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Abstract
This paper provides a comprehensive overview of the latest stable release of the
graphics processing units molecular dynamics (GPUMD) package, GPUMD 4.0.
We begin with a brief review of its development history, starting from the initial
version. We then discuss the theoretical foundations for the development of the
GPUMD package, including the formulations of the interatomic force, virial and
heat current for many-body potentials, the development of the highly efficient and
flexible neuroevolution potential (NEP) method, the supported integrators and
related operations, the various physical properties that can be calculated on the fly,
and the GPUMD ecosystem. After presenting these functionalities, we review a
range of applications enabled by GPUMD, particularly in combination with the
NEP approach. Finally, we outline possible future development directions for
GPUMD.
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1 | INTRODUCTION

The molecular dynamics (MD) simulation method is one of
the most powerful atomistic simulation methods used to
study material properties, ranging from the atomic to the
micro and even the mesoscale. An MD package serves as the
computational engine behind atomistic simulations, making
it an essential tool for researchers in this field. Open-source
MD packages play a pivotal role in the development of al-
gorithms and their practical applications. Among the most
widely used free and open-source MD packages are GRO-
MACS,[1] LAMMPS,[2] and OpenMM,[3] to name a few. The
graphics processing units molecular dynamics (GPUMD)
package, which also belongs to this group, is the subject of
this review. While not yet as widely adopted as the afore-
mentioned packages, GPUMD has been gaining popularity
at a rapid pace (Figure 1). It has been included in the list
maintained by Talirz et al.,[4,5] which tracks trends and sta-
tistics in atomistic simulation engines, and exhibits the
highest relative growth rate for the last 2 years. Since its first
release in August 2017 (version 1.0)[6] and the update in
May 2022 (version 3.3.1),[7] many new features have been
added, warranting a comprehensive review.

GPUMD has many distinguishing features making it
appealing to both users and developers. It is an MD package
developed for heterogeneous CPU-GPU computing plat-
forms from the ground up, like HOOMD-blue[8] and
GALAMOST[9] (later updated to PyGAMD[10]). It is also
one of the first MD packages that incorporates native
machine-learned potentials, which makes it applicable to
numerous complex materials that are inaccessible to tradi-
tional empirical potentials. The machine-learned potentials
in GPUMD can deliver near-quantum-mechanical accuracy
at the speed of empirical potentials, enabling predictive and

efficient simulations of a wide range of processes and
properties. In this paper, we give a comprehensive review
and discussion of the past, present, and future of GPUMD.

2 | THE DEVELOPMENT HISTORY OF
GPUMD

Although the first version of GPUMD was released in
2017,[6] its development dates back to 2011 when it began as
an exercise for a CUDA programming course. At that time,
the package only supported the Lennard-Jones potential and
its sole functionality was to calculate the thermal conduc-
tivity via the Green–Kubo method. This functionality was
further developed in 2013, with improved computational
efficiency for the Coulomb-Buckingham potential.[11]

In 2015, a general formulation of force, virial, and heat
current for many-body potentials was developed, providing
the foundation for an efficient implementation of the heat
current.[12] This advancement led to an efficient GPU
implementation[6] of many-body potentials such as the
embedded atom method,[13,14] Stillinger–Weber,[15] and
Tersoff potentials.[16] With these developments, the first
version of GPUMD[6] was released as an open-source soft-
ware in 2017, containing about 10,000 lines of source code,
written in CUDA C.

The next major development in GPUMD was the addi-
tion of the homogeneous nonequilibrium MD method[17] and
related spectral decomposition techniques[17–19] during 2018
and 2019. These developments made GPUMD a popular
package for heat transport applications.

In 2019, the development of interatomic potentials, such
as a variant of the Tersoff potential[20] and the so-called
force-constant potential,[21] began. However, the focus
quickly shifted to general-purpose machine-learned poten-
tials. In 2021, a native machine-learned potential, the neu-
roevolution potential (NEP),[22] was developed. The NEP
approach underwent several improvements[7,23,24] from 2021
to 2024. The rapid growth in the popularity of GPUMD in
recent years has been driven to a large extent by the devel-
opment of the NEP approach, which provides highly effi-
cient and accurate potential models for a wide range of
materials.[25]

The latest version of GPUMD, released[26] in April 2025,
is GPUMD 4.0, which we will describe here. It contains
about 85,000 lines of source code written in CUDA Cþþ.
For simplicity, we will use GPUMD to refer to GPUMD 4.0
unless otherwise stated.

3 | CURRENT FEATURES IN GPUMD

We categorize the functionalities of GPUMD into three
major areas: potentials, integrators, and properties. For a
detailed discussion on CUDA programming aspects and the

F I GURE 1 Number of publications (including preprints) per year
using graphics processing units molecular dynamics, up to June 14,
2025.
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physical foundations underlying GPUMD, we refer the
interested reader to relevant textbooks.[27,28] Before exam-
ining the three functional categories, we provide a concise
overview of GPUMD, focusing on its practical usage.

GPUMD is primarily developed using CUDA Cþþ
(although it has also been adapted to work with HIP). Upon
compilation, two executables are generated: gpumd and
nep. The nep executable serves the training of NEP
models, whereas the gpumd executable is designed for
conducting MD simulations. For the nep executable, two
files are required:

1. nep.in: This file governs the training process.
2. train.xyz: This file contains the training data.

1. run.in: This file controls the MD simulation.
2. model.xyz: This file defines the system to be simulated.

Similarly, for the gpumd executable, at least two files
must be provided:

Both the train.xyz and model.xyz files adhere to
the standard extended XYZ file format. The nep.in file
includes straightforward commands that specify the hyper-
parameters for NEP training.

In contrast, the run.in file is comparatively more
complex and flexible. In the simplest cases, users only need
to define the interatomic potential using the potential
keyword and create ensemble-run blocks to specify the
MD simulation process. Within an ensemble-run block,
users can incorporate operations to modify the simulation
process or compute and output useful quantities. More de-
tails will be discussed later, and comprehensive documen-
tation is available at https://gpumd.org/.

3.1 | Interatomic potentials

Interatomic potentials describe the interactions between
atoms and are required inputs to MD simulations. GPUMD
supports both conventional empirical potentials and
machine-learned potentials, as listed in Table 1.

3.1.1 | Empirical potentials

With respect to empirical potentials, GPUMD supports the
12-6 Lennard-Jones potential,[29] the embedded atom
method potential,[13,14] the Tersoff potential,[16] and the
registry-dependent interlayer potential.[33–36] The interlayer
potential accurately describes anisotropic interlayer van der
Waals interactions of layered materials and is usually used in
combination with another potential for the intralayer in-
teractions. Note that the NEP approach has been specifically
implemented[31] as an intralayer potential that retains the
computational efficiency of traditional empirical potentials
such as Tersoff while achieving near ab initio accuracy.

3.1.2 | Machine-learned potentials

For machine-learned potentials, GPUMD currently supports
three types: the force-constant potential,[21] the NEP, and the
deep potential.[30] Both force constant and deep potential
models need to be trained using external packages, specif-
ically the hiphive[37] and DeePMD-kit[30] packages, respec-
tively. The NEP approach, on the other hand, is a native
machine-learned potential fully implemented in GPUMD,
including both training and inference.

3.1.3 | Formulation of force, virial, and heat
current

For all the interatomic potentials in GPUMD, the imple-
mentation follows the formalism established for general
many-body potentials.[12] All the potential models are defined
in terms of the site energy Ui for a given atom i, whose sum-
mation gives the total potential energy of the system:

U ¼
X

i
Ui:

The site energy generally depends on its local environment
and can be formally expressed as

TABLE 1 Interatomic potentials implemented in the graphics processing units molecular dynamics package.

Interatomic potential Reference Comments

Lennard-Jones (LJ) [29] The classical two-body potential

Embedded-atom method (EAM) [13, 14] Empirical many-body potential for metals

Tersoff [16] Empirical many-body potential for covalent bonds

Force-constant potential (FCP) [21] Machine-learned potential for equilibrium dynamics

Neuroevolution potential (NEP) [7, 22–24] General-purpose machine-learned potential

Deep potential (DP) [30] General-purpose machine-learned potential

Hybrid anisotropic interlayer potential (ILP) and NEP [31] For various Van der Waals structures

Hybrid ILP and Stillinger–Weber (SW) potential [32] For transition metal dichalcogenide structures
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Ui ¼ Ui
��

rij
�

j2Ni

�
;

where �rij
�

j2Ni
is the set of position differences from atom i

to neighboring atoms j 2 Ni:

rij ≡ rj − ri:

The force acting on atom i can be derived as follows:

Fi ¼ −
∂
∂ri

X

j
Uj

¼ −
∂Ui

∂ri
−

∂
∂ri

X

j≠i
Uj

¼ −
X

j≠i

∂Ui

∂rij
∂rij
∂ri

−
X

j≠i

X

k≠j

∂Uj

∂rjk
∂rjk
∂ri

¼
X

j≠i

∂Ui

∂rij
−
X

j≠i

∂Uj

∂rji

¼
X

j≠i

�
∂Ui

∂rij
−
∂Uj

∂rji

�

:

This establishes the validity of the (weak form of) Newton's
third law. That is, for a general many-body potential, there
exists a pair-wise force

Fij ¼
∂Ui

∂rij
−
∂Uj

∂rji
ð1Þ

between any pair of atoms i and j that fulfills

Fij ¼ −Fji:

After realizing the existence of the above pairwise force,
the virial tensor and heat current can be elegantly formulated.
Starting from the definition of the virial tensor, we have

W ≡
X

i
ri ⊗ Fi

¼
X

i

X

j≠i
ri ⊗ Fij

¼
X

i

X

j≠i
ri ⊗

�
∂Ui

∂rij
−
∂Uj

∂rji

�

¼
X

i

X

j≠i
ri ⊗

∂Ui

∂rij
−
X

i

X

j≠i
ri ⊗

∂Uj

∂rji

¼
X

j

X

i≠j
rj ⊗

∂Uj

∂rji
−
X

i

X

j≠i
ri ⊗

∂Uj

∂rji

¼
X

i

X

j≠i
rij ⊗

∂Uj

∂rji
:

ð2Þ

There are a few equivalent expressions for the virial tensor.
For example, it can also be expressed as

W¼ −
X

i

X

j≠i
rij ⊗

∂Ui

∂rij
:

However, the expression in the last line of Equation (2) is
more convenient in heat transport applications. To see this,
we derive the heat current from its definition:

J ≡
d
dt
X

i
ri
�

Ui þ
1
2
miv2i

�

¼ Jpot þ Jkin;

where Jkin ¼
P

ivi
�
Ui þ

1
2miv2i

�
is the kinetic part of the

heat current. The potential part can be further derived as
follows:

Jpot ¼
X

i
ri

d
dt

�

Ui þ
1
2
miv2i

�

¼
X

i
ri

"
X

j≠i

∂Ui

∂rij
⋅
�
vj − vi

�
þ Fi ⋅ vi

#

¼
X

i
ri
X

j≠i

�
∂Ui

∂rij
⋅
�
vj − vi

�
þ

�
∂Ui

∂rij
−
∂Uj

∂rji

�

⋅ vi
�

¼
X

i
ri
X

j≠i

�
∂Ui

∂rij
⋅ vj −

∂Uj

∂rji
⋅ vi
�

¼ −
1
2
X

i

X

j≠i
rij
�
∂Ui

∂rij
⋅ vj −

∂Uj

∂rji
⋅ vi
�

¼ −
X

i

X

j≠i
rij

∂Ui

∂rij
⋅ vj

¼
X

i

X

j≠i
rij

∂Uj

∂rji
⋅ vi:

ð3Þ

The last three lines in Equation (3) are all legitimate ex-
pressions of the heat current in periodic systems. The last
line is, however, a more convenient one in practical imple-
mentation, as it only involves the velocity vi of the central
atom i, and not the velocities vj of the neighboring atoms j.
Based on this consideration, we define a per-atom virial
according to Equation (2):

Wi ¼
X

j≠i
rij ⊗

∂Uj

∂rji
ð4Þ
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such that W ¼
P

iWi and

Jpot ¼
X

i
Wi ⋅ vi: ð5Þ

Therefore, the per-atom virial expression in Equation (4) is
the basis for both pressure and heat current calculations in
GPUMD.

From Equations (1) and (4), it is evident that the terms
∂Ui=∂rij and ∂Uj=∂rji are crucial in these calculations. The
term ∂Ui=∂rij is known as the partial force,[12] and the other
term can be obtained by exchanging indices (i↔ j). Thus,
the calculations of force, virial (pressure), and heat current in
GPUMD ultimately hinge on the calculation of partial
forces. This elegant formulation is fundamental for the
efficient GPU implementation of many-body potentials
without resorting to atomic functions.[6]

It is worth emphasizing that the formulation above ap-
plies to all potential models in GPUMD. Given that NEP is
the most commonly used potential model in GPUMD, we
discuss its formulation in more detail below.

3.1.4 | Neuroevolution potentials

The NEP approach generally follows the Behler–Parinello
neural network potential methodology,[38] but it differs in
terms of the atomic-environment descriptor and the training
method. Specifically, we describe the latest version of NEP
here, known as NEP4.[24]

In NEP4, the site energy Ui for a given atom i is a
function of an abstract descriptor vector qi with a number of
components qiν (ν ¼ 1; 2;…;Ndes). Each descriptor compo-
nent characterizes the structural and chemical environments
of atom i partially. The descriptor components are divided
into two groups, one with radial dependence only, called
radial descriptors, and the other with additional angular
dependence, called angular descriptors.

The radial descriptors are labeled by the index n and are
constructed as a sum of radial functions over the neighboring
atoms:

qin ¼
X

j≠i
gn
�
rij
�
: ð6Þ

The radial function gn
�
rij
�
is constructed as a linear com-

bination of a set of NR
bas þ 1 basis functions:

gn
�
rij
�
¼
XN

R
bas

k¼0
cIJnk fk

�
rij
�
: ð7Þ

The basis functions fk
�
rij
�
are defined as

fk
�
rij
�
¼
1
2

h
Tk
�
2
�
rij=rRc − 1

�2 − 1
�
þ 1
i
fc
�
rij
�
;

where TkðxÞ is the k-th order Chebyshev polynomial of the
first kind. The function fc

�
rij
�

is a smoothing function
defined as

fc
�
rij
�
¼

8
><

>:

1
2
�
1þ cos

�
πrij=rRc

��
; rij ≤ rRc ;

0; rij > rRc ;

where rRc is a cutoff radius beyond which the basis functions
are zero. The chemical species are embedded in the expan-
sion coefficients cIJnk of the radial functions, where I and J
indicate the types of atoms i and j. These coefficients are
trainable, resulting in different radial functions for different
pairs of atoms.

The angular descriptors depend both on the radial dis-
tances rij, and the angles θijk formed by the rij and rik
vectors,

cosθijk ¼
rij ⋅ rik
rijrik

:

The simplest angular descriptors in NEP are defined in terms
of the Legendre polynomials PlðxÞ:

qinl ¼
2l þ 1
4π

X

j≠i

X

k≠i
gn
�
rij
�
gnðrikÞPl

�
cosθijk

�
: ð8Þ

The radial and angular dependencies are indicated by the
subscripts n and l in qinl. Note that the radial functions in qinl
are defined similarly to Equation (7) but a different cutoff
radius rAc and expansion order NA

bas can be used. Efficient
evaluation of the angular descriptors requires transforming
the Legendre polynomial to spherical harmonics. There are
also other types of angular descriptors in NEP. For more
details, we refer to ref. [7].

The descriptor vector qi is assembled from the radial and
angular descriptors described above. Then, the site energy in
NEP is formally written as UiðqiÞ. Currently, only a single
hidden layer is used in the neural network model for NEP,
and the site energy can be explicitly written as

Ui ¼
XNneu

μ¼1
wð1Þμ tanh

 
XNdes

ν¼1
wð0Þμν q

i
ν − bð0Þμ

!

− bð1Þ: ð9Þ

Here, tanhðxÞ is the activation function, wð0Þ are the weight
parameters connecting the input layer (with dimension Ndes)
and the hidden layer (with dimension Nneu), wð1Þ represents
the weight parameters connecting the hidden layer and the
output layer (the site energy), bð0Þ represents the bias pa-
rameters in the hidden layer, and bð1Þ is the bias parameter in
the output layer. All these parameters are trainable, similar to
the expansion coefficients in the radial functions.

In terms of the descriptor vector, the partial force can be
written as

- 5 of 24
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∂Ui

∂rij
¼
XNdes

ν¼1

∂Ui

∂qiν
∂qiν
∂rij

:

With the partial force available, force, virial, and heat current
can all be readily evaluated. The derivative ∂qiν

�
∂rij could be

evaluated using auto-differentiation techniques. However, we
opted to derive explicit and simplified expressions by hand and
implemented themusing nativeCUDAkernels. This approach
reduces external dependencies of the GPUMD package and
optimizes its computational performance.

NEP can be used in combination with other poten-
tials.[39,40] In addition to the interlayer potential mentioned
above, it can also be used in combination with the DFT-D3
potential[41] and the Ziegler-Biersack-Littmark potential.[42]

The DFT-D3 potential can capture weak van der Waals in-
teractions, whereas the Ziegler-Biersack-Littmark potential
is usually used to ensure the physicality of the (repulsive)
interaction when atoms get very close to each other.

Recently, Liang et al.[43] developed NEP89, a compre-
hensive foundation model covering virtually the entire peri-
odic table, which has been released alongside GPUMD 4.0.
NEP89 can be used out of the box or as a starting point that can
be conveniently fine-tuned with a relatively small amount of
additional training data for system-specific applications.
NEP89 achieves competitive accuracy compared to repre-
sentative foundation models across a range of properties,
including energetics, elastic properties, phonon frequencies,
and MD simulations of amorphous carbon, liquid water, and
solid-state electrolytes, while being three to four orders of
magnitude more computationally efficient, enabling large-
scale atomistic simulations of inorganic and organic systems
that were previously impractical. TheNEP89model is the first
one in a series of NEP-based foundation models, which are
expected to exhibit better capabilities in future versions.

The NEP approach, as implemented in GPUMD, achieves
exceptionally high computational performance.Using a single
GPU, either professional or consumer grade, NEP-GPUMD
can achieve a computational speed of the order of 107 atom-
step per second in typical MD simulations. The number of
atoms in the simulation cell manageable with a single GPU
ranges from 1 to 10 million, depending on the device memory
of the GPU. With eight 80-GB A100 GPUs, NEP has been
used to simulate a high-entropy alloy with 100 million
atoms.[24] The outstanding computational performance
advantage of NEP over other representative GPU-based ma-
chine-learned potentials, such as deep potential (DP),[30]

NequIP,[44] andMACE,[45] is clearly demonstrated in Table 2.

3.2 | Integrators and related operations

3.2.1 | The velocity-Verlet integrator

Integrators solve the equations of motion and are central to the
atomic dynamics in MD simulations. Without any external
control, an isolated system adheres to Hamiltonian dynamics,

resulting in a microcanonical ensemble. In this ensemble, the
number of particles N , the volume V (or more precisely the
simulation cell), and the total energy E of the system remain
constant. Hence, it is known as the NVE ensemble. The
velocity-Verlet integrator[46] is used inGPUMD,which can be
formulated more formally in terms of the Liouville operator
and the Trotter decomposition.[47] The integration for one time
step Δt can be expressed as follows:

riðt þ ΔtÞ ≈ riðtÞ þ viðtÞΔt þ
1
2
FiðtÞ
mi
ðΔtÞ2;

viðt þ ΔtÞ ≈ viðtÞ þ Δt
FiðtÞ þ Fiðt þ ΔtÞ

2mi
:

In GPUMD, a statistical ensemble is specified by the
ensemble keyword, followed by a specific ensemble type.
For example, the NVE ensemble is invoked by the combined
keyword ensemble nve. The keywords for the various in-
tegrators/ensembles and related operations are listed in
Table 3.

3.2.2 | Thermostats and barostats

Other statistical ensembles can be realized by controlling
temperature T and/or pressure P. By controlling the tem-
perature only, we have the NVT ensemble. Here, the energy
is not constant, but the temperature has a well-defined mean
value in equilibrium. GPUMD supports several thermostats
for temperature control, including the Berendsen thermo-
stat[48] (ensemble nvt_ber), the Nosé–Hoover chain
thermostat[47] (ensemble nvt_nhc), the Bussi-Donadio-
Parrinello thermostat (also called stochastic velocity rescal-
ing thermostat)[49] (ensemble nvt_bdp), and the Lan-
gevin thermostats[50,51] (ensemble nvt_lan and
ensemble nvt_bao). By controlling the pressure as well,

TABLE 2 Computational speed (in units of atom-step per second
per GPU) of neuroevolution potential (NEP) (within graphics processing
units molecular dynamics) compared to representative GPU-based
machine-learned potentials (MLPs), including deep potential (DP),[30]

NequIP,[44] and MACE,[45] all interfaced to LAMMPS.[2]

Material Speed MLP GPU Reference

2D Silicene 870,000 DP V100 [22]

13,000,000 NEP V100 [22]

Bulk PbTe 520,000 DP V100 [22]

11,000,000 NEP V100 [22]

Tungsten 130,000 DP A100 [39]

13,000,000 NEP A100 [39]

Diamond 1200 MACE V100 [25]

2000 NequIP V100 [25]

1,830,000 NEP V100 [25]
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we have the NPT ensemble. GPUMD supports a few baro-
stats for pressure control, including the Berendsen baro-
stat[48] (ensemble npt_ber), the Martyna-Tuckerman-
Tobias-Klein barostat[47] (ensemble npt_mttk), and
the Bernetti-Bussi barostat (also called stochastic cell
rescaling barostat)[52] (ensemble nvt_scr). If pressure is
controlled but temperature is not, we have the NPH
ensemble which conserves the enthalpy H in equilibrium.
This has only been implemented in the Martyna-Tuckerman-
Tobias-Klein approach[47] (ensemble nph_mttk).

The thermostats can also be applied locally to a group of
atoms to enable nonequilibrium MD simulations for appli-
cations such as heat transport. These include the Bussi-
Donadio-Parrinello thermostat (ensemble heat_bdp),
the Nose–Hoover chain thermostat (ensemble
heat_nhc), and the Langevin thermostat (ensemble
heat_lan). Among these, the Langevin thermostat is
recommended for heat transport applications.[53]

3.2.3 | Thermodynamic integration and free
energy calculations

We have implemented a series of thermodynamic integration
methods for Helmholtz and Gibbs free-energy calculations,
which are useful for studying phase diagrams. These include
the equilibrium approach (ensemble ti) and nonequilib-
rium approach (ensemble ti_spring). These methods
only apply to solids, and the free energies are calculated in
reference to the Einstein crystal.[54] The nonequilibrium
approaches allow for efficient integration along a reversible
scaling path[55] (ensemble ti_rs) or an adiabatic
switching path[56] (ensemble ti_as). For liquids
(ensemble ti_liquid), the free energies are calculated
in reference to the Uhlenbeck–Ford model.[57]

3.2.4 | Shock simulation methods

We have implemented a few shock methods.[58] One method
is based on the constant stress Hugoniostat method[59]

(ensemble nphug). With a target stress, this algorithm
adjusts the temperature to make the system converge to the
Hugoniot. Another method is based on the multiscale shock
technique[60] (ensemble msst). Besides, there are a few
nonequilibrium MD methods, where a shock wave is
generated by a moving wall, which can be a fixed layer of
atoms (piston) (ensemble wall_piston), a momentum
mirror that reflects atoms (ensemble wall_mirror), or
a harmonic potential that pushes atoms away (ensemble
wall_harmonic).

3.2.5 | Path-integral methods

The above integrators are for classical MD simulations.
Nuclear quantum effects can be partially captured by path-

TABLE 3 Integrators and related operations implemented in the
graphics processing units molecular dynamics package.

Integrators/ensembles Keyword

NVE ensemble nve

Berendsen NVT ensemble nvt_ber

NHC NVT ensemble nvt_nhc

BDP NVT ensemble nvt_bdp

Langevin NVT ensemble nvt_lan

Langevin NVT ensemble nvt_bao

Berendsen NPT ensemble npt_ber

SCR NPT ensemble npt_scr

MTTK NPT ensemble npt_mttk

MTTK-based NPH ensemble nph_mttk

NEMD heat transport ensemble heat_nhc

NEMD heat transport ensemble heat_bdp

NEMD heat transport ensemble heat_lan

Equilibrium TI ensemble ti

Nonequilibrium TI ensemble ti_spring

Nonequilibrium TI, RS path ensemble ti_rs

Nonequilibrium TI, AS path ensemble ti_as

Nonequilibrium TI, liquid ensemble ti_liquid

Hugoniostat shock method ensemble nphug

NEMD shock piston ensemble wall_piston

NEMD shock mirror ensemble wall_mirror

NEMD shock harmonic ensemble wall_harmonic

MSST ensemble msst

PIMD ensemble pimd

RPMD ensemble rpmd

TRPMD ensemble trpmd

Canonical MC mc canonical

SGC-MC mc sgc

VCSGC-MC mc vcsgc

Change box once change_box

Deform box during a run deform

Fix a group of atoms fix

Move a group of atoms move

Add external forces to atoms add_force

Add electric field to ions add_efield

Add stopping forces to atoms electron_stop

Abbreviations: AS, adiabatic switching; BDP, Bussi-Donadio-Parrinello; MSST,
multi-scale shock technique; MTTK, Martyna-Tuckerman-Tobias-Klein; NEMD,
nonequilibrium molecular dynamics; NHC, Nose–Hoover chain; PIMD, path-
integral molecular dynamics; RPMD, ring-polymer molecular dynamics; RS,
reversible scaling; SCR, stochastic cell rescaling; SGC, semi-grand canonical; TI,
thermodynamic integration; TRPMD, thermostatted RPMD; VCSGC, variance-
constrained SGC.
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integral MD simulation methods, which have recently been
implemented into GPUMD.[61] Apart from the normal path-
integral MD algorithm based on the Langevin thermostat and
normal modes[60] (ensemble pimd), we also implemented
the ring-polymer MD[62] (ensemble rpmd) and thermo-
statted ring-polymer MD[63] (ensemble trpmd). For the
normal modes, we used the robust integration algorithm
based on the Cayley transform.[64]

3.2.6 | Hybrid Monte Carlo and molecular
dynamics

MD simulations can be supplemented by Monte Carlo sim-
ulations to enable sampling of the compositional degrees of
freedom in mixed (alloyed) systems. Recently, a series of
hybrid Monte Carlo and MD simulation methods has been
implemented into GPUMD,[65] including the canonical
Monte Carlo ensemble (exchanging pairs of atoms of
different species) (mc canonical), the semi-grand ca-
nonical Monte Carlo ensemble (flipping the species of single
atoms) (mc sgc), and the variance-constrained semi-grand
canonical Monte Carlo ensemble[66,67] (mc vcsgc). The
choice of input parameters in terms of normalization follows
the expressions in ref. [68].

3.2.7 | Other operations

Apart from the various integrators/ensembles, the time
evolution can also be altered by other related operations. The
change_box keyword can be used to deform the box
instantly, and the deform keyword can be used to deform
the box during a run. A group of atoms can be fixed (frozen)
by using the fix keyword or be moved as a rigid body using
the move keyword. External forces can be added to the
atoms via the add_force keyword, and external electric
forces can be added to ions (charged atoms) via the
add_efield keyword. Frictional forces on fast-moving
atoms due to electronic collisions can be invoked by the
electron_stop keyword, which is useful in irradiation
damage or ion implantation simulations.

3.3 | Properties

The usefulness of a MD package is finally manifested in the
physical properties that can be calculated using it. GPUMD
supports dumping of trajectories and moreover enables the
calculation of many useful quantities on the fly (Table 4).

3.3.1 | The dump-like keywords

During any MD simulation, it is recommended to dump the
basic thermodynamic quantities for the whole system, using

the dump_thermo keyword. The quantities dumped
include temperature, kinetic energy, potential energy, pres-
sure tensor, and the simulation cell metric.

Trajectories and related quantities can be dumped using
the dump_xyz keyword. This will generate an output file in
the extended XYZ format that can be visualized by programs
such as OVITO.[69] In this file, the trajectory is stored frame
by frame. Each frame contains N þ 2 lines, where N is the
number of atoms in the frame that is written in the first line.
The second line contains information such as the global time,
boundary conditions, cell metric, total energy, virial, and
stress. The next N lines then contain the atom symbols,
positions, and possibly other per-atom quantities. A related
keyword for path-integral MD simulations is dump_beads.
Finally, the dump_restart keyword can be used to save a
file that can be used to restart a simulation, although the
present implementation does not lead to a perfect restart in
some cases, such as those involving the Nosé–Hoover chain
thermostat, where some thermostatting variables are not
saved in the restart file. This is expected to be improved
during the next code refactoring process.

TABLE 4 Dump and compute keywords implemented in the
graphics processing units molecular dynamics package.

Properties Keyword

Thermodynamic quantities dump_thermo

Trajectory and related quantities dump_xyz

Trajectory for the beads in PIMD dump_beads

Restarting file dump_restart

Space–time average compute

RDF compute_rdf

ADF compute_adf

Angular-dependent RDF compute_angular_rdf

SDC compute_sdc

MSD compute_msd

Viscosity compute_viscosity

EMD thermal transport compute_hac

HNEMD thermal transport compute_hnemd

HNEMDEC thermal transport compute_hnemdec

Spectral decomposition compute_shc

Modal decomposition (EMD) compute_gkma

Modal decomposition (HNEMD) compute_hnema

Electronic transport compute_lsqt

Phonon properties compute_phonon

VDOS compute_dos

Abbreviations: ADF, angular distribution function; EMD, equilibrium molecular
dynamics; HNEMD, homogeneous nonequilibrium molecular dynamics;
HNEMDEC, HNEMD with Evans-Cummings algorithm; MSD, mean-square
displacement; RDF, radial distribution function; RPMD, ring-polymer molecular
dynamics; SDC, self-diffusion coefficient; VDOS, vibrational density of states.
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3.3.2 | The compute-like keywords

The compute-like keywords are used to calculate physical
quantities on the fly. The simplest keyword is compute,
which calculates the spatial and time averages of various
quantities. This is useful for, for example, getting a tem-
perature profile or a stress distribution. There are also key-
words for common structural properties, such as the radial
distribution function (compute_rdf), the angular distri-
bution function (compute_adf), and the angular-
dependent radial distribution function (compute_ardf).

The majority of the compute-like keywords are related to
transport properties. These usually involve time-correlation
functions, making on-the-fly calculations valuable for
minimizing data storage. The transport properties include the
self-diffusion coefficient from the velocity autocorrelation
function (compute_sdc) or the mean-square displacement
(compute_msd), the viscosity (compute_viscosity),
the thermal conductivity from heat current autocorrelation
function (compute_hac), the thermal conductivity from
homogeneous nonequilibrium MD simulations[17] (com-
pute_hnemd and compute_hnemdec), the spectral
(compute_shc)[17] and modal[19] (compute_hnema and
compute_gkma) decompositions as well as electronic
transport properties from the linear-scaling quantum trans-
port methods[70] (compute_lsqt). The linear-scaling
quantum transport calculations are based on tight-binding
models.

GPUMD also supports the direct calculation of phonon
properties, such as phonon dispersions using the finite-
displacement method (compute_phonon) and vibra-
tional density of states from the mass-weighted velocity
autocorrelation function (compute_vdos).

4 | THE GPUMD ECOSYSTEM

Although the nep and gpumd executables are standalone
programs that operate without external dependencies, they
can be complemented by other tools and packages, collec-
tively forming the GPUMD ecosystem.

4.1 | Tools within the GPUMD package

The tools are included with the tools directory of the
GPUMD package. Most utilities in the tools directory
focus on the preparation and analysis of training and test
datasets for NEP. For example, abacus2xyz, caste-
p2exyz, cp2k2xyz, orca2xyz, and vasp2xyz are
designed to convert outputs from various quantum chemistry
packages into training/test datasets formatted in the extended
XYZ format. Similarly, dp2xyz, mtp2xyz, and run-
ner2xyz facilitate the conversion of training datasets from
other formats into the extended XYZ format.

4.2 | Additional related packages

Additional related packages are listed in Table 5, most of
which are based on the NEP_CPU package. This package
contains a standalone Cþþ implementation of the inference
of NEP, which serves as the computational engine for many
Python-based packages listed in Table 5. Furthermore, it
provides an interface to the LAMMPS package,[2] enabling
NEP to function in more computing environments.

The calorine package[71] is a versatile Python library
designed to construct and use NEP models, offering ASE
(Atomic Simulation Environment)[79] calculators, input/
output functions for GPUMD files, NEP model inspection,
descriptor space analysis, structure generation, and NEP
training, and can be easily used to perform various calcu-
lations, including relaxation, phonon properties, elastic
properties, free energy calculations, thermal conductivity via
the Boltzmann transport equation, and so on.

The dynasor package[72,73] is designed for calculating
total and partial dynamic structure factors as well as related
correlation functions from MD simulations, including
particularly those driven by GPUMD. By analyzing these
functions, one can access the dynamics of a system without
resorting to perturbative approaches. It can also predict

TABLE 5 Packages and repositories related to graphics processing
units molecular dynamics (GPUMD) and/or neuroevolution
potential (NEP).

Packages Code repository

NEP_CPU https://github.com/brucefan1983/NEP_CPU

calorine[71] https://gitlab.com/materials-modeling/calorine

dynasor[72,73] https://gitlab.com/materials-modeling/dynasor

GPUMD-Wizard https://github.com/Jonsnow-willow/GPUMD-
Wizard

Gpyumd https://github.com/AlexGabourie/gpyumd

GPUMDkit https://github.com/zhyan0603/GPUMDkit

MAGUS[74,75] https://gitlab.com/bigd4/magus

mdapy[76] https://github.com/mushroomfire/mdapy

NepTrain[77] https://github.com/aboys-cb/NepTrain

NepTrainKit[77] https://github.com/aboys-cb/NepTrainKit

NEP_Active https://github.com/psn417/NEP_Active

nep_maker https://github.com/psn417/nep_maker

PyNEP https://github.com/bigd4/PyNEP

PySED[78] https://github.com/Tingliangstu/pySED

Somd https://github.com/initqp/somd

nep-data https://gitlab.com/brucefan1983/nep-data

GPUMD-
Tutorials

https://github.com/brucefan1983/GPUMD-Tutorials
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experimental spectra by combining the structure factor with
the cross sections or form factors.

GPUMD-Wizard, a material structure processing soft-
ware based on ASE, automates the calculation of various
material properties, including lattice constants, elastic con-
stants, and defect formation energies, while also facilitating
the execution and analysis of MD simulations using GPUMD.

The gpyumd package is a collection of tools that
generate valid input files and process the output files of
GPUMD. It leverages the functionality of ASE when bene-
ficial, but is otherwise independent to remain flexible and
best serve GPUMD directly.

The MAGUS package[74,75] is a machine learning and
graph theory assisted crystal structure prediction package. It
has interfaces for various quantum chemistry packages and
machine-learned potentials, including NEP.

GPUMDkit, a shell-based toolkit for the GPUMD and
NEP, offers a user-friendly command-line interface to
streamline common scripts and workflows, simplifying tasks
such as script invocation, format conversion, structure
sampling, NEP construction workflow, and various analyses,
aiming to improve user productivity.

The mdapy[76] Python library provides an array of
powerful, flexible, and straightforward tools to analyze
atomic trajectories generated from MD simulations. It well
supports the extended XYZ format output by GPUMD and
takes advantage of the highly parallel processing capabilities
on multicore CPUs and GPUs to provide excellent efficiency
and flexibility for processing and analyzing trajectories.

NepTrain and NepTrainKit are Python packages
designed to enhance the construction of NEP models, with
NepTrain integrating tools for active learning workflows,
including structural perturbations, configurational space
exploration, single-point energy calculations, and force field
training, whereas NepTrainKit provides user-friendly
visualization and processing of NEP training datasets,
enabling detailed analysis of dataset composition and model
performance.

NEP_Active and nep_maker also focus on NEP
model construction, with NEP_Active employing active
learning strategies to automate training set construction and
nep_maker extending this by incorporating a compre-
hensive workflow to automate active learning by submitting
and monitoring jobs.

PyNEP serves as a Python interface for NEP, providing
ASE calculators, descriptor calculations for atoms, and
phonon calculations, but is particularly noted for its imple-
mentation of the farthest point sampling method to select
representative structures.

PySED[78] is a Python-based package built upon the
spectral energy density method, designed to analyze spe-
cific phonon-mode information from large-scale MD tra-
jectories, enabling convenient calculation of kinetic-energy-
weighted phonon dispersions and derivation of phonon
lifetimes. It was developed to work with NEP-driven MD
simulations.

The somd package includes a simple wrapper for the
nep executable, enabling automatic construction of NEP
models through active learning strategies.

Finally, we note that numerous training and test datasets
related to NEP have been compiled in the nep-data re-
pository, although the collection is not exhaustive. Addi-
tionally, the GPUMD-Tutorials repository offers a wide
range of valuable tutorials and examples, covering various
practical aspects of the GPUMD package.

5 | APPLICATIONS OF GPUMD TO
MATERIALS CALCULATIONS

To date, GPUMD has been utilized in approximately two
hundred publications. Table 6 provides a comprehensive list
of these publications, highlighting the first authors and the
primary materials investigated.

5.1 | Applications in early years

Prior to 2022, GPUMD applications focused predomi-
nantly on covalently bonded systems, which have tradi-
tionally been described using the Tersoff potential.
Consequently, the range of materials studied during this
period was quite limited, primarily comprising two-
dimensional materials such as graphene, hexagonal BN,
and MoS2. Thermal transport was the main theme of these
early investigations.

Building on these materials, significant advancements
were made in computational methods for heat transport.
These include the unambiguous definition of heat current for
general many-body potentials,[12] the demonstrated equiva-
lence between equilibrium and nonequilibrium MD
methods,[87] the development of a general formulation for
the homogeneous nonequilibrium MD method along with
related spectral decomposition techniques,[17] the examina-
tion of impact of thermostatting methods on the nonequi-
librium MD method,[53] and the interpretation of apparent
thermal conductivity using the equilibrium MD method.[106]

Beyond the methodological progress, GPUMD has also
been employed to uncover the physical mechanisms under-
lying phonon thermal transport in various materials. A
particularly noteworthy application involved studying heat
transport in multilayer MoS2, successfully reproducing the
experimentally observed highly anisotropic thermal
transport.[108]

5.2 | Applications with NEP

Since 2022, GPUMD has been employed to study a wider
range of materials, thanks to the development of the NEP
approach in 2021[22] and its improvements in 2022[7,23] and
2024.[24] Heat transport remained a major application area
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TABLE 6 Applications of the graphics processing units molecular dynamics package in various materials.

Year Publications (major materials)

2013 Fan[11] (Ar, PbTe)

2015 Fan[12] (Si, C)

2016 Hirvonen[80] (C); Mortazavi[81] (C)

2017 Azizi[82] (C); Fan[6] (C); Fan[18] (C); Fan[83] (C); Fan[84] (C); Hirvonen[85] (C);
Mortazavi[86] (C)

2018 Dong[87] (Si, C); Dong[88] (BN); Fan[89] (C); Hirvonen[90] (C); Mortazavi[91] (CN);
Rajabpour[92] (C); Xu[93] (P)

2019 Fan[17] (C, Si); Fan[20] (Si); Gu[94] (C); Isaeva[95] (Si); Li[53] (C); Xu[96] (MoS2)

2020 Bea[97] (Si); Dong[98] (C); Fu[99] (Si); Gabourie[100] (MoS2); Wu[101] (C); Wu[102] (BN)

2021 Barbalinardo[103] (C); Chen[104] (CFs); Dong[105] (C/BN); Dong[106] (Si, C); Du[107] (C/BN);
Fan[22] (PbTe, Si); Gabourie[19] (HfO2, SiO2); Kim[108] (MoS2); Lundgren[109] (SiGe); So[110]

(C); Wang[111] (C); Wu[112] (C/BN); Wu[113] (C/BN); Zhang[114] (C)

2022 Cheng[115] (Si-Ge); Dong[116] (Si); Fan[23] (PbTe); Fan[7] (PbTe, C); Feng[117] (C);
Gabourie[118] (MoS2); Jin[119] (Si, Ge); Li[120] (Al-Mg); Li[121] (Si); Li[122] (Si); Liang[123]

(C); Sha[124] (C/BN); Sha[125] (CN); Wang[126] (Li6Al); Wu[127] (C, BN) Wu[128] (C); Wu[129]

(C); Xu[130] (C); Ying[131] (C); Zhou[132] (Si)

2023 Bea[133] (Si); Cheng[134] (PbTe); Cheng[135] (C); DeVries[136] (MX2 (M = Mo, W; X = S,
Se)); Dong[137] (C); Du[138] (PH4AlBr4); Eriksson[139] (C, BN, MoS2); Fransson[140]

(CsPbBr3, MAPbI3); Fransson[141] (CsPbBr3); Fransson[142] (CsPbX3 (X = Cl, Br, I)); Li[143]

(C); Liang[144] (SiO2); Liu[39] (W); Liu[145] (Si/Ge); Lu[146] (C); Lu[147] (C); Ouyang[148]

(AgX (X = Cl, Br, I)); Pan[149] (MgOH); Rosander[150] (BaZrO3); Sha[151] (PbTe); Shi[152]

(C); Shi[153] (InGeX3 (X = S, Se, Te)); Shi[154] (CsPbX3 (X = Cl, Br, I)); Su[155]

(Cs2BiAgBr6, Cs2BiAgCl6); Sun[156] (Ga2O3); Wang[157] (Si); Wang[158] (SrTiO3); Wei[159]

(C); Wiktor[160] (CsMX3 (M = Sn, Pb and X = Cl, Br, I)); Wu[161] (C, BN); Wu[162] (C, C3N);
Xiong[163] (C); Xu[164] (H2O); Yang[165] (GaN/C); Ying[166] (C); Ying[40] (MOF); Ying[167]

(P); Ying[168] (MOF); Zhang[169] (HfO2); Zhao[170] (Pd-Cu-Ni-P); Zhou[171] (Ge-Si, Ge)

2024 Berger[172] (MoS2, BAs); Berger[173] (Amino acids); Berrens[174] (H2O); Cao[175] (PC);
Chen[176] (C, BN); Chen[177] (GeSn); Chen[178] (H2O); Cheng[179] (A2SnBr6 (A=Rb, Cs));
Cheng[180] (SiGe); Deng[181] (Si); Dong[182] (Si); Dong[183] (ScAlN); Fan[184] (MOF); Fan[70]

(C); Fang[185] (CH); Feng[186] (C); Fine[187] (Ca3CrN3H); Folkner[188] (Si); Fransson[189]

(MAPbI3); Fransson[190] (BaZrO3); Gabourie[191] (Si, SiO2, HfO2); Huang[192] (C);
Huang[193] (Mg3(Sb, Bi)2); Li[194] (Gr); Li[195] (C); Li[196] (Sb-Te); Li[197] (Si); Li[198]

(C9H4BO2); Li[199] (C); Liu[200] (HECs); Lyu[201] (PbSe); Muhammed[202] (Perovskites);
Oliveira[203] (Si); Pan[58] (SiO2); Pegolo[204] (LixSi1-x); Qi[205] (AlN, C); Ru[206] (PdSe2);
Schäfer[207] (PTA); Shi[208] (BN); So[209] (Ga2O3, BN); So[210] (C); Song[24] (16 metals);
Sonti[211] (Zeolite-Confined Gold); Sun[212] (Co, Mo, Fe, Ni, Cu); Sun[213] (AlN, C); Sun[214]

(Ga2O3/C); Tang[215] (BN); Tang[216] (ScF3); Tian[217] (NaCl-CaCl2); Tian[218] (H2O);
Timalsina[219] (MgNiCoCuZnO5); Wan[220] (C6N7); Wang[221] (COFs); Wang[222] (H2O);
Wang[223] (Si); Wang[224] (Ga2O3); Wei[225] (high-entropy rare-earth monosilicates); Wu[226]

(C); Wu[227] (C); Wu[228] (Si, GaAs, C, PbTe); Wu[229] (C); Wu[230] (C, BN); Xu[231]

(Perovskite); Xu[232] (Perovskite); Yan[233] (Li7La3Zr2O12); Yang[234] (C); Ying[235] (C);
Yu[236] (C); Yu[237] (BN); Yue[238] (Si/C); Zeraati[239] (La2Zr2O7); Zhang[240] (BiI3);
Zhang[241] (C); Zhang[242] (GeTe); Zhang[243] (Alanine dipeptide and acetyl chloride);
Zhang[244] (Li-Be); Zhao[245] (Ti-Al-Nb); Zhou[246] (LiH)

2025 Ariana[247] (Na3SbSe4); Bao[248] (LiNbO3/LN); Berger[73] (Ni3Al, BaZrO3); Bro-
Jørgensen[249] (Au); Bu[31] (C/MoS2/BN); Cao[250] (LiTFSI/G3); Cao[251] (Alloys); Chen[252]

(Si:H); Chen[253] (Al-Cu-Li); Chen[254] (GaN); Chen[77] (CsPbI3); Cheng[255] (AgTl2I3);
Dai[256] (C aerogels); Donadio[257] (C); Du[258] (Sn4Se10); Feng[259] (SiO2); Hainer[260] (MA1-

xFAxPbI3); Hao[261] (CuBiSeCl2); Hu[262] (CL-20); Hu[263] (MoS2/WSe2); Jia[264] (Zr);
Jiang[36] (C/BN); Jiang[265] (MoS2); Jiang[32] (MX2 (M = Mo, W; X = S, Se)); Jiang[266]

(MX2 (M = Mo, W; X = S, Se, Te)); Kayastha[267] (BaZrS3); Laven[268] (CsPbI3); Li[269]

(Ga2O3); Li[270] (BeGeN2); Li[271] (KTa1-xNbxO3); Li[269] (COF); Li[272] (Al, Cu, Ag);
Liang[273] (C/BN); Linderalv[274] (4H-SiC); Lindgren[275] (Si, C6H6, BaTi1-xScxO3Hx);
Liu[276] (BN); Liu[277] (Ti); Liu[278] (Mg); Liu[279] (Cu7PS6); Liu[280] (HEDs); Liu[281] (AlN-
SiC); Lu[282] (C); Lu[283] (Aerogels); Luo[284] (N-Ga-Al); Lyu[285] (Pb-Se-Te-S); Moon[286]

(C); Oh[287] (Si); Ouyang[288] (argyrodite); Pegolo[289] (Li3PS4); Rosander[290] (BaZrO3);
Seifi[291] (GaAs@InAs); Sun[292] (GaN/C); Sun[293] (NbSe3); Sun[294] (HfO2); Tan[295]

(Continues)
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for GPUMD, as reviewed by Dong et al.[182] up to March
2024. Nevertheless, numerous other application fields have
also emerged, as summarized by Ying et al.[25] up to January
2025. Below, we briefly outline the various research fields,
emphasizing key publications that pioneered the use of
GPUMD in combination of NEP in these areas.

5.2.1 | Mechanical properties

Ying et al.[166] were the first to apply GPUMD and NEP to
investigate mechanical properties in their study of a C60-
based quasi-two-dimensional network. Their work demon-
strated consistent results for quasi-static deformation pro-
cesses when compared with quantum-mechanical
calculations. Moreover, they extended the scope of their
study to larger spatial and temporal scales, approaching
strain rates that are almost experimentally attainable.

5.2.2 | Radiation damage

Liu et al.[39] expanded the NEP approach by incorporating
the Ziegler-Biersack-Littmark potential,[42] applying it for
the first time to investigate primary radiation damage in
tungsten. They conducted large-scale MD simulations
involving up to 8.1 million atoms over 240 ps using a single
40-GB A100 GPU, achieving computational efficiency
comparable to that of embedded-atom-method potentials.
Their study also highlighted the superior accuracy of the
NEP model over embedded-atom-method potentials in
capturing radiation damage in foils.

5.2.3 | Phase transition

The accuracy and efficiency offered by NEP models have
also facilitated in-depth studies of phase transitions. Frans-
son et al.[142] were the first to investigate temperature-
induced structural phase transitions in inorganic halide pe-
rovskites using GPUMD and NEP. Their work revealed the
impact of simulation size, temperature variation rate, and the
choice of exchange-correlation functionals in quantum-
mechanical calculations for training data.

5.2.4 | Shock simulation

Shi et al.[152] initiated the study of shock compression
using GPUMD and NEP. They developed a NEP model
for carbon at high pressures, which demonstrated excep-
tional capabilities in modeling both the melting behavior
and the Hugoniot line. They designed a thermodynamic
pathway suitable for double shock compression experi-
ments, facilitating the discovery of the long-sought BC8
phase of carbon.

5.2.5 | Short-range order

Chen et al.[177] initiated the study of short-range order in
GeSn alloys using GPUMD and NEP. A compact yet
representative dataset was constructed via farthest-point
sampling to improve training efficiency and predictive ac-
curacy. Through extensive statistical sampling, they uncov-
ered intricate short-range order features that strongly impact
the electronic band structure. Large-scale simulations
revealed the coexistence of nanoscale short-range order do-
mains, which is promising for optoelectronic applications.

5.2.6 | Ion transport

Yan et al.[233] initiated research on ion transport in solid-state
electrolytes, a critical area for advancing all-solid-state bat-
tery technology. They developed a NEP model to explore the
effects of lithium nonstoichiometry on ionic conductivity
and phase stability in Li7La3Zr2O12. Their findings revealed
that even minor deviations from stoichiometry, particularly
lithium deficiency, significantly lower the activation energy
for Liþ diffusion in tetragonal Li7La3Zr2O12. This leads to a
remarkable ten-orders-of-magnitude increase in room-
temperature ionic conductivity.

5.2.7 | Electronic transport

Electronic and transport properties can be studied effectively
using linear-scaling quantum transport approaches.[330] Fan
et al.[70] combined these techniques with MD simulations,

TABLE 6 (Continued)

Year Publications (major materials)

(C/BN); Tuchinda[296] (Alloys); Wang[297] (C); Wang[298] ((AlAs)n/(InAs)n); Wang[299] (Ne);
Wang[300] (C/BN); Wang[301] (BaTiS3); Wang[302] (GeTe/Sb2Te3); Wang[303] (β-Ga2O3);
Wen[304] ((Hf, Ta, Zr, W)C); Wu[305] (MoSe2/WSe2); Xiao[306] (C); Xiao[307] (AgSnSbTe3);
Xu[308] (LiF); Xu[309] (tobermorite); Yan[310] (Li7La3Zr2O12); Yang[311] (Si); Yuan[312] (MgO,
LiH); Yue[313] (Si/Ge); Zeng[314] (Cs3Bi2I6Cl3); Zeraati[315] (TBCCOs); Zhang[316]

(MoSi2N4); Zhang[317] (SiC); Zhang[318] (C); Zhang[319] (Penta-PdSe2); Zhang[320] (C/
polydimethylsiloxane); Zhang[321] (Al2O3); Zhang[322] (W-La); Zhang[323] (C); Zhou[324] (C);
Zhou[325] (NbTaZr); Zhou[326] (BAs); Zhou[327] (Ga2O3/BAs); Zhou[328] (In2Se3); Zhu[329]

(HEC/Cr7C3)

Note: The table includes publications (including preprints) up to June 14, 2025.
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showcasing their feasibility in modeling the electronic and
thermoelectric transport properties of complex materials at
finite temperatures.

5.2.8 | Tensorial properties

The NEP approach has also been successfully extended to
modeling tensorial properties, such as electric dipole mo-
ments and polarizability, by Xu et al.[232] They demonstrated
the effectiveness of this method in predicting infrared and
Raman spectra for various systems, including liquid water,
single molecules, and a prototypical perovskite exhibiting
strong anharmonicity.

5.2.9 | Large NEP models

Song et al.[24] pioneered the development of large NEP
models for multiple species, emphasizing the importance of
focusing on elemental and binary systems during data con-
struction. They successfully created a general-purpose NEP
model for 16 metals and their arbitrary alloys, demonstrating
substantially higher accuracy compared to the conventional
embedded-atom method. This NEP model also achieved a
computational milestone by simulating 100 million atoms
using only eight 80-GB A100 GPUs.

5.2.10 | Hybrid Monte Carlo and molecular
dynamics

Song et al.[65] were the first to apply NEP in conjunction
with hybrid Monte Carlo and MD simulations. The Monte
Carlo sampling with NEP is highly efficient, as it leverages
the locality of the potential function. This approach holds
significant promise for investigating the effects of chemical
order in multicomponent systems.

5.2.11 | Nuclear quantum effects

Path-integral MD simulations are essential for accurately
capturing nuclear quantum effects in materials. A highly
efficient GPU implementation of these simulations has
recently been integrated into GPUMD. Ying et al.[61]

demonstrated the effectiveness of this approach by investi-
gating thermal properties for several materials, including
lithium hydride, porous metal–organic frameworks, liquid
water as well as elemental aluminum.

5.2.12 | Melting in confined systems

Wang et al.[299] have recently used GPUMD and NEP to study
the melting transition in atomistically confined layered

materials. They developed NEP models for noble gases and
aluminum confined between two graphene sheets at different
pressures and temperatures. Although noble gases and
aluminum typically form only close-packed structures, even
under the extreme conditions of white dwarf stars, they
discovered tetragonal-packed configurations in the confined
systems. Upon heating, they found that confined two-
dimensional monolayers melt according to the two-step
continuous Kosterlitz-Thouless-Halperin-Nelson-Young the-
ory.However,multilayer solids transition continuously into an
intermediate layered-hexatic phase before melting discontin-
uously into an isotropic liquid. This change could be qualita-
tively explained based on a crossover from two-dimensional
topological defects to three-dimensional ones during melting
as the number of layers increases.

5.2.13 | Hybrid NEP and anisotropic interlayer
potential

Bu et al.[31] developed a hybrid computational framework that
integrates a machine-learned potential, based on the NEP
formalism, for intralayer interactions, with physics-based
registry-dependent interlayer potential that captures aniso-
tropic van der Waals interactions. This framework achieves
near ab initio accuracy with a computational efficiency at the
level of empirical potentials, enabling large-scale MD simu-
lations of twisted van der Waals heterostructures.

5.2.14 | Chemical reactions

Deciphering chemical reaction mechanisms at the atomic
scale is fundamental to advancing materials science, catal-
ysis, and energy technologies. Liu et al.[278] constructed a
reactive NEP model for magnesium corrosion studies by
utilizing high-temperature MD to sample critical interfacial
regions within substrate-interface-solution systems. This
enabled the atomistic simulation of the MgOH intermediate
phase formation and revealed the inward oxide/hydroxide
migration mechanism governing corrosion layer growth. Hu
et al.[262] also constructed a reactive NEP model to predict
the reaction kinetics of 2,4,6,8,10,12-Hexanitro-
2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), a high energy-
density material, under extreme conditions, revealing its
atomic-level shock compression and thermal decomposition
mechanisms. These studies demonstrate NEP's capability to
resolve complex reaction pathways.

6 | SUMMARY AND FUTURE
DIRECTIONS

In summary, we have provided a comprehensive overview of
the GPUMD package, covering its development history,
theoretical foundations, functionalities, and applications.
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Although GPUMD is a relatively young MD package, it has
been developing at a fast pace. Its robust theoretical foun-
dation, based on an elegant formulation of many-body
interatomic potentials, coupled with a well-designed GPU
parallelism scheme and a versatile general-purpose machine-
learned potential framework, has attracted increasing atten-
tion from researchers interested in exploring its capabilities.

Beyond its user base, the GPUMD package has also
attracted numerous developers from around the globe. These
contributors are working collaboratively to enhance its
feature set, versatility, reliability, and efficiency, making the
package increasingly robust and adaptable.

In the coming years, our efforts will focus on advancing
GPUMD by further expanding its capabilities and enhancing
its versatility. Building on the NEP approach, we will pri-
oritize the incorporation of the charge degrees of freedom.
This will pave the way for tackling a broader range of
problems, such as those related to batteries and corrosion,
further broadening the scope of applications for GPUMD.
There are multiple possible strategies for combining NEP
and the charge degree of freedom. The basic foundation is
that the ion charges interact with each other via Coulomb
forces, the evaluation of which can be either based on
k-space techniques or a simple cutoff scheme. The NEP
energy is then fitted to the difference between the target
energy (usually based on quantum-mechanical calculations)
and the Coulomb energy. The ion charge can be fitted to a
particular type of target partial charge or simply be deter-
mined implicitly.[331]

Additionally, we will work on building coarse-grained
models based on the NEP approach. These models will
significantly extend both the spatial and temporal scales
achievable in MD simulations with GPUMD, opening up
new possibilities for studying large systems and long-time
phenomena. One straightforward strategy is force-
matching, where the forces acting between the coarse-
grained sites are systematically derived from the net forces
experienced by those sites in all-atom simulations based on
an all-atom NEP model. The coarse-grained system can also
be described by a coarse-grained NEP model that is math-
ematically similar to the all-atom NEP model. Moreover, the
separable natural evolution strategy in NEP is a powerful
derivative-free black-box optimizer, which can conveniently
take into consideration of experimental data as well as
complex physical quantities during the training to enhance
the reliability of the coarse-grained NEP models.

To push the boundaries of efficiency and accuracy, we
plan to develop Monte Carlo sampling methods, enhanced
sampling methods, and other time-acceleration techniques.
These advancements will enable GPUMD to overcome the
limitations of conventional MD simulations, allowing for a
more comprehensive exploration of complex systems.

A direction that is seemingly unrelated to MD simula-
tions is the development of general-purpose tight-binding
models for electrons. These models will be an extension of
the NEP framework, bridging the strengths of quantum
transport methodologies[330] and MD to enable more

accurate and efficient simulations of electronic properties in
spatially complex materials.
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