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ARTICLE INFO ABSTRACT

Keywords: The extraction of structured metadata from Piping and Instrumentation Diagrams (P&IDs) is a major bottleneck
Information extraction for digitalization in the process industries. Existing methods, based on Optical Character Recognition (OCR),
Hybrid Al systems stop at raw text extraction, failing to interpret critical engineering information encoded within variable-format

Document analysis
Engineering drawings
Engineering automation

identifiers like pipeline numbers. This paper bridges this semantic gap by introducing a system for the format-
aware interpretation of P&ID pipeline metadata. Our hybrid system architecture integrates deep learning for
text recognition with domain interpretation rules that allow the system to adapt to new project formats
without model retraining. These rules perform validation, error correction, and semantic mapping of raw text
to structured data. We validated our system on a challenging dataset of real-world P&IDs from four distinct
industrial projects, each with a unique and complex pipeline number format. Our method achieved 91.1%
end-to-end accuracy, demonstrating a significant leap in performance over standard OCR tools, which proved
insufficient for the task. This work presents a robust solution that unlocks valuable data from non-standardized
engineering documents, providing a practical pathway for creating reliable digital twins and supporting plant
lifecycle management in the chemical engineering sector.

documents that lack consistent formats. This lack of standardization
across projects, companies, and decades of work presents a funda-
mental challenge in the development of scalable automation solutions
for the engineering industry. Therefore, developing methods to in-
telligently extract and interpret information from these non-standard
documents is important to unlock significant productivity gains across

1. Introduction

The Engineering, Procurement, and Construction (EPC) industry
is responsible for delivering large-scale infrastructure projects within
the process industries, including energy, chemicals, and pharmaceu-
ticals (Berends, 2007). These complex, high-stakes projects operate
under immense pressure to meet fixed budgets and aggressive time-
lines. In this environment, operational efficiency is paramount, and
EPC contractors continually seek innovative ways to streamline pro-

the engineering sector.
An example of this challenge is the extraction of metadata from

cesses, mitigate risks, and reduce costs. Thus, the EPC industry could
leverage Artificial Intelligence (AI) to enhance productivity and de-
liver projects with greater precision and speed. Example uses of Al
in the EPC sector are the extraction and analysis of technical risks
in bidding specifications (Park et al., 2021), error detection in engi-
neering diagrams (Dzhusupova et al., 2022a), and automated material
procurement and cost estimation using deep learning and regression
techniques (Dzhusupova et al., 2025).

A critical barrier to this Al-driven efficiency lies in the nature of
engineering data itself. Much of this data is locked within technical

essential engineering drawings. Among the most fundamental of these
documents is the Piping and Instrumentation Diagram (P&ID), a cor-
nerstone of plant design and process systems engineering. A P&ID
illustrates the connection between piping and process equipment, and
the instrumentation devices used for process control, forming the basis
for critical activities like process hazard analysis, control strategy de-
velopment, and plant lifecycle management (Theisen et al., 2023). A
synthetic simplified example of a P&ID from a public dataset (Paliwal
et al., 2021) is shown in Fig. 1.
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Fig. 1. A synthetic simplified P&ID from a public dataset (Paliwal et al., 2021).
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Fig. 2. A region of a real-world P&ID with highlighted pipeline numbers.

These drawings feature pipeline numbers, which encode important
metadata about the pipelines represented in the drawings, such as the
pipeline’s dimensions, the material it is made from, fluid type, operat-
ing, and design temperature and pressure, as well as other important
process information (Baron, 2010). The pipeline numbers are included
in the P&IDs as text close to the pipelines, where the equipment is po-
sitioned. Fig. 2 illustrates a section of a real-world P&ID, with pipeline
numbers colored in green. Furthermore, pipeline numbers are compiled
into an engineering document called the “Process Line List” (Baron,
2010). This document aggregates all pipeline numbers from each P&ID
within a project.

During the tender phase of EPC projects, P&ID diagrams are
often shared as non-editable PDFs to protect intellectual prop-
erty (Dzhusupova et al., 2022b). This turns the creation of the
Line List into a manual and time-intensive task. Another com-
mon scenario involves P&IDs authored in software, which does not
support metadata extraction. Additionally, brownfield projects, par-
ticularly prevalent in Europe due to space constraints that limit new
construction, frequently involve scanned versions of legacy drawings
created decades ago, which contain no digital text or formatting. Across
all these cases, pipeline numbers are not readily available when the
diagrams are received, highlighting the need for automated approaches.
Deep learning-based methods can help close this gap by accelerating
pipeline number extraction, reducing manual workload, and supporting
more efficient project workflows.

The primary obstacle to automating this task is the profound lack of
standardization in pipeline number formats in the EPC industry. There
is no single universally adopted convention. Different projects may
adhere to different pipeline number formats in the P&IDs, leading to
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variations in the encoding of metadata in the pipeline numbers. These
variations may encompass differences in the length of the pipeline
number, its encoded properties, and the sequence of its properties. Such
inconsistency across projects and companies poses a major challenge to
generalizable automation. Table 1 provides examples of line numbers
from three distinct industrial EPC projects, highlighting the variations
in properties and their sequences.

While previous studies have explored information extraction from
engineering drawings (Paliwal et al., 2021; Saba et al., 2023; Jamieson
et al., 2020; Francois et al., 2022; Kim et al., 2022; Lin et al., 2023;
Villena Toro et al., 2023; Schlagenhauf et al., 2023), they consistently
stop at the point of converting images to text. This approach leaves a
critical semantic gap: while a system might recognize the string 150-
12144-PA-031-ACB2B02SN04-N, it cannot interpret that 150 represents
the nominal diameter and PA is the fluid code. The value encoded
within these identifiers remains locked, and existing methods provide
no mechanism for converting such strings into structured, meaningful
data according to project-specific rules. This failure to bridge the gap
between raw text and its engineering context is the primary reason that
scalable automation has remained out of reach.

This paper bridges this semantic gap by introducing a system archi-
tecture for format-aware semantic interpretation of pipeline metadata
in P&IDs. We move beyond simple OCR to create a solution that not
only extracts text but also understands it in the context of variable
engineering formats. Our hybrid system integrates state-of-the-art deep
learning for recognition with domain-aware semantic interpretation
rules. These rules are empowered by an expert-guided configuration
module that enables it to perform context-based validation, correction,
and semantic mapping. This manuscript is an extended version of our
previous research (Shteriyanov et al., 2024), which focused solely on
the detection component. Here, we present the complete, end-to-end
system and rigorously validate its performance, addressing the over-
arching research question: “How can Al be leveraged to automate
the extraction and semantic interpretation of pipeline metadata
from engineering drawings, overcoming the inherent variability
of industry formatting standards to produce actionable data?”

Main Contributions:
The main contributions of this research are the following:

+ Bridging the Semantic Gap in P&ID Data Extraction: We are
the first to bridge the critical semantic gap between raw text
recognition from P&IDs and their engineering context. While prior
work stops at OCR, our system performs format-aware seman-
tic interpretation, converting non-standardized pipeline numbers
into structured, actionable data.

A Novel, Adaptable Hybrid AI System Architecture for Seman-
tic Understanding of Engineering Data: We introduce an end-
to-end system architecture that decouples perception from un-
derstanding, designed for the complexities of industrial P&IDs. It
comprises a high-recall Pipeline Number Detector (PLN-Detector)
for text localization and a unique Pipeline Number Recognizer
(PLN-Recognizer) that integrates deep learning with expert-confi-
gurable rules. This design enables the recognizer to perform
format validation, context-based error correction, and semantic
mapping, resulting in higher accuracy than a standalone deep
learning model could achieve. This architecture allows the sys-
tem to adapt to new P&ID pipeline formats without any model
retraining.

Demonstrated Real-World Viability and Economic Impact:
We validate our system on P&IDs from four distinct industrial
engineering projects, each with unique formatting rules, achiev-
ing 91.1% end-to-end accuracy. Furthermore, we provide a con-
crete cost-benefit analysis, demonstrating the system’s potential
to deliver substantial financial savings and efficiency gains in
large-scale EPC projects.
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Table 1
Comparison of pipeline numbers from three distinct industrial EPC projects, highlighting the variations in properties and their sequences.
Line Number Format 1st column 2nd column 3rd column 4th column 5th column 6th column
P21010901-3”-A2A1-SM Fluid Code, Line size Pipe Class Insulation N/A N/A
Unit Code,
P&ID Sequence No.,
Line Sequence No.
150-12144-PA-031-ACB2B02SN04-N Nominal Diameter Unit Number Fluid Code Line Sequence Number Pipe Class Insulation
250-P-810195-03CM2SAA-HI Nominal Diameter Fluid Code Unit Number, Pipe Class Insulation, N/A

Line Sequence No.

Acoustic Insulation

This research was executed at McDermott, a global provider of
engineering and construction solutions to the energy industry. The
methodology utilized in the study was Action Research (Easterbrook
et al., 2008), which is well-suited for investigating and solving practical
problems within an organizational setting.

The structure of this paper is as follows: Section 2 offers a com-
prehensive review of prior studies concerning engineering drawings
information extraction and identifies the research gap addressed by this
study. Section 3 presents our novel solution in detail. Section 4 provides
the experimental setup. Section 5 presents the results validating the
performance of our solution on diverse industrial data. Section 6 dis-
cusses the broader implications and limitations of our findings. Finally,
Section 7 concludes the paper.

2. Related work

In recent years, researchers and engineering companies have recog-
nized the potential of Artificial Intelligence (AI) to revolutionize the
engineering industry. In particular, Al has been applied to read or
digitalize engineering drawings and automate manual tasks.

Saba et al. (2023) utilize the pre-trained Efficient and Accurate
Scene Text Detector (EAST) network (Zhou et al., 2017) to detect
text within P&IDs. Furthermore, the authors use EasyOCR’s CRNN
(Convolutional Recurrent Neural Network) model (Jaided.Al, 2021; Shi
et al,, 2016) to recognize the text in the resulting bounding boxes.
The authors’ approach achieves a detection precision of 96% and a
detection recall of 95% on their testing dataset. However, they do not
provide an extensive evaluation of the recognizer model.

Jamieson et al. (2020) use the same EAST text detector along with
Tesseract v4 (Smith, 2007) to extract text from engineering drawings.
The authors report a text detection accuracy of 90% on five P&IDs
reserved for testing. Furthermore, the text recognizer is reported to
capture 86% of the detected text instances. The authors also report that
the EAST text detection method may truncate pipeline numbers, but
have not performed an extensive evaluation.

Francois et al. (2022) employ a fine-tuned EAST network for text
detection, as well as a Tesseract-based method with post-recognition
correction for text recognition. The authors do not use the standard
Non-maximum suppression (NMS) algorithm (Neubeck and Van Gool,
2006) typically employed by EAST methods, as it can cut off long
text. Instead, they merge interlocking detections. The text detection
method is reported to achieve 82% precision and 86% recall on all text
instances in the authors’ evaluation data, although the authors state
that the method can group several text instances as a single detection.
They also report that the text recognition method recognizes 82% of
detected tag texts.

Kim et al. (2022) and Paliwal et al. (2021) study the digitalization
of P&IDs. In both their studies, they detect text on P&IDs using a pre-
trained Character-Region Awareness For Text (CRAFT) model (Baek
et al., 2019). The detection method splits the P&IDs into patches, which
are passed to the CRAFT detector. Afterwards, the detected texts are
passed to a Tesseract OCR. Kim et al. evaluate the text extraction
pipeline on 5 test industrial P&IDs and report 97.27% precision and
90.47% recall on text detection and 93.86% precision and 91.75%
recall on text recognition. Paliwal et al. evaluate their text extraction

method on synthetic P&IDs and report an overall text detection accu-
racy of 87.18% and text recognition accuracy of 79.21%. Nevertheless,
it should be noted that synthetic P&IDs are less complex compared to
industrial documents.

Lin et al. (2023) develop a system to reduce manual interpretation
time and accurately identify basic categories of dimensions, tolerances,
and functional controls in engineering drawings. The authors utilize
the YOLO (You Only Look Once) object detector (Redmon, 2016) to
detect various objects in 2D engineering drawings, such as symbols
and text. Furthermore, they recognize the text objects using a Tesseract
OCR. Overall, the system is reported to achieve nearly 70% accuracy
in recognition.

Villena Toro et al. (2023) develop an OCR system capable of rec-
ognizing and differentiating between different types of information
in assembly and production drawings. They utilize the CRAFT text
detector along with a pre-trained CRNN text recognizer from Keras-
OCR (Chollet et al., 2015). The system achieves a precision and recall
of 90% in detection, and an F1-score of 94% in recognition.

Schlagenhauf et al. (2023) use a Faster-RCNN model (Ren et al.,
2016) to detect text and the Kears-OCR text recognizer to reliably
recognize dimensions, positions, and shape tolerances on technical
drawings. Using artificially generated images in the training data, the
authors achieve 81.87% detection accuracy and 79.33% recognition
accuracy.

Based on the investigated literature for both general drawings and
P&IDs, there is a focus on text detection and recognition, with no em-
phasis on semantic interpretation. These methods successfully extract
a string of characters but do not provide a mechanism to parse this
string into structured, meaningful data according to project-specific
rules. This interpretation step is crucial for any practical engineering
application, yet it is consistently overlooked.

While the engineering literature has not focused on format-aware
interpretation, research in other domains, like business and legal doc-
ument processing, has explored it using hybrid systems. These ap-
proaches, however, are generally designed for a pre-defined set of
information and are not architected for the ad-hoc format variabil-
ity common in engineering. For instance, some systems use rules to
pre-select candidate text for an Large Language Model (LLM) to pro-
cess (Nan et al., 2024), while others apply a fixed set of hard-coded
rules to refine DL-based predictions for a specific document type, like
purchase documents (Arroyo et al., 2022). A common characteristic of
these hybrid systems is that their logic is static and not designed for
flexible modifications.

This analysis reveals a dual research gap. Existing research in en-
gineering drawing information extraction lacks methods for semantic
interpretation, while existing hybrid systems in other domains lack the
declarative adaptability required for high-variability environments. An
extracted text string is only useful if it can be parsed into its constituent
metadata fields (e.g., pipe size, fluid code), which is impossible without
knowledge of the specific format being used. While our previous study
developed a high-recall detector for this metadata (Shteriyanov et al.,
2024), it did not bridge this critical interpretation gap.

To our knowledge, this paper is the first to directly address this
void. We introduce a system built on a format-aware architecture that
combines deep learning perception with a configurable interpretation
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Fig. 3. Method for extraction and semantic interpretation of P&ID pipeline numbers.

module. This approach yields a solution that can understand the en-
gineering context and is dynamically adaptable to handle the format
variability, which is common in the engineering industry.

3. A method for semantic interpretation of engineering metadata:
The case of P&ID pipeline numbers

A key challenge in automating the use of engineering drawings is
the semantic interpretation of non-standardized metadata. This prob-
lem is particularly acute for P&IDs, where pipeline numbers encode
critical data but their format can change for each new project. This
variability makes a single, monolithic AI model unviable, as it would
require constant, costly retraining.

The process of digitizing text from technical diagrams like P&IDs is
typically a two-stage process involving text detection and text recog-
nition. First, a text detection model analyzes the image to locate all
instances of text, creating a bounding box around each one. Second, a
text recognition model processes the image patch within each bounding
box to transcribe the pixels into a character string. However, this
standard pipeline is often insufficient for P&IDs. While it can extract
raw text strings, it provides no understanding of their engineering
context. For instance, a standard OCR system might correctly recognize
the string “PL-1001-C03”, but it would not know that this refers
to a pipeline. This semantic gap is the primary challenge our work
addresses.

To solve this, we propose a hybrid Al system architecture that
explicitly separates perception from understanding. The system takes
a full P&ID in an image format as its input. Initially, a detection mod-
ule, called PLN-Detector, localizes all potential text candidates. These
candidates are then processed by a recognition module, called PLN-
Recognizer, which transcribes the raw text. Finally, the PLN-Recognizer
interprets this text by applying a set of rules that leverage the seman-
tic information captured by the configurable semantic interpretation
module. This decoupled design is the key to adaptability, allowing the
system to learn new formats without modifying the core deep learning
models. The entire end-to-end process is visualized in Fig. 3.

3.1. Detection module: The PLN-detector

The process begins by finding the location of all potential pipeline
number candidates on a P&ID image. To maximize recall and ensure
no true pipeline numbers are missed, this operation is performed by
our detection module called PLN-Detector. PLN-Detector utilizes the
Progressive Scale Expansion Network (PSENet) (Wang et al., 2019).
We chose PSENet due to its demonstrated strength in distinguishing
closely positioned text instances and detecting text in various orien-
tations. Its progressive scale expansion algorithm effectively separates
closely packed text instances, a feature crucial for accurately isolating
line numbers from adjacent symbology and annotations in engineering

drawings. While alternative models like Differentiable Binarization
Network (DBNet) (Liao et al., 2020) and Fast Oriented Text Spotting
(FOTS) (Liu et al., 2018) are well-regarded, comparative studies in
other domains have shown PSENet to achieve superior recall perfor-
mance (Yao et al., 2025; Lu et al., 2022), which is the primary metric
for our task to minimize missed pipeline numbers.

To further enhance performance on full-sized P&IDs, the PLN-
Detector incorporates an overlapping tiling technique (Ozge Unel et al.,
2019). During preprocessing, each P&ID is split into overlapping tiles,
which are then processed by the detector. In post-processing, the
detected text regions from each tile are translated back to their original
coordinates on the full P&ID, and overlapping detections are merged
into single bounding boxes. The output of the PLN-Detector is a list of
bounding boxes, where each box is represented by a set of coordinates
(x_min, y_min, x_max, y_max) corresponding to a detected text candi-
date on the original P&ID. The PSENet model within this module was
fine-tuned on a large corpus of industrial P&IDs to learn the specific
visual characteristics of text in this domain.

3.2. Configurable semantic interpretation module

Our method’s adaptability is powered by a standalone component
that allows a domain expert to define the interpretation logic for a
new project. The configurable semantic interpretation module, a web-
based GUI shown in Fig. 4, is designed for minimalist, “one-shot”
configuration. To configure the system, the user provides two pieces
of information:

» An Example Format: The user provides a single, representative
pipeline number (e.g., 250-P-810195-03CM2SAA-HI). From this,
the system automatically derives a structural template, including
the number of components and their expected character patterns.

» Semantic Labels: The user assigns a meaning (e.g., piping size,
fluid code, piping class) to each component of the format.

This minimal input is the crucial link that empowers the recogni-
tion module. The output from this module is a “semantic template”
structured as a JavaScript Object Notation (JSON) object. This template
contains the example format, the number of expected components,
and for each component, its assigned semantic label. By external-
izing the project-specific logic into this configuration step, the core
deep learning modules remain generic and reusable, while the over-
all method achieves high accuracy and flexibility across diverse and
non-standardized project requirements.

3.3. Recognition module: The PLN-recognizer
The third component, the PLN-Recognizer, receives three inputs:

the P&ID image, the list of candidate bounding boxes from the PLN-
Detector, and the semantic template generated by the configuration
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Step 3: Type in an example line number from your document
150-12144-PA-031-ACB2B02SNO4-N

Step 4: Select the corresponding category:

Category 1
PIPING SIZE -

Category 2
OTHER ~  UNIT CODE

Enter your option

Category 3
FLUID CODE -

Category 4
SEQUENTIAL NUMBER -

Category 5
PIPING CLASS v

Category 6
INSULATION CODE -

Fig. 4. The configurable semantic interpretation module. By providing a single
example, an expert can define the interpretation rules for an entire project.

module. First, it crops the candidate text regions from the image. After-
wards, it performs text recognition on each region to get a raw string.
Then, it applies a set of project-specific rules to interpret that string.
The PLN-Recognizer executes the following steps for each candidate
region it receives:

+ Core Text Recognition: The core recognition engine is built upon
a pre-trained backbone from PP-OCRv4 (PaddlePaddle-Optical
Character Recognition version 4), a practical OCR toolkit (Li
et al., 2022). Specifically, we use the SVTR-LCNet model, which
combines the Scene Visual Text Recognition (SVTR) architecture
with a Lightweight CPU Network (LCNet) as its visual backbone
for efficient feature extraction (Du et al., 2022; Cui et al., 2021).
The primary role of this engine is to produce the initial textual
transcription for each candidate bounding box. This architecture
was selected for its strong baseline performance on complex and
varied character sets found in technical documents.

Rule-based Interpretation: The recognized text is then refined by
the recognizer’s interpretation rules involving: (a) Filtering any
text strings that do not match the expected pipeline number for-
mat; (b) Semantic Mapping into meaningful fields (e.g., “Nominal
Diameter”, “Fluid Code”); (c) Correction rules to fix common OCR
errors based on mapped semantic meaning (e.g., mistaking O for
0, inserting missing hyphens);

The final output of this module, and the system as a whole, is an
Excel file, listing each pipeline number and its semantically interpreted
components.

3.3.1. Rule-based interpretation

The PLN-Recognizer includes a rule-based interpretation stage that
is implemented in Python and employs an algorithmic, example-based
template matching approach. The process begins with filtering false
positives. To achieve this, all non-alphanumeric characters are first
stripped from both the OCR string and the user-provided example for-
mat. A candidate string is considered a structural match if its stripped
version matches an example’s stripped version in two aspects: (1) it has
the same length, and (2) it satisfies a character-type plausibility check.
This check is designed to be tolerant of common OCR ambiguities
(e.g., O/0 or I/1), which are addressed in a later semantic correction
step.

If a valid structural match is found, the system uses the corre-
sponding example as a template to reconstruct the OCR string. If the
recognized pipeline number lacks separators (e.g., “12A5” instead of
“12-A-5”), the recognizer inserts hyphens according to the expected
segment lengths. Furthermore, we apply a set of character-level correc-
tion rules derived from common OCR misrecognitions observed during
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Ground-Truth: 035-50-BD-0012-01CB1S01-N
Prediction: 035-50>BD-001201CB1S01-N

Fig. 5. Example of common errors produced by the SVTR-LCNet network,
where missed and misrecognized hyphens in the prediction are highlighted
in the ground-truth.

analysis by domain experts. These rules leverage structural knowledge
of pipeline numbers. The “>” symbol, which is often misrecognized, is
replaced with “-” where hyphens are expected. This confusion may be
due to the presence of occlusions or font style. Fig. 5 shows an example
of both of these errors produced by the base SVTR-LCNet network
in “PLN-Recognizer”, highlighting character differences between the
ground truth and the prediction. In the prediction shown, the character
“>” should be corrected to a “-”, and an additional “-” should be
inserted between the “2” (at position 14) and the “0” (at position 15)
in the predicted string. Misrecognized or missing separators are among
the issues addressed by the correction rules in our approach. A possible
hypothesis for some of these errors is the potential presence of visual
elements appearing on top of the pipeline number (occlusions) and
limitations of the base SVTR-LCNet network.

Furthermore, the strings’ components are mapped to specific pipeline
metadata types. The supported component types for pipeline numbers
include: “sector code”, “system code”, “piping size”, “fluid code”,

» » G » »

“sequential number”, “piping class”, “insulation code”, “site”, “main
area”, “sub area”, “other” (custom-defined). Based on the selected type
and representative examples, the recognizer can infer the expected
format of each component (numeric, alphabetic, or alphanumeric).

In components that are expected to contain only digits, such as
piping size or sequential number, misrecognized letters are corrected
by replacing them with the most likely digit. For example, replacing
“0” with “0”. A similar correction is applied to fields that contain only
letters, where digits are replaced with their alphabetic counterparts
based on context. The system also allows certain special characters
(e.g., #) in digit-based fields when appropriate, particularly in piping
size.

For components with ambiguous alphanumeric content, such as
piping class or fluid code, where no consistent structure can guide
corrections, the system does not apply any modifications.

These rules are designed not only to improve the accuracy of
pipeline number recognition but also to remain flexible across different
P&ID formats and conventions. Because the correction logic is driven
by the injected domain knowledge, it can be adapted to any project
structure.

The rules are summarized in Table 2. These rules were developed
through a systematic empirical error analysis process. This involved
running the base recognition model on a development set of P&IDs and
meticulously comparing the raw OCR output against the ground truth
labels. Recurring error patterns, such as the consistent misrecognition
of > for — or the appearance of O in numeric-only fields like piping size,
were identified. These empirical observations were then formalized into
deterministic rules in collaboration with domain experts, who provided
the contextual knowledge to confirm which corrections were safe and
universally applicable within this domain.

4. Experimental setup

To validate our method, this section details the experimental setup
used to evaluate our detection, recognition, and end-to-end perfor-
mance. We outline the baseline methods used for comparison, the
datasets, and the model training to ensure a rigorous assessment via
real-world industrial P&IDs.
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Table 2
PLN-Recognizer filtering and correction rules.
Rule type Example Correction Applicability
Replace ‘>’ separators with ‘-’ 12>A-5 instead of 12-A-5 Replace ‘>’ with ‘-’ where hyphens are expected All projects (general rule)

Missing separator insertion 12A5 instead of 12-A-5

Insert - based on expected segment lengths

All projects (general rule)
given the example format

Filter on the number of components Detection: 5 components

Expected: 6 components

Discard if not matching
expected number of components

All projects (general rule)
given the example format

Letter-only component fix 1 in alphabetic field

Replace digit with most likely letter
(e.g., replace 1 with I)

e.g., insulation code

Digit-only component fix O in a numeric field

Replace letter with most likely digit
(e.g., replace O with 0)

e.g., piping size,
sequential number

Special character allowance ” or # in otherwise digit-only

fields

Accept ”, #, x in otherwise digit-only fields

e.g., piping size

No correction possible Ambiguous alphanumeric text

Skip correction if no structure can guide it

e.g., piping class,

fluid code, other

Table 3
Overview of project and P&ID distribution for
training and evaluation.

Purpose Number
Total Projects Used 21
Training Projects 17
Evaluation Projects 4
Training P&IDs 355
Evaluation P&IDs 40

4.1. Baselines

To benchmark our method’s components, we selected baseline
methods representing common approaches in the literature for text
extraction from engineering drawings. For detection, we compared
against two methods inspired by existing P&ID research (Francois et al.,
2022; Kim et al., 2022). The first, EAST with Fusion NMS, is based on
the approach in Francois et al. (2022) and uses an industrial-trained
EAST model with an adjusted Non-Maximum Suppression (NMS) algo-
rithm (Neubeck and Van Gool, 2006) to fuse bounding boxes. The sec-
ond, CRAFT with Tiling, follows the method in Kim et al. (2022), which
divides the P&ID into patches and processes each with a pre-trained
CRAFT text detector.

For recognition, we benchmarked against two widely used standard
OCR tools (Paliwal et al., 2021; Saba et al., 2023; Jamieson et al., 2020;
Francois et al., 2022; Kim et al., 2022; Lin et al., 2023) to assess the
performance of general-purpose models on this specialized task. We
selected TesseractOCR, a popular engine based on Long Short-Term
Memory (LSTM) neural networks (Smith, 2007; Hochreiter, 1997), and
easyOCR, which implements a CRNN model composed of a Residual
Network (ResNet) feature extractor and an LSTM network (Jaided.Al,
2021; He et al., 2016).

4.2. Data collection and preparation

To train and evaluate our method, we used a large dataset of
industrial P&IDs from 21 past EPC projects executed by McDermott.
These documents were converted from their original PDF format to
images. The distribution of projects and P&IDs is summarized in Table
3.

4.2.1. Training data for text detection

The training set for the detection module consisted of 355 P&IDs
from 17 distinct projects. Domain experts annotated the bounding box
coordinates for all text instances within these documents.

4.2.2. Evaluation data

The evaluation dataset consists of 40 industrial P&IDs originating
from 4 distinct projects. The four projects were excluded from the
sampling process when selecting P&IDs for the training data. The
projects will be referred to as projects A, B, C, and D in the rest of
this manuscript. We randomly chose 10 P&IDs from each of the four
projects. Each project employed a unique pipeline number format. The
size of this evaluation set is consistent with or exceeds that used in
related studies (Jamieson et al., 2020; Francois et al., 2022; Kim et al.,
2022).

For evaluation, two sets of ground-truth annotations were created.
For the detection task, the bounding boxes of all pipeline numbers were
annotated. For the end-to-end recognition task, individual image crops
of each pipeline number were generated, each paired with a text file
containing its ground-truth string.

While public synthetic P&ID datasets such as the one from Pali-
wal et al. (2021) are available, we deliberately chose to use this
real-world dataset for our evaluation. Our analysis indicated that the
pipeline numbers in the synthetic data are generally shorter and exhibit
less structural complexity, and therefore would not adequately test
the robustness of our format-aware semantic interpretation module.
The curated industrial data, in contrast, provides a more challenging
and meaningful benchmark for the specific task of interpreting long,
multi-component pipeline numbers.

4.3. Training details

Both the PLN-Detector (our method) and the EAST with Fusion NMS
(baseline) were trained on the industrial P&ID dataset using a single
GPU with 16 GB of VRAM (Video Random-Access Memory). For the
PLN-Detector, the training data was processed using a tiling technique,
generating 4338 tiles of 860 x 860 pixels with a 200-pixel overlap. Its
underlying PSENet model was trained for 40 epochs with the Adam
optimizer, a learning rate of 0.001, and a batch size of 8. The baseline
EAST model was trained on the full images for 35 epochs, also with
the Adam optimizer and a batch size of 8, but with a learning rate
of 0.0001. These hyperparameters were chosen empirically for optimal
convergence, with the batch size limited by available GPU memory.

4.4. Evaluation method

The method’s performance was evaluated at three stages: detection,
recognition, and end-to-end. First, the detection recall was calculated
to measure the percentage of pipeline numbers correctly located by
the detection module, as shown in Eq. (1). A detection was considered
correct only if its bounding box fully enclosed the pipeline number
without truncating characters or including adjacent text.
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Our focus on recall for this initial stage is a deliberate choice
rooted in our system’s two-stage architecture, which explicitly separates
the responsibilities for recall and precision. The detection module is
optimized to act as a comprehensive candidate generator, maximizing
recall to ensure no true pipeline numbers are missed. The subsequent
rule-based interpretation logic is then designed to act as a powerful
filter, enforcing precision by discarding false positives that do not
match the project-specific format template. Consequently, the precision
of the detection stage alone is not an informative measure of the
system’s final ability to reject incorrect detections.

Number of Correctly Detected Pipeline Numbers

Recall =
eca Number of Pipeline Numbers in Ground Truth

(€Y

Second, the recognition accuracy of the standalone OCR models
was measured using the ground-truth image crops of pipeline num-
bers. This metric evaluates the raw transcription performance of the
recognizers in isolation. For this evaluation, a pipeline number was
considered correctly recognized if the transcribed text string was an
exact, character-for-character match with the corresponding ground-
truth label. The accuracy was then calculated as shown in Eq. (2).

Number of Correctly Recognized Pipeline Numbers

(2

Accuracy =

Number of Pipeline Numbers in Ground Truth

Finally, the end-to-end accuracy of the complete, integrated method
was calculated using the original 40 evaluation P&IDs, as shown in
Eq. (3). For this end-to-end evaluation, a pipeline number is counted as
correct only if it is successfully detected on the drawing and its final,
semantically corrected text string is an exact, character-for-character
match with the ground-truth label.

Correctly Interpreted Pipeline Numbers
Total Pipeline Numbers in Ground Truth

End-to-End Accuracy = 3

5. Results

This section presents the empirical results of our study. We first
benchmark the performance of the core detection (PLN-Detector) and
recognition (PLN-Recognizer) modules against established baselines.
We then evaluate the end-to-end accuracy of the complete method to
demonstrate its practical effectiveness on our multi-project industrial
dataset.

5.1. Evaluation of the detection module

The results for each pipeline number detection method across dif-
ferent projects are presented in Fig. 6. Overall, our proposed method,
“PLN-Detector” achieved an impressive overall 95.14% recall across all
projects, indicating its reliable capability to detect pipeline numbers
in various formats. In contrast, “EAST with Fusion NMS” and “CRAFT
with Tiling” delivered overall recall rates below 50%. Specifically,
“EAST with Fusion NMS” missed most of the pipeline numbers in
project B, while “CRAFT with Tiling” missed most in project C. In
projects A and D, these two methods correctly identified approximately
half of the ground-truth pipeline numbers.

Upon analyzing the errors, we found that the “EAST with Fusion
NMS” method produced truncated bounding boxes. In Project D, this
method produced bounding boxes, capturing other text or symbology.
Fig. 7 illustrates detections by “EAST with Fusion NMS” (a) and the
corresponding detections by our proposed method, “PLN-Detector” (b).
Moreover, the “CRAFT with Tiling” method generated bounding boxes
for a single pipeline number. Fig. 8 shows detections by “CRAFT with
Tiling” (a) and corresponding detections by “PLN-Detector” (b).

Our proposed method, PLN-Detector, occasionally truncated the
edges of pipeline numbers or produced multiple bounding boxes for
missed pipeline numbers. However, these instances were limited, and
the method successfully captured most target pipeline numbers. Based
on these findings, the PLN-Detector method proved to be reliable for
pipeline number detection.
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Table 4
Accuracy results of the end-to-end system on the four evaluation projects.
Project A Project B Project C Project D Overall
Accuracy 83.20% 97.80% 91.30% 88.20% 91.10%

5.2. Evaluation of the recognition module

The recognition accuracy for each pipeline number recognition
method across the various projects is illustrated in Fig. 9. As illustrated,
our proposed PLN-Recognizer method exhibited the highest accuracy in
all projects. Importantly, it achieved 95.7% overall accuracy, assuming
a perfect detector, which showcases the strong generalization of the
method to the pipeline number formats across the four diverse projects.

The 4.3% inaccurate recognition cases from the proposed PLN-
Recognizer with correction rules are attributed to character errors in
pipeline number components, such as piping class and fluid code, where
it is challenging to infer the correct character, and correction rules
cannot be applied.

An example of an error is given in Fig. 10. In the example below, a
“0” was predicted as “Q”. The component “WR00006” consist of both
letters and digits. In such components we do not apply correction rules.

Conversely, the CRNN recognizer implemented in EasyOCR yielded
the worst results. A high frequency of errors was observed in almost all
the evaluation pipeline numbers. These errors included omitted hyphen
(-) characters and incorrectly substituted characters (such as 8 instead
of B, 0 instead of D, O instead of 0, I instead of 1, and G instead of 6).
Similar errors were observed with the use of Tesseract OCR, although
they were less prevalent. Examples of these errors are given in Fig. 11,
where the missed and misidentified characters are highlighted in the
ground-truth.

Importantly, even without applying correction rules, the PLN-
Recognizer significantly outperformed Tesseract and EasyOCR in terms
of accuracy, demonstrating the robustness of the underlying model.
The no-rules variant consistently achieved higher recognition accuracy
across most projects. However, in Project A, the accuracy of the no-
rules variant dropped significantly to 40%, largely due to systematic
misrecognitions involving hyphen characters, such as misreading “-” as
“>” or omitting them altogether. This highlights the value of correction
rules in normalizing such recurring formatting issues and recovering
the correct structure. When these rules are applied, the accuracy for
Project A increases dramatically, demonstrating their effectiveness in
handling project-specific conventions.

The additional benefit of applying correction rules is evident when
comparing both versions of our method. Across all projects, the accu-
racy improved from 81.4% (without correction rules) to 95.7% (with
rules). These rules are particularly valuable in correcting common
recognition errors.

5.3. End-to-end performance

The proposed method was evaluated as an end-to-end system on
each of the four evaluation projects was carried out by a senior process
engineer. The results, combining all these techniques, are shown in
Table 4. The engineer investigated the recognized text in the detected
pipeline numbers. The accuracy was calculated by finding the percent-
age of correctly detected and recognized pipeline numbers out of all
pipeline numbers in the P&IDs.

The lower performance of our method on Project A can be attributed
to a few key challenges related to the filtering of truncated pipeline
numbers and character errors by PLN-Recognizer in pipeline number
components, where correction rules cannot be applied. There were
several instances where the detector truncated pipeline numbers. An
example of a filtering error is shown in Fig. 12. Since the number of
components in these predictions did not match the expected format,
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DETECTION RECALL RESULTS OF EACH PIPELINE NUMBER DETECTION
METHOD ON EACH EVALUATION PROJECT

M EAST with Fusion NMS ~ ® CRAFT with Tiling ~ m PLN-Detector

98.31% 96.28%

,
S P 95.14%
59.20% 1%
59.14%
55.20% \ 2
-
1516 42.95%
31.82% 34.48%
15.70%
10.67% l
PROJECT A PROJECT B PROJECT C PROJECT D OVERALL
RECALL

Fig. 6. Recall results of each pipeline number detection method on each evaluation project.

DF1130005-14"# -K1A0CC-N - - =
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S
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a) b)

Fig. 7. Examples of detections produced by the “EAST with Fusion NMS” method (a) and the corresponding detections produced by our proposed “PLN-Detector”
method (b).

[0604100-BL-0021-01CB1S01-N| 1060-100-BL-0021-01CB1S01-N|

DF1150009-10"#-K1A0CC-N - - >

a) b)

Fig. 8. Examples of detections produced by the “CRAFT with Tiling” method (a) and the corresponding detections produced by our proposed “PLN-Detector”
method (b).

RECOGNITION ACCURACY RESULTS OF EACH PIPELINE NUMBER
RECOGNITION METHOD ON EACH EVALUATION PROJECT

M Tesseract-OCR - LSTM recognizer M EasyOCR - CRNN recognizer M PLN-Recognizer (No correction rules) PLN-Recognizer

98.90% | [98.90% |

98%
95% 95.70%
90% [93% E 2
81.40%
68%
60.50% [57.30%
51.30%
9
0% 44.30%
30.30%
- 6.20%
I4.20% v 1.26% B 2.17%
- = | -—
PROJECT A PROJECT B PROJECT C PROJECT D OVERALL
ACCURACY

Fig. 9. Accuracy results of each pipeline number recognition method on each evaluation project.
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Ground-Truth: 350-A0224-WR00006-A1011-N

Recognition: 350-A0224-WRQO0006-A1011-N

Fig. 10. Example of an error produced by PLN-Recognizer with correction
rules.

Ground-Truth: DF1130010-6"#-K1A0CC-N
Prediction: DF1130010-6"#-KIAOCCN

Ground-Truth: 060-150-BM-0001-01CA1S01-W
Prediction:  0G0-150-BMOOO1-OICAISOKI

Ground-Truth: 300-A0238-UPW00003-A4012-N

Prediction: ~ 300A0238-UPIOO003-A40I12N

Fig. 11. Example of common errors produced by the “TessearctOCR-LSTM”
and ‘“easyOCR-CRNN” recognition methods, where character differences be-
tween ground-truth and prediction are highlighted.

Filtering error example:
Ground Truth: 160-100-BM-0001-01CA1S01-W
Detection: ~ 160-100-BM-0001-01CA1S01

Character error example:
Ground Truth: 060-900-BW-0002-01SA0D04-N
Recognized: 060-900-BW-9002-01SA0D04-N

Fig. 12. Example of errors produced by PLN-Recognizer in Project A, related
to filtering truncated pipeline number detections and character errors.

part of these results were filtered by the PLN-Recognizer. Additionally,
in terms of recognition, there were cases where incorrect characters
appeared in components, where correction rules could not be applied as
discussed in Section 3.3.1. Fig. 12 also shows an example of a character
error. In this case, the third component consisted entirely of digits, so
there are no rules to correct the “9” to “0”. These issues highlight the
importance of considering both the detection and recognition phases
during the extraction.

Although the accuracy score in Project A is lower than in the other
projects, engineers will review and potentially correct the results. This
is also the norm for manually produced documents. Thus, even in such
cases, our pipeline will help automate the initial generation and save
engineering hours.

6. Discussion

This study solves the problem of format-aware semantic interpre-
tation of pipeline metadata from P&IDs. Unlike previous studies that
focused only on general text extraction (Paliwal et al., 2021; Saba
et al., 2023; Jamieson et al., 2020; Francois et al., 2022; Kim et al.,
2022; Lin et al., 2023; Villena Toro et al., 2023; Schlagenhauf et al.,
2023), our work provides an end-to-end method for achieving format-
aware semantic interpretation of the extracted text. Furthermore, in
contrast to the hybrid systems reviewed in other domains with static
rules pre-programmed for a specific task (Nan et al., 2024; Arroyo
et al,, 2022), our method allows for user-driven adaptability. The
high-level format definition provided by a process engineer via the
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configurable semantic interpretation module empowers our system to
perform format validation and context-aware correction to new ad hoc
formats without model retraining.

Our system architecture strategically combines deep learning with
a rule-based interpretation enabled by an expert-guided configura-
tion process. This design allows a domain expert to inject project-
specific knowledge into the system, which enables the system to pro-
cess new formats without retraining. This knowledge empowers our
format-aware recognition module to perform context-specific valida-
tion, correction, and semantic mapping. The 91.1% end-to-end accu-
racy achieved on P&ID pipeline metadata extraction and interpretation
serves as strong validation of this method.

It is important to frame this result within the context of real-world
industrial workflows. In safety-critical domains, a final human verifi-
cation step is mandatory to ensure 100% accuracy in all engineering
documentation. Therefore, the goal of an automated system is not full
autonomy but human augmentation. A 91% accurate initial draft pro-
vides immense value by transforming the engineer’s task from laborious
data entry to efficient validation and correction. Given that P&IDs can
contain hundreds of pipeline numbers, this level of automation signif-
icantly reduces manual effort and potential for human error. While
our system’s scope is focused on pipeline numbers, its performance
demonstrates a critical step towards the reliable digitization of entire
P&IDs within a practical, human-in-the-loop framework.

Furthermore, our method offers a pragmatic solution to the lack of
industry-wide ontologies for many types of technical data. Instead of
waiting for universal standards to emerge, this on-demand semantic
interpretation is a crucial enabler for digitalization initiatives in the
process industries, particularly for creating reliable “as-is” digital twins
from vast archives of legacy documentation. This “expert-in-the-loop”
design also aligns with emerging regulatory principles, such as those
in the EU AI Act (Union, 2024), which emphasize human oversight in
high-risk Al applications, particularly within the safety-critical domain
of chemical plant design and operation. This deliberate feature ensures
both practical utility and responsible deployment.

Our evaluation demonstrates the effectiveness of our system against
a strong open-source baseline. We deliberately did not include bench-
marks against commercial cloud OCR services, despite their strong
general performance. This decision was guided by stringent client
confidentiality agreements that prohibit the use of their data with third-
party services. Obtaining the necessary client approval for internal
research purposes is often not feasible, making cloud-based experi-
ments impractical. For this reason, a foundational requirement was
the development of a solution that is entirely developed in-house and
hosted within the company’s secure infrastructure. Thus, our work
presents a practical solution designed to meet these non-negotiable data
security and client confidentiality constraints.

It is also important to note that while our rule-based interpretation
module is designed to be model-agnostic, the choice of the underlying
recognition engine plays a crucial role in the system’s overall per-
formance. Our evaluation shows that the base PLN-Recognizer, even
without the post-processing rules, achieves a higher accuracy than
the Tesseract and EasyOCR baselines on our dataset. This superior
baseline is particularly critical for complex alphanumeric components
where semantic correction rules offer limited benefit. Therefore, while
applying our rule-based module to other OCR engines would likely
boost their performance, our system’s superior results are attributable
to both the advanced recognition backbone and the domain-specific
post-processing logic. A detailed ablation study analyzing the interplay
between different recognition backbones and our semantic module
would be a valuable direction for future research.

6.1. Cost-benefit analysis

The practical value of our system is best understood within the con-
text of industrial engineering workflows. In domains where operational
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safety is paramount, final documentation requires 100% accuracy. Con-
sequently, a final human verification and sign-off stage is a mandatory
and constant requirement for all deliverables, regardless of whether the
initial draft was generated manually or by an automated system. The
primary benefit of our method, therefore, is not to replace this crucial
review step but to automate the laborious and error-prone initial data
entry phase.

To quantify this benefit, we analyze the cost of the manual creation
process for a typical engineering office. We use the following conser-
vative parameters: an annual workload of 5 large scale projects, with
1000 P&IDs each undergoing an average of 3 revisions. We estimate
the manual labor for the initial data entry, which involves locating,
transcribing, and entering all pipeline numbers from a P&ID, to be a
blended average of 1 h per P&ID. With an engineering rate of $100
per hour, the resulting annual cost for this manual creation phase is
substantial, as calculated in Eq. (4).

Sprojects x 1000P&I Ds * 3revisions * 1h + 100$ = 1,500, 000$ (€)]

Our system, with its 91% accuracy, automates the creation of this
initial draft. While the subsequent human review time remains con-
stant, the elimination of the initial manual labor, as quantified in
Eq. (4), constitutes the primary cost saving. The engineer’s task is
transformed from one of tedious creation followed by review, to one
of efficient validation and correction of a prepopulated draft. This
analysis highlights the significant financial incentive for automation by
demonstrating the tangible economic impact of reducing manual effort.
Furthermore, this estimate does not account for potential secondary
benefits, such as providing highlighted P&IDs to the engineer, which
could further streamline the unchanged human review process.

6.2. Limitations

A primary limitation is the confidential nature of our industrial
dataset, which cannot be made public due to intellectual property
restrictions, thereby limiting direct reproducibility. To mitigate this, we
have described our method in sufficient detail to allow other organiza-
tions to implement and validate our approach on their own proprietary
data, assessing its applicability within their specific contexts. Another
limitation is the potential for unintentional researcher bias. Our close
involvement was necessary to access the proprietary industrial data
but presents a risk of subjective influence. Therefore, independent
replication of this study is crucial to validate our findings and provide
an external check against this potential bias.

6.3. Future work

While this study successfully demonstrates the viability of our
method, it also opens several promising avenues for future research.
Future research should focus on validating the method’s design by
applying it to other types of engineering drawings, such as Isometrics
or General Arrangement Drawings (GADs), and to entirely different
fields like legal or financial analysis, where format variability is also a
key challenge. Additionally, the methods’s components could be further
optimized. For example, a systematic evaluation of alternative state-of-
the-art text detection architectures, such as DBNet (Liao et al., 2020)
and FOTS (Liu et al., 2018), would provide valuable insights into the
optimal choice for processing complex industrial documents.

Another direction for future work is to extend our methodology to
other critical information on P&IDs, particularly instrumentation and
equipment tags. While this was outside the scope of the current study,
which focused on the more complex challenge of long-format pipeline
numbers, our preliminary analysis has already confirmed that the base
detection and recognition models effectively capture these shorter tags.
We are therefore confident that our configurable interpretation module
can be readily adapted to interpret their specific formats, demonstrat-
ing the broader applicability of our expert-in-the-loop framework for
comprehensive P&ID digitization.
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7. Conclusion

This study addressed a fundamental challenge in process systems en-
gineering: the automated extraction of metadata from P&IDs that lack
consistent, standardized formats. To solve this, we proposed a novel
hybrid AI system architecture that strategically decouples perception
from understanding. It uses a high-recall detection module to capture
text candidates, and a unique recognition module that is empowered
by expert-defined rules to perform the semantic interpretation. This
design allows the method to be adapted to new formats without costly
model retraining, as it decouples the core Al models from the variable,
project-specific rules they must operate on. Our proposed system was
rigorously evaluated on real-world data from four distinct projects and
achieved a high end-to-end accuracy of 91.1%. These results confirm
our method is a highly effective and scalable solution for complex
process engineering environments. This work provides a practical path-
way for unlocking valuable data from legacy documentation, directly
supporting digitalization and digital twin initiatives within the process
industries.
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