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Abstract—As artificial intelligence and machine learning
(AI/ML) models become integral to network operations, their
lack of transparency poses a significant barrier to operator trust.
Existing explainable artificial intelligence (XAI) techniques often
fail to bridge this gap for non-specialists, producing technical
outputs that are difficult to translate into actionable insights.
This paper presents a framework specifically designed to address
this shortcoming. It leverages a moderately sized large language
model (LLM) and extends beyond the standard use of SHapley
Additive exPlanations (SHAP) feature influence values. The
framework employs a structured prompt enriched with mu-
tual feature interaction data to generate human-understandable
natural language explanations. To validate our framework, we
performed an empirical evaluation on an optical quality of trans-
mission (QoT) estimation use case with human evaluators. We
collected independent performance evaluations from specialists,
which showed a high inter-evaluator agreement. Compared to a
state-of-the-art baseline that uses only SHAP feature influence
values in a straightforward prompt, our approach improves the
explanation usefulness and scope by 12.2% and 6.2%, while
achieving 97.5% correctness.

Index Terms—Large language model (LLM), Explainable AI
(XAI), Interpretability, Explainability, Transparency.

I. INTRODUCTION

Modern communication systems and artificial intelligence
(AI) are increasingly intertwined. The rapid growth of data
transport demands and widespread adoption of AI-driven
applications have transformed communication networks into
critical enablers of contemporary digital services [1]. Man-
aging such systems is complex, posing significant challenges
in network automation tasks related to resource allocation,
fault detection, and maintaining optimal performance under
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dynamic conditions [2]. Hence, AI/ML are increasingly em-
ployed to tackle these issues by providing data-driven solutions
that aim at network efficiency and reliability. The broad
applicability of these techniques is demonstrated by their use
across diverse networking domains, from wireless mobility
management and cellular resource allocation [3] to optical
network resource allocation and management [4]–[6].

As AI/ML models become more integrated into network
automation workflows, the need for transparency and inter-
pretability of them has become critical [7]–[10]. Explainable
artificial intelligence (XAI) techniques, such as SHAP [11],
have been utilized to interpret model predictions and provide
insights into model behavior. XAI is essential before model
deployment (to inspect valid model behavior) and in scenarios
where human supervision and/or intervention may be required
to validate or override automated decisions [12]. In the context
of network automation, an engineer may need to inspect
specific decisions made by AI/ML-based systems, particularly
when the system takes an action that appears counterintuitive,
such as rerouting traffic through a seemingly congested path.
In such cases, explainability mechanisms are critical for un-
derstanding the rationale behind the decision, verifying that it
aligns with operational policies or inferred predictions, and
deciding whether to trust the model or override its action
manually. Nonetheless, the explanations extracted from XAI
techniques are often presented in technical formats that are
cognitively demanding. They also require domain-specific ex-
pertise to be interpreted [13], [14], posing a challenge for their
broader adoption. The literature highlights this difficulty [15],
[16], showing that while standard XAI methods can rank
feature importance, they struggle to translate these rankings
into contextually meaningful and actionable insights.

Figure 1(a) shows an illustrative example of SHAP feature
influence values, where F1..F12 represent arbitrary features.
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Fig. 1: Illustrative example of SHAP-based explanation for a
hypothetical QoT estimation instance with 12 features: (a) Fea-
ture influence plot showing individual feature contributions.
(b) Feature interaction heatmap illustrating pairwise effects.

They quantify the isolated, individual contribution of each one
of them to the model’s output. Similarly, Fig. 1(b) shows an
example of SHAP mutual feature interaction values. These
values quantify the synergistic effect where the combined
impact of two features differs from the sum of their individ-
ual influences. Both figures contain a high volume of raw,
multidimensional data, including magnitude and directional
influence, which makes it difficult to accurately distill the
model’s core logic without significant effort and/or domain
knowledge (from both XAI and the technical details of the
specific use case).

In this work, we propose a framework designed to ad-
dress the challenge of interpreting complex XAI outputs. Our
framework leverages modern LLMs and the nuanced insights
from mutual feature interaction values to generate human-
understandable explanations. These explanations enhance the
transparency (and perceived trustworthiness) of AI/ML models
while significantly reducing the cognitive load, time, and
expertise required by a human engineer to interpret XAI
outputs correctly. As a case study, we focus on the quality
of transmission (QoT) estimation problem in optical networks
[17], [18]. This problem involves predicting whether a candi-
date lightpath will meet predefined signal quality thresholds
(e.g., bit error rate) before it is provisioned (i.e., before it
is allocated in the network). In practical scenarios, receiving
clear explanations for QoT-related decisions is highly valuable
for network engineers, especially when the model deems a
particular lightpath as unacceptable [19], [20]. For instance, if
a proposed route is rejected despite appearing viable based on
traditional engineering rules, the operator must understand the
model’s reasoning to assess whether the decision is based on
subtle patterns (e.g., cumulative non-linear penalties or latent
correlations with adjacent lightpaths) or is potentially the result
of model overfitting or error. Human-readable explanations in
such cases support trust, allow manual validation or override
when needed, and ultimately lead to safer and more efficient
network operation.

Empirical results validate the proposed framework. By
guiding a reasoning LLM with a structured prompt that
incorporates both SHAP feature influence and mutual feature

interaction values, we produce higher-quality explanations. To
assess these explanations, we adopt human-centered evaluation
metrics that capture how correct, comprehensive, and useful
the generated explanations are from the perspective of network
engineers. Compared to a state-of-the-art approach using only
plain SHAP feature influences, our framework demonstrates
significant improvements across these metrics: usefulness in-
creased by 12.2%, scope by 6.2%, and correctness reached
97.5%. While the core of this work is an XAI-enhanced
framework, its motivation lies in network automation, where
timely and reliable decisions are essential [2], [4]. Our case
study addresses QoT estimation, yet the framework applies
broadly wherever AI/ML models require transparency. This
includes tasks such as traffic engineering, mobility manage-
ment, slicing, and fault recovery [1], [21], where explainability
helps engineers interpret AI decisions, validate them against
policies, and preserve human oversight.

II. RELATED WORK

Recent research addressed the gap between technical model
outputs and user comprehension by proposing the integration
of LLMs and AI/ML to help translate complex model expla-
nations into human-interpretable language, Zeng et al. [22]
demonstrated that LLMs can effectively translate SHAP value
outputs into natural language explanations. This approach has
shown particular promise across diverse application domains,
with studies such as [23] examining how LLMs can generate
near-human-level explanations for healthcare applications, en-
hancing both interpretability and clinical decision-making pro-
cesses. Building on these results, research in communication
networks has specifically investigated the integration of LLMs
with SHAP methodologies to enhance the interpretability of
AI/ML models deployed in network automation systems. For
instance, a pipeline combining anomaly detection, SHAP-
based root cause analysis, and LLM–generated corrective
actions was proposed for managing 6G microservices environ-
ments [24]. However, this evaluation relied primarily on auto-
matic metrics (e.g., BERT, ROUGE) that assess surface-level
properties like text similarity. they achieved a BERT score
around 0.74 out of 1.0 using Llama2 model with 70 billion
parameters. In the context of QoT estimation, ChatGPT 3.5
with 175 billion parameters has been used to enhance SHAP
explanations through direct prompting and self-reflection [25],
although without a structured prompt design. It achieved,
with self-reflection, a correctness of 65%. Both works show
a relatively low score for the explanations generated by the
LLMs. Moreover, both works utilize traditional LLMs without
reasoning capabilities and rely solely on isolated SHAP values
as a measure of feature importance. No importance is given
to mutual feature interactions that can potentially show how
features jointly affect the ML model predictions.

Based on the above considerations, this paper considers
two research questions: (i) do reasoning LLMs improve the
performance of explanations?; and (ii) can the performance
of LLMs in generating interpretations be enhanced by incor-
porating SHAP feature interaction values within a structured
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prompt? To answer these questions, the paper presents a
framework with two key advancements over the state-of-the-
art. First, to explore the impact of LLM capability, we harness
the power of a reasoning LLM with a moderate number of
parameters. Second, to test the value of deeper contextual data,
we enrich our structured prompt with SHAP mutual feature
interaction values. While these values are often disregarded
due to their complex characteristics (as illustrated in Fig. 1(b)),
our assumption is that they provide critical context for the
LLM’s interpretation process, positioning our work beyond
prior studies such as [25] by combining reasoning LLMs with
structured feature-interaction-aware context.

III. LLM-AUGMENTED XAI FRAMEWORK WITH FEATURE
INTERACTIONS

The proposed framework comprises four parts: (1) AI/ML
model, (2) XAI method, (3) explanation augmentation module,
and (4) dashboard (Fig. 2). The goal is to enhance the
interpretability of AI/ML model decisions through an LLM by
processing the feature contribution values extracted via SHAP.

AI/ML Model: The first component is the AI/ML model to
be explained. The use case assumed for this work is the QoT
estimation of optical lightpaths. It was selected primarily for its
practical importance in ensuring service reliability and build-
ing operator trust. The technically challenging nature of the
task, characterized by complex non-linear feature interactions,
serves as an additional benefit, providing a robust testbed for
our framework. To this end, we employ an XGBoost (XGB)
model, given its proven effectiveness in prior works [25]. The
model takes as input a set of features describing a candidate
lightpath and outputs the estimated bit error rate (BER). It is
important to note that the proposed framework remains model-
agnostic, i.e., it is applicable to various AI/ML models and
tasks.

XAI Method: To explain the model’s decisions, we apply
SHAP [11], a method for post-hoc explainability quantify-
ing local feature contributions using Shapley values. This
method allows for quantifying both the individual importance
of features—capturing their mutual influence on the model
prediction (Fig. 1(a))—and their mutual interactions, which
reflect the joint impact of feature pairs (Fig. 1(b)). Together,
these outputs serve as the core inputs for the explanation
augmentation module. We focus on local explanations, which
provide insight into an individual model’s prediction. This is
particularly relevant in an AI/ML-aided scenario where an
expert reviews the model’s outputs before they are adopted
in production.

Explanation augmentation module: The key element of this
module is the structured prompt, detailed in Table A-I in the
Appendix, which instructs the LLM in generating augmented
explanations. This prompt incorporates the model prediction
and the individual feature influence values as primary content.
It is then further enriched with mutual feature interaction
scores to capture the more subtle aspects of the model’s
behavior.

Dashboard: Experts need to inspect the output of AI/ML
models before these outputs, or decisions based on them, are
deployed in the network. Fig. 3 illustrates a dashboard example
where information about features, SHAP influence, interaction
matrix, and AI/ML model output values is augmented with the
textual interpretations provided by our framework.

IV. EXPERIMENTAL AND EMPIRICAL RESULTS

To evaluate the performance of the proposed framework,
we began by training an XGB regressor model using the
dataset available in [26] from which we selected a subset
of 12 features that are the most indicative of signal quality
and topological structure. The subset includes metrics related
to path and link lengths, modulation formats, lightpath and
connection line rates, source and destination node degrees,
number of spans, and detailed link occupation statistics. The
dataset was split into training and test sets using a 90:10 ratio.
The model’s performance was evaluated using the test set,
yielding a mean squared error (MSE) of 0.0000 and a mean
absolute error (MAE) of 0.0001, both of which indicate high
accuracy. We randomly extracted 40 local SHAP explanations
for our experiments1.

For the explanation augmentation module, we utilized a
4-bit quantized version of DeepSeek-R1 LLM, consisting
of 32.8 billion parameters, following the work of [28]. We
selected DeepSeek-R1 for its strong reasoning capabilities,
which are essential for generating high-quality explanations.
To enable efficient local inference with relatively fast response
times, we adopted quantization instead of distillation, a choice
supported by findings in [29], which show that quantization
more effectively preserves reasoning performance in LLMs.

As a baseline, we employed a straightforward prompt asking
the LLM to explain the rationale behind the predictions made
by the XGB model based only on the SHAP feature influence
values [24], [25]. An example comparing the prompt designs
and generated explanations for the baseline approach and
proposed frameworks is shown in Table A-II in the Appendix.
The baseline and the proposed prompting approaches require
fewer than 1,500 input tokens. The LLM output was also
below 1,500 tokens, well below any token limit of modern
LLMs.

In the final evaluation step, two human experts analyzed and
assessed the generated interpretations. To ensure objectivity,
the interpretations were presented in a randomized order,
preventing the experts from identifying the prompting strat-
egy that had generated each one. Additionally, the experts
conducted their evaluations independently, without access to
each other’s assessments, thereby minimizing potential bias.
Both experts are senior researchers with extensive experi-
ence in applying XAI to optical network automation. We
adopt the human-centered evaluation metrics proposed in [25],
which assess the LLM-generated interpretations across three
dimensions: (i) correctness, measuring how faithfully the

1The GitHub repository [27] contains the prompt templates, the dataset
including SHAP values and SHAP interaction values, as well as the corre-
sponding LLM explanations.
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Fig. 2: LLM-Augmented XAI framework pipeline: from input sample processing (left) to the generation of LLM augmented
explanations (right). Key components and contributions are color-coded.

Fig. 3: Dashboard example: QoT estimation (top right) and
LLM augmented explanation (top left) based on mutual feature
interactions and influences (bottom part).

interpretation reflects the underlying explanation; (ii) scope,
evaluating whether the interpretation, when correct, highlights
the most critical aspects of the explanation2; and (iii) use-
fulness, gauging, when correct, how helpful the interpretation
is in supporting human understanding. Correctness and scope
are rated using binary labels (e.g., correct/incorrect, in/out of
scope). Usefulness is rated on a scale of 0 to 5, reflecting the
extent to which the explanation helps the evaluator understand
the model’s behavior. Table I reports the empirical results.
Results for scope and usefulness are only considered when the
expert evaluates the interpretation as correct. We also report
the agreement among experts across correctness and scope, as
well as the standard deviation of usefulness.

Results indicate that the baseline strategy achieves an av-
erage correctness of 96.3%, while the proposed framework
yields a slightly higher correctness of 97.5%. Evaluator agree-
ment on correctness is high for both strategies, at 93% and
95%, respectively. These results confirm that the integration
of a reasoning LLM, mutual feature interaction data, and a
structured prompt yields a significant performance improve-
ment over methods available in the literature [25]. This is
particularly evident in the scope of the explanations, where the
proposed framework exhibits a notably higher score (95.0%)
compared to the baseline (88.8%). This substantial improve-
ment suggests that the use of mutual feature interactions
helps the LLM generate more comprehensive and contextually
relevant explanations. Regarding usefulness, the evaluations of
experts further support the benefits of the proposed framework.

2An interpretation may be accurate but still fail to emphasize the most
relevant features.

TABLE I: Results Showing the Average (Avg), Agreement
(Agr), and Standard Deviation (Std).

Metric Baseline Proposed
Avg Agr/Std Avg Agr/Std

Correctness 96.3% 93% / − 97.5% 95% / −
Scope 88.8% 83% / − 95.0% 90% / −
Usefulness 3.77 − / 1.5 4.38 − / 1.4
Avg = Average, Agr = Agreement, Std = Standard Deviation.

The baseline approach received an average usefulness rating
of 3.77 (std 1.4), while the proposed framework achieved
a higher rating of 4.38 (std 1.5). This further supports the
finding that the structured design and the explicit inclusion of
SHAP mutual feature interaction values significantly improve
the clarity and interpretability of the explanations.

V. CONCLUSION

This paper presents a framework designed to bridge the gap
between complex explanations from XAI methods and human-
readable interpretations. It leverages a moderately-sized LLM
with advanced reasoning capabilities, and a structured prompt
that incorporates both individual SHAP feature influence val-
ues and mutual feature interaction data. We evaluated our pro-
posed framework against a state-of-the-art prompting approach
that utilizes SHAP influence values. Both used a reasoning
LLM and were found to be effective, with the proposed frame-
work consistently outperforming the basic approach. These
results highlight the importance of considering structured
prompts with feature-interaction-aware context. While SHAP
offers detailed insights, its cost in complex AI/ML models
invites exploring lighter methods like LIME or gradient-based
approaches within this framework [30]. Ultimately, the adop-
tion of this approach in operational settings can enable scalable
interpretability of AI/ML model outputs, improve transparency
when using AI/ML models in real-world deployments, and
increase the overall trustworthiness of decisions made based
on AI/ML outputs.

APPENDIX

This appendix contains supplementary tables referenced in
the main text. Table A-I specifies the complete, multi-part
prompt structure designed for our proposed framework, and
Table A-II shows a qualitative comparison of the generated
explanations to highlight the practical differences in output
quality between our approach and the state-of-the-art baseline.
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TABLE A-I: Prompt Structure Design for Explanation Augmentation Module

Component Description Example Snippet from Prompt

[Context] Defines the LLM’s persona and the problem domain.
- Role: Interpreter of a SHAP explanation.
- Target: Bit Error Rate (BER) prediction for optical lightpaths.
- Rules: Specifies how to interpret positive/negative SHAP values.

You are an interpreter of a SHAP explanation...
predicting Bit Error Rate (BER)... Positive SHAP →
Increases BER (undesired)

[Task] Outlines the primary instructions for the LLM.
1. Identify the 2–3 most impactful features from SHAP values.
2. Describe each feature’s value and its influence on BER.
3. Summarize findings with actionable insights to reduce BER.

1. Identify the top 2 or 3 features...
3. Summarize with a concise explanation covering...
Practical insights to reduce BER

[Interaction Handling] Provides conditional logic for complex or unexpected results.
- Trigger: If a feature’s effect contradicts domain knowledge.
- Action: Analyze SHAP interaction values. to find the root cause.
- Output: Revise the conclusion to reflect interaction-driven effects.

If a feature seems to reduce BER in a way that
contradicts domain expectations: 1. Refer to the
SHAP interaction values...

[Input Explanation] The raw data provided to the LLM for a single instance.
- Includes the model’s prediction (ML Model Prediction).
- Includes individual feature data (Feature-wise breakdown).
- Includes pairwise interaction data (Feature Interaction
Breakdown).

Input Explanation:
ML Model Prediction: 0.00024...
Feature-wise breakdown:
- Num Spans: Min Value = 2.0, ...,Value= 13, SHAP
Value= 0.0059 ...
Feature Interaction Breakdown:
- Num Spans & Mod Order: SHAP Interaction Value =
-0.000862 ...

[Response Structure] Defines the required format for the LLM’s output.
1. Interpretation: A detailed breakdown of key features and their effects.
2. Conclusion: A concise summary with actionable insights.

Response Structure
1. Interpretation ...
2. Conclusion ...

TABLE A-II: Qualitative Comparison of Baseline and Proposed Frameworks for an Example Instance

Component Baseline Approach Proposed Framework
Prompt Below is the output of a SHAP explanation from a

machine learning model that predicts Bit Error Rate
(BER) in optical networks. Please write a short
explanation of what this means and which features
seem most important... Feature-wise breakdown: -
Path Len: Min Value = 84.0, ..., SHAP Value = 0.0001
...

## [Context]
You are an interpreter of a SHAP explanation...
[Task]
1. Identify the top 2{3 features...
## [Interaction Handling]...
(see Table A-I for full details).

Generated Explanation Interpretation
The SHAP (SHapley Additive exPlanations) output
explains how different features contribute to the
model’s prediction of Bit Error Rate (BER). In this
case, the model predicts a BER of approximately
0.00045.
Key Insights:
1. Most Important Features:
- Num Spans: This feature has the largest negative

contribution (-0.0033), meaning that increasing the
number of spans in the network reduces the predicted
BER.
- Mod Order (Modulation Order): This feature

has the largest positive contribution (+0.0028),
indicating that higher modulation orders increase
the predicted BER.
2. Other Notable Features:
- Path Len: Slightly increases the predicted BER

(+0.0001).
- Freq, Sum Link Occ, and others: These features

have negligible contributions to the prediction, as
their SHAP values are close to zero.
Summary:
The model’s prediction of a low BER (0.00045) is
primarily influenced by the number of spans in the
network and the modulation order used. More spans
tend to reduce errors, while higher modulation
orders increase them.

Interpretation
The SHAP analysis reveals that the Bit Error
Rate (BER) prediction of approximately 0.00045 is
significantly influenced by two key features:
1. Modulation Order (Mod Order): With a SHAP value
of +0.0028, Mod Order has the most substantial
positive impact on increasing BER. The current value
is set to its maximum at 64, which contributes to
higher error rates.
2. Number of Spans: This feature has the largest
negative SHAP value (-0.0033), indicating that fewer
spans reduce BER. The current span count is 6.0.
Additionally, a notable interaction exists between
Mod Order and Number of Spans (SHAP interaction
value -0.001591). This suggests that when both
factors are present, their combined effect on
reducing BER is more pronounced than the sum of
their individual effects.
Conclusion
To optimize BER reduction:
1. Reduce Modulation Order: Lowering Mod Order from
64 to a feasible minimum (e.g., closer to 16) could
significantly decrease BER.
2. Optimize Number of Spans: Further reducing spans
below 6, if technically viable, would enhance BER
improvement, especially when combined with lower Mod
Order.
By addressing these factors, particularly focusing
on lowering Mod Order and maintaining fewer spans,
the system can achieve a more substantial reduction
in BER.
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“Explainable artificial intelligence (XAI): how the visualization of AI
predictions affects user cognitive load and confidence,” in Information
Systems and Neuroscience: NeuroIS Retreat. Springer, 2021, pp. 237–
246.

[14] L. Weber, S. Lapuschkin, A. Binder, and W. Samek, “Beyond explain-
ing: Opportunities and challenges of XAI-based model improvement,”
Information Fusion, vol. 92, pp. 154–176, 2023.

[15] U. Ahmed, Z. Jiangbin, A. Almogren et al., “Explainable AI-based
innovative hybrid ensemble model for intrusion detection,” Journal of
Cloud Computing, vol. 13, no. 1, p. 150, 2024.

[16] D. C. Bikkasani and M. R. Yerabolu, “AI-driven 5G network optimiza-
tion: A comprehensive review of resource allocation, traffic manage-
ment, and dynamic network slicing,” American Journal of Artificial
Intelligence, vol. 8, no. 2, pp. 55–62, 2024.

[17] C. Rottondi, L. Barletta, A. Giusti, and M. Tornatore, “Machine-learning
method for quality of transmission prediction of unestablished light-
paths,” Journal of Optical Communications and Networking, vol. 10,
no. 2, pp. A286–A297, 2018.

[18] S. Allogba, S. Aladin, and C. Tremblay, “Machine-learning-based light-
path QoT estimation and forecasting,” Journal of Lightwave Technology,
vol. 40, no. 10, pp. 3115–3127, 2022.

[19] O. Ayoub, D. Andreoletti, S. Troia, S. Giordano, A. Bianco, and
C. Rottondi, “Quantifying features’ contribution for ML-based quality-
of-transmission estimation using explainable AI,” in European Confer-
ence on Optical Communication (ECOC), 2022, p. We3B.4.

[20] H. Fawaz, F. Arpanaei, D. Andreoletti, I. Sbeity, J. A. Hernández,
D. Larrabeiti, and O. Ayoub, “Reducing complexity and enhancing
predictive power of ML-based lightpath QoT estimation via SHAP-
assisted feature selection,” in International Conference on Optical Net-
work Design and Modeling (ONDM), 2024.

[21] D. Adanza, C. Natalino, L. Gifre, R. Muñoz, P. Alemany, P. Monti,
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