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Abstract

Differential Privacy (DP) is a cornerstone for ensuring privacy in
data analysis by injecting carefully calibrated noise into statistical
queries. While numerous DP tools focus on privacy protection,
few provide accuracy information, specially for data-dependent
computations like averages or quotients of DP-sums. This paper
introduces a novel approach to compute confidence intervals, i.e.,
a-f accuracy, for these computations, leveraging principles from
uncertainty propagation. Our method identifies conditions under
which analytical error can be predicted, revealing two key invari-
ants: the analytical error improves with large dataset sizes, and
addition of values with higher variability require larger dataset
sizes for accurate estimation. To simplify adoption, we also pro-
pose accuracy tuners to enable rapid determination of minimum
dataset sizes and explore trade-offs between privacy budgets and
the possibility to perform accuracy estimations. Our theoretical
contributions are validated through an empirical evaluation that
explores the applicability of fractional uncertainties for computing
concrete a-ff error across diverse scenarios.
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1 Introduction

In today’s digital era, vast quantities of individual data are collected
daily for research or statistical purposes. However, privacy con-
cerns surrounding the individuals who contribute their data restrict
how this information can be utilized and disseminated. In response
to these challenges, Differential Privacy (DP) [9] is increasingly rec-
ognized as an effective solution for releasing statistical information
about populations while safeguarding the privacy of data subjects.

A common approach to implementing DP involves adding sta-
tistical noise to the output of a data analysis. When carefully cali-
brated, this noise ensures privacy protection while still allowing for
meaningful insights about the population from which the data are
drawn. The quantitative formulation of DP, defined by parameters
€ and §, provides a robust mathematical framework for rigorously
assessing the privacy-accuracy trade-offs. It is worth noting that
the accuracy requirement is not an inherent aspect of DP; rather, it
becomes explicitly relevant when designing a differentially private
analysis for a specific task.

In recent years, there has been a proliferation of DP tools. Most
of them focus on providing privacy protection by the implementa-
tion of DP mechanisms (e.g., [3, 16, 23, 31, 33, 34, 36-38, 42]). Only
a handful of them provide accuracy information to data analysts
writing queries [13-15, 26, 32]. Such tools use probability bounds
to report analytical error bounds for query results under DP [11].
Specifically, @-f accuracy provides a probabilistic upper bound on
the error of a query’s result. Concretely, for given parameters « (er-
ror threshold) and f (failure probability), a DP mechanism ensures
that the probability of the query’s error exceeding « is at most f.
Intuitively, when noise gets added to ensure privacy, the inverse
cumulative distribution function (iCDF) of the noise distribution can
be used to determine the accuracy information as a probabilistic
bound. While these probability bounds are a great tool to reason
about privacy about a single query, they pose challenges when ap-
plied to the composition of multiple queries, such as additions [26]
or data-dependent analysis.

Averages are inherently data-dependent in a DP setting because
their sensitivity—the maximum change in the output caused by
modifying a single input—depends on the size of the dataset itself,
which might not always be a publicly available value. Specifically,
the sensitivity of an average decreases as the dataset size increases.
Since DP mechanisms rely on adding noise calibrated to the sensi-
tivity, the amount of noise required for privacy protection changes
with the dataset size. The following pseudocode snippet illustrates
how to compute the average age (from 0 to 120 years old) in a
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DP setting using a Laplace mechanism (i.e., drawing noise from
a Laplace distribution). In this example, the sum of ages (nSum) is
privatized with € = 1, and the result is divided by the dataset size
(rows) to obtain the average. This approach assumes a bounded
notion of DP [22], where the dataset size explicitly known—a criti-
cal requirement for noise calibration, note how the dataset size is
directly accessed in line 6, bypassing any DP mechanism.

Listing 1: Average for bounded DP (naive)
query dataset = do
nSum <- dpSum Laplace{epsilon = 1}
Args{min_v = 0, max_v =
dataset
return (nSum / rows) --

where rows = length dataset --

1203}

average calculation
free fact

In this code, the noise is calibrated to the sensitivity of the sum,
i.e.,, 120. However, that is not the actual sensitivity of the average:
the average changes at most 120/n if we change one row in the
dataset, which is much less than 120!—observe the free use of n in
the sensitivity calculation. Taking advantage of the free availability
of n, DP averages can be computed with a special primitive that
takes the size of the dataset as an argument:
Listing 2: Average for bounded DP

query dataset = do
nAvg <- dpAvg rows
Laplace{epsilon =
Args{min_v = 0,

13

max_v = 120}
dataset

return nAvg -- noisy average

length datasets --

where rows = free fact

This approach is followed by popular DP libraries like DiffPrivLib
[16] and Opacus [41]. We argue that bound DP is not a realistic
choice for a programming framework where operations such as
filtering or joining data can alter the size of the dataset.

When the dataset size itself is private—such as after filtering
some rows or using unbounded DP notions [22]—reasoning about
a-f accuracy becomes significantly more challenging. This com-
plexity arises from the interaction between the noises added to the
numerator (the differentially private sum) and the denominator
(the differentially private dataset size), which together influence
the accuracy of the final output. The following pseudocode high-
lights this challenge by calculating an average working-age of the
population in a given the dataset (dataset'). In this example, the
Laplace mechanism is used to privatize both, the sum of the ages
(with epsilon = 1), and the size of filtered dataset (with ¢ = 0.1)
containing only the working-age population.

Listing 3: Average for transformed datasets

do
filter working_age dataset

query dataset =
let dataset' =

nSum <- dpSum Laplace{epsilon = 1}
Args{min_v = 0@, max_v = 120}
dataset'

nRows <- dpCount Laplace{epsilon = 0.1}

Args{}
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dataset'
return (nSum / nRows) -- iCDF?
where working_age row = (row *. age >= 18)
&& (row *. age <=65)

The code describes the most common way to calculate the av-
erage, i.e., as post-processing operation between two DP queries:
a noisy sum (nSum) and a noisy count (nRows). This approach is
adopted by well-known DP libraries like OpenDP [13], SmartNoise
SQL [36], Qrlew [34], and PipelineDP [37].

Unlike simpler cases where iCDFs provide analytical error bounds,
deriving accuracy bound for the average in Listing 3 requires ana-
lytically determining the distribution of the quotient of two Laplace-
distributed random variables (i.e., nSum / nRows). This process is
non-trivial and introduces significant mathematical complexity. In
turn, this added complexity makes it challenging to use iCDFs to de-
duce accuracy bounds for the final result, particularly in scenarios
involving data transformations such as filtering or joining.

The difficulty of reasoning about a-f accuracy for the code in
Listing 3 is further underscored by the lack of support for such
computations in existing tools. As an approximation, OpenDP [13]
proposes eliminating one random variable to compute the accuracy
of averages. In this approach, the data analyst provides an estimated
dataset size, e, which the system uses to sample or impute data. If the
estimate is smaller than the actual dataset size, the system samples
the specified number of records. If the estimate is larger, the system
imputes additional records using a provided default value. The noisy
sum is then computed over the sampled or imputed dataset, and
the noisy average is calculated as the noisy sum over the estimated
record count. Since the record count is treated as constant and
the noise distribution of a random variable divided by a constant
is known, error estimation for the average calculation becomes
straightforward—recall Listing 1. While a resourceful approach, it
introduces its own challenges. The accuracy of this method relies
on the quality of the analyst’s guess, which may be unreliable due to
their limited knowledge of the dataset. Additionally, this approach
does not account for errors arising from incorrect guesses, further
complicating the accuracy guarantees for averages.

The pursuit of accuracy estimations under noisy quantities ex-
tends beyond Differential Privacy. In physics, understanding mea-
surement errors and how they propagate through operations is
known as uncertainty propagation (e.g., [40]). This theory provides
equations to handle uncertainties in measurements and their op-
erations, particularly in determining error in the quotients of two
measurements with uncertainties, assuming instrument errors are
both independent and small. In this work, we draw a novel parallel
between noisy sums and counts in DP and physical measurements
with uncertainties, enabling the use of uncertainty propagation
principles to estimate the accuracy of a noisy average or quotients
of DP-sums. However, in the context of DP, the noise introduced
to ensure privacy may not always align with the assumptions of
small uncertainties. The magnitude of DP noise can vary signifi-
cantly, posing challenges to directly applying classical uncertainty
propagation techniques.

The novelty of this paper is the adaptation of uncertainty prop-
agation to a-ff accuracy in the context of unbounded Differential
Privacy. We outline sufficient conditions under which fractional
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uncertainties can be employed to analytically estimate the errors in
calculating averages and quotients of DP-sums. Our approach is ap-
plicable to both the Laplace and Gaussian mechanisms, offering—to
the best of our knowledge—the first analytical accuracy predictions
for quotients under these mechanisms.

Our method identifies the conditions under which uncertainty
propagation can be applied to provide an analytical error and uses a
noisy count for the accuracy calculations. Intuitively, a noisy count
can be used to reason probabilistically about the bounds of the
DP-sums, thus offering a structured way to estimate the sensitivity
of the average or the quotients of two DP-sums. This, in turn,
facilitates a-f accuracy estimations. Our mathematical equations
reveal two critical invariants: the more records there are in the
dataset, the more likely it is to provide analytical error bounds; and
the greater the variability (range) of the elements involved in the
sum, the larger the dataset needs to be to ensure analytical error
bounds can be derived.

We also present accuracy tuners designed to aid data analysts in
understanding and managing the conditions necessary for provid-
ing accurate estimation; conditions related to the noisy count, its
error bound, the domains of the elements contributing to the DP-
sums, along with their privacy settings and error bounds. Since we
do not expect data analysts to have all these conditions in mind, our
tuners provide an intuitive way to evaluate the trade-offs among
the necessary parameters. Specifically, the tuners are useful in the
following scenarios:

> Unknown dataset size: Given the privacy parameters for counting
the numbers of rows, the tuners quickly determine the minimum
number of records and the minimum privacy budget required for
the DP-sum(s) in order to estimate the accuracy of the average
(or quotient of DP-sums).

> Known dataset size: For a given noisy count of the number of
records, the tuners identify the minimum privacy budget for the
DP-sum(s) needed to provide accuracy of the average (or quotient
of DP-sums).

> Budget optimization: given a privacy budget for the average (or
quotient of DP-sums), the tuner suggests how to distribute the
budget between the noisy count and the DP-sum(s) to ensure
that accuracy can be analytically predicted.

In addition to our theoretical contributions, we include an evalu-
ation section that explores concrete scenarios and parameter values
under which our hypotheses about using fractional uncertainties
for computing a-f error hold. This empirical analysis provides
practical insights into the conditions required for the successful
application of our methods. We examine various combinations of
dataset sizes, ranges of DP-sums, and privacy parameters to show-
case when fractional uncertainties yield accuracy estimations. Our
evaluation validates the sufficient conditions for applying fractional
uncertainties, illustrating the impact various elements have on their
practical applicability. These results not only reinforce the sound-
ness of our approach but also provide actionable guidance for data
analysts aiming to balance privacy guarantees and accuracy in their
computations.

In summary, the contributions of this work are as follows:
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> Theoretical Framework for Analytical Accuracy: we provide a
novel approach to compute a-f accuracy for averages and quo-
tients of DP-sums. Our novel method identifies conditions under
which uncertainty propagation can be applied, enabling accurate
error estimation despite the challenges of noise interactions.

> Accuracy Tuners: we introduce accuracy tuners to simplify the
practical application of our methods.

v

Empirical Validation: through an evaluation section, we validate
our theoretical hypotheses and demonstrate when and how frac-
tional uncertainties can be leveraged to compute analytical errors
with concrete parameters values, providing actionable guidance
for balancing privacy and accuracy in real-world scenarios.

2 Preliminaries

Differential Privacy (DP) is a quantitative notion of privacy that
bounds how much a single individual’s private data can affect the
result of a data analysis. Formally, differential privacy is a prop-
erty of a randomized query O(-) representing the data analysis, as
follows.

Definition 2.1 (Differential Privacy [11]). A randomized query
Q() : db — R satisfies (¢, §)-differential privacy if and only if for
all pairs of neighboring datasets D; and Dy in db differing in at
most one element, and for all measurable sets S in the range of Q
(i.e., S ¢ R), it holds that

Pr[Q(Dy) € S| < e“Pr[Q(Dy) € S| +6.

In the definition above, the parameters (¢, §) determine a bound
on the distance between the distributions induced by O(-) when
adding or removing an individual from the dataset. When the pa-
rameter § = 0, the definition above is known as pure-DP, while
when § > 0 is called approximated-DP.

To protect all the different ways in which an individual’s data
can affect the result of a query, the noise needs to be calibrated to
the maximal change that the result of the query can have when
changing an individual’s data. This is formalized through the notion
of sensitivity.

Definition 2.2 (Sensitivity [11]). The (global) sensitivity of a deter-
ministic query is a measure of how much the result of the query can
change when adding or removing an individual from the dataset.
Concretely the sensitivity of a query Q(-) : db — R is defined as
the quantity:

Ag = max{|Q(D1) - Q(D2)[}

for D1, Dy differing in at most one row.

A well-known method for implementing pure DP queries is the
Laplace mechanism, which relies on noise drawn from the Laplace
distribution.

THEOREM 2.3 (LAPLACE MECHANISM [11]). Let Q(-) : db — R be
a deterministic query with sensitivity Ag. Let Q(+) : db — R be a
randomized query defined as

3 Ao
(D) = (D) +Lap( )

£
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where Lap(Ao/e) denotes the Laplace distribution with mean yu = 0

and scaleb = ATQ. Then, O(-) is (¢, 0)-differentially private, or simply
e-differentially private.

A standard approach to achieve approximate-DP is based on
the addition of noise sampled from the Gaussian distribution, this
method is known as the Gaussian mechanism.

THEOREM 2.4 (GAUSSIAN MECHANISM [11]). Let Q():dh— R
be a deterministic query with sensitivity Ag. Let Q(-) : db — R be a
randomized query defined as

QD) =Q(D)+ N 2*log(%)*A_Q ,

&

where €,6 € (0,1), and N (\/2 * log (1.25/8) * (AQ/e)) denotes the

Gaussian distribution with scale mean u = 0 and standard devia-

tion o = /2 * log(1-25/5) = (Ag/e). Then, O() is (g, 0)-differentially

private.

In general, the notion of a-f accuracy using confidence intervals
can be defined as follows.

Definition 2.5 (Accuracy [11]). Given an (¢, §)-differentially pri-
vate query O(-), a target deterministic query Q(-), a distance func-
tion d(-), a bound «, and the probability §; O(-) is (d(-), a, f)-
accurate with respect to Q(-) if and only if for any dataset D, it
holds that

Pr[d(Q(D),Q(D)) > a] < B

This definition allows one to express data-independent error
statements such as: with probability at least 1 — f§ the result of the
query 16]0) diverges from the result of Q(-), in terms of the distance
d(-), for at most a. Then, we will refer to « as the error, § as the
confidence probability, and [—a, @] as the confidence interval. For
the rest of the document, the considered distance function is that on
real numbers: d(x, y) = |x — y|. There are known results about the
accuracy of queries using the Laplace and Gaussian Mechanisms.

Definition 2.6 (Accuracy for the Laplace Mechanism [11]). Given
an e-differentially private query Q(+) : db — R implemented with
the Laplace Mechanism, it holds that:

X A
Pr||G(D) - Q(D)| > log(%) « TQ] <p

Definition 2.7 (Accuracy for the Gaussian Mechanism [11]). Given
a (¢, 6)-differentially private query Q(-) : db — R implemented
with the Gaussian Mechanism where €, d € (0, 1), it holds that:

Pr||Q(D) - Q(D)| > o * 2*log(%) <p

whit standard deviation o = /2 * log (1.25/8) * (Ag/e).

These definitions use the inverse cumulative distribution func-
tion (iCDF) of the noise distribution to provide the corresponding
error bounds. Concretely, from the definitions above we have that
the iCDF of the Laplace distribution is given by icdf(Ap, €, 0, f) =
log (1/p) = Ao/e, and the iCDF of the Gaussian distribution is given

by icdf(Ag, €, 8, B) = o * /2 * log (2/p). We note that the iCDF of
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Laplace is exact while the one for Gaussian noise is an approxi-
mation. There is work on obtaining tighter bounds and relaxing
the restriction of € < 1 [2] called analytical Gaussian Mechanism.
In this work, however, we focus on the Gaussian Mechanism as
described in [11] and leave extending our approach to the analytical
Gaussian as future work.

In the field of physics, reasoning about the uncertainties in mea-
surements and how they propagate through operations is a fun-
damental task [40]. Uncertainty propagation assuming small and
independent errors on the measurements being combined. In par-
ticular, we have the following uncertainty propagation formula for
the quotient of two independent measurements.

Definition 2.8 (Error propagation for the quotien of two measure-
ments [40]). Given two measurements X and § with uncertainties
O and Jy, the error propagation for the quotient 7 = %/ is given
by:

L [0 O
o=l (2% )
Xl 19l
with x/|%| and 8y/|§| being small.

In the definition above, dx/|x| and Jy/|§| are known as fractional

uncertainties.

3 Fractional uncertainties for DP quotients

In this section, we will demonstrate the originality of our approach
for calculating the a-f accuracy for noisy averages and quotients
involving noisy sums. In a nutshell, our methodology involves
initially determining a noisy count of the records used in the com-
putation of the noisy sums. Unlike the bounded case, where the
original size of the dataset is freely available, our approach approx-
imates the accuracy of the averages or quotients between sums by
utilizing a noisy count and static information about the range of
possible values for each element in the sums. For clarity, we first
focus on the accuracy of averages before extending the discussion
to quotients.

3.1 Accuracy of averages

We define the differentially private average as the ratio of two
differentially private queries: a count and a sum. Concretely, we
define the DP average and its privacy guarantees as follows:

Definition 3.1 (Differetially Private Average ). Given a (&, d¢)-
differentially private count ¢ and an (&g, ds)-differentially private
sum §. Then avg = % is an (& + ¢, Oc + Os)-differentially private
average of the dataset.

We aim to compute the error bound, Qavg, for the noisy average,
avg. Specifically, we seek to determine a,yg such that for a given
probability f, the following holds:

Pr [|a\7g —avg| > aavg] <p

However, analytically determining the distribution of avg is chal-
lenging, as it arises from the ratio of two random variables. In
light of this difficulty, we propose an alternative approach: using
uncertainty propagation for the quotient of two measurements to
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analytically estimate aayg. Recalling Definition 2.8, we would like
to obtain an a-f accuracy guarantee as follows:

ol )l

¢
where s and ¢ are the true sum and count of the dataset, respec-
tively. Furthermore, € is a (&, d¢)-differentially private count with
error bound computed as a, = icdf(1, &, I, fc), and § is a (&5, I5)-
differentially private sum with error bound computed as a5 =
icdf(As, €, Js, fBs). The challenge about equation (1) is that we need
to reason about the distribution of the random variable 3/¢, which
is something far from trivial. To simplify the problem, we could
simply sample from both random variables, i.e., 9z « ¢ and 05 « §,
and then compute the error of the average as indicated by Defi-

%1y (& + &) For that, however, the
0z loa] * [os]

fractional uncertainties @c/|oz| and @s/|3;| need to be small, but what
does small mean? Furthermore, how does the requirement of being
small affect any of the parameters of the mechanism for the noisy
count and sum?

To answer the first question, we will introduce 0 < y < 1 as a
small constant, and require that, when we sample from the mech-
anisms, i.e., 0z < ¢ and 05 < §, then it holds (with certain prob-
ability) that y is an upper bound to the ratios ac/|5.| and as/|],
representing the fractional uncertainty of the count and sum, re-
spectively. By doing that, the product of relative uncertainties, i.e.,
ac/|dz| - as/|é:| can be neglected, thus being able to apply the for-
mula in Definition 2.8. More technically, any values 0 < y < 1
that allow to approximate the binomial theorem 1/1-z = ¥.72, Z' by
1/1-z ~ 1 + z works [40]—in our case, z = ac/|dz].

The subsequent propositions address the second question for
both the Laplace and Gaussian mechanism. In simpler term, the
ability to apply the uncertainty propagation formula ayy is affected
by (i) the size of the dataset, (ii) the privacy budget, and (iii) the
sensitivity of the sum —detailed proofs can be found in the extended
version of this paper. The following proposition states that the
more rows a dataset has, the more likely to make the fractional
uncertainty ac/|¢| small, that is, every time that we sample 3z « ¢,
it is likely to hold that ac/|3:| < y.

ol

N
c

1

nition 2.8, i.e., Qavg =

PROPOSITION 3.2. Given 0 <y < 1, and a (&, d.)-differentially
private count ¢ with error bound computed as o = icdf(1, ¢, dc, fe),
then it holds with probability 1 — . that

S ac* (1+y)

= acfle] <y

where c is the number of records in the dataset.

For the fractional uncertainty as/|3| to be small, the following
proposition indicates that most of the budget for the average must
be used on the sum rather than the count when a is much smaller
than b—see hypothesis b/e; < a/e.. As the proposition shows, our
results hold for sums computed from positive values. We also see
that the amount of records in the dataset (c) times the minimum
value of the sum (a) is bigger than the error of it (as).

PROPOSITION 3.3. Given 0 < y < 1, a¢c = icdf(1, &6, p), and
the privacy parameters (s, 8) for a differentially private sum to be
performed with error bound computed as a5 = icdf(As, €5, 6, ), where
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A = max{a, b}, a > 0, a and b being the lower and upper bounds of
the values to be added, respectively, and c as the number of records in
the dataset, then it holds with probability (1 — B)? that

qe

(c*a>as)/\(c sY)A(gﬁs;)zas/mq @)

— Q¢ s c

Observe that the propositions above require access to the true
count ¢, which is not available in practice—recall the motivation

from Section 1. Instead, we would like to use the value of a differentially-

private count 9z, where 9z < ¢, to provide a lower and upper bound
on the result of the sum (with certain probability). In that manner,
a data analyst can first spend some budget into performing a DP-
count to obtain the size of the database for then obtaining the
accuracy of the average before sampling from the DP-sum. In other
words, we will be able to compute the average’s error bound (and
its preconditions) using only a concrete DP-count value.

The constraint ¢ = a > as is required to avoid division by zero
in our mathematical development, which then implies that a > 0.
Furthermore, the proposition utilizes the fact that a > 0 to provide
upper and lower bounds for |$| in terms of the real count ¢ and the
limits a and b, which then enables to bound as/|3|.

PROPOSITION 3.4. Given a (&, 8)-differentially private count ¢
with error bound computed as a. = icdf(1,¢c, 6, fc), Uz < C, the
privacy parameters (s, 8) for a differentially private sum with error
bound computed as as = icdf(As, €s, 8, fs), where As = max{a, b},
a > 0, a and b being the lower and upper bounds of the values to be
added, respectively, then it holds with probability (1 — fc) - (1 — fs):

as as
5= @ (el - o) — as ©

This proposition provides an upper bound to the fractional un-
certainty of the differentially-private sum about to be performed
based on a given noisy count.

The following proposition indicates under which conditions, and
based on the available noisy count, when the fractional uncertainty
of the differentially-private sum is likely to be small.

PROPOSITION 3.5. Given 0 < y < 1, a (&, 8;)-differentially pri-
vate count ¢ with error bound computed as a. = icdf(1, ¢, 0, f),
Oz < C, such that acf|3;| < y, the privacy parameters (&5, ) for
a differentially private sum with error bound computed as a5 =
icdf(As, €, 0, B), where As = max{a,b}, a > 0, a and b being the
lower and upper bounds of the values to be added, respectively, then
it holds with probability (1 — f)?:

b<a* u :>a—~5§y
1+y IS]

Es

Under the assumptions of Proposition 3.5, and that ac/|é| is also
small, we can apply the uncertainty propagation equations in Defi-
nition 2.8 to estimate a,yg. Unfortunately, calculating a,yg requires
to sample from the DP-sum. Can we obtain an error estimate for
the average without sampling from the DP-sum?

With that in mind, we propose a new equation for the error
bound of the average that does not depend on the result of the
DP-sum but rather on an approximation in terms of the noisy DP-
count.

_EC

To attain our goal, we need to determine an upper bound for
the error for the mean as dictated by Definition 2.8 when sampling
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from the DP-sum, i.e., when obtaining 03 « §, then as/|5;| < y and
Qavg = |5/0e| * (@ef12e] + as/|55]).-

In what follows, we keep using § since we want our reasoning
to hold (with certain probability) for any given sampling of the DP-
sum. Informally, we proceed as follows where a > 0 and f. = f:

S a, a
el \lgel 13|
s a, a
< |=—|* (~—C + ~—5) ; by Proposition 3.4
o \loel  a=(|gg] — ac) — as
S a, a
< Q i (~—C + ~—s) ; by properties of |-|
ozl \ldel ~ a=(16z] — ac) — as
b#*c+og (ac as )
— = * | - i~ N~
|9 [og]  a=* (16z] — ac) — as

; by upper bound of |§| with prob. (1 — f5)

b+ (|9| + ac) + as ( As ):a*
|9 a (|og] — ac) — as ave

; by upper bound of ¢ with prob. (1 - f)

Ac

|9z ]

where we obtain the error for the average a3, which does not
depend on the result of the (to be performed) noisy sum but rather
the (already performed) noisy count.

PROPOSITION 3.6. Given 0 < y < 1, the privacy parameters
(&c, ) for a differentially private count with error bound computed as
ac = icdf(1, ¢, 6, B), 0 « ¢, the privacy parameters (s, 5) for
a differentially private sum with error bound computed as as =
icdf(As, €, 0, B), where Ag = max{a,b}, a > 0, a and b being the
lower and upper bounds of the values being added, respectively, and

(=)

o acf|iz| <y
e b,
£ = &

then it holds

S s
Pr{|l—-=|>a} <2
[UE c avg ﬁ
where
. _b*(|5é|+ac)+as*(£ as
s |0z] [6a] ~ a= (10z] — ac) — as

From this result, we can derive several observations. First, that
both reducing a, and as or a big noisy count minimizes the overall
error bound a,. Second, smaller ranges a and b also improve error
estimation, highlighting the importance of tight data bounds during
analysis. Third, allocating privacy budgets effectively between the
noisy count and the sum is crucial. Lastly, when real counts ¢ are
significantly larger than ac/y, it is likely that |3z| > ac/y, which im-
plies ac/|é:| < y—which allows us to provide accuracy bounds most
of the time when the constraints around the epsilons are satisfied.
Extending the proposition above to consider non-positive elements
would require case-specific analyses to derive the corresponding
preconditions, which might not end up in a compact, elegant for-
mulation that is independent of the DP mechanism—thus we leave
it as future work.

In our empirical evaluation, we took y = 0.1, corresponding to
a 10% threshold on fractional uncertainties, as a reasonable and
intuitive baseline for determining when uncertainty propagation
yields error bounds. However, this choice is not fundamental, but
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it can affect the applicability of our approach. We further explore
the implications of varying y in Section 5.

3.2 Accuracy for quotients of DP-sums

Using analogous steps for estimating accuracy for averages, in this
section we show that we can approximate the accuracy of quotients
computed from two DP-sums. Concretely, let §; and §3 be the DP-
sums of two different queries over the same dataset or two datasets
with the same number of records c. Let §; be computed over values
in the range [ay, b1] and §y over values in the range [ag, b2], where
a; > 0. Then, the noisy ratio of these two sums defined as 31/5, has
an error bound ay;/;, that can be formulated in function of a noisy
count.

Given a comparison to the average scenario, the following propo-
sition for quotients of DP-sums is simply derived by imposing fur-
ther constraints to the parameters of s3 in the same way as we did
for the privacy parameters of sj.

PROPOSITION 3.7. Given 0 < y < 1, the privacy parameters
(ec, Oc) for a differentially private count with error bound computed
as ac = icdf(1, €., 0, f), g « ¢, i € {1,2}, the privacy parameters
(&s;, ) for a differentially private sum with error bound computed as
as; = icdf(Ag,;, €s;, 0, ), where Ag; = max{a;, b;}, a; > 0, b; being
the lower and upper bounds of the values in the dataset, respectively,
and

o acf|oz| <y
° Sle, < Z—L‘: * (11%

then it holds

>

~
~—

Pr[%—i—; >(x;/§ <3p+p°
where
o _ b (Jog] + ac) + as
Ve ay x (|06] - ac) — as,
s,

— +
ar * (|vg] = ac) — a5,

As with the prediction of accuracy of averages, larger dataset
sizes improves error approximation, as do tight sensitivity bounds
for the sums (i.e., a;, b;). However, there is a notable distinction
here. The term bi+(15;|[+ac)+as/ay+(|5;|-ac) - as, in a;ilkz highlights
the critical role of the ratio b1/a,. A large b; relative to az can inflate
the error estimation. To address this, it is beneficial to balance the
scales of the two sums, e.g., by rescaling. It might also be benefi-
cial to place the sum with the smaller b; as the numerator when
computing the quotient.

az * (|vg] — ac) — as,

4 Tuners

The findings in Section 3 outline several prerequisites for estimat-
ing the precision of quotients, which may pose a challenge for
data analysts. To alleviate this issue, we provide here a series of
tuners that facilitate the validation of average error estimation un-
der these conditions. The tuners are designed to work in three
different modes of exploration, each of which is useful for different
scenarios. For simplicity, we show the tuners for averages that can
be easily extended to work on quotients of DP sums. We assume
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that the lower and upper limits for the range of values of the sum
lies in the positive interval [a, b].

4.1 Mode I: Unknown dataset dimension

This mode is designed to help users determine the minimal number
of records required to likely satisfy the precondition ac/|3;| < y in
Proposition 3.6 and 3.7 for a desired level of privacy for the count (¢,
dc). In this mode, the tuner takes as input the desired label of privacy
for the count (e, d.) and its confidence parameter f., then, the
tuner provides the minimal number of records cp,j,. Additionally,
the tuner suggests the minimal privacy parameter for the sum ¢,
such that it satisfies the precondition(s) b/e, < a/ec * (1-¥/1+y).

Algorithm 1: Tuner Mode I

Function modeI(y, e, ¢, fe, a, b):

Cmin < "ac(l +Y)“

> by Prop. 3.2
Y

b 1+
Esmin e (—Y) > by hypothesis in Prop. 3.5;
a 1-y
ds < Oc;
Bs < Be;

return (cmin, (s, 65, Bs);

Algorithm 1 describes the tuner running in mode I. We have
already seen in Proposition 3.3 that the minimal number of records
Cmin €an be determined based on the desired privacy level for the
count ¢ and the count’s parameter f. in such a way that the con-
dition ac/|é| < y is likely to hold. To determine the minimal pri-
vacy parameter for the sum ¢, , we elaborate on the condition
bfes . < afe. * (1-¥/1+y), which applies for both the Laplace and
Gaussian mechanisms.

4.1.1 An example. To il-

lustrate the tuner’s func- -

ionality in thi de. let 4 Be Cmin | Esmin
tlonal' ity in t 1slmo1 e, efts 0.05 | 33.0K | 0.01
c}(l)nmder several values for 0.001 | 0.1 | 253K | 0.01
the count’s privacy paranzl- 0.05 661 061
?tter € ﬁed [0.001,0.1) a:‘ 005 | 0.1 | 508 | 0.61
s Co(r)‘ose(’)lcle pa‘_ralmeb “ 0.05 | 368 | 11
fe € 0.0501,a=1b = 009 | 0.1 | 283 | 11
10, and y = 0.1. We assume

. Table 1: Example for tuner
we will use the Laplace
Mode I.

mechanism so 8. = 0, and
we omit it in what follows. For each combination ¢, and f., we
use the tuner to provide the minimal number of records cpi, and
the minimal privacy parameter for the sum &g, . Table 1 shows
some of the results obtained. As we can see, the minimal number of
records cpiy decreases as the privacy level for the count ¢, and the
confidence parameter . increases. On the other hand, the minimal
privacy parameter for the sum ¢, increases proportionally to the
privacy level for the count e..

4.2 Mode II: Known dataset dimension

This mode is designed for when the user has already obtained infor-
mation about of the number of records in the dataset by performing
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a DP-count and is interested in determining the privacy parameters
for the sum such that the preconditions for the average’s error
estimation are likely valid. As such, the tuner takes as input the
result of the DP-count 0; together with the used privacy budget
(&, 8¢), and produces ¢, such that b/e; . < /e, * (1-y/1+y) is
likely satisfied.

Algorithm 2: Tuner Mode II

Function modeII(y, &, &, Pe, a, b, Ug):
.o %c
lf -

|o¢]
L return Error: Condition not met

> y then

else

(cmins (Espn»> Os)s Bs) < model(y, &, Oc, Pes a, b)
return ((ésny ), fs)

Algorithm 2 describes the tuner running in mode II. This mode
primarily ensures that the fractional uncertainty of the noisy count
is minimal, triggering a transition to the tuner in mode I while
discarding the reported minimum number of records.

4.2.1 An example.

Similar as. we did e c 7z .
before, t? 1llustfate 10K 8899 unsat cond
the tuner’s function- 0.001 | 100K | 99937 0.12
ality in thl.S mode, 10K 9971 61l

let us consider sev- 0.05 | 100K | 99979 6.11

eral V,alue§ for the 10K 9999 11
count’s privacy pa- 0.09 | 100K | 100004 11
rameter & € {0.001,

Table 2: Example for tuner Mode II.

0.05} and its confi-
dence parameter f = 0.05,a = 1, b = 100, and y = 0.1. We
consider datasets with real counts ¢ € {10.000, 100.000, 1.000.000}
records. We assume we will use the Laplace mechanism so . = 0,
and we omit it in what follows. Table 2 shows the results obtained.

The table indicates that, under the given privacy parameters,
the dataset with a real count of 10K records are not enough to be
able to provide error estimations when the epsilon is too small, e.g.,
& = 0.001, c = 10K, and 9z = 8899. However, average accuracy
estimation are likely possible with datasets with real counts are
higher (e.g., 100K and 1M) or the privacy parameter epsilon for the
noisy count is bigger.

The table also shows that the more budget we spend on the noisy
count, the higher the budget that we need for the noisy sum—some
&s are higher than those recommend by good practices, but they
have been selected for making this point clear. This behavior comes

from the requirement & < % * (11;—)’:) Observe that the higher the

1- .
&, the smaller gl * (—y) hence & needs to increase to make 52
[ S

1+y
smaller and satisfy the inequality. Alternatively, the dataset can be
manipulated so that the lower bound of the sum a gets increased so
that the inequality holds with a possible small budget requirements

for the sum.



CCS 25, October 13-17, 2025, Taipei, Taiwan.

4.3 Mode III: Budget optimization

This mode is designed to help users explore different privacy allo-
cation of the budget for both the DP-count and DP-sum so that the
preconditions to report the accuracy of the average are likely to
be satisfied. This mode deviates from its predecessors by requiring
users to estimate or forecast the total number of records within the
dataset—this requirement aligns with the methodology suggested
by OpenDP when operating under an unbounded Differential Pri-
vacy model.

In this mode, the tuner takes a range of maximal values for
average’s privacy level Eavg = {(favg,, davg, ), (€avg,s Savg,)s - - -
(avg, s Savg, )} as well as a range of estimates for the number of
records € = {é1,¢2, ..., ém}. The tuner then provides the minimal
privacy parameters for the count ¢. , and the sum ¢, for each
combination ((avg,, Savg, ), ¢j) With 1 < i < n;1 < j < m such that
the preconditions for the average’s error estimation are likely to
be satisfied provided that the budget eavg, is enough. Algorithm 3

Algorithm 3: Tuner Mode III (Laplace mechanism)

Function oneStep(y, ¢, eavg, . f 4 b):
1

log (,B_/z) (1+y)
-y

(Cmin) (fsmm, 6s)sﬁs) <« modeI(y, Ecpmins 05 ﬁ/Z, a, b)

€avg iy € €emin + Esmin

lf Eanmin > Ea"gmax then

L return {}

| return {Cecpins Esmins eavgmm)}

Ecmin <

> by ac/(c-a.) <y in Prop. 3.3

> not enough budget

Function modeIII(y, C‘, Savg, B, a, b):
R0
foreach (¢, eqvg) € Cx Eavg do

L R < R U oneStep(y, ¢, €avgs B, a, b)

return R

defines the tuner for the Laplace mechanism. Different from Algo-
rithm 1 and 2, the code for the tuner is mechanism-specific when it
comes to calculating e, . The algorithm performs the Cartesian
product of the privacy budgets proposed for the average & and the
predicted sizes of the dataset C. For each element in this product,
the tuner computes the minimum epsilon for the counter and then
uses that to call the tuner in Mode II to obtain the minimum epsilon
for the sum.

For reasons of space, we do not present this mode for the Gauss-
ian mechanism. It is very similar to Algorithm 3 excepts that it
needs to account for the é. In short, given a desired Savg, it splits it
in two and uses Savg/2 when calling Algorithm 1 rather than 0.

While our methodology computes each (avg, Savg) configuration
independently, we allow the tuner to take a list Eayg of such tuples
to facilitate tabular exploration of how different privacy budgets in-
teract with varying record count estimates. This design choice sup-
ports practical scenarios where analysts wish to compare trade-offs
across multiple budget configurations at once—something particu-
larly useful during the planning or tuning phase of a DP analysis.
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For users interested in a single configuration, our formulation still
accommodates this by passing a singleton set—thus without adding
complexity for simpler use cases.

4.3.1 An example. To illustrate the aid that the tuner can provide,
we present an example where we consider the Laplace mechanism,
P = 0.05,a =1,b = 10,y = 0.1, cayg, € {0.041,0.081}, and
¢ € {10K, 100K, 1M}. For each combination of Eavg,,., and ¢, the
tuner suggests values for the count and sum privacy parameters,
€, and &, following the procedure described in Algorithm 3:

£avg ¢ e £s . Eavg,_ Sat1§ﬁed
max min min min | conditions
10K | 4.06e-03 | 4.96e-02 | 5.37e-02 False
0.041 | 100K | 4.10e-04 | 4.96e-03 | 5.37e-03 True
1M 4.10e-05 | 4.97e-04 | 5.38e-04 True
10K | 4.10e-03 | 4.96e-02 | 5.37e-02 True
0.081 100K | 4.10e-04 | 4.96e-03 | 5.37e-03 True
1M 4.10e-04 | 4.97e-03 | 5.38e-03 True

Table 3: Example for tuner Mode III.

Each row demonstrates how, for a given combination of eavg
and ¢, the tuner suggests values for ¢, and ¢, , and whether
the conditions for the privacy protection are satisfied. In particular,
we can see that for eayg = 0.041 and ¢ = 10K the conditions are
not satisfied since the minimal privacy parameter for the average
exceeds the maximum allowed value—see the extended version of
this work for a more detailed exploration of parameters when using
this tuner.

Overall, the tuner proves to be a valuable tool for practitioners,
offering a clear pathway for setting privacy parameters in the error
estimation of averages. However, it is crucial to remember that
the tuner is not a one-size-fits-all solution, and users must take
responsibility for ensuring that any estimations or assumptions
made are aligned with the actual characteristics of the dataset.

5 Evaluation

To assess the utility of the proposed error bound for the quotient
of random variables, we conducted a series of experiments. These
experiments focused on validating the assumptions and theoretical
predictions under varying conditions, with particular emphasis on
the correctness and applicability of the derived bounds.

5.1 Fractional uncertainties in a DP setting

Firstly, we are interested in verifying the soundness of the error
estimation by fractional uncertainties for differentially private av-
erages as proposed in equation (1). That is, if we have a noisy count
O « ¢ and a noisy sum 05 « § with small fractional uncertain-
ties, does it hold that the error of the average can be approximated
by |s/9:| * (ac/|5:| + @s/|55]) with certain confidence? To answer
that question involves comparing the theoretical error bounds—as
provided by fractional uncertainties—with empirical observations.
The goal is to determine whether the theoretical error bounds pro-
vide an upper limit on the actual error observed in practice when
the preconditions that ensure small fractional uncertainties are
satisfied—recall Proposition 3.5.

In our evaluation, we compare the theoretical error bound with
the empirical error computed from the noisy average. Specifically,
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Pavg: Empirical vs Theoretical
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Figure 1: Soundness of error estimation for averages with
& =0.02and & = 0.8

for a given dataset with c records, and privacy parameters ¢, and
&s (for the count and sum under pure-DP, respectively), we take
the confidence parameter f, called fy,, to vary between the range
[0.005, 0.3]. For each value of f,, we compute several DP-counts
and DP-sums, together with their corresponding error bounds a,
and a5 with f; = fs = Bw/2, and then calculate the empirical and
theoretical values for a,yg. Concretely, the empirical error is defined
as the absolute value of the difference between the noisy average
and the true average, while the theoretical error is determined by
the uncertainty propagation formula from Definition 3.1.

(S

U ac o
| *|\ =7t =
gz | \l%| |95
Moreover, for each pair of sampled (9;, 05), our evaluation also

checks whether the conditions from Proposition 3.5 are satisfied
and provide validity percentages of all the samples defined as:

Xavg-emp =

N
C

Qavg-th =

# of noisy count samples where ac/|3:] <y

valid,
¢ # of noisy count samples

# of noisy sum samples where as/|3;| < y

valid
s # of noisy sum samples

We can then calculate an empirical value for f, called Bemp,
by checking the proportion of empirical errors dayg-emp that are
above the theoretical bound computed using the non-parametric
formula a,yg-th- A correct estimation of the error bound by frac-
tional uncertainties should yield femp < S, indicating that the
error estimation is indeed an upper bound of the real error.

Figure 1 shows the result of our evaluation. Concretely, the
experiments are conducted with a = 1, y = 0.1, & = 0.02, and
&s = 0.8 while choosing different configurations for the count ¢
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c al| b Bih | Pemp | valide | validg
0.005 | 0.004 | 100% 100%
3200 [ 1 | 105 | 0.05 | 0.019 | 100% 100%
0.3 0.131 100% 100%
0.005 | 0.331 0% 0%
10 1 2 0.05 0.404 0% 0%
0.3 0.526 0% 0%

Table 4: Results for the experiments in Fig. 1

and data’s range upper limit b. Points marked with e represent the
cases where the configuration is set as ¢ = 32000, b = 105, while
those marked with A represent the cases where ¢ = 10,b = 2. The
points filled with represent the values of femp obtained from
1000 samples, where the conditions necessary for achieving small
fractional uncertainties are typically met. Specifically, this occurs
when at least 90% of the samples fulfill the required preconditions.
In contrast, the points filled with - indicate that at least a 10%
of the samples do not satisfy the preconditions. The diagonal line
represents the boundary between the theoretical and empirical fs.
A more detailed depiction of some of the results obtained in this
evaluation can be found in Table 4. Importantly, it includes a more
granular overview of the validity percentages for each precondition
serving as indicators of the overall reliability of the error estimation.

As evident in these results, the configuration with a larger data
size (32000) always yields a correct error estimation as the values
of femp remain lower than those of By, i.e., below the diagonal
line. Interestingly, the validity percentages for both conditions are
100%, indicating that the preconditions are always satisfied. On the
other hand, the configuration with a smaller data size (10) does
not satisfy the preconditions—even though the data variability is
significantly lower—as indicated by the assigned color and the
validity percentages are 0% on each condition. Furthermore, the
error estimation is incorrect since we see that the empirical error
always surpasses the empirical bound, i.e., it is above the diagonal
line.

This experiment demonstrates that indeed the proposed error
estimation using propagation of uncertainties is an upper bound for
the empirical error when the preconditions are satisfied. Moreover,
the experiment also underscores that the preconditions are neces-
sary to ensure the applicability of the error estimation by using
fractional uncertainties.

5.2 Error estimations

As show in Section 3, the average’s error bound can be approxi-
mated by applying fractional uncertainties with a noisy count and
theoretical error bounds (i.e., @ and «;) for the count and the sum.
In what follows, we check that the error estimation described in
Proposition 3.6 is a sound approximation of the empirical error.

To do so, we take several values for the privacy parameters .
and &g, importantly, we only consider the cases where ¢5 > ¢, since
we need to satisfy the inequality b/es < afe. * (1-y/1+y).

For each pair of privacy parameters, we compute the minimal
number of records cpi, required to satisfy that the fractional un-
certainty of the noisy count is small—recall Proposition 3.2. We
then generate a synthetic dataset with cp;, records with values
sampled uniformly within the range [a, b]. We compute the real
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Figure 2: Soundness of rx;vg with a =1, i, = 0.05

and noisy averages under the Laplace Mechanism for this dataset,
using the corresponding counts and sums. Then, we compare the
theoretical error bound, a;,, with the empirical error. As with the
previous experiment, when analyzing the proportion of empirical
errors surpassing the theoretical error bound, we expect to have

Pemp < Pin.

In Figure 2a we show the results of the experiments for the
average’s error estimation af{vg. Concretely, the first matrix depicts
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b £c Es Cmin | %c s valide | valids
0.20 184 | 98% | T

0.000 | T | 4461 | 405 | 8 0

0.20 1844 | 99% | False

0.009 | T | 4461 | 405 | OE | 00

Table 5: Results for the experiments in Fig. 2a

the case where a = 1, b = 10, y = 0.1, and f, = 0.05. In this
case, we can see that all cases satisfy the first condition ac/|s:|<y
with high probability, as the validity percent is always above 98%
(i.e., there are no cells marked in ). However, this is not
the case for the second condition, as there are some cells marked
in indicating that b/e; > a/e. * Y where Y = (1-v/1+y)
and consequently rendering the error estimation invalid for those
(&s, &c) pairings.

These results highlight the importance of correctly distribut-
ing the privacy budget between the count and the sum to ensure
the applicability of the error estimation. Observe that for those
cases where the conditions hold (i.e., the cell is not marked in
grey , , or -), the empirical error remains below
the theoretical one as desired, marked in - suggesting that
the conditions are a sufficient constraint to ensure the correctness
of the error estimation.

The second matrix in Figure 2a shows the case where the range
of data is increased to b = 100, the effect of this change is that
there are more cases where the second precondition b/e; < afe, * Y
is not satisfied, leading to a higher proportion of cells marked in
yellow, this is because sum’s sensitivity is determined by the upper
bound b, i.e., the bigger b, the bigger &5 should be in order to reduce
b/e;. However, for those cases where the conditions hold, the error
estimation remains correct.

Table 5 highlights key results from these experiments, illustrat-
ing the interplay between the privacy parameters ¢, and &5 and
the dataset range b in meeting the conditions required for accurate
error estimation of the average. For b = 10, the conditions are satis-
fied for most parameter combinations, with validity percentages
consistently exceeding 98%, and always satisfying the inequality
ble; < aje. % Y for both & = 0.004 and ¢. = 0.009. However, when
the dataset range increases to b = 100, the validity of the second
condition declines, as indicated by the higher number of invalid
cases (marked as False). This decline occurs because a larger range
increases the sum’s sensitivity, requiring a proportionally higher
privacy budget & to satisfy the condition. These findings underscore
the critical importance of distributing the privacy budget effectively
between the count and the sum, particularly for datasets with wider
ranges, to ensure the applicability of the error estimation.

Lastly, we aim to investigate the effect of the parameter y on
the soundness of the error estimation. To this end, we performed
similar experiments as before but where the value of y was varied
among 0.001, 0.5, while keeping the other parameters fixed as fol-
lows: a = 1, b = 10, and Sy, = 0.05. The results of this evaluation
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c mean j:/?i?gi Pemp | valide | validg
1K 8.38e-02 | 2.04e-04 | le-04 | 100% 100%
10K | 7.93e-03 1.75e-06 | 2e-04 | 100% 100%
100K | 7.86e-04 | 1.76e-08 | 2e-04 | 100% 100%
1M 7.86e-05 1.73e-10 | 5e-04 | 100% 100%
10M | 7.86e-06 | 1.76e-12 | 1e-04 | 100% 100%

Table 6: Relative uncertainty (vg/|a?g|) analysis

are presented in Figure 2b. Our findings show that the soundness of
the error estimation remains unaffected by the value of y. However,
we observe that different values of y lead to varying applicability
restrictions. Specifically, increasing y does not necessarily result
in a higher number of valid combinations of (e, ¢s) values. This
can be explained by the fact that, while increasing y makes the
first condition easier to satisfy, the second condition becomes more
restrictive. As y approaches zero, the expression 1-y/1+y tends to
zero, which imposes stricter constraints on the values of &.

5.3 Estimation tightness

The proposed error estimation for the average has been shown
to be sound, and the conditions necessary for its applicability are
sufficient. The remaining question is whether the error estimation
is sufficiently tight, meaning whether the provided bounds are
small enough to be practical in real-world scenarios. To assess the
tightness of the error estimation, we compute the average’s relative
uncertainty ;/|avg|. A lower ratio indicates a tighter bound.

To evaluate the relative uncertainty, we revisit the example from
Section 1 about calculating the average over the working-age pop-
ulation (see Listing 3). Our goal is to determine whether the error
estimation in this context is practical. For this evaluation, we vary
the dataset size while keeping the parameters fixed as follows:
e =0.1,6s=1,a=18b =65y =0.1,and fy, = 0.05.

For each dataset size, we conduct 10,000 iterations, calculating
the relative uncertainty for each sample, and then report the mean
and standard deviation across all samples. Additionally, we provide
the proportion of samples that satisfy the preconditions. Table 6
summarizes the findings were several trends are evident. The rel-
ative uncertainty decreases steadily with increasing dataset size,
highlighting the scalability of the method. Importantly, the relative
uncertainty remains below 1 across all dataset sizes, demonstrat-
ing practical tightness even for small datasets. Additionally, the
standard deviation of the uncertainty diminishes sharply for larger
datasets, reflecting increased reliability. The empirical confidence
(Bemp) remain lower than that of the theoretical one as expected,
indicating that the error estimation is consistently an upper bound
on the empirical error. These findings underline the robustness and
practicality of the proposed estimation technique across various
dataset scales and real world scenarios.

Finally, considering a concrete instance of evaluating the error
in the average operation from Listing 3, let’s assume we have a
dataset of 1k (10k) records (after applying the age range filter) and
a corresponding noisy count of gz = 998 (dz = 10006). In this
case, we can say with 95% confidence that the error of the average
working-age population is ag,, = 3.44 (ag,y = 0.32). Therefore, the
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¢ c s/e 05/5; proposed basic
100 | 52.04 | -2.03 - (=00, )
1K | 5051 | 1.75 - (=00, 00)
10K | 49.98 | 76.6 - (—c0, 00)
0.0001 100K | 50.49 | 46.84 - [34.75,71.53]
IM | 5051 | 50.4 | [44.56,56.24] | [48.59,52.35]
10M | 505 | 50.51 | [49.95,51.07] | [50.32,50.7]
100M | 50.5 | 50.52 | [50.46,50.57] | [50.5,50.54]
1G | 505 | 505 | [50.49,50.51] | [50.5,50.5]
100 | 51.77 | -0.02 - (=00, )
1K 49.97 | -0.61 - (=00, 0)
10K | 50.85 | 3.8 - (~c0, 00)
100K | 50.6 8.83 - [5.36,24.81]
0.00001 1M 50.49 | 45.59 - [34.19,68.39]
10M | 50.49 | 49.68 | [45.72,53.64] | [47.94,51.55]
100M | 505 | 50.6 | [50.21,50.99] | [50.42,50.79]
1G | 505 | 505 | [50.46,50.54] | [50.48,50.52]

Table 7: Comparison against the basic approach with a =1,
b =100,y = 0.1, and &5 = 0.02

true average of the working-age population lies within the range
[adg—3.44, avg+3.44] ([adg—0.32, adg+0.32]) with 95% confidence.

5.4 Comparison with a basic approach for CI

To provide a clear picture regarding the advantages of the proposed
method, we consider a basic approach for estimating the error of the
average. This approach consists of deriving the confidence interval
(CI) of the average using those of the noisy count and noisy sum
together with the result of both queries. Specifically, given a noisy
count 9, a noisy sum 93, and their corresponding error bounds a,
and as, the CI for the average can be approximated by evaluating
the extreme values of the count and sum. This involves determining
the boundary cases for the ratio s/c as follows:

ming = 0 — a¢ maxe = 0 + Qc

ming = 03 — ag maxgs = 03 + s

. . [ming maxg ming max;
MiNgyg = mMin T >
min, min. max. maxc
ming maxg ming maxs
maXayg = max T >
min, min. max. maxc

= % € [minavg, maxavg] = basic 4)
Importantly, if the interval for the count (¢ € [min,, max.]) con-
tains zero, the average s/c becomes unbounded, and we assume
sfc € (—00, ).

To compare our error bound with this basic approach, we take
fixed values for the parameters a, b, ¢, and y, and choose differ-
ent values for the count’s privacy parameter ¢, and the size of the
dataset c. For each dataset size, we generate a synthetic dataset
with values sampled uniformly within the range [a, b]. We then
compute the noisy count oz and the noisy sum 0z, along with their
corresponding error bounds a, and as. Consequently, we com-
pute the average’s error “:vg using the noisy count and the sum’s
privacy parameter, then we determine the CI for the average as
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proposed = [5ag,g - (x:vg, Oagg + a;‘vg , where 0,5, = 95/6;—it is im-
portant to note that the noisy average is used solely for constructing
comparable Cls, and it is not required to provide the error estima-
tion with our method. Lastly, we compute the basic approach’s CI
for the average as described in Equation 4, and we compare the two
intervals.

Table 7 shows the results of this comparison for different dataset
sizes ¢ and privacy parameters ¢. with fixed values of a = 1, b = 100,
&5 = 0.02, and y = 0.1. While the basic approach is conceptually
simple and requires only elementary calculations, making it ap-
pealing for quick estimates, it suffers from several important limi-
tations in practice. As shown in Table 7, the intervals it produces
are often either uninformative or misleading, particularly for small
dataset sizes or when the privacy budget is heavily constrained.
From these results we can highlight three important observations
when comparing the two methods. First, it is important to note
that the basic approach requires executing both the count and sum
queries, thereby fully consuming the privacy budget allocated for
the average—even in cases where the resulting CI is uninforma-
tive (e.g., when it becomes unbounded). In contrast, our method
provides Cls only when its preconditions are met, offering early
feedback and enabling practitioners to reallocate the privacy budget
more effectively, particularly toward the sum.

Second, the basic approach can yield intervals that are not valid.
For instance, when & = 0.00001 and ¢ = 100K, it produces an
interval of [5.36, 24.81] which does not contain the true average
of 50.6, leading to erroneous conclusions. While our method can
be conservative—sometimes yielding no interval even when the
basic approach provides a seemingly valid one (e.g., for e = 0.0001,
¢ = 100K or ¢ = 0.00001, ¢ = 1M)—this can be seen as the price to
pay for ensuring the correctness of the output.

Finally, as the dataset size increases, the CIs calculated using
our approach naturally converge to those obtained with the ba-
sic method, providing tight intervals while maintaining privacy
guarantees, and notably, without consuming additional privacy bud-
get for the sum. This scalability makes our approach particularly
attractive in large-scale data analysis scenarios.

These observations are consistent across different variations of
the parameters. However, the applicability of our method is highly
dependent on the relationship among the parameters. For instance,
it cannot be employed when the privacy requirements for the count
and the sum are uniform. To further investigate this dependency,
we explore the applicability regions in the next set of experiments.

5.5 Applicability exploration

To assess the applicability of our proposed error estimation method,
we systematically explore the parameter space defined by a, b, c,
&, €, and y. The goal is to identify regions where the conditions
for the validity of the error estimation are met and as such un-
derstanding the practical scenarios in which the method can be
effectively applied. Our approach involves iterating through various
combinations of the parameters. For a given y and a, and for each
combination of (b, ¢, e, &5), we generate a uniformly distributed
dataset of size ¢ with values in the range [a, b]. Next, we compute
the noisy count 0z along with its corresponding error bound «,
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as well as the error bound a; for the noisy sum. Using these val-
ues, we calculate the error estimation for the average, a;y,, and
verify whether the conditions for validity are satisfied. Parameter
combinations that meet the conditions are marked as part of the
applicability region, providing a clear picture of where the error
estimation method can be reliably applied.

Figure 3 illustrates the applicability regions for large-scale (i.e.,
¢ = 1000 and ¢ = 1000000) and small-scale (i.e., ¢ = 100 and ¢ = 300)
datasets under different privacy regimes. In these graphs, the x-axis
represents the privacy parameter ¢., while the y-axis represents
&s. Each shaded region represents combinations of (&, ;) where
the conditions are likely to hold, assuming the dataset values fall
within the range [1,b]. As such, these regions depict the space
where the error estimation is expected to be valid. We also note
that the regions are not mutually exclusive: for a given value of
b, all points lying above the corresponding line represent valid
combinations of parameters where our method can be applied.

In the first scenario, depicted in Figure 3a, we examine a mixed
privacy regime where the count is subject to stricter privacy require-
ments (¢ < 1) compared to the sum (g5 > 1). The results reveal that
the applicability regions expand significantly for smaller values
of b. This indicates that lower variability in the data (i.e., reduced
sensitivity of the sum) allows for stronger privacy guarantees for
both the sum and the count.

In the second scenario, shown in Figure 3b, we focus on a high
privacy regime where both the count and the sum are subject to
stricter privacy limits. This scenario provides a more detailed view
of the parameter space, highlighting the interplay between different
configurations. For instance, by observing the starting points of the
regions for various values of b, we can see that as the dataset size
decreases, stricter privacy limits are no longer suitable for both the
sum and the count. Notably, the dataset size directly influences the
privacy budget that can be allocated to the count. Smaller datasets
make it more challenging to satisfy the precondition ac/|3:| < vy,
thereby restricting the minimal privacy target that can be enforced
on the count. This is evident when comparing the starting points
of the regions on the x-axis among different dataset sizes.

In the third scenario, de-

. . . Ec b Cmin ESmin
picted in Figure 3c, we con- > 0.61
sider a mixed privacy regime ’

ith smaller datasets (¢ = 10 396
with smaller datasets (¢ = 025 | 30 | 164 | 917
100 and ¢ = 300). Compared
¢ . ios. th 68 20.78
o previous scenarios, the ap- 120 36 67
plicability regions are signif-

. s 11 s 2 1.83
icantly smaller, highlighting
the increased difficulty in sat- 10 917
e - 075 | 30 | 56 | 2750
isfying the constraints under

L. P . 68 62.33
limited data availability. This

. . Ly 120 110.00
reduction in applicability re- =] ) oh
gions emphasizes how limited Table 8: Tuner Mode I wit
dataset sizes affect the fea- y=0La=1

sible parameter space, espe-

cially under conditions of high

data variability. As dataset size decreases, the method becomes less
capable of accommodating wide data ranges under the same privacy
budgets.
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Figure 3: Applicability regions withy =0.1,a=1

To further analyze the limitations imposed by the dataset size
and the data variability, we explore tuner’s suggestions under this
restricted scenario. Table 8 contains the tuner’s recommendations
for various values of b and two choices of ¢., with fixed parameters
a =1and y = 0.1. We observe that the minimum dataset size cpin
remains constant across all values of b for a given . This constancy
does not imply a lack of interaction between dataset size and data
range; rather, it reflects the tuner’s internal logic: ¢y is determined
by the error bound for the count and the chosen “small” threshold.
As such, the influence of b is channeled instead into adjustments of
the required minimum privacy budget ¢, .

The monotonic increase of ¢, with b illustrates how expanding
the data range demands greater privacy resources. For example,
when ¢. = 0.25, increasing b from 10 to 68 results in a seven-
fold increase in &5, (from 3.06 to 20.78). This insight explains
why, in Figure 3c, no applicability regions exist for certain (c, b)
combinations—specifically, when ¢ = 100 and b = 30, 68, 120—as
the dataset is too small to support the corresponding privacy re-
quirements. Moreover, when b = 68 and ¢, = 0.25, the required
& €Xceeds the maximal privacy budget of 10, rendering the en-
tire configuration inapplicable under any of the considered dataset
sizes. This serves as a critical reminder: under high variability and
limited data, the parameter space rapidly becomes infeasible, thus
requiring a relaxation of the privacy targets.

In the final set of experiments we focus on analyzing the effect
of the parameter y on the applicability regions of the proposed
error estimation method. Recall that y serves as a threshold for the
fractional uncertainty of the noisy count, influencing the conditions
under which the error estimation is valid. For these experiments,
the dataset size is fixed at ¢ = 1000000, and a high privacy regime
is considered for both the count and the sum. Two values of y are
analyzed: a strict value of y = 0.001 and a relaxed value of y = 0.5.
The results of these experiments are illustrated in Figure 4, which
shows the applicability regions for the two selected values of y.

As expected, when y is tightened, the applicability regions shrink
due to the stricter condition @c/|5;| < y, which limits the range
of valid combinations for the privacy parameter ¢.. Conversely,
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Figure 4: Applicability regions with ¢ = 1000000, a = 1

relaxing y expands the applicability regions by making it easier to
satisfy this condition. However, this comes at a cost: the second
condition, b/e; < a/e. * (1-y/1+y), becomes more restrictive as y
increases, reducing the flexibility of valid ¢; values. When compared
to the intermediate case of y = 0.1 shown in Figure 3b, it becomes
evident that increasing y reduces the space of valid 5 values as the
threshold’s slope becomes steeper as the value of y increases. This
trade-off highlights the delicate balance between the two conditions
and the importance of carefully selecting y based on the dataset
size, privacy requirements, and data variability.

6 Related work

Statistical mean estimations. In a statistical setting, the goal is
to estimate the error of approximating the population mean using
finite samples (e.g, [4, 6, 8, 17, 19, 21]). We refer the reader to the
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work by Kamath and Ullman for a comprehensive view on pri-
vate statistical estimation [20]. More recently, PLAN [1] introduces
variance-aware noise budgeting, providing tighter error bounds
by allocating noise to dimensions with higher variance. Working
with mean estimators in a DP setting is far from trivial. In fact,
there is an inherent trade-off between bias, accuracy, and privacy
of mean estimators: no algorithm can simultaneously have low bias,
low error, and low privacy loss for arbitrary distributions (of the
underlying data) [18]. Our work focuses on error estimations in
the non-distributional, empirical setting. Unlike statistical settings,
which often assume distributional properties of the data and focus
on sampling-based error estimations, our approach addresses sce-
narios where the noise stems solely from the privacy mechanism.
Statistical mean estimators have a similarity to our approach in
the sense that they provide accuracy guarantees under a certain
minimum number of samples while our approach does it on the
noisy size of datasets.

Empirical setting. This setting exclusively concentrates on the
noise generated by the privacy mechanism, rendering it particularly
appropriate for systems such as SQL-based query engines. We ob-
serve that certain statistical mean confidence interval mechanisms
[21] can be adapted to operate within the empirical framework.
However, to achieve that, strong assumptions on the distribution of
the underlying data are needed (i.e., normality). The closest work
to ours is a recent-unpublished manuscript [12]. Focused on im-
proving the accuracy of averages, Fitzsimons et al. show how two
DP sums, where one is carefully crafted, can be used to derive a
noisy size of the dataset without spending any budget. Authors
then show how to compute the variance of both sums and the
derived noisy size. However, no variance calculation is provided
for the average itself. Different from our work, their technique
only focuses on averages with a notion of mean square error for
Gaussian noise, where accuracy estimations are done empirically.
Instead, we focus on a-f accuracy with analytical error estima-
tions for averages or quotients of DP sums for both the Laplace
and Gaussian mechanisms. The work by Sun et al. shows how to
provide private-preserving confidence intervals (i.e., a-f accuracy)
for the Exponential mechanism [30] (EM) and the Sparse vector
technique [10] (SVT). Their methodology employs additional pri-
vacy budget to compute CI bounds, relying on carefully designed
utility functions for the EM and thresholds for the SVT. Authors
provide CI for averages using CIs for SVT where four DP-queries
need to be performed and bound DP is assumed. Interestingly, the
work shows that for any DP mechanism, if the CI has a confidence
level > 2/3 ~ 0.66, then the size of the interval must be at least N/n,
where N is the maximum non-negative number of the elements
of the sum and n is the size of the dataset—which coincides with
the numbers we obtained in our evaluation. Different from them,
we support unbounded DP and accuracy for quotients of DP-sums.
Recently, Lin et al. address the challenge of constructing CIs for
population proportions in a DP setting—which requires mathemati-
cally sophisticated techniques[25]. Our current formulations do not
apply in these settings, as the quantities involved are typically not
computed over the same dataset: the numerator corresponds to an
aggregate over a filtered subset, while the denominator refers to the
full population. In such cases, the relationship between numerator
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and denominator is no longer straightforward, making it difficult to
bound the sum in terms of the noisy denominator—a limitation that
presents an interesting direction for future work. We remark that
our method is not intended as a one-size-fits-all solution but rather
as a valuable addition to the practitioner’s toolbox for computing
DP quotients’ accuracy under unbounded DP settings.

Accuracy in DP tools. PSI [14] provides a user interface that al-
lows for the selection of either the desired level of accuracy or
the imposed level of privacy. The error estimates provided by PSI
are expressed in terms of a-f accuracy. Unfortunately, PSI only
supports a restricted set of transformations and primitives, offering
a-f accuracy solely at a single noisy measurement, e.g., a noisy
count or a noisy sum—an approach also followed by OpenDP [13].
GUPT [32] operates under the sample-and-aggregate framework for
differential privacy [35]. GUPT provides analysts with the flexibility
to define either the desired accuracy of the output or the required
level of privacy. However, this tool only accommodates analyses
compatible with the sample-and-aggregate framework and offers
only confidence intervals (i.e., a-f) estimates at the individual mea-
surement level. APEx [15] specializes in answering three types of
counting queries: WCQ (weighted counting queries), ICQ (iceberg
counting queries), and TCQ (top-k counting queries). To address
WCQ queries, APEx leverages the matrix mechanism [24] and uses
Monte Carlo simulations to empirically derive accuracy bounds in
terms of @ and f. ICQ queries focus on returning aggregates of bins
exceeding a specified threshold, for which APEx introduces novel
data-dependent analytical accuracy bounds. For TCQ queries, a gen-
eralization of the report-noisy-max mechanism [11] is employed.
APEx provides empirical accuracy guarantees for some queries
and analytical guarantees for others. DPella [26, 27] emphasizes
providing accuracy guarantees for queries alongside their privacy
protections. Unlike many other DP libraries, DPella integrates a-f
accuracy bounds into its query system and provides support to
about the compositional accuracy of complex queries involving
multiple DP mechanisms. Our work could complement and extend
the mentioned tools with analytical methods for computing a-f
accuracy bounds for averages and quotients of DP-sums.

Ratios of distributions. Understanding the distributions of quo-
tients of random variables is a problem known by mathematicians
for its complexity and analytical difficulty. Marsaglia provided a
closed-formula for the CDF function F(t) and density function f(¢)
for the ratio (a+x)/b+y, where a and b are positive constants and x
and y are independent standard normal variables [28]. By running
some simulations, he shows that sometimes the resulting distribu-
tion is unimodal (i.e., one peak) or bimodal (i.e., two peaks). Forty
years later, Marsaglia complemented that work by showing how to
transform any ratio of normal variables w/z into the form (a+x)/b+y
as well as conditions for a and b to predict if the resulting distribu-
tion can be approximated by a normal distribution or is a unimodal
or bimodal one [29]. Deriving an iCDF for error estimation under
such conditions is inherently non-trivial due to the intricate and
often non-symmetric nature of the resulting distribution. Broda
and Kan study ratio distributions by performing saddlepoint ap-
proximations [7] of the density distribution function [5]. Although
saddlepoint approximation offers a mathematical tool, it introduces
significant complexity. Unlike these approaches, our method avoids
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the need to understand or approximate the shape of the ratio distri-
bution. This provides significant simplicity, and we hope it makes
our approach more practical for real-world applications.

7 Conclusions

By connecting a-f accuracy concepts with uncertainty propaga-
tion techniques, we derived conditions under which accurate er-
ror bounds can be established, highlighting the interplay between
dataset size, sensitivity bounds, and the inherent uncertainty in-
troduced by DP mechanisms. The work contributes novel insights
into the propagation of uncertainty in DP settings and enables DP
tools to provide accuracy guarantees for averages and quotients of
DP-sums under specific conditions—an aspect currently missing in
many existing frameworks. It would be valuable to explore specific
uncertainty propagation formulas for Gaussian distributions!. A
key challenge lies in determining how accurately tangent-plane
approximations? can capture functions like quotients in the context
of DP.
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