy measurement, e.g., a noisy

count or a noisy sum—an approach also followed by OpenDP [13].

GUPT [32] operates under the sample-and-aggregate framework for

differential privacy [35]. GUPT provides analysts with the flexibility

to define either the desired accuracy of the output or the required

level of privacy. However, this tool only accommodates analyses

compatible with the sample-and-aggregate framework and offers

only confidence intervals (i.e., 𝛼-𝛽) estimates at the individual mea-

surement level. APEx [15] specializes in answering three types of

counting queries: WCQ (weighted counting queries), ICQ (iceberg

counting queries), and TCQ (top-k counting queries). To address

WCQ queries, APEx leverages the matrix mechanism [24] and uses

Monte Carlo simulations to empirically derive accuracy bounds in

terms of 𝛼 and 𝛽 . ICQ queries focus on returning aggregates of bins

exceeding a specified threshold, for which APEx introduces novel

data-dependent analytical accuracy bounds. For TCQ queries, a gen-

eralization of the report-noisy-max mechanism [11] is employed.

APEx provides empirical accuracy guarantees for some queries

and analytical guarantees for others. DPella [26, 27] emphasizes

providing accuracy guarantees for queries alongside their privacy

protections. Unlike many other DP libraries, DPella integrates 𝛼-𝛽

accuracy bounds into its query system and provides support to

about the compositional accuracy of complex queries involving

multiple DP mechanisms. Our work could complement and extend

the mentioned tools with analytical methods for computing 𝛼-𝛽

accuracy bounds for averages and quotients of DP-sums.

Ratios of distributions. Understanding the distributions of quo-
tients of random variables is a problem known by mathematicians

for its complexity and analytical difficulty. Marsaglia provided a

closed-formula for the CDF function 𝐹 (𝑡) and density function 𝑓 (𝑡)
for the ratio (𝑎+𝑥 )/𝑏+𝑦, where 𝑎 and 𝑏 are positive constants and 𝑥

and 𝑦 are independent standard normal variables [28]. By running

some simulations, he shows that sometimes the resulting distribu-

tion is unimodal (i.e., one peak) or bimodal (i.e., two peaks). Forty

years later, Marsaglia complemented that work by showing how to

transform any ratio of normal variables 𝑤/𝑧 into the form (𝑎+𝑥 )/𝑏+𝑦
as well as conditions for 𝑎 and 𝑏 to predict if the resulting distribu-

tion can be approximated by a normal distribution or is a unimodal

or bimodal one [29]. Deriving an iCDF for error estimation under

such conditions is inherently non-trivial due to the intricate and

often non-symmetric nature of the resulting distribution. Broda

and Kan study ratio distributions by performing saddlepoint ap-

proximations [7] of the density distribution function [5]. Although

saddlepoint approximation offers a mathematical tool, it introduces

significant complexity. Unlike these approaches, our method avoids
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the need to understand or approximate the shape of the ratio distri-

bution. This provides significant simplicity, and we hope it makes

our approach more practical for real-world applications.

7 Conclusions
By connecting 𝛼-𝛽 accuracy concepts with uncertainty propaga-

tion techniques, we derived conditions under which accurate er-

ror bounds can be established, highlighting the interplay between

dataset size, sensitivity bounds, and the inherent uncertainty in-

troduced by DP mechanisms. The work contributes novel insights

into the propagation of uncertainty in DP settings and enables DP

tools to provide accuracy guarantees for averages and quotients of

DP-sums under specific conditions—an aspect currently missing in

many existing frameworks. It would be valuable to explore specific
uncertainty propagation formulas for Gaussian distributions

1
. A

key challenge lies in determining how accurately tangent-plane

approximations
2
can capture functions like quotients in the context

of DP.
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