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ABSTRACT 

Conjugated polymer fibers hold great promise for manufacturing unconventional electronic devices, 
particularly for advancing the applicability of wearable technology and smart textiles. For instance, these 
fibers have recently been used for energy conversion, electrochemical sensing and platforms for 
human–machine interactions. However, the limited methods available for spinning fibers from conjugated 
polymers with rigid backbones have impeded progress in wearable applications. Here, we report the 
continuous production of anisotropic semiconductor fibers by modulating π–π stacking interactions of 
liquid-crystalline conjugated polymers under shear stress. This method allows rigid conjugated polymers to 
be processed, synergistically enhancing both the mechanical and semiconductor properties of fibers 
through liquid-crystal spinning. As a result, these fibers exhibit excellent electrochemical performance, high 
mechanical strength ( ∼600 MPa) and outstanding scalabi lity, as wel l as stabi lity under extreme 
temperatures, UV radiation and chemical reagent exposure. Moreover, a fully textile-based visual logic 
sensing system was developed using semiconductor-fiber organic electrochemical transistors, offering a 
novel technological approach for integrating smart textiles into precision medicine and health monitoring. 
These findings underscore the importance of the liquid crystalline state and solution control in optimizing 
the performance of conjugated polymer fibers, paving the way for developing a new generation of fiber 
semiconductor devices. 

Keywords: liquid crystal, semiconductor fiber, fabric electronics, conjugated polymer 
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and yarns to possess sufficient strength. Fibers 
used for mechanized garment production should 
possess adequate mechanical properties, such as a 
yield strain ( εy ) of at least several percent [13 ], a 
high yield strength ( σ y ) and ideally, a high tensile 
strength ( σ s ) comparable to common materials 
such as cotton ( σ s > 400 MPa) and polyester 
fiber ( σ s > 450 MPa). However, it remains chal- 
lenging to obtain that degree of yield and tensile 
strength for fibers made from conjugated polymers 
while preserving excellent semiconductor behavior. 
The inherent backbone rigidity and high melting 
temperatures near thermal decomposition compli- 
cate the preparation of conjugated polymer fibers 
through methods like electrospinning and direct 
melt spinning [14 –17 ]. 

©The Author(s) 2025. Published
Commons Attribution License (h
work is properly cited. 
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NTRODUCTION 

-Conjugated poly mers ex hibit semiconducting be-
avior, making them suitable for a wide range of ap-
lications such as flexible electronics, organic pho-
ovoltaics and biosensors [1 –4 ]. Recent develop-
ents in the design and synthesis of conjugated poly-
ers have imparted diverse electronic functional-

ties to fibers and textiles, enhancing their appeal
or human–machine interfaces, personalized health-
are and energy conversion [5 –8 ]. Fiber-based elec-
ronic devices that can generate, transmit and mod-
late electronic functionalities are among the most
romising forms of wearable electronics available to-
ay [9 –12 ]. 
The processes used for the preparation of fabrics,
uch as weaving and knitting, often require fibers 
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In the case of wet spinning, poly(3,4-
thylenedioxythiophene):poly(styrenesulfonate) 
PEDOT:PSS) and poly(benzodifurandione)
PBFDO) filaments with enhanced mechanical
nd electrochemical properties have been achieved
hrough post-spinning drawing and coagulation
ath treatments [18 –21 ]. For example, PEDOT:PSS
laments with a σ s of up to 410 MPa and εy of 2.5%
ave been demonstrated [20 ], whi le PBFDO fila-
ents display a lower σ s of up to 250 MPa and a low
y of only 1% [21 ]. However, during the spinning
rocess, controlling the molecular state in the solu-
ion is equally crucial for enhancing the mechanical
nd functional properties of the fibers—a research
rea that is sti l l underexplored in the context of
onjugated polymer fibers [22 ]. 
Wet spinning of liquid-crystalline (LC) poly-
ers is a widely used technique for producing
igh-performance fibers, including polyaramid
aterials such as Kevlar R © . This technique leverages
he ordered phases of LC polymers to enhance fiber
roperties [23 ,24 ]. Similarly, due to the planar and
igid nature of some conjugated polymers, these ma-
erials exhibit liquid-crystal phenomena enhanced
y π−π interactions [25 ]. The ordered aggregate
tructure formed in solution is preserved during the
iquid-to-solid transition and thus persists in the
olid-state fiber [26 ]. Applying fluid shear stress to
he liquid-crystal aggregates can further enhance
he π−π stacking of macromolecular backbones in
bers, reducing internal flaws and facilitating high
rientation and crystallinity [27 ]. This potentially
mproves the charge transport and mechanical prop-
rties of conjugated polymer fibers. However, the
ransition of lyotropic liquid-crystal polymers from
sotropic dispersions to liquid-crystal dispersions is
riven by changes in concentration [28 ]. Despite
he potential benefits of LC spinning for conjugated
olymers, their commonly lower solubility makes it
ifficult to create LC solutions, posing a challenge in
eveloping suitable LC spinning processes for these
aterials [29 ]. 
Herein, we employed fluid shear stress to achieve

ontinuous liquid-crystal spinning of several typical
onjugated polymers by promoting π−π stacking
nteractions, resulting in semiconductor fibers with
igh orientation and crystallinity. Using a com-
ination of X-ray diffraction and electrochemical
nalysis, we elucidate the influence of shear stress on
−π interactions, crystallinity and charge transport
haracteristics of these fibers. Our findings reveal
hat the shear-enhanced orientation of liquid-crystal
olecules leads to significant uniaxial orientation

n the conjugated semiconductor fibers. This re-
ults in anisotropic electrochemical properties,
ith axial carrier mobility and transconductance
Page 2 of 12
enhanced by ∼400% compared to the radial direc- 
tion. The conjugated semiconductor fibers exhibit 
exceptional electrochemical properties, and also 
possess promisingly high yield strain and strength 
( εy = 3.4% and σ y = 383 MPa), tensile strength 
( σ s ∼ 600 MPa) for textile manufacturing, and 
stability under extreme temperatures ( −196°C to 
500°C), UV radiation, and acidic or basic condi- 
tions. These attributes indicate their potential to 
create practical and highly adaptable logic fabrics. 
Furthermore, we demonstrated a large-scale, fabric- 
based organic electrochemical transistor (OECT) 
array that seamlessly integrates into textile work- 
flows, offering real-time, non-invasive sensing (e.g. 
for chronic health monitoring) and paving the way 
toward robust, wearable smart textiles. 

RESULTS AND DISCUSSION 

Continuous liquid-crystal spinning of 
semiconductor fibers 
Poly(benzimidazobenzophenanthroline) (BBL) is 
an example of a conjugated polymer with a rigid 
backbone structure. In this study, the spinning 
solution is pressure-driven through a microfluidic 
channel, where shear forces enhance the molecular 
orientation and thereby promote the formation of 
a liquid-crystal phase. The formation of this phase 
aligns with previous studies describing the ther- 
motropic [30 –33 ] or lyotropic phases [34 ,35 ] upon
shearing of polymer solutions. Owing to its rigid 
molecular chains, which facilitate the formation of 
a lyotropic liquid-crystal phase [36 ], and its rapid 
proton exchange process, BBL can be continuously 
spun into fibers, exhibiting a high degree of uniaxial 
alignment (Fig. 1 a, Movie S1). 

We first studied the rheological behavior of BBL 

during the spinning process, focusing particularly 
on the isotropic–anisotropic phase equilibrium and 
shear-induced liquid-crystal formation. To this end, 
finite element simulations were carried out to inves- 
tigate the fluid behavior of BBL99 ( Mv = 33.0 kDa; 
99 repeating units) in methanesulfonic acid [BBL99 –
methanesulfonic acid (MSA)] at various concentra- 
tions and flow velocities in the spinneret region. The 
results indicate that increasing the flow rate and con- 
centration of BBL99 –MSA solutions increases the 
shear forces within the flow field (Fig. 1 b, Figs S1–S4, 
Table S1). Calculating the fluid parameters revealed 
a Reynolds number (Re) ranging from 0.22 to 8.80 
( Table S2), confirming that the flow remains lami- 
nar (Re < 20 0 0). Using a 5 mg mL−1 BBL99 –MSA
solution (dynamic viscosity = 4.737 × 10−2 Pa s) 
as an example, increasing the flow rate substantially 
enhances the shear forces within the fluidic field. 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf331#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf331#supplementary-data
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Figure 1. Continuous liquid-crystal spinning of semiconductor fibers. (a) Schematic of the fabrication process and photograph of macroscopic BBL99 
semiconductor fibers. (b) Thermogram showing maximum shear rates at different flow velocities and concentrations. (c) Finite element fluid simulation 
of shear stress distribution in a microfluidic channel (needle diameter: 200 μm) at flow rates of 0.2, 0.5 and 0.8 mL min−1 . (d) POM images of BBL99 –
MSA solutions in a 200 μm-diameter glass capillary under pressure-driven nematic flow, recorded at 45° to the polarizer and analyzer. Flow rates: 0, 
0.2, 0.5 and 0.8 mL min−1 . (e) The mean squared displacement (MSD) of N atoms in the BBL chain under thermal motion. (f) Molecular trajectory of the 
BBL–MSA solutions under different shear conditions. (g) Phase diagram showing the relationship between critical concentration and molecular weight 
in BBL–MSA solutions at 25°C. The solid black line indicates the theoretical phase boundary fitted using the Flory rigid-rod model. Blue and pink regions 
correspond to the isotropic and nematic liquid-crystal phases, respectively. (h) The POM image of the 90 mg mL−1 BBL99 –MSA solution taken at 45° to 
the analyzer. (i) Scanning electron microscopy (SEM) image of bent BBL99 fiber. (j) SEM image of BBL99 fiber-0.8. 
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he shear force distribution obtained through
nite element simulations closely corresponds to
he intensity and distribution of transmitted light
bserved via in situ polarized optical microscopy
POM) at varying flow rates (Fig. 1 c and d, Fig. S5).
hen viewed at a 45° angle to the analyzer direction,

he fluid exhibits birefringence, and the transmitted
ight intensity increases with the flow rate. 
Subsequently, the molecular dynamics of poly-
er chain interactions under shear stress were

nvestigated to elucidate how shear forces induce
he formation of low-concentration liquid-crystal
hases ( Fig. S6). To facilitate the simulation, we
elected three shear rates of 0.0042, 0.0105 and
.0169 ps−1 to investigate the effect of shear force.
ll simulations started from the same initial state.
s the shear rate increases, the slope of the mean
quare displacement curve of N atoms increases cor-
espondingly (Fig. 1 e), indicating that higher shear
ates promote the motion of BBL molecular chains.
dditionally, a larger gyration radius of N atoms and
he higher radial distribution function peaks reveal
he extension and aggregation of molecular chains
 Fig. S7). Molecular trajectories directly show that
BL chains align in a more orderly manner and
long the shear direction (Fig. 1 f). Flory’s molecular
heory [37 ,38 ] states that the critical concentration
or liquid-crystal phase formation is determined
olely by the axial ratio ( x ). For rigid rod-like BBL
olecules, the critical concentration depends on
olecular weight (Fig. 1 g). The calculated critical
oncentrations of BBL99 , BBL71 ( Mv = 23.6 kDa; 71
epeating units) and BBL54 ( Mv = 17.9 kDa; 54 re-
eating units) were 99.7, 138.5 and 181.0 mg mL−1 ,
espectively. According to Onsager’s second-virial
heory for rigid rods [39 ], the isotropic–nematic
ransition occurs when the gain in orientational en-
ropy compensates for the excluded-volume penalty,
esulting in a critical volume fraction that decreases
nversely with x . Under shear flow, BBL chains
re stretched and exhibit enhanced π–π stacking,
hich increases their axial ratio. Since the critical
oncentration is inversely related to x , even a mod-
st increase can significantly lower the threshold
equired for phase transition under shear. Conse-
uently, repeated shear deformation [40 ] induced
he emergence of a distinct liquid-crystal texture,
ven below the critical concentration threshold (Fig.
 g and h, Fig. S10). Furthermore, to investigate
he generality of the shear-enhanced liquid-crystal
pinning method, we also examined the behavior
f other conjugated polymer solutions under shear.
he polybisbenzimidazobenzophenanthroline-
ione (BBB), the glycolated polythiophene
(g2T-T), PBFDO, low molecular weight BBL39 
Page 4 of 12
( Mv = 13 kDa; 39 repeating units) and PEDOT:PSS 
were selected as representative conjugated poly- 
mers with flexible chains [BBB and p(g2T-T)], 
rigid chains (PBFDO and BBL39 ) and mixed 
conjugated:non-conjugated polymer systems (PE- 
DOT:PSS) (see Figs S11–S15 for chemical struc- 
tures). Polybisbenzimidazobenzophenanthroline- 
dione–MSA, BBL39 –MSA, PBFDO–DMSO and 
PEDOT:PSS–H2 O were adjusted to match the dy- 
namic viscosity of the BBL99 –MSA solution (5 mg 
mL−1 ) by modifying their concentrations. We also 
increased the dynamic viscosity of p(g2T-T)–MSA 

as much as possible. This adjustment allowed us to 
characterize these conjugated polymer solutions un- 
der the same shear conditions ( Table S3). In contrast 
to the rigid, rod-like molecular chain structure of 
BBL, BBB is a flexible-chain polymer that does not 
form LC mesophases in solution [36 ]. As a result, no
birefringence was observed in the BBB–MSA solu- 
tion ( Fig. S11). However, with increasing shear force, 
the intensity of transmitted light and the anisotropy 
of birefringence increased for the BBL39 –MSA and 
PBFDO–DMSO solutions ( Figs S12 and S13). In 
contrast, only slight birefringence was observed in 
the case of PEDOT:PSS–H2 O ( Fig. S14), likely due 
to its blend system and the short rigid main chain 
of PEDOT. Even at a concentration of 25 mg mL−1 , 
p(g2T-T)–MSA did not reach the comparable vis- 
cosity, and no birefringence was observed ( Fig. S15). 

These results indicate that the pronounced 
birefringence observed under shear arises from the 
formation of a liquid-crystal phase by rigid rod-like 
conjugated polymers. Liquid-crystal conjugated 
polymer BBL99 forms fibers with a well-defined 
annular structure, capable of bending to a radius of 
curvature of approximately 15 μm (Fig. 1 i). The 
resulting microfibers have diameters ranging from 

16.10 ± 0.09 to 18.08 ± 0.11 μm, depending on the 
flow rate (Fig. 1 j, Fig. S16). 

Microstructures of semiconducting fibers 
Grazing-incidence wide-angle X-ray scattering (GI- 
WAXS) was used to characterize the microstructure 
of BBL99 fibers (Fig. 2 a–c, Fig. S17). All BBL99 fibers 
exhibit a strong lamellar (100) diffraction peak at 
around qz = 0.76 Å−1 (d-spacing = 8.27 Å) and a 
strong π−π stacking peak (010) at qxy = 1.87 Å−1 

(d-spacing = 3.37 Å) (Fig. 2 d and e). As the shear
effect increases during spinning, the π−π stacking 
distance ( dπ−π) decreased from 3.52 Å for BBL99 
fiber-0.2 to 3.37 Å for BBL99 fiber-0.8. The full width 
at half maximum (FWHM) of the π–π stacking 
peaks for BBL99 fiber-0.2, -0.5 and -0.8 was 0.461, 
0.309 and 0.279 Å−1 , respectively ( Fig. S18). The 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf331#supplementary-data
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and out-of-plane (e) GIWAXS line profiles of BBL99 fibers. (f) dπ−π , Lc(010) and g(010) of BBL99 fibers. (g) Schematic of molecular packing in BBL99 fibers. 
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light reduction in the π−π stacking distance in-
icates that the BBL polymer chains become more
ighly aligned under larger shear forces, resulting
n stronger π−π interactions, longer coherence
ength [ Lc(010 ) ] and lower paracrystalline disorder
 g(010 ) ] (Fig. 2 f, Fig. S19) [41 ]. This indicates that
BL molecules adopt a highly ordered edge-on ori-
ntation aligned along the fiber axis. The molecular
ackbone planes are aligned parallel to the fiber axis,
hile π–π stacking occurs in the radial direction,
erpendicular to the axial direction of the fibers
Fig. 2 g). The results obtained for BBL39 fibers
lso exhibit the same trend, although the changes
re relatively minor owing to the shorter backbone
 Figs S20–S23). 
The microstructures of BBL99 fiber-0.8 and films

ere compared using transmission wide-angle X-ray
cattering (WAXS) ( Fig. S24). Both BBL99 fibers
nd films show a strong π−π stacking (010) peak
t around qz = 1.87 Å−1 (d-spacing = 3.37 Å),
hile only BBL fibers show a strong lamellar
100) diffraction peak at around qz = 0.76 Å−1 

d-spacing = 8.27 Å), which is consistent with the
IWAXS results. The WAXS diffractograms reveal
hat BBL fibers are oriented along the spinning
irection due to extrusion through the nozzle, as
ndicated by the diffraction ring evolving into arcs.
he WAXS curve at the (100) peak indicates that
he Hermans’ orientation factor [42 ,43 ] of BBL99 
ber-0.8 is approximately 0.72. Compared to the
Page 5 of 12
isotropy of thin films, fibers prepared with shear- 
enhanced liquid-crystal phases exhibit pronounced 
orientation. 

Alignment, stability and mechanical 
properties of semiconducting fibers 
The alignment of the BBL99 fiber-0.8 was confirmed 
by POM (Fig. 3 a, Fig. S25). To further explore the in-
ternal structure of the fibers, we used small-angle X- 
ray scattering (SAXS). The 1D integration of the 2D 

SAXS pattern yields a scattering intensity profile as a 
function of q ( Fig. S26). A distinct diffraction arc was 
observed at qed = 0.144 Å−1 in the equatorial direc- 
tion, and it was absent in the meridian direction. This 
indicates the presence of a biphasic LC/isotropic 
structure in the BBL fiber with a periodicity of 43.8 Å
[44 ]. Moreover, the liquid-crystal phase is aligned 
along the fiber axis due to the shear force. 

BBL chains have planar rigid backbones that 
stack face-to-face, enhancing π−π interactions 
between polymer chains [45 ,46 ]. This increased 
interaction correlates with a rise in tensile strength 
from 218 MPa (BBL99 fiber-0.2) to 337 MPa (BBL99 
fiber-0.8) (Fig. 3 b). Both σ y and εy increased 
from 185 MPa and 1.7% to 249 MPa and 3.4%.
Furthermore, BBL39 and BBL71 fibers with lower 
molecular weights exhibit a similar trend, where the 
tensile strength increases with enhanced shear force 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf331#supplementary-data
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https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf331#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf331#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf331#supplementary-data
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uring fiber formation. In addition, the mechanical
roperties of the fibers are strongly dependent
n the molecular weight [47 ]. Under the same
hear condition, the tensile strengths of BBL39 
ber-0.8 and BBL71 fiber-0.8 are 139 ± 8 MPa and
14 ± 13 MPa, respectively ( Fig. S27). Fibers spun
rom high-molecular-weight BBL165 ( Mv = 55 kDa;
65 repeating units) featured Young’s modulus of
5.3 GPa, σ s of 595 MPa and elongation at break
f 54%, surpassing commonly used textile fibers
48 –50 ] (Fig. 3 b and c). The σ y and εy values were
83 MPa and 2.4%, respectively. 
The rod-like and ladder-like molecular struc-

ure imparts BBL fibers with excellent ultraviolet
esistance, chemical stability and thermodynamic
tability, significantly broadening their application
n the field of intelligent textiles (Fig. 3 d, Fig. S28).
fter 12-h exposure to intense UV irradiation
50 0 0 W m−2 at 365 nm, approximately 3500 times
he conventional UV light intensity), BBL99 fiber-0.8
etained 96% of its tensile strength, similarly pre-
erved after soaking in acetone (99.5 vol%), NaOH
30 wt%) and H2 SO4 (70 vol%) for 24 h, retaining
4%, 91% and 90% of the initial tensile strength,
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respectively. Owing to their low crystallinity and ori- 
entation, BBL99 fiber-0.2 and -0.5 retained only 88% 

and 89% of their tensile strength in NaOH solution, 
respectively. Similarly, they retained 82% and 85% 

of their strength in H2 SO4 solution, respectively 
(Fig. 3 e). 

The high crystallinity and orientation induced by 
shear-enhanced liquid-crystal phases confer thermal 
stability to BBL fibers. Moreover, BBL99 fibers are 
resilient to changes in temperature, as evidenced 
by a minimal change in tensile strain when heated 
from −120°C to 250°C while under constant tensile 
stress ( Figs S29 and S30). Figure S31 shows a dif- 
ferential scanning calorimetry (DSC) thermogram 

for BBL99 fiber. As previously reported [36 ,51 ], 
there are no observable thermal transitions be- 
tween 0°C and 300°C. Thermogravimetric analysis 
(TGA) indicated mass retention of about 98.2% 

upon heating to 500°C ( Fig. S32a). The fibers 
exhibited outstanding thermomechanical stability, 
remaining stable even in liquid nitrogen (Fig. 3 f, 
Fig. S32b–d, Movie S2), which confirms their ro- 
bust mechanical properties and stability in various 
environments. 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf331#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf331#supplementary-data
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https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf331#supplementary-data
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emiconductor fiber-based OECTs and 

abric arrays 
e evaluated the impact of shear-enhanced liquid-
rystal phases on the functionality of BBL99 fiber
ECTs. The electrical and electrochemical prop-
rties of BBL fibers were extracted from OECT
ransfer and output measurements. The BBL99 fiber
as positioned across patterned Au source and drain
lectrodes, with the active channel covered by a
.1 M NaCl electrolyte and biased via an A g/A gCl
ate electrode (Fig. 4 a). All BBL99 fiber OECTs show
 ypical n-t ype accumulation-mode behavior in both
utput and transfer curves, as well as a standard de-
iation of the maximum drain current ( ION 

) of less
han 4.7% for five different devices ( Fig. S33). The
ON 

/ IOFF ratio increased from 2.5 × 103 for BBL99 
ber-0.2 devices to 6.5 × 103 for BBL99 fiber-0.8
ECTs (Fig. 4 b and c, Fig. S34). At a drain voltage

 VD ) and gate voltage ( VG ) of 0.7 V, the drain
urrent ( ID ) reaches 0.30 ± 0.01 mA for BBL99 
ber-0.2 devices compared to 0.46 ± 0.02 mA for
BL99 fiber-0.8 devices. The maximum geometry-
ormalized transconductance ( gm, norm 

) increases
rom 2.21 ± 0.11 S cm−1 for BBL99 fiber-0.2 de-
ices to 2.76 ± 0.09 S cm−1 for BBL99 fiber-0.8
evices (Fig. 4 c, Table S4). We then calculated the
roduct of charge-carrier mobility and volumetric
apacitance ( μC *) to be 5.91 ± 0.18, 6.59 ± 0.32
nd 7.66 ± 0.48 F cm−1 V−1 s−1 for BBL99 fiber-
.2, BBL99 fiber-0.5 and BBL99 fiber-0.8 devices,
espectively ( Fig. S34, Table S5). Since C * does not
hange significantly within the series, it averages 655
o 667 F cm−3 ( Figs S35–S38), the and μ ranges
rom (8.98 ± 0.65) × 10−3 cm2 V−1 s−1 for BBL99 
ber-0.2 devices to (1.15 ± 0.08) × 10−2 cm2 V−1 

−1 for BBL99 fiber-0.8 devices (Fig. 4 d). 
The enhanced performance of BBL99 fiber-based
ECTs is attributed to strong π−π interactions and

ncreased crystallinity confirmed with GIWAXS,
ndicating that the formation of shear-enhanced
iquid-crystal phases leads to enhanced charge trans-
or t proper ties of the rigid BBL polymer backbone
52 ,53 ]. Figure 4 e demonstrates the robustness
f the electrical output of a BBL99 fiber OECT
t VD = 0.6 V with sequential gate bias pulses
 VG = 0–0.6 V) for nearly 25 h. After more than
0 0 0 0 sw itching c ycles, the dev ice maintained a
table ION 

/ IOFF ratio of approximately 103 , demon-
trating the exceptional electrochemical stability of
BL fibers in aqueous electrolytes. To the best of our
nowledge, this represents the highest cycling stabil-
ty reported among fiber-based OECTs to date. The
esponse time of a BBL99 fiber OECT was assessed
y exponential fitting, yielding ON/OFF response
imes of 507 and 44 ms, respectively ( Fig. S39).
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The electrochemical characteristics of previously 
reported fiber-based OECTs are summarized in 
Table S6. According to the WAXS data, BBL99 fibers 
exhibit higher orientation than the freestanding 
BBL99 films obtained by spin-coating. As charge 
transport in organic semiconductors strongly de- 
pends on molecular orientation, we evaluated the 
electrochemical response of BBL99 fibers along 
their axial and radial directions. A BBL99 fiber-0.8 
was placed in the wet state with its radial direction
along the channel between the source and the drain. 
The electrode and electrolyte setup matched the 
axial BBL99 fiber OECTs, which comprised a fiber 
with its axis aligned along the channel (Fig. 4 f). We
then calculated μC *, μ and maximum gm, norm 

for 
radial BBL fiber OECTs to be 1.76 F cm−1 V−1 s−1 , 
2.64 × 10−3 cm2 V−1 s−1 and 0.69 S cm−1 , respec- 
tively ( Fig. S40). Benefiting from the high degree of 
axial alignment, the μC *, μ and maximum gm, norm 

extracted from axial fiber OECTs are approximately 
four times higher compared to those of radial fiber 
devices (Fig. 4 g and h). In axial fiber OECT devices,
charge carriers are propagated along highly coherent 
transport pathways enabled by enhanced π–π stack- 
ing due to the strong axial alignment of polymer 
chains. This ordered molecular orientation facili- 
tates nearly unobstructed carrier transport, leading 
to a significant enhancement in carrier mobility. In 
contrast, radial transport in fiber OECTs is hindered 
by microstructural discontinuities perpendicular 
to the fiber axis, such as grain misalignments and 
interfacial boundaries, which introduce additional 
interfacial scattering and significantly reduce the 
effective carrier mobility [54 ]. As a complementary 
experiment, BBL99 fiber-NS was fabricated under 
near-zero shear conditions. The corresponding 
OECT devices exhibited higher carrier mobility 
[(0.623 ± 0.012) × 10−2 cm2 V−1 s−1 ] compared 
to radial BBL fiber OECTs, thereby further confirm- 
ing the critical role of molecular chain alignment in 
promoting efficient charge transport ( Fig. S41). 

Leveraging the exceptional mechanical and 
electrochemical properties of BBL fibers, fully 
textile OECT arrays were fabricated by patterning 
electrodes onto nanofiber fabrics and arranging 
BBL fibers in a structured configuration (Fi g. 4 I,
Fig. S42). The transfer characteristics of the 6 × 6 
OECT devices in the central region were measured 
to assess reliability, demonstrating outstanding de- 
vice uniformity, with an average gm 

of 1.39 ±0.06 mS
and ION 

/ IOFF ratio of 1557 ± 73 (Fig. 4 j and k).
These results highlight the process reproducibility 
of semiconductor-fiber OECTs and their strong 
compatibility with current textile manufacturing 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf331#supplementary-data
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abric-level logic circuits 
fter demonstrating high-performance n-type
ccumulation-mode fiber OECTs, we fabricated
AND logic circuits with two, three, four and
Page 8 of 12
five input signals ( Fig. S43). T he NAND gate 
is a fundamental component in digital electron- 
ics, and it can be used to build combinational 
logic circuits such as adders and data selectors 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf331#supplementary-data
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55 ]. The successful implementation of these cir-
uits highlights the potential of semiconductor
bers for building large-scale 0–1 logic gate cir-
uits, enabling real-time portable logic operations.
oly(benzimidazobenzophenanthroline) fibers, due
o their exceptional electrochemical and mechanical
roperties, are well suited for fabricating fabric logic
ircuits. 
To integrate signal conversion and digital logic

perations into smart textiles, we used weaving tech-
ology to construct fabric-level logic circuits with
emiconductor fibers. BBL99 fiber-0.8 was combined
 ith poly imide fibers bearing patterned electrodes
o form the source, drain and channel regions. Con-
Page 9 of 12
ductive A g/A gCl-coated nylon fibers served as gate 
electrodes. These functional fibers were woven into 
fabric, and solid electrolytes were applied at fabric 
joints to create fabric-level OECTs. The primary 
function of a transistor device is to serve as an elec-
tronic switch in a circuit. The fabric BBL OECT was
connected in series with light-emitting diode (LED) 
drivers and integrated into the fabric (Fig. 5 a and b).
As the VG increased, circuit current and red, yellow, 
blue (RYB) LED brightness increased accordingly, 
reaching a fully conductive state at VG = 0.6 V 

(Fig. 5 c). Fabric NAND gate logic circuits were 
also fabricated using BBL-fiber OECTs (Fig. 5 d 
and e). These fabric NAND gate circuits showed 
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xcellent performance comparable to planar devices
nd can communicate 0–1 digital signals (Fig. 5 f).
he ON-to-OFF output transitions (from digital ‘1’
o ‘0’) confirm the correct logic functionality. This
apability enables the development of more complex
evices and circuits, highlighting the potential for
ntegrating intelligent circuits into textiles. 
Owing to the logical versatility of NAND circuits,

heir application can be extended to non-invasive
ulti-marker sensing of biochemical indicators

n human sweat. The high biocompatibility of
abric-based sensing platforms supports continuous
onitoring of chronic conditions such as diabetes
Fig. 5 g). In this system, the gate of a nanofiber-
ased OECT is functionalized with glucose oxidase
GOx) for selective glucose detection in sweat. An-
ther OECT device with an A g/A gCl gate responds
o Na+ and K+ ions. Integration of these two OECTs
orms a NAND logic-based multi-marker sensing
nit. Replacing the resistive OECT in the NAND cir-
uit with a fabric-based electrochromic (EC) device
 Figs S44 and S45), integrated with fiber zinc–air
atteries and functionalized OECTs, enables the
reation of a ful ly texti le-based, visually responsive
earable logic sensing system. When both OECTs
re off, the driving voltage ( VEC ) remains low, and
he EC device appears dark brown. Activation of the
 g/A gCl OECT by sweat simulant exposure slightly
ncreases VEC , but it remains below the threshold
or EC color change. At this stage, the EC device
emains dark brown. When the GOx OECT inter-
cts with glucose-containing sweat simulant, the
nzymatic oxidation of glucose releases electrons,
ncreases VG and alters ID , raising VEC to approx-
mately 0.9 V [56 ]. This voltage triggers a color
ransition in the EC device from dark brown to dark
old, visually indicating physiological state (Fig. 5 h).
his fully textile-integrated sensing platform meets
he requirements for non-invasive, wearable and
isually responsive real-time health monitoring. 

ONCLUSION 

n summary, we demonstrate that shear-induced
ormation of a lyotropic LC phase enabled the
abrication of BBL fibers with pronounced uniax-
al alignment. This molecular ordering markedly
nhances both mechanical and electrochemical
erformance, yielding anisotropic charge transport,
here axial carrier mobility and transconductance
ere approximately four times higher compared
o the radial direction. The fibers exhibit a yield
trength of 383 MPa, tensile strength of 600 MPa
nd elongation at break of 54%, alongside excellent
nvironmental stability. These properties make
Page 10 of 12
them well suited for scalable textile manufactur- 
ing and high-performance wearable electronics. 
Furthermore, the development of a fully textile- 
integrated visual logic sensing platform integrating 
fiber-based sensing, energy storage and logic ele- 
ments paves the way for real-time health monitoring 
and precision medical applications. 

METHODS 

The synthetic strategies and experimental parts of 
this work are presented in the supplementary data. 
These methods include the fabrication of fibers, 
fiber OECTs, fabric circuits and the associated 
electrochemical and mechanical property charac- 
terization. More detailed information is provided in 
the online Supplementary data. 

SUPPLEMENTARY DATA 

Supplementary data are available at NSR online. 
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