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Abstract
The Dedekind zeta functions of infinitely many non-Galois cubic fields have negative
central values.
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1 Introduction

Let K be a number field of degree n, and denote its Dedekind zeta function by ¢g.
It was known to Riemann that ;’Q(%) = —1.46... < 0. Hecke proved that {x (s) has
a meromorphic continuation with a simple pole at s = 1 and root number +1. The
generalized Riemann Hypothesis claims that all the nontrivial zeros lie on the line
s = 1/2, which would imply that ¢g (s) takes only negative real values in the open
interval s € (1/2, 1) by the intermediate value theorem. This leads to the question of
the possible vanishing of (g (s) at the central point s = 1/2. The answer was given
by Armitage [1] who showed that a certain number field K of degree 48 constructed
by Serre [29, §9] satisfies ;K(%) =0, and also by Frohlich [17] who constructed
infinitely many quaternion fields K of degree 8§ such that g‘K(%) = 0. In each of these
examples, {k (s) factors into Artin L-functions some of which have root number —1.
Such an L-function is forced to vanish at s = 1/2 which in turn forces ;K(%) =0.
Conversely, which conditions on K can warrant that {K(%) is non-vanishing? A
conjecture of Serre [19, Conjecture 8.24.1(2)] claims that if p is an irreducible rep-
resentation of Gal(M/Q) for a finite Galois extension M of Q, then the Artin L-
function L(s, p) vanishes at the central point s = 1/2 if and only if p is self-dual
and the root number is —1. An Sy,-number field K is a degree-n extension of QQ such
that the normal closure M of K has Galois group S, over Q. For such a field K,
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Central values of zeta functions of non-Galois cubic fields 35

Ck (s) factors as the product of {g(s) and an Artin L-function L(s, px) which is ir-
reducible because pk is the standard (n — 1)-dimensional representation of S,,, and
whose root number is +1 because the root numbers of both ¢k and g are +1. This
conjecture of Serre (in conjunction with GRH) would thus imply that ;K(%) < 0 for
every S,-number field K.

In the case n = 2, a classical result of Jutila [23] establishes that ;K(%) is non-
vanishing for infinitely many quadratic number fields K. This was later improved
in a landmark result of Soundararajan [32] to a positive proportion of such fields
when ordered by discriminant, with this proportion rising to at least 87.5% in some
families. In this article, we study the case n = 3. Our main result is as follows.

Theorem 1 The Dedekind zeta functions of infinitely many Ss3-fields have negative
central values.

We will in fact prove a stronger version of Theorem 1, in which we restrict our-
selves to cubic fields satisfying any finite collection of local specifications. To state
this result precisely, we introduce the following notation. Let ¥ = (X,) be a finite
collection of cubic local specifications. That is, for each place v of Q, X, is a non-
empty set of étale cubic extensions of Q,, such that for large enough primes p, X,
contains all étale cubic extensions of Q,. We let F5 denote the set of cubic fields K
such that K ® Q, € X, for each v. Then we have the following result.

Theorem 2 Let X be a finite collection of local specifications. Then there are infinitely
many S3-fields in Fx, with negative central value.

Define Fx (X) to be the set of fields K € Fx with |A(K)| < X. The foundational
work of Davenport—Heilbronn [12] determined asymptotics |Fx(X)| ~ ay - X with
an explicit constant ay > 0.

We prove quantitative versions of our main theorems, where we give lower bounds
for the logarithmic density 5x(X) of the set of fields arising in Theorem 2 with
bounded discriminant:

85(X) :=log|[{K € Fx(X), tk(3) <0}|/log X. @)

Our next result implies that the number of cubic S3-fields whose Dedekind zeta func-
tion is negative at the central point has logarithmic density > 0.67:

Theorem 3 For any finite collection ¥ of local specifications,

64 97
Hminfés (X) > — =0.67368...:  limsupdy(X) > —— = 0.75781 ...
iminfox (X) = 5 : imsup 9z (X) = 17¢

X—00

Note that Theorem 2 is an immediate consequence of Theorem 3 since we may
add a specification X, at an additional prime p that forces all cubic fields K € Fyx to
be non-Galois. Alternatively, we may observe that the number of Galois cubic fields

K, with discriminant less than X, is known to be asymptotic to ¢ X > by work of Cohn
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36 A. Shankar et al.

[10], where c is an explicit constant. Hence, Theorem 3 implies that most cubic fields
K € Fx(X) with {K(%) < 0 must be non-Galois.
The above numerical values are established from

2 3
liminfs (X) > ———: limsup s (X) > > + 6,
iminfoy (X0 = 37735 imsup oz (X) = 7 +

X—o00

where § = 1%—8 is the current record subconvexity exponent due to Blomer—Khan [7],
which implies

Ick (3] < JA(K)|F 0%,

The convexity bound 5 = 0 still yields the same kind of asymptotic results for 5 (X),
only with the weaker lower bound of % The same applies to all other results in this
paper so that a reader who wouldn’t want to rely on the above recent subconvexity es-
timate could stay with § = 0. Other numerical values for § > 0 have been obtained by
Duke—Friedlander—Iwaniec [16], Blomer—Harcos—Michel [8, Corollary 2], and Wu
[36].

Conditional on the Lindelof Hypothesis for all {x ( %), K € Fsx, we would have
X]i_)moo 8z (X) = 1. Even this conditional result would not imply that a positive pro-

portion subset of Fx(X) is non-vanishing, it does only guarantee the existence of
>¢ X17€ cubic fields K € Fx (X) with {K(%) < 0 for every € > 0.

A cubic number field is an S3-field if and only if it is not Galois; hence we refer to
non-Galois cubic fields as S3-fields. Galois cubic fields are cyclic and (as is already
noted above) the number of cyclic cubic fields K of discriminant less than X is about
X?. The zeta function of a cyclic cubic field K factors as a product of Dirichlet L-
functions of conjugate cubic characters of conductor |A(K )|% (see §3.1). It follows
from a result of Baier—Young [2, Corollary 1.2] that for > X 7 cyclic cubic fields of
discriminant less than X the Dedekind zeta function is negative at the central point.
Recently, David—Florea—Lalin [14] have studied the analogous problem of cyclic cu-
bic field extensions of the rational function field F, (T'), where they obtain a positive
proportion of non-vanishing. Their results and methods would also yield a positive
proportion of non-vanishing (conditional on GRH) for the family of cyclic cubic ex-
tensions over Q. See also the papers of David—Giiloglu [13], Giiloglu—Yesilyurt [21],
and Giiloglu [20] for analogous results for families of extensions of the Eisenstein

field Q(¢3).

1.1 The first moment of the central values of Artin L-functions of cubic fields

There is an extensive literature on the non-vanishing at special points of L-functions
varying in families. The present situation of cubic fields is an important geometric
family. Its central values are of GL,-type and well-studied from an analytic perspec-
tive. At the same time, the geometry of the count of cubic number fields with bounded
discriminant has a rich history.
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Central values of zeta functions of non-Galois cubic fields 37

Let K be a cubic field. The Dedekind zeta function of K factors as ¢x(s) =
Zo(s)L(s, px ), where L(s, px) denotes the Artin L-function associated with the 2-
dimensional Galois representation

ek : Gal(M /Q) < 83 — GL,(C),

where M is the Galois closure of K. It is known from work of Hecke that L (s, pk) is
an entire function. It will be more convenient for us to work with the central L-value
L(%, pk ) rather than {K(%), which is equivalent since they differ by the non-zero
constant {@(%).

In order to prove Theorem 3, the standard approach is to estimate the first moment
of L(%, pk) for K € Fx. Thus we ask the question: can one obtain an asymptotic for

Z L(%,pK), as X — o0?
KeFs(X)

This question is still open. Fortunately, we observe that we may weaken the ques-
tion in the following three ways: First, we shall study the smooth version which is
technically much more convenient. Second, we shall impose two local specifications
Xp, X at additional primes p # p’. Third, and this is our most important point, we
observe that it suffices that the remainder term can be expressed in terms of central
values of cubic fields with lower discriminant. Indeed, we then have a dichotomy of
either an asymptotic for the first moment or an unusually large remainder term, either
of which implies the non-vanishing of many central values.

Theorem 4 There exists an absolute constant u > 0 such that the following holds.
Suppose that for some prime p, the specification is ), ={Q 3} (i.e., the cubic fields
in Fx. are prescribed to be inert at p), and for another prime p’, the specification is
2,y ={Qy x Qp/z} (i.e., the cubic fields in Fx, are prescribed to be neither inert nor
splitat p"). Let ¥ : R. o — C be a smooth compactly supported function and suppose
that \3(1) = fooo W = 1. Then, forevery 0 <v <pu,e >0,and X > 1,

5wtk pe)o(2)

KeFy

=Cs-X - (logX +¥'(1)) +C% - X

4 Ocz o (X1 4 xEe M)
Ke]—‘z(x%ﬂ) |AK)|?
where Cx > 0 and C’2 € R depend only on X.

It is easy to see that Theorem 4 implies that infinitely many fields K € Fx have
nonzero central values using an argument by contradiction. If there were finitely many
non-vanishing L-values, then the left-hand side would be bounded, and the second

term inside Oc ,,x,w(-) of the right-hand side would be bounded by X %“. This is a
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38 A. Shankar et al.

contradiction because the term Cy X log X would be larger than all the other terms.
The fact that Theorem 4 also implies Theorem 3 is established in Sect. 10.

The main term of Theorem 4 is familiar in the study of moments of L-functions.
In particular the nature of the constants Cx and C¥;, is transparent, with Cx propor-
tional to the Euler product (2). We denote the nth Dirichlet coefficient of L(s, pg) by
A (n), which is a multiplicative function of n. For a prime power pX, the coefficient
Lk (p%) depends only on the cubic étale algebra K ® Q p over Qp, and is in fact de-
termined by Ox ® IFj,, where Ok denotes the ring of integers of K. Therefore, for
a fixed positive integer n, the asymptotic average value of Lg (n) over K € Fy is in
fact an average over a finite set (see [27, §2.11] and [30, §2] for a general discussion
of this phenomenon in the context of Sato—Tate equidistribution for geometric fami-
lies). We denote this average by #x (n) and note that this is a multiplicative function
of n.

We have t5 (p) = Oy (1) as the prime p — oo, which also is a general feature [30,
§2] that implies that the number field family Fx is expected [27, Eq. (11)] to have
average rank 0. Moreover, fx ( pH=1+ Oz(p—lz) for the present family Fy which

implies that the following normalized Euler product converges:

Sy Y
[1[a-» l)g%]. @)

p

This product is shown to be positive and to be proportional to Cx, (see Sect. 8).

We shall discuss the remainder terms and our proof of Theorem 4 in §1.3. An
explicit value of w is a tenth of a thousandth. This small numerical value arises from
the complications in bounding the remainder terms in all of the different ranges in

our proof coupled with that the exponent of the secondary term X g of the asymptotic
count of cubic fields is already by itself close to 1.

1.2 Low-lying zeros of the Dedekind zeta functions of cubic fields

Our equidistribution results in Sect. 6 on the asymptotic average value of Ak (n) over
K € Fx(X) with robust remainder terms as n, X — oo have applications towards the
statistics of low-lying zeros of the Dedekind zeta functions of cubic fields (the Katz—
Sarnak heuristics). A conjecture in [27] predicts that for a homogeneous orthogonal
family of L-functions, the low-lying zeros of the family should have symplectic sym-
metry type. Given a test function ® : R — C, let D(Fx(X), ®) denote the 1-level
density (defined precisely in Sect. 7) of the family of Dedekind zeta functions of the
fields in Fx with respect to ®. Then the Katz—Sarnak heuristics predict the equality

1
Jim D(Fs(X), d) = D(0) — % f ®(1)dt, (3)
— 00 1

for all even functions ®, whose Fourier transform & has support contained in (—a, a)
for a constant a to be determined. Yang [37] verifies (3) for even functions & whose
Fourier transform has support contained in (— %, 51—0). The constant 51—0 has been
subsequently improved to % by work of Cho—Kim [9] and independently [30]. Here,
we prove the following result:
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Central values of zeta functions of non-Galois cubic fields 39

Theorem 5 Let ¥ be a finite collection of local specifications and assume that
Zp ={Qp3} and Ty ={Qp x Qp2} for two primes p # p’. Then (3) holds for
even functions ® whose Fourier transform has support contained in (— %, %).

1.3 Overview of the proof of the main theorems

These proofs are carried out in several steps. First, we control the central value
L(%, pk) using the approximate functional equation. This allows us to approximate
L( %, pk) in terms of a smooth sum of the Dirichlet coefficients Ag (n), where the
sum has length O, (|A(K)|1/2+€). More precisely, we have

1 _ > Ag(n) o n
LG o0 =25V iz @

where V¥ is a rapidly decaying smooth function depending only on the sign % of
A(K). Therefore, studying the average value of L(%, pk) as K varies over the family
Fx(X) of cubic fields with discriminant bounded by X necessitates the study of
smoothed sums of Dirichlet coefficients A g (n):

L Ak (n)V [AK)] , ©)
nl/2 X

n<X1/2+e KeFs

where W : R.g — C is a smooth function with compact support. In particular, a basic
input for the proof is the determination of the average value tx(n) of Ag(n) over
K € Fx(X). Moreover, it is necessary to obtain good error terms for this average
with an explicit dependence on n.

1.3.1 Expanding the definition of A  (n) to cubic rings R

In order to compute the average value of Ax (n) over K € Fx with good error terms,
it is necessary for us to expand this average to one over cubic orders R. This is be-
cause cubic rings can be parametrized by group orbits on a lattice and Poisson sum-
mation, applied through the theory of Shintani zeta functions following Taniguchi—
Thorne [33] and [34], becomes available as an important tool.! It is therefore neces-
sary for us to define a quantity A g (n), for positive integers n and cubic rings R. There
are different natural choices for the value of A g (n). For example, it is possible to set
the Dirichlet coefficients of R to be equal to the corresponding coefficients of R ® Q.
Another possible choice arises from work of Yun [38], in which Yun defines a natural
zeta function ¢ (s) associated to orders R in global fields. It is then possible to set
the Dirichlet coefficients of R to equal the corresponding coefficients of {g(s)/Z(s).

IThis is in direct analogy to the quadratic case, in which P6lya—Vinagradov type estimates are used to esti-
mate the sum of Legendre symbols (%), as D varies over all discriminants and not merely the squarefree
ones.
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40 A. Shankar et al.

However, we require A g (n) to satisfy the following three conditions:

(a) We require Ag(n) = Lk (n) when R is the ring of integers of K.

(b) We require Ag(n) to be multiplicative in n.

(c) When p is prime, we require the value of Ag( pk ) to be defined modulo p, i.e.,
Ar(p¥) should be determined by RQF),.

The above two candidate choices for A (n) satisfy the first two properties, but not the
third. In fact, the above three conditions uniquely determine the value of Ag( pk ) for
rings R such that R ® Z,, is Gorenstein, in the sense that Hom(R, Z ) is free.2 More
precisely, Ag(n) should be defined to be the nth Dirichlet coefficient of D(s, R),
where D(s, R) is defined by an Euler product whose pth factor D (s, R) is given by

(1—p=72 if RQF,=F;

(1—p=2)~"! if RQF,=F,®Fy;
Dy(s,R):i=1 (1+p~S+p~ 2~ if RQF,=F (6)

(1—=p=H~! if RQF,=F,®F,[t]/(t?);

1 else.

It is clear from the definition that A g (n) satisfies the three required properties.
1.3.2 Summing A g (n) over cubic rings R with bounded discriminant

Next, we need to evaluate a smoothed sum of Az (n), for R varying over cubic rings
having bounded discriminant. Such a result follows immediately from the following
three ingredients. First, the Delone-Faddeev parametrization of cubic rings in terms
of GL,(Z)-orbits on V (Z), the space of integral binary cubic forms. Second, results
of Shintani [31] on the analytic properties of the Shintani zeta functions associated to
V(Z). Third, local Fourier transform computations of Mori [26] on V (IF).

Let n be a positive integer, and write n = mk, where m is squarefree, k is powerful,
and (m, k) = 1. Then we have the following result, stated for primes and prime pow-
ers as Theorem 5.10, which is a smoothed cubic analogue of the Pélya—Vinogradov
inequality: There exist explicit constants «(n) and y (n) such that

3 AR(n)w(m;ﬂ)=a(n)X+y(n)X5/6+05(nf-m-rad(k)z), %)
[R:Z]=3

where rad(k) denotes the radical of k, and the sum over rings is weighted by the
inverse of the size of the stabilizer, | Stab(R)|~!.

2Non Gorenstein rings R over Z, are those such that R @ F, is of the form (1, x, y) with x2= y2 =xy=
0 (see [18]).

@ Springer



Central values of zeta functions of non-Galois cubic fields 41

1.3.3 Sieving to maximal orders

We define the quantity

Ar(n) n
sor=3 5V ()

We note that S(R) = L(%, pk) when R is the ring of integers of K. However, when

R is not maximal, it is not necessarily true that S(R) is equal to D(%, R). In order to
evaluate (5), we need to perform an inclusion-exclusion sieve. Thus, for all squarefree
integers ¢, we need estimates on the sums

> sww(EH), ®)
ReM,

where M, denotes the space of cubic orders R that have index divisible by ¢ in the
ring of integers of R ® Q. Estimating sums over M is tricky since the condition of
nonmaximality at ¢ is defined modulo ¢ and not modulo ¢. That is, maximality of R
at a prime p cannot be detected from the local algebra R ® IF,. To reduce our mod q°
sum to a mod g sum, we use an idea originating in the work of Davenport—Heilbronn
[12] and further developed as a precise switching trick in [5]. Namely, we replace the
sum over M, with a sum over the set of overorders of M, of index-q.

For g in what we call the “small range”, i.e., ¢ < X 1/8=¢ the switching trick in
conjunction with (7) allows us to estimate each summand in (8) with a sufficiently
small error term. Ideally, we would use a tail estimate for large g. This tail estimate
requires bounding the value of S(R) for nonmaximal rings R. The convexity bound
yields the following estimate for rings R € M, with A(R) < X:

1/4+e
[S(R)| K¢ ———. )
€ q'/?

Neither the convexity bound nor the best known subconvexity bounds give suffi-
ciently good estimates to cover all squarefree integers ¢ > X '/87¢. However, as-
suming the generalized Lindelof Hypothesis (or indeed, a sufficiently strong sub-
convexity bound) is enough to determine the first moment for L(%, 0k). Moreover,
this method yields unconditional upper bounds on the average value of L(%, PK), @
slightly stronger version of which is proven in Theorem 8.7:

Theorem 6 Let X be a finite collection of local specifications and assume that ¥, =
{st} and ¥ ={Qp x Qp/z}for two primes p # p'. Then for X > 1, we have

A(K
> (o) w () im0, (10)

KeFs

We note that this average bound is significantly stronger than the bound obtained
by simply summing the best known pointwise upper bounds for L ( %, PK).

@ Springer



42 A. Shankar et al.

1.3.4 The approximate functional equation for cubic rings

The first ingredient required for estimating S(R), when R is a nonmaximal cubic
order with index > X !/8¢_is a generalization of the approximate functional equation
(4) to the setting of cubic orders. This modification is proved in Proposition 4.11,
and expresses S(R) — D(%, R) as a sum of arithmetic quantities associated to R.
The advantage of expressing S(R) in this way is that this latter sum is much shorter
than the original sum defining S(R): of length <, X /%€ /4 rather than <« X'/>*€.
However, this shortening comes at a cost. The summands of this new sum involve
Dirichlet coefficients from both D(s, R) and L(s, prgQ)-

In order to control the coefficients of L(s, prg@), it is necessary to isolate the
exact index of R in the ring of integers of R ® Q. Merely knowning that ¢ divides the
index is not enough. To precisely control the index, a secondary sieve is necessary.
Carrying out this secondary sieve yields the following estimate for ¢ > X /8-¢:

3 S(R)\IJ('A;RN)% 3 D(%,R)\D('A;RN). (11)
ReM, ReM,

This estimate is proved in Sect. 9, and is the crucial technical ingredient in the proof
of Theorem 4. Equation (11) allows us to exploit the advantages of using S(R) and
D(%, R) in the original inclusion exclusion sieve. Namely, for small ¢, the sum of
S(R) over R € M, can be well estimated with Equation (7) since S(R) is simply a
sum of the coefficients Ag (n). However for large g, it is advantageous to instead sum
D(%, R) over R € M,,. This is because the value of D(%, R) behaves predictably as
R varies over suborders of a fixed cubic field.

1.3.5 Summing D(%, R) over R € M, and over large ¢

We are left to estimate the sum

> w@ Y pd pw(E). (12

g>X1/8-¢ ReM,

Expressing D(%, R) in terms of L(%, PrReQ) allows us to repackage (12) into sums
of the following form:

> 2 DGR
KeFs RcOg
[AK) =Y ind(R)=</X]Y
Lex X¢ Y #{RCOk:ind(R) < VX/Y}-|L(3. px)l.

KeFy
|A(K)|<Y

(13)

Let K be a fixed cubic field. A result of Datskovsky—Wright [11] gives asymptotics

for the number of suborders of K having bounded index. This yields Theorem 4.
Our next idea is to assume the nonnegativity of L(%, PK)- Since the result of

Datskovsky—Wright is very precise, it turns out that we can input the unconditional
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upper bound on the sums of L(%, pk) in (10), to obtain an improved upper bound on
the right-hand side of (13). This improved upper bound is enough to obtain asymp-
totics for the first moment of L(%, Pk ), conditional on its nonnegativity.

Finally, we obtain Theorem 3 by making a version of the following simple idea
precise: If L(%, pk ) does indeed vanish for most fields K, then the right-hand side of
(13) is forced to be small, which in turn implies an upper bound on the left-hand side
of (13), which in turn allows for the computation of the first moment of L(%, PK),
which in turn implies non-vanishing for many fields K. This leads to a contradiction,
and it follows that L(%, pk ) does not vanish for many fields K.

Finally, we observe that the same method of proof applies to the values L(% +
it, px) for a fixed ¢t € R and yield variants of Theorems 1, 2, 3, 4, 6 with suitable
modifications.

1.4 Organization of the paper

This paper is organized as follows. In Sect. 2, we collect preliminary results on
the space of cubic rings and fields. In particular, we recall the Delone-Faddeev
parametrization of cubic rings in terms of GL;(Z)-orbits on integral binary cubic
forms. We also discuss Fourier analysis on the space of binary cubic forms over I,
and Z/nZ. In Sect. 3, we introduce the Artin character on cubic fields K that arise as
Dirichlet coefficients of L(s, px) = {x(s)/¢(s). We then define an extension to the
space of cubic rings (and thus also the space of binary cubic forms). Next, in Sect. 4,
we recall the analytic properties of L(s, px), for a cubic field K. In particular, we
recall the approximate functional equation. We then discuss an unbalanced form of
the approximate functional equation for orders within cubic fields.

In Sect. 5, we recall Shintani’s theory of the zeta functions associated to the space
of binary cubic forms. As a well-known consequence of this theory, we derive esti-
mates for the sums of congruence functions (i.e., functions ¢ on the space of cubic
rings R such that ¢ is determined by R ® Z/nZ for some integer n) over the space of
cubic rings with bounded discriminant. Then in Sect. 6, we apply a squarefree sieve
to determine the sum of these congruence functions over the space of cubic fields.

In Sect. 7, we use the results from Sect. 6 to prove Theorem 5 on the statistics of
the low-lying zeros of the zeta functions of cubic fields. Next, in Sect. 8, we start our
analysis of the average central values of L(s, px), where K ranges over cubic fields.
In particular we prove the upper bound Theorem 8.7, obtaining an improved estimate
on the average size of L(%, pk ) compared to the pointwise bound.

In Sect. 9, we complete the most difficult part of the proof, in which we show that
for each somewhat large ¢, the values of S(R) and D(%, R) are close to each other,
on average over R € M. We use this result in Sect. 10 to first prove Theorem 4, and
using this in addition, to prove our main result Theorem 3.

1.5 Notations and conventions
o A positive integer k is said to be powerful if v, (k) > 2 for every prime p|k.
e The radical, also called the square-free kernel, of a positive integer k is the product

of its prime factors, rad(k) := [, p-
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e We shall always use X to refer to the finite set of local conditions imposed on the
family of cubic fields.

e We shall always use W to denote a compactly supported Schwartz function that
will control the discriminants of binary cubic forms, cubic rings, or cubic fields.

2 Preliminaries on cubic rings and fields

Let V = Sym>(2) denote the space of binary cubic forms. The group GL, acts on V
via the following twisted action:

y - flx,y) i=det() " F((x, 9) - ).

It is well-known that the representation (GLy, V) is prehomogeneous and that the
ring of relative invariants for the action of GL, on V is freely generated by the dis-
criminant which we denote by A. We have that A is homogeneous of degree 4 and
A(y - f) = (dety)?>A(f). In this section, we describe the parametrization of cubic
rings and fields in terms of GL;(Z)-orbits on V(Z). We also discuss Fourier anal-
ysis on the space V(Z/nZ), and in particular describe the Fourier transforms of all
GL,(IFp)-invariant functions on V (IF,).

2.1 Binary cubic forms and the parametrization of cubic rings

Levi [25] and Delone—Faddeev [15], further refined by Gan—Gross—Savin [18], prove
that there is a bijection between the set of GL;(Z)-equivalence classes of integral
binary cubic forms and isomorphism classes of cubic rings over Z:

Proposition 2.1 There is a bijection between the set of isomorphism classes of cu-
bic rings and the set of GLo(Z)-orbits on V (Z), given as follows. A cubic ring R is
associated to the GLy(Z)-equivalence class of the integral binary cubic form corre-
sponding to the map

R/Z. — A*(R/Z)

0 > OAH%

Throughout this paper, for an integral binary cubic form f € V(Z), we denote the
cubic ring corresponding to f by R, the cubic algebra R ® Q by K ¢, and the ring
of integers of Ky by Ok ,. We have

A(Ry) = A(f) = b*c? — dac® — 4b>d — 27a’d* + 18abcd,

for f(x,y) =ax>+ bx%y + cxy*> + dy>, and where we denote by the same letter A
the discriminants of rings and algebras. Since A(K ) = A(OKf) by definition, we
have the equality

A(f) = AK IOk, : Rf1* = A(Kp)ind(f)?, (14)

where we define the index of f, or ind(f), to be [OKf ‘Ry].
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In particular, we see that [A(Ky)| < |A(f)|, and that the signs of A(f) and
A(K ¢) coincide. If A(f) # 0, then the algebra K¢ is étale. If f € V(Z)I s ir-
reducible, then Ky is a field. Furthermore, A(f) > 0 when K is totally real, and
A(f) <0 when K is complex.

We say that a ring R has rank n if it is free of rank n as a Z-module. We say that
arank n ring R is maximal if it is not a proper subring of any other ring of rank 7.
For a prime p, we say that a rank n ring R is maximal at p if R ® Z, is maximal
in the sense that it is not a proper subring of any other ring that is free of rank n as
a Zp-module. We have that R is maximal if and only if it is maximal at p for every
prime p.

We say that an integral binary cubic form f is maximal (resp. maximal at p) if the
corresponding cubic ring Ry is maximal (resp. maximal at p). We have the following
result [5, §3] characterizing binary cubic forms that are maximal at p.

Proposition 2.2 An integral binary cubic form f € V(Z) is maximal at a prime p if
and only if both of the following two properties hold:

(i) f is not a multiple of p, and
(i) f is not GLy(Z)-equivalent to a form ax> + bx%y + cxy? +dy>, with p* | a and
plb.

We will also need the following result, proved in [5, Props.15-16], that determines
the number of index-p subrings and index- p overrings of a cubic ring.

Proposition 2.3 For an integral binary cubic form f € V(Z), the number of cubic
rings in Ky containing Ry with index p is equal to the number of double zeros
a € P(F,) of f modulo p such that p*| f (&) for all o' € P'(Z) with &’ = & mod p.

For an integral binary cubic form g € V(Z), there is a bijection between index-p
subrings of Rg and zeros in IP’I(IF,,) of g modulo p, whose number we denote by

a)p(g)~

Example 2.4 Consider a form f(x,y) = ax® + bx*y + cxy? + dy* € V(Z), with
p2 | a and p | b which is nonmaximal by Proposition 2.2.(ii). Then o = [1:0] €

P! (IF) is a double root of f modulo p. The form (% 1) Cfx,y) = (a/p>x3 +
(b/p)x%y + cxy* + pdy? corresponds to an index- p overring of R . This is consis-
tent with Proposition 2.3 which implies that the number of cubic rings in Ky con-
taining Ry with index p is at least one.

2.2 Binary cubic forms over ), and Z/nZ

Let V* = Sym;(2) denote the dual of V, and denote by [, ] the duality pairing. The
GL;-action on V* is defined by the rule that [, ] is relatively invariant:

v foy- fill=det)f fil. Vy€Gla, feV, fieV™ 15)

The scalar matrices in Z(GL;) act by scalar multiplication on both V and V*.
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Let a, := [y2, fil, by := —[xy?, ful, cx := [x2Y, fil, di := —[x, fi], and
Ay(fy) = 3b£c§ + 6aybycydy — 4a*ci — 4b;:d* — azdf.

Both A and A, are homogeneous of degree 4 and satisfy A(y - f) = (dety)?A(f)
and Ay (y - fx) = (dety)> A (f).

Following [31, §3] and [4, Table 1], the lattice V*(Z) is isomorphic to the sub-
lattice

VH(Z) = {axx® + 3bsx®y 4+ 3c,xy% +dyy © ax, by, cx,dx € Z) C V(Z),  (16)

with compatible GL;(Z)-action. The restriction of A to V*(Z) coincides with 27A,
as a direct calculation shows. We also see that the pairing [, ]: V(Z) x V*(Z) — Z
coincides with the restriction of the antisymmetric bilinear form

V(Z)xV(Z) — %Z
(f1, ) d1a2_%+bl3—cz—a1d2.

For an integer n > 1, the Z/nZ points of V, which we denote by V(Z/nZ), form a
finite abelian group which can be identified with the quotient V (Z)/nV (Z). The same
holds for V*(Z/nZ) >~ V*(Z)/nV*(Z). We obtain a perfect pairing [, ] : V(Z/nZ) x
V*(Z/nZ) — Z/nZ.

The finite abelian group V*(Z/nZ) is in natural bijection with the group of
characters V(Z/nZ) — S 1 where S! denotes the unit circle in C*. Indeed, given
f« € V¥(Z/nZ), we associate the character

x5 V(Z/nZ) — st

where e(q) := 27,
Given a function ¢ : V(Z/nZ) — C, we have the notion of its Fourier transform
¢ given by

$:V*Z/nZ) — C
6 = = Y (e,

feV(Z/nZ)

In this paper, we will be concerned with the Fourier transforms of GL;(Z/nZ)-
invariant functions. Regarding this, we have the following result which is probably
known although we couldn’t find the statement in the literature.

Lemma 2.5 The Fourier transform $ of a GLy(Z/nZ)-invariant function ¢ is
GLy(Z/nZ)-invariant.
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Proof Let y € GLy(Z/nZ), fr € V*(Z/nZ) and the function ¢ be given. We have

TSI S CAa L PY

feV(Z/nZ)

1 3 e(detm[y;l S f*])

é(f) (17)

4
" rev@zinz)

1 3 e(det(y)[f,f*]>¢(f)’

4
feV(Z/nZ)

where the first equality is by definition, the second equality follows from (15), and the
third equality follows from the GL,(Z/nZ)-invariance of ¢ and the bijective change
of variable f by y - f. To finish the proof of the lemma, we absorb the det(y) factor
into the sum over f since ¢ (uf) = ¢ (f) for every u € (Z/nZ)* and f € V(Z/nZ)
because Z(GL;) acts by scalar multiplication on V. g

2.3 Fourier transforms of GL,-orbits

We now consider a prime number p # 3. The orbits for the action of GL>(IF,) on
V(IF,) and V*(IF,) are characterized as follows [33, §5]. There are six GL,(F)-
orbits on V(IF,) depending on how a binary cubic form factors over F,. Using
(16), we may identify V*(F,) = V*(Z) @ F, with V(F,). There are thus also six
GL; (F,)-orbits on V*(IF,,). We denote the orbits on V (IF,,) by

Ouin» Oa2), 0@y, Og2yy, Osys O, (18)
and the orbits on V*(IF,) by
Oty Oy Oy Oy Oy Oty (19)

respectively, where O(111), enote the sets of forms having three distinct ratio-
pectively, where Oi11), Of}, denote the sets of f having three distinct rat

nal roots in P! (F ), the sets O12), (’)Z‘lz) consist of forms having one root in P! (F )
and one pair of conjugate roots defined over the quadratic extension of I, the sets

Oy, (92*3) consist of forms irreducible over F, the sets O(j2y), 0?121) (resp. O3,

(’)2‘13)) consist of forms having a root in P! (F p) of multiplicity 2 (resp. 3), and O,
(’)Zko) is the singleton set containing the zero form. Given a subset S of V(IF,) or
V*(Fp), let Cs denote its characteristic function. Every GL, (F ,)-invariant function
on V(F,) (resp. V*(IF,)) is a linear combination of the six functions

Co

CO(O) ) CO CO(lll)v CO(IZ) s CO(g)

a3’ azy’

CO?m)’ Cozﬂz)’ CO* ).

3)

(resp. C@»(ko), C(gfm, Co

.
azn’

Therefore, the Fourier transforms of the first six of the above functions determine the
Fourier transforms of every GL; (IF,)-invariant function on V (IF,).
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Proposition 2.6 (Mori [26]) Let p # 3 be a prime number, and M = (m;;) be the
following 6 x 6 matrix

L (p+Dp-1 pp+Dp—1 pp+h(p-D1%6 pp+D(p-D1%2 pp+Dip—1?/3

1 -1 p(p—1 p(p—D@2p—1/6 —p(p—1/2 -p(p+D(p-1/3
Mo 1 1 p—1 p(p—2) —pp—1/2 —p(p—1/2 0
St 2p— -3p PEP+5)/6 —pEEp—1/2 pEP=1/3
1 -1 -p —p(Ep—-1/6 p(Ep+1)/2 —p(Ep—-1)/3
1 -p—1 0 p(Ep—1/6 —p(xp—1/2 p(Ep+2)/3

where the signs + appearing in the bottom-right 3 X 3 corner are according as p =
+1 (mod 3). Then

6
Cj=)Y myCl, 1<j<6,
i=1

where we have set
(C1,C2,C3,C4,C5,C6) = (Co, Co
(Cy,C3,C5,C1,.C:,C8) = (Co

CO ’ CO(I]I)’ CO(12)’ CO(?,));

a3’ 21

©’ COZ%’ CO?IZI)’ CO?HI)’ Coflz)’ C023>)'
Proof The result was announced in [26], and a proof appears in the work of

Taniguchi-Thorne [35, Thm.11] and [33, Rem.6.8]. O

Remarks (i) For j = 1, that is for the first column of M, Proposition 2.6 says that the
Fourier transform of Co,,,, which is the Dirac function of the origin, is equal to the
constant function 1/p* as should be.

(ii) For i = 1, the first row of M in Proposition 2.6 provides the respective sizes of
each of the 6 conjugacy classes, because

> Cif) =p*Cj(0) = pPmy;.
feVEyp)

They add up to m; +m12 + --- +m1e =1 as should be.

(iii) For every j, k, we have ZfeV(]Fp) Ci(HCk(f) = p48jkm1j, because the
characteristic functions are pairwise orthogonal since the orbits are pairwise dis-
joint. This implies, by the Plancherel formula, Y FoeVH(E,) 6\, ( f*)@( fe) =8jmy;.
Hence, Proposition 2.6 implies

6
p*> mijmigmy =8jmyj. 1< j k<6, (20)

i=1

which indeed holds true as a direct verification shows. Because of the symmetry
between j, k, verifying (20) entails to verifying 21 equalities.

Proposition 2.6 has the following important consequence.
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Corollary 2.7 Let p # 3 be a prime number, and let ¢ : V(F,) — C be a GLy(F)-
invariant function such that |¢ (f)| < 1 for every f € V(I ),). Then we have

o . " " * * .
p= it fi €O U0 UOGE U0,
S(fo<p it freOn;

1 if fee€ (’)2‘0).

The absolute constant in < can be taken to be 4.

Proof The rows of M are bounded by mi, = O(1), me = O(p~') and m;, =
O(p~2) for 3<i <6, or equivalently M = [0(1), o(p~™M,0(p,00p?,

0(p~2), 0( p‘z)]T. For example, we can make the absolute constant explicit as fol-
lows: Y0_ myj =1, Y0 Imajl < 1/p. Y5_ Im3jl <2/p2 Y0, Imaj| < 4/p?,
Y0 Imsjl <2/p% Y5_, Imejl <2/ p>.

6
By assumption, ¢ = )~ a;C; with |a;| < 1. Proposition 2.6 implies that
j=1
6 6
(I <D CHfD D Imijl.
i=1 j=1
We deduce
(Ol € CT(f) +p 7 C3(f) + p 2 (CH(f0) + CF(f) + C3(f) + CE(£)

from which the corollary follows. g

3 The Artin character of cubic fields and rings

Let K be a cubic field extension of @, with normal closure M. The Dedekind zeta
function ¢ (s) of K factors as

Lk (s) =)L (s, pk),

where £g(s) denotes the Riemann zeta function and L(s, pg) is an Artin L-function
associated to the two-dimensional representation pgx of Gal(M/Q),

ok Gal(M/Q) — S3 — GL,(C).

In this section, we first begin by collecting some well-known properties of
L(s, px). We denote the Dirichlet coefficients of L(s, px) by Ag (n). Then we ex-
tend the definition of Ak (n) to the set of all cubic rings R. We do this by defining
An(f) for all binary cubic forms f. Finally, for primes p # 3, we compute the Fourier
transform of the function A ,.
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3.1 Standard properties of L (s, pg)

We denote the Euler factors of L(s, px ) at primes p by L, (s, pk), and the nth Dirich-
let coefficient of L(s, pg) by Lg (n). We have that A is multiplicative. We write the
p¥th Dirichlet coefficient of the logarithmic derivative of L(s, pg) as 0x (p¥)log p.
That is, we have for R(s) > 1,

2 A
Lo = ] Lo = DK
p prime n=1
L'(s, px) L' (s, pk) >, 0 (n)A(n) D
_7’ frd — 717 ’ e
L(s, px) p%ne Ly(s, pk) ’; ns

Note that Ok is supported on prime powers.
Next, we recall some classical facts about L(s, pg). Let I'r(s) := xS/ 2F(%) and
Cc(s) :=2(2w) T (s). Hecke proved that the completed Dedekind zeta function

I'r(s)3, if A(K) >0,

I s/2 .
Ek (s) :==[A(K)[" "¢k (s) Cp()Ce(s).  if AGK) <0,

has a meromorphic continuation to s € C with simple poles at s =0, 1 and satisfies
the functional equation &g (s) = &£k (1 — s). We introduce the following notation:

yts) = Tr@e)?=7"T$%
Yy (s) = TDc(s)=22n)" I'(s).

Proposition 3.1 (Hecke) L(s, px) is entire and satisfies the functional equation
A(s, px) = A(1 = s, p), where A(s, px) = |AK)I*? Loo(s, px)L(s, px) is the
completed L-function, and

(A0 gy — | TRE)E I AK) >0,

Loo(s, pg) =y Ie(s),  ifA(K) <O.

Proof The functional equation of L(s, px) follows from the functional equations of
¢k (s) and ¢g(s). It remains to show that L(s, pk) is entire and there are two cases to
distinguish: If K is non-Galois, then M /Q is Galois with Galois group isomorphic to
S3, whereas if K is Galois, then M = K with Galois group isomorphic to Z/3Z.

(1) If K = M 1is Galois, then the Artin representation

ok - Gal(M/Q) = Z/3Z — S3 — GL,(C)

is the direct sum of the two nontrivial characters of Z/37Z. Hence L(s, px) =
L(s, xx)L(s, xx) for two conjugate Dirichlet characters xx and xx of order 3 and

conductor |A(K)| %. Dirichlet proved that L(s, xx) and L(s, xx) are entire.
(i1) If K is non-Galois, then the Artin representation

pk : Gal(M/Q) = S3 — GL,(C)
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obtained from the standard representation of S3 is irreducible. In this case, the sextic
field M has a unique quadratic subfield denoted L. We have an exact sequence

Gal(M/L) — Gal(M/Q) — Gal(L/Q),

and the representation pg of Gal(M/Q) =~ S3 is induced from a character xx of
Gal(M/L) ~ A3 =7/37Z:

~ Gal(M/Q)
PK = IndGal(M/L) (xx)-

Thus we have L(s, px) = L(s, xx ). Via class field theory, xx corresponds to a ring-
class character of L of order 3. We have that L(s, xx) is entire by work of Hecke on
the L-functions attached to Grossencharacters. O

The following standard result isn’t directly used in the rest of the paper, except that
the second case of the proposition when K is an S3-field is relevant to Theorem 4.1
below. The reader can safely skip it.

Proposition 3.2 (Hecke, Maass) The representation pk is modular. That is, there ex-
ists a unique automorphic representation g of GLo such that L(s, pk) is equal to
the principal L-function L(s, k).

e If K/Q is cyclic, then g is an Eisenstein series with trivial central character.

o If K is an S3-field, then g is cuspidal and its central character is the quadratic
Dirichlet character associated to the quadratic resolvent of K. Moreover,
— if A(K) < 0 then mg  is holomorphic of weight 1,
— if A(K) > 0 then mk o is spherical of weight 0.

Sketch of proof The construction of g is due to Hecke and Maass and comes from
the theory of theta series. The unicity of wx follows from the strong multiplicity-one
theorem for GL;. The central character of mg corresponds under class field theory to
the determinant character

det pg : Gal(M/Q) — Gal(M /Q)** — C*.

If K is Galois, then the permutations in Z/3Z have trivial determinant. If K is non-
Galois with quadratic resolvent L, then the transposition permutations in S3 have
non-trivial determinant, and since Gal(M/Q)* = Gal(L/Q) = 7/27 we obtain that
det px is the quadratic Dirichlet character associated with L/Q. O

3.2 Definition and properties of A,,(f)
Let K be a cubic field with ring of integers Og. We say that K has splitting type
op(K) tobe (111), (12), (3), (121) or (1%) at p if p factors as p1p2ps, Pip2, p, P1p2,

or p3, respectively. Recall that L(s, px) has an Euler factor decomposition, where
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it may be checked that the pth Euler factor L, (s, o) only depends on the splitting
type of K at p, and is as follows:

[e e}

(1-p~H2 = Y (m+hp™™ it op(K)=(111);
—0
oo

(1—p~25)~1 = Y pm it 0,(K)=(12);
m=0

(22)

Lp(s, px) =
p(S, PK (p73ms _ p7(3m+l)s) if (TP(K) =)

K

A+p~+p7)71 =
0

3
Il

a—p=5! = if  op(K)=(%1);

2
=
:

3
Il
S

f op(K)=(13).

1

For a prime p, recall the six GLo (F ,)-orbits O, on V (F,) defined in (18).

Definition 3.3 Given an element f € V(F,), we define the splitting type o, (f) of f
to be o if f € O,. For m > 1, we define the function A ym : V(IF,) — Z as follows:

Let f € V(IF,) have splitting type 0. Let K be any field also having splitting type
o at p. Then we define A ,m (f) := Ag (p™). This serves as a definition for all nonzero
f . For the zero form, we simply define A, (0) := 0.

Explicitly, we compute

(m+1) if o,(f)=(11);
1 if o0,(f)=(2) and m =0 (mod 2);
0 if o0,(f)=(12) and m =1 (mod 2);
if o0,(f)=(3) and m =0 (mod 3);
if 0,(f)=(3) and m =1 (mod 3); (23)
if o,(f)=3) and m =2 (mod 3);
if op(f)=(171);
if o,(f)=(%);
if o,(f)=1(0).

dop (f) = —

S O = O = =

Extending notation, we set Apm : V(Z) — Z by defining Apm(f) :=
Apm(f (mod p)), where on the right-hand side we have the reduction of f mod-
ulo p. We also write o, (f) =0, (f (mod p)) for the splitting type of f at p. For a
positive integer n > 1, we define A, : V(Z) — Z multiplicatively in n, i.e., we set

()= [ rpm ().
P"lin

The function A, (f) is GL»(Z)-invariant and only depends on the reduction of f
modulo rad(n), where rad(n) is the radical of n, that is the largest square-free divisor
of n.
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Next, given a binary cubic form f € V(Z), we define the following Dirichlet se-
ries:

o
D(s, )= /)

n
n>1

=[12sG. 5. (24)
P

where the function D, (s, f) depends only on the splitting type of f at p. In fact, if
a cubic field K has the same splitting type as f at p, then D,(s, f) = L,(s, pk),
where L, (s, pg) is given explicitly in (22). When f is a multiple of p, we have
Dy(s, f)=1.

For an irreducible integral binary cubic form f, with associated number field K ¢
as in Proposition 2.1, the relationship between D(s, f) and L(s, pk ) is given by the
following.

Lemma 3.4 Let f € V(Z)™ be irreducible. Assume that f is maximal at the prime
p.Then op(f) =o0,(Ky), and therefore

Dy(s, f)=Lp(s, px ). (25)

Proof Since f is maximal at p, we have Ry ® Z, = Ok, ® Zp, where Ry denotes the
cubic ring corresponding to f and Ok, denotes the ring of integers of K y. Further
tensoring with IF,, we obtain Ry @ F), = Ok, ® F),. The former determines o, (f)
while the latter determines the splitting of K  at p. Thus, the claim follows. g

Corollary 3.5 If f € V(Z)™™ js irreducible and maximal, that is if Ry is the ring
of integers of the number field K ¢, then L(s, ,oKf) = D(s, f), and Ak (n) =x,(f)
foralln > 1.

Proof This is immediate from Definition 3.3 and the previous Lemma 3.4. |

Corollary 3.6 Let f € V(Z)™ be irreducible. Then the function D(s, f) converges
absolutely for R(s) > 1.

Proof This is immediate since D(s, f) and L(s, px f) can differ only at the finitely
many Euler factors at p, where f is nonmaximal at p. O

For every f € V(Z), and prime power n = p™, define 6, (f) from the p"th-
coefficient of the logarithmic derivative,

— _ = , () > 1.
D(s. f) D,(s, f) "

n=1

D'Gs.f) _ZD;(&f) B ien(fm(n)
> N

Lemma 3.7 For every prime p and f € V(Z), we have 0,(f) =1, (f) and 9pz(f) =

20,0 (f) — kp(f)z. Furthermore, we have the bound |0, (f)| < 2 for every prime p,
integer m > 1 and f € V(Z).

Proof The first two claims follow from D,(s, f) =14+ 1,(f)p~° + )»pz(f)p_zs +
O(p~3%) and expanding its logarithmic derivative. The third claim is the case n = 3
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of [30, Lem.2.2], of which we now repeat the argument for completeness. We have
Dy(s, )= —arp™)7'(1 —azp™) 7!, where ||, |oz] < 1 as can be seen by
inspecting each case of (22). Then 6,m (f) = af' + o', which implies the desired
inequality [0,m ()| < 2. O

We conclude this section with certain Fourier transform computations. First, we
have the following result, which will be useful in the sequel when we sum A, and 6>
over GL,(Z)-orbits on integral binary cubic forms having bounded discriminant.

Proposition 3.8 Let p # 3 be a prime. Then

— if fie (’)2‘1“) U (’)E"lz) U (’)2‘3) U (92*121);
— p
)Vp(f*) = 2

if foeO*, UO

p3 (13) (ON

- 1
Moreover, 0,2 0 =1- ?
Proof A beautiful proof of a related result can be found in [35, Prop.1]. However,
for the sake of completeness, we explain how we can recover this result (and indeed
can compute the Fourier transform of any GL; (F ,)-invariant function) from a simple
application of Proposition 2.6. When f, Oz‘l 11)» We compute

— 1
Ap(fe) = ?()\p(o) +2p(1H)2p = 1) + 4, (1P 1)(=3p) + 2, (11D (p(5 £ p)/6)
+4p(12)(=p(=1%p)/2) + 2,3 (p(=1 £ p)/3))

1
:?(0+0—3p+p(5:1:p)/3—0—p(—1:I:p)/3)

1
P
as claimed. The computation when f; is in the other orbits is similar.
Finally, note that 0,2(f) is equal to 2 when o, (f) € {(111), (12)}, equal to —1
when o, (f) = (3), equal to 1 when 0, (f) = (121), and equal to 0 otherwise. There-
fore, from the first row of the table in Proposition 2.6, we have

2 B
0,0 = (%+1_1)P(P+1)(P D®  pp D=1

6 3 p4 p4

-1 (2ED2)

as necessary. O
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Remark Requiring that equality (25) of Lemma 3.4 holds is enough to force the value
of A ,m (f) for every non-zero element f € V(IF,) — {0} to be as in (23). We have then
chosen A ,m (0) := 0 specifically so that the identities of Proposition 3.8 hold.

Letu, : V(Z/ p2Z) — {0, 1} denote the characteristic function of the set of ele-
ments that lift to binary cubic forms in V(Z,) that are maximal at p. We then have

the following result.

Proposition 3.9 We have

— (p—D(p*—1)
up-hp(0) =
— (p? — 1)
up-r,2(0) = T;
— 2_1)2
iy Bp(0) = %

Proof The Fourier transform at O can be evaluated by a density computation. That it
so say, for any function ¢ : V(Z/p°Z) — R, we have

~ 1
PO =— Y. o).
P feV(Z/p*L)

In [5, Lem.18], the densities of u , are listed for each splitting type, as u (U, (111)),
1 (Up(12)), and so on, which we will abbreviate simply as 1(111), £(12), and so on.
And so we may calculate:

iy 2p(0) = (1112, (111) + 2 (12)2,(12)
+ 1 (3Ap3) + (12 DA, (121 + (1), (1%)

1 /1 )
ZF(E(P—D p(p+1)-24+pu(12)-0

1 2 2
+3(=D’p(p+ D =D+ (= Dp+1)-1)

_(p—D(p*-1)
=

as necessary. Similarly, we have

1y 3y (0) = (11D)A (111 + p(12)A,2(12) + p(3) 2 (3)

+ p(1PDa 2 (171) + w ()2 (1%)

= (G- 0+ D 34 5 - D2+ D
= i(g = 17pr S =1%p(p
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+13) -0+ (p=DAp+1)-1)

P*=Dp-D@(p+D
p* ’

as necessary. Finally, we have
p - 0,0(0) = w(11)8,5 (111) + pu(12)6,2(12) + u(3)6,2 (3)

+p(12D0,2(171) + (190 2(17)

——((G+3) -1+ 12

1 2 5
+3(P =P+ D =D+ (= Dp+1)-1)
1
= F((p —D?p(p+D+(p—D*(p+1D)

(p?—1)?
o

as necessary. g

4 Estimates on partial sums of Dirichlet coefficients of cubic fields
and rings

In this section, we compute smoothed partial sums of the coefficients A g (n) as well
as of A, (f). This section is organized as follows. First we collect some preliminary
facts about Mellin inversion. Then, we recall the convexity bounds as well as cur-
rent records towards the Lindelof Hypothesis for principal GL(2) L-functions. We
use these estimates to obtain bounds on smooth sums of the Dirichlet coefficients
Ak (n) in terms of |A(K)|, where K is a cubic field. Finally in §4.2, we prove analo-
gous bounds on smooth sums of X, (f) in terms of |A(f)|, where f € V(Z)™ is an
irreducible integral binary cubic form.

4.1 Upper bounds on smooth sums of A g (n)
We begin with a discussion of Mellin inversion, which will be used throughout this

paper. Let @ : R>9 — C be a smooth function that is rapidly decaying at infinity. We
recall the definition of the Mellin transform

~ o dx
d(s) :=/ xo(x)—.
0 X

The integral converges absolutely for R(s) > 0. Integrating by parts yields the func-
tional equation ®(s) = —®’(s + 1)/s. Hence, it follows that ® has a meromorphic
continuation to C, with possible simple poles at non-positive integers. Furthermore,
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®(s) has superpolynomial decay on vertical strips. Mellin inversion states that we
have, for every x € R.,

o~ ds
d(x) = x T D(s)—.
R(s)=2 2mi

Consider a general Dirichlet series D(s) = ) 2| 2 which converges absolutely for

N(s) > 1. We can then express the smoothed sums of the Dirichlet coefficients aj, as
line integrals. For every positive real number X € R. ¢, we have

Y a ¢<£> =/ D)X B(s) L
" X R(s)=2 2mi '

Consider the function L(s, px) for a cubic field K. The convexity bound obtained
from the Phragmén—Lindelof principle,

1 1
L(5+it, px) e (14 [tDZH)AK) |37,

will suffice for our purpose of establishing the main Theorem 4. We shall also use the
current best bound for L(% +it, pg) due to Blomer—Khan [7] to achieve an improved
numerical quality of the exponents in Theorem 3 and in the other results.

Theorem 4.1 (Bound for GL(2) L-functions in the level aspect) For every € > 0,
t € R and cubic number field K ,

L(3+it, px) e (14 [t V1A [P,
where 0 .= i —dand$ = ﬁ

Proof In the proof of Proposition 3.1, we have seen that if K is cyclic, then
L(s, px) = L(s, xx)L(s, Xx). We then apply the Burgess estimate for Dirichlet
characters, which yields the upper bound

1_ 1

If K is an S3-field, then L(s, px) = L(s, wk) is the L-function of a GL(2) form of
level | A(K)|, unitary central character and weight O or 1. We then apply the estimate
of Blomer—Khan [7, Thm.1], which yields the desired bound. O

The above result allows us to bound smoothed weighted partial sums of the Dirich-
let coefficients of L(s, pg).

Corollary 4.2 For every smooth function with compact support ® : R>g — C, € > 0,
T > 1 and cubic number field K ,

Ak (n) n 04
Zl S0 () eo TAEOI.
n=
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Proof Applying Mellin inversion, we obtain

Ak (n) n 1 1 ~ '
220 (_) = — L(5+s, D(s)T°d
; I’ll/2 T 2mi R(s)=2 (2 *s pK) (S) s

LenTe tmia}(JL(% + € +it, ,oK)|

+|trlnax|t| N|L( +e+it, pk)|,

where the bound follows by shifting the integral contour to the line 9i(s) = €, and
using the rapid decay of the Mellin transform E)(e +it) Le.N |£]~N for |¢| > 1. The
corollary now follows from Theorem 4.1 and the Phragmén-Lindelof principle, the
upper-bound on the vertical line % + it being transported to the vertical line % +e+
it. O

We continue with the approximate functional equation which gives the value of
L(%, pk) as a sum of its Dirichlet coefficients Ax. Let G(u#) be an even, bounded
and holomorphic function in the strip [R(u)| < A, where A is sufficiently large and
normalized by G (0) = 1. For example [22, p.99], we could fix G(u) := (cos ) 1
Define for y e R. o

+
VE(y) = R ek

_ (26)
271 Jyy=s yE1/2) u

We have that V*(y) is a rapidly decaying function as y — oo that extends continu-
ously at the origin with V+(0) = 1.

Proposition 4.3 For every cubic number field K with =A(K) € R., we have

Ak (n)
22 KI/Z i(m(;)p/z)' (27)

Proof In view of the functional equation of Proposition 3.1, this is [22, Thm.5.3]. O

4.2 Upper bounds on smooth sums of A, (f)

Let f € V(Z)™ be an irreducible binary cubic form and recall the Dirichlet series
D (s, f) with Dirichlet coefficients A, () defined in Sect. 3.

Definition 4.4 For f € V(Z)™ and a prime p, define E,(s, ) by
Dy(s, f)=Lp(s, px)Ep(s, f).
Let E(s, f) = ]_[p E,(s, f), hence we have D(s, f) = L(s, pKf)E(s, ).
It follows from Lemma 3.4 that E, (s, f) = 1 if f is maximal at p, thus E(s, f) =
[T EpGs. 1.

plind(f)
We next list the different possible values taken by E, (s, f).
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Lemma 4.5 Let f € V(Z)'™ be an irreducible binary cubic form. For every prime p,
we have that E (s, f) is a polynomial in p™° of degree at most two. In fact, it is one

of

1’ 1 _p—.S" 1+p—.Y’ (1 _p—S)Q’ 1 _ p—2x, 1+p—s +p—2S.

Moreover, if p || ind(f), or if the splitting type of f at p is (121), then Ep(s, f)isof
degree at most one, hence it is one of

1, 1—-p~% 1+4+p~°.

Proof We consider each possible splitting type of f seperately.

If 0,(f) = (0), then Dy(s, f) =1 and p?lind(f), hence the lemma follows
from (22).

If 0,(f) = (111), (12), or (3), then f is maximal at p, thus E,(s, f) =1 by
Lemma 3.4, and the lemma follows.

Suppose next that 6, (f) = (121). Then we claim that the splitting type of Ok f
at p is either (111), (12), or (121), which implies the lemma by (22) because then
either E,(s, f)=1—p~°, Ep(s, f) =1+ p~F, or E,(s, f) = 1, respectively. In-
deed, when f is nonmaximal at p, Proposition 2.2 implies that by replacing f with
a GL,(Z)-translate, we may assume that f(x, y) = ax> + bx>y + pexy? + p2dy?,
where p 1 b. The overorder S of Ry having index [S : Ry] = p corresponds to the
form g(x, y) = pax>® + bx?y + cxy* + dy>. Now the splitting type op(g) is either
(111), (12), or (121). In the former two cases, S is maximal at p and the claim is
proved. In the last case, the claim follows by induction on the index, by repeating the
argument with g instead of f.

Suppose finally that o,(f) = (13), then D,(s, f) = 1, hence E,(s, f) =
L(s, px f.)_l is a polynomial in p~ of degree at most two given by (22). Sup-
pose moreover that p || ind(f). We need to show that E,(s, f) is of degree at
most one. From Proposition 2.2, we may assume that f(x,y) is of the form
ax3 + pbx%y + pcexy? + p2dy3. The index-p overorder S of R must be maxi-
mal at p, which implies that the binary cubic form corresponding to Ok, ® Z), is
pax® + pbx*y + cxy* +dy*. Clearly, the splitting type of O, at p is (121) or (17).
Thus E,(s, f)=1—p~F or E,(s, f) =1, respectively. O

We obtain the following result analogous to Corollary 4.2 for the coefficients
An(f) where f is an irreducible (not necessarily maximal) binary cubic form.

Proposition 4.6 Let & : R>o — C be a smooth function rapidly decaying at infinity.
Forevery f e V(Z)™, e >0and T > 1,

hn(f) [ o .
> e (F) e nd() AT (28)

n>1
where 6 = i — 8 is as in Theorem 4.1.
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Proof The proof is similar to that of Corollary 4.2. We have that the left-hand side is
equal to

1 ) An
21 Jou(s)=2 — nats
1 ~
=_— +s oK) E, +s,f D(s)ds.
28 Jyis)= 2 H )

plind(f)

For N (s) > 0, these local factors E p(% + s, f) are absolutely bounded, (indeed by
the number 4). We have the elementary estimate

[ EsG+s.f)= [] 4<elind(h).

plind(f) plind(f)

As before, pulling the line of integration to $i(s) = €, we deduce that

>0 () <n TIAKPIIAL,

n>1
from which the assertion follows since A(f) = ind( f)?>A(K 1) O

In our next result below (Theorem 4.11), we give a more precise estimate of the
smoothed partial sums of A,(f) when we use ® = V¥ as a smoothing function.
We start by defining, for an irreducible binary cubic form f € V(Z)™, such that
+A(f) € R., the quantity S(f):

. () o+ n
() '_; nl/2 v <|A(f)|1/2>' (29)

If fe V(Z)™™m s irreducible and maximal, then 2S(f) = L(%, pKf) by Corol-
lary 3.5 and Proposition 4.3. '
For general irreducible f € V (Z)", Proposition 4.6 yields the bound

S(f) e ind( )~ |ACf)IOF. (30)

Moreover, we have D(5, f) = L(}., pk,)E(5. f) and

E(G )= TT (1+0(p73)) =lind(H)"®, 31)

plind(f)

which implies that the same upper bound as (30) holds for D(%, f) e ind(f)~% x
|AHIPFE.
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Definition 4.7 For f < V(Z)i“, a prime p | ind(f), and an integer m > 0, define
ep.m(f) from the following power series expansion:

Ep(%_s’f) 25—1 & 1/2—
A =P epm(f)p" 2.
Ep(%"'s’f) n;) n

Recall from Lemma 4.5 that E,(s, f) is a polynomial in p~* of degree at most two.
If p{ind(f), let e, (f) =0 for every m > 0.

Examples (a) E (s, f) =1 — p™°: In this case, we have
Ay

p Ey(z—s5.f)_»p (“%)(1 I )—1

pZS Ep(% +S,f) - p2s pl pl/2+s
12

(- (E )

S
D p n=0

p'?  p—1 P
ps p2s
—(m—4)/2 _ —(m=2)/2
p p
+ pn'lS + T

=0-

It therefore follows that we have
1 _ _
0N =0 epif)==1. epaH=1=—. epn(N=p mE_ pTmh,

forallm > 3.If E,(s, f) =1+ p~*, we obtain similar formulas.
(b) Ep(s, H)=(1— p~*)%: In this case, we have

PP E,(L+s,f)  p¥

= (5 1) (2 )

P Epz—s.f)_»p ( o )2(1 1 )*2

= Pl - pl/zts

N
P n>0
12
- (1 - 2pps + %)

! 2 3 4
X ( + p1/2+s + P2 + 3238 +)
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where the coefficient of 1/p™ is <« m/p™~%/2 1t therefore follows that we have

2 4 3 m
epo(N=1 ep1(f/)==2+4+—, ea)=l-—+—75, epnlf) K-,
p p p p p P2 p.m Pm_2

for all m > 3.
© Eys, H)=14+p~*+ p~2%: In this case, we have

LEP(%_svf) =<1
P¥ Ep(3+5. f)

-

1 -1
1/2+s p1+2s)

1
)( p! /2+s p3/2+3s e )

where the coefficient of 1/p™* is <« m/p™~%/2 Tt therefore follows that once again
we have

1 1 m
epo(f)=1, ep,1(f)=1—;, ep,z(f)=1—;, epm(f) K Pt
for all m > 3.

For every integer k > 1, define e (f) := 0 if there exists a prime p|k at which f
is maximal, and otherwise

()= ] erwpir()-

plind(f)

In other words, e () is supported on the integers & all of whose prime factors divide

ind(f).

Proposition 4.8 For every f € V(Z)™, and R(s) > —%,

E(L - S, s
M =rad(ind(£))* " Y ex (k'
E(i + S, f) k=1
Proof Since E(s, f)= [] E p(s, f), the proposition follows from Definition 4.7,
plind(f)
and from Lemma 4.5 which implies that £ ,,(% + s, f) has no zero for Ji(s) > —%.
O

We will need the following result, bounding the absolute value |ex(f)].
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Proposition 4.9 For every f € V(Z)™, ¢ >0, and k > 1,
er(f) e k€,

where the multiplicative constant depends only on €. If k is powerful, then we have
the improved bound

rad(k)?
k

ex(f) Ke ke.

Proof The first claim of the proposition will follow from e, o(f) € {—1, 0, 1} and the
estimate e, (f) < 1 uniformly for every prime p and m > 0. The second claim will
follow from e, o(f) € {—1,0, 1}, e, 2(f) < 1, together with the estimate e, ,, (f) K
# uniformly for every prime p and m > 3.

These estimates have been verified in Examples (a), (b), and (c¢) above (in fact
we have the absolute constant |e, ,, (f)| < 2, although this numerical value won’t
be needed). Note that Example (a) implies the estimates for the case E,(s, ) =
1 — p~2*, and also that the case of E,(s, f) =1+ p~* isidentical to that of Example
(a). This concludes the proof of the proposition. g

Next, we fix a single form f, and analyze the coefficients ey (f).

Proposition 4.10 Let f € V(Z)™, and write ind(f) = q1q», where q1 is squarefree,
(q1,92) =1, and q2 is powerful. Then ey(f) : Z>1 — R is supported on multiples
of q1. Namely q1 1 k implies ex(f) = 0.

Proof Since ¢ is squarefree, it follows from Lemma 4.5 that for every prime p | g1,
we have E,(s, f) is one of 1, or 1 &= p™¥. Observe from Example (a) above that
ep,0(f) = 0. The proposition follows immediately. g

The following is an unbalanced approximate function equation for D(s, f) anal-
ogous to Proposition 4.3 for L(s, px).

Theorem 4.11 For every f € V(Z)™,

o]

ek (K2 S (f) ind( f)2kn
S(fH=D(L, f) -3 £ Vsen(A) .
/) ;fad@“d(f ”; n'/2 (rad<ind<f>>2|A(f>|5>

Proof To ease notation for the proof, we let + := sgn(A(f)) and K := K . We begin
by noting that Mellin inversion yields

G(s) yE( +9)
s yED)

Vi) = , (32)
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implying that vE (s) decays rapidly and has a pole at s = 0 with residue 1. Hence, by
shifting the line of integration, we obtain

~ ds
s = [ D s NISGITE
R(s)=2 2mi
~ _ds
= N+ [ DG AT
R(s)=—1/4 Tl
By Proposition 3.1, the functional equation for L(% + s, pK) is

LG 5, 00)yEG +9)1AEK)2 =LA =5, 007 —9)IAK)| 2.
Therefore, we have
S(f)— DA, f)

~ ds
=/ L(% +s5,pk)E(} +5, f)IA(f)IS/ZVi(s)T
R(s)=—1/4 i

i(l—s)

= L(L—s pp) 2%

f9f<s>=1/4 2=+ pK)Vi(%ﬂ)
—~ d
x Eh+5. NI IADIVE) 5~
Tl

EG; =5 /) yEG+s) — ds
= Dl—i—, 2—A 4s/227vi_ a5
Am:w (3+s f)E(%H’f)I DI Vg

where the final equality follows since A(f) = qu(K ), where we have set g :=
ind(f). As a consequence of the above and (32), we have

+1 __
wvi(_s) —

GOyt
rEG =) s yEG)

=—VE(s),

which we inject in the previous equality:

DA, =S

E(z—s.f) ~ _ds
= DL+, F)—2 77 |A 4152+
/S)i(s):l/4 (2 § f)E(% s,f)l (N/a”l (S)Zm'

00 (33)
= D(3+s. f)(rad@* ™" D e (K>
~/§;i(s)—1/4 (2 )( ]; g )

< IACH /g TR () 2
27
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where the final equality follows from Proposition 4.8. The summand corresponding
to k in the second line of (33) yields rad(q)_lek (f Vel 2 times the integral

1
1 |A()|7rad(@)*\s o ds
/%) 1/4D(2+S’f)( kq? )V )i

2

_ A (f) vi( nkq 1)_
n>1 rad(q)?|A(f)|2

Theorem 4.11 follows by summing over k > 1. O
We end this section with the following remark.

Remark 4.12 When we consider sums weighted by the function V*(-/X), which is
rapidly decaying, we say that the length of the sum is at most X '€ (since we have
that V*(y) is negligible for y > X€).

Suppose f € V(7)™ has large index ¢ = ind( f), then all of the inner sums arising
in Theorem 4.11 to express S(f) — D(%, f) are always significantly shorter than
the sum defining S(f). Indeed, the sum defining S(f) has length |A(f)|'/?>€. The
length of any inner sum arising in Theorem 4.11 is easily computed. Let g = g1 92,
where ¢ is squarefree, (q1, g2) = 1, and g3 is powerful. Then note that we have

q° a3

rad(¢)?  rad(qa)?

Z 92,

with equality if and only if the exponent of every prime dividing g» is 2. Also note
that we have g1 |k from Proposition 4.10. Therefore, the length of the inner sum is at
most |A(f)] 2+ /ind(f).

5 Counting binary cubic forms using Shintani zeta functions

In this section we recall the asymptotics for the number of GL,(Z)-orbits of integral
binary cubic forms ordered by discriminant. We will impose congruence conditions
modulo positive integers n and study how the resulting error terms depend on n.
This section is organized as follows: first, in §5.1, we collect results from the theory
of Shintani zeta functions corresponding to the representation of GL, on V. Next,
we use standard counting methods to determine the required asymptotics in §5.3,
and moreover give an explicit bound on the error terms. Finally, in §5.4, we prove a
smoothed analogue of the P6lya—Vinogradov inequality in the setting of cubic rings.

5.1 Functional equations, poles, and residues of Shintani zeta functions

Let n be a positive integer and let ¢ : V(Z/nZ) — C be a GL,(Z/nZ)-invariant
function. Let £(¢, s) denote the Shintani zeta function defined by

A
= 34
HOOE §V(Zj)i P s (34)

fe GL, (Z)
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where we abuse notation and also denote the composition of ¢ with the reduction
modulo n map V(Z) - V(Z/nZ) by ¢. For a function v : V*(Z/nZ) — C, let
£*%(y, 5) denote the dual Shintani zeta function defined in [33, Def .4.2].

Theorem 5.1 (F. Sato-Shintani) The functions £é* and £**F have a meromorphic con-
tinuation to the whole complex plane, and satisfy the functional equations

(0 =) e D (s Dyrerr(s+ 1)

8 (sinZns sinzs )(§*+(q§,s))

3sinmws  sin2ws/\g*—($, 5)/’
where ¢ : V*(Z/nZ) — C is the Fourier transform of ¢ as in §2.2.

Proof This is due to Shintani [31] for » = 1 and Sato [28] for general n. See also [33,
Thm.4.3] for a modern exposition. In fact the above theorem is a special case because
the congruence function ¢ in [28, 33] is not necessarily GL,(Z/nZ)-invariant. In
the more general case of an arbitrary congruence function ¢ : V(Z/nZ) — C, the
Shintani zeta functions, respectively its dual, are defined using the principal subgroup
['(n) and summing f over the quotient V(Z)* / I'(n), respectively V*Z)* /T'(n).
Assuming that ¢ is GL,(Z/nZ)-invariant, the general definition reduces to (34). [

The possible poles of £* (¢, s) occur at 1 and 5/6, and the residues shall be given
in Proposition 5.2 below. First we define

2 2 2
+ o T o+ o T + o
of =g BoE o v (1/3)9r(2/3)3’
-7 T 2V3r?

Then the functions £*(s) = £*(1, s), corresponding to the constant function ¢ = 1,
have residues a® 4+ ¥ at s = 1 and y* at s = 5/6. Moreover, the pole at 1 has
the following interpretation: the term a® comes from the contribution of irreducible
cubic forms and the term AT comes from the contribution of reducible cubic forms.

As before, let n be a positive integer. Let ¢ : V(Z/nZ) — C be a function of the
form ¢ = l—lpﬁ”n ¢ 6, where @5 : V(Z/pPZ) — C and B := vp(n). We define the
linear functionals Apﬂ , B b and C pp 0 be

Ay (bpp) = bpp0).  Bs(pe) = s - by(0), 5
Co () 1= pp - € 0),

where ¢ 5 > d;p\,s is the Fourier transform of functions on V(Z/p?Z) from §2 and
where the functions

bp.cp:V(Z/pPL)— V(Z/pZ) — Rxg
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Table 1 Densities of splitting . - - ) -
types Splitting type of f at p bp(f) (I =p™)ep(f)

W

(111) (11— p*2/3>(1 +p71/3)2

(12) 1 (1=p=*3

3 0 A=pHA+phH
a2 e (1 +p~ 3 —ph
(1% T (1= p~*%

) 1 (1—pHp*?

are GLy(Z/ pﬂZ)—invariant and defined in Table 1. We define A, (¢), B, (¢), and
C.(¢) multiplicatively as the product over p? || n of Ay (@p8), Bps(@pys), and
Cps(¢,6), respectively. By multilinearity, the domain of definition of the function-
als A, B,;, and C,, extends to all funct/igns ¢ : V(Z/nZ) — C. Abusing notation, we
denote the lift of ¢ (resp. ¢,4) to V(Z) (resp. V(Z))) also by ¢ (resp. ®,6). Note
that A, (¢) can be interpreted as the integral

A, = df = df,
@) /V 5, o 1;[ /V o B

where ¢ 5 is simply defined to be the function 1 when p { n. This is true because,
under our normalizations Vol(V (Z))) = 1.

We then have the following expressions for the residues of Shintani zeta functions,
see [11, 28, 33].

Proposition 5.2 The functions £*(¢,s) are holomorphic on C — {1,5/6} with at
worst simple poles at s = 1,5/6 and the residues are given by

Bflséi(qb,s) = aF - A, () + BE - Bu(g),
+ _ =
Slig/%é (¢,5) = y= -Cu(9).

The interpretation of these residues is that the term at - A, (¢) is the main term
contribution from counting irreducible binary cubic forms, the term B - B, (¢) is
the main term contribution from counting reducible binary cubic forms, and the term
y* - C.(¢) is the secondary term contribution from counting irreducible binary cubic
forms, particularly arising from cubic rings that are close to being monogenic, i.e.,
that have an element which generates a subring of small index.

5.2 Uniform bound for Shintani zeta functions near the abscissa of convergence

We recall the following fail estimate due to Davenport—Heilbronn [12]. See also [3]
for a streamlined proof.

Proposition 5.3 (Davenport-Heilbronn) Let n and m be positive squarefree integers.
The number of GLy(Z)-orbits on the set of binary cubic forms having discriminant
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bounded by X and splitting type (1°) at every prime dividing n and splitting type
(0) at every prime dividing m is bounded by O (X/(m4n2_€)), where the implied
constant is independent of X, m, and n.

Let p be a prime. Recall that for p # 3 the set of GL,(Z/ pZ)-orbits on V*(Z/ pZ)
(resp. V(Z/ pZ)) is classified by the possible splitting types, namely, (111), (12), (3),
(121), (13), and (0). For p = 3, one could extend this classification, or, more simply,
define E3(13) := ||¥3]l00, Which will only affect the multiplicative constants in this

paper.

Definition 5.4 For a prime p and a GL,(Z/ pZ)-invariant function ¥, on V*(Z/pZ)
(resp. ¢, on V(Z/pZ)), we define

Ep(frp) =¥, (1D + [, (12)| + [, B)| + ¥, (17 1))
+ 1Y ()P~ + ¥, 0) p~*,

and similarly for E,(¢)).

Let n be a positive integer, and let ¢ : V*(Z/nZ) — C (resp. ¢ : V(Z/nZ) — C)
be a GL,(Z/nZ)-invariant function. If i factors as ¢ = Hpﬁ”n Vs, wWhere 5 :
V*(Z/pP7Z) — C are GLy(Z/ pPZ)-invariant functions, then we define

Ex¥) = []E,Wp) - [] 1¥psloos
plin pPln
B=2
where || - ||oo denotes the L°°-norm. We have a similar definition for E, (¢).

Proposition 5.5 Let n be a positive integer. Let \ be a GLy(Z./nZ)-invariant function
on V*(Z/nZ). For every € > 0 and t € R, we have

EEW, 1+ € +it) Le n€E (). (36)

The same bound holds for € (¢, 1 + € + it) for a GLo(Z/nZ)-invariant function ¢
on V(Z/nZ).

Proof Let g be a positive squarefree integer. We say that t is a splitting type modulo
q if T = (1p) p|4 18 a collection of splitting types T, for each prime p dividing g. Let
q(z,13) (resp. g (t, 0)) denote the product of primes p dividing ¢, such that 7, = (13)
(resp. 7, = (0)). That is,

q@. =[] p. a@.0:=[] p.

plq rlq
7,=(1%) 7p=(0)

We write n = g¢, where ¢ is squarefree, ¢ is powerful, and (g,£¢) = 1. Given
an integral binary cubic form f, we have the factorization ¥ (f) = ¥, (f)¥e(f),
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where Y, : V(Z/qZ) — C and ¢ : V(Z/LZ) — C are GL;(Z/qZ)-invariant and
GL,(Z/€Z)-invariant functions, respectively, and as usual, we are denoting the lifts
of 14 and ¢ to V*(Z) also by v, and ¢, respectively. Let S(g) denote the set of
splitting types modulo ¢. For f € V*(Z), the value of v, (f) is determined by the
splitting type T modulo g of f. For such a splitting type T € S(g), we accordingly de-
fine ¥, (1) := 4 (f), where f € V*(Z) is any element with splitting type T modulo
q.
Lets =14 € 4 it. We have

EE W < Welloe - 3 gl 35
teS(q) m=1 mn

where ¢; (m) denotes the number of GL,(7Z)-orbits on the set of elements in V*(Z)
having discriminant m and splitting type t modulo ¢g. From partial summation, we
obtain

- 1
= Z(k1+e (k—l—l)l"'e)’;CT(m)
k
Zcf(m).

From Proposition 5.3, it follows that for every splitting type t modulo ¢ and every
k > 1, we have

s

[ Mg i)

k
3 crlm) e k- q(r. 1)+ (.0,

m=1

where the multiplicative constant is independent of ¢ and k. Therefore, we have

=1
EEW) e Wellsor Y We@lg(e 1)@ 074 (Y )

7e8(q) k=1
Le nE,(¥).

In the last equation, we used that
Ex() =¥elloo - [ [E»Wp) = lellos - Y 1Wq(Dlg(x, 17)?q(z,0)*.
plg TeS(q) 0

5.3 Smooth counts of binary cubic forms satisfying congruence conditions

As in the previous subsection, let n be a positive integer, and let ¢ : V(Z/nZ) — C be
a GL,(Z/nZ)-invariant function. Let ¥ : Ry — C be a smooth function of compact
support. For a real number X > 1, define the counting function quf (¢; X) tobe

¢(f) w(le)I)
. [Stab(f)] x /7

NG ($: X) = Z

GL2 (Z)
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Note that the notation differs from the notation N(X; X) and N(S; X) from [5] in the
presence of stabilizers.

Applying the Mellin transform results from Sect. 4, and shifting the line of inte-
gration from 9i(s) =2 to N(s) = —e, with 0 < € < 1, we obtain

N2 (¢ X) = — / XSeE (¢, )W (s)ds
b ’ o 27‘[1 9 — ’
R(s)=2
=Res;—1E5(¢,5) - U(1) - X
+ Resg—s /65 (¢, 5) - ‘Tf(g) X4 E (P, W) (37
= (aF A, (@) + BEBu(9) - (1) - X
+yicn<¢>~€f<2>-x5/6+€e(¢,w).

The error term Ec (¢, V) is defined below, and bounded using the functional equation
in Theorem 5.1 and Stirling’s asymptotic formula in the form I'(o + it) <, (1 +

1 —mlt]
[t])°"2e¢72 forevery o ¢ Z<pand t € R:

Set T ds
Ee(p, V) = X°& (¢,S)‘~1’(S)T
R(s)=—e€ Tl (38)
<entte rtnzﬁgls*i@, 1+e+it)|Ex(¥;e),
€

where we define Eoo(V; €) := 1% |\Tl(—e +it)| (1 + [t])>T<dt.

Theorem 5.6 Let W : R.o — C be a smooth function with compact support and let
€ > 0. Let n be a positive integer, and write n = gm, where q is squarefree, (q, m) =
1, and m is powerful. For every real X > 1, and GL,(Z/nZ)-invariant function ¢ :
V(Z/nZ) — C, we have

Ny (¢ X) = (@5 Ay (@) + BB (@) - T (1) - X
~ 5 —~ ~
+ @) - FC) - X7+ 0 (1 E, ) Ewc(F: ).

Proof This follows from (37), (38), and Proposition 5.5. O

The following lemmas bound E, (25) for various functions ¢.

Lemma 5.7 Let n be a positive integer and ¢ be a GLo(Z/nZ)-invariant function on
V(Z/nZ). Then we have, for every € > 0,

Ey@) <en([]P) 14 lloo-

plin

Proof This follows from the definitions of E, and E,, along with Corollary 2.7. [
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Recall from §3.2 the function A,, which is a GL,(Z/rad(n)Z)-invariant function
on V(Z/rad(n)Z).

Lemma 5.8 For every positive integer n and every € > 0,

En() <en“([1r) ([T p) >

plin piln

Proof Recall that the functions A« are defined modulo p irrespective of k. Hence

the claimed saving from the factors p with p? | n follows from Lemma 5.7. The
additional saving from the factors p with p || n is a consequence of Proposition 3.8.

Lemma 5.9 For every prime p # 3,

_ 2 .
Ap(xp)zxp(0)=pp3 . By(hy) =Apby(0) =

Cp(hp) = pcy(0) <A

Proof The first equation is derived in Proposition 3.8. The second equation is derived
similarly: we have

Jpby(0) = 6- p(p )(f ) pt2 P )4(p )_p -1

To prove the final inequality, we write

(1D = (1=p B+ p (1 —%) 1
1
3 = (1—p AU +p- 1)( ?)
1 1
cp(121) = (A+p~Ha-p! (__2)

We compute )»/pc\p(O) using Proposition 2.6 and obtain

1 1 1 1
Cpp) =5 (1= ) A =p(A+p™ A =4 p™h) +— (1= )1 +p7'7),
3Vop py p
which concludes the proof of the lemma. 0
5.4 Application to cubic analogues of Pélya-Vinogradov
We sum the Artin character over isomorphism classes of cubic rings. This is a cubic

analogue of the P6lya—Vinogradov inequality [22, Thm.12.5], which sums Artin char-
acters over quadratic rings. There are some substantial differences between quadratic
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and cubic cases: first, in the cubic case we see the presence of second order terms
which do not occur in the quadratic case. Second, since the parameter space of cu-
bic rings is four dimensional (as opposed to one dimensional), the trivial range for
summing the Artin character X, over cubic rings with discriminant bounded by X is
X > n* (as opposed to X >> n in the quadratic case).

Theorem 5.10 (Cubic analogue of Pélya-Vinogradov) Let p be a prime and let k > 2

be an integer. Let W : R..o — C be a smooth function with compact support such that
oo

Jo_ W(x)dx = 1. Then we have

(f) A
2 ISt:b(f)I\D( X )

)=
e(‘i/Lf(Z)
21 3.1
:(Olip—:,,—i-ﬂip 3 )X
P p

— ~ 5
+ y*xpc,,(ow(a) XY 4 0w (p'TE);

) Ak (f) \D(IA(f)|>
. 1Stab(f) X

GL, @)

- (aif;(O) + ,Bikpkbp(O))X
.5
+ yixpkc,,(ow(g) X8 4 O g (kp*te).

Proof This is a consequence of Theorem 5.6 in conjunction with Propositions 5.3 and
5.5 and Lemma 5.8. g

6 Sieving to the space of maximal binary cubic forms

In this section, we employ an inclusion-exclusion sieve to sum over maximal binary
cubic forms. To set up this sieve, we need the following notation. Denote the set of
maximal integral binary cubic forms by V (Z)™®*. For a squarefree positive integer
q, we let W, denote the set of elements in V (Z) that are nonmaximal at every prime
dividing q. Given a set S with a GL,(Z)-action, we let § := GL ) denote the set
of GL,(Z)-orbits on S. Let ¥ : R.g — C be a smooth function w1th compact sup-
port, and let ¢ : V(Z) — C be a GL,(Z)-invariant function defined by congruence
conditions modulo some fixed M. Then we have

¢(f) _9(H
——VY(|A = A 39
> Stab(/)] INGIEDIICS E |St b ()] v(lal). (39

fEV(Z)i max g>1

In practice, and starting from §6.2 and in subsequent sections, we will assume that the
support of ¢ is contained within the set of binary cubic forms corresponding to orders
in S3-fields (this will imply that the stabilizers are trivial, that is [Stab( f)| = 1).
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The difficulty in obtaining good estimates for the right-hand side of (39) is that ¢
restricted to W, is defined by congruence conditions modulo g>M, and a direct ap-
plication of the results of Sect. 5 yields not sufficiently precise error terms for sums
over such sets. We overcome this difficulty in §6.1 by using a “switching trick”, de-
veloped in [5], which transforms the sum over W, to a weighted sum over V (Z),
where the weights are defined modulo p. We then combine the results of Sect. 5
and §6.1 to carry out the sieve and obtain improved bounds for the error term. Fi-
nally, in §6.3, we derive several applications; notably, we obtain a smoothed version
of Roberts’ conjecture for certain (S3-) families of cubic fields, and sum the Artin
character Ag (n) over cubic fields K.

For a positive squarefree integer m and an integral binary cubic form f € V (Z),
denote the number of roots (resp. simple roots) in PY(Z/mZ) of the reduction of f
modulo m by w,, (f) (resp. w(l) (f)). By the Chinese remainder theorem, w,, ( f) and

wil )( f) are multiplicative in m.

Proposition 6.1 ([5, Eq. (70)]) For every positive squarefree integer q and every func-
tion ¥ : Ro o — C of compact support,

4
> wan) =Y uwo Y owpe( T2,

FEWF ktlg fevm®

The above identity was proved using the following procedure in [5, §9]. Every el-
ement f € W, corresponds to a ring Ry that is nonmaximal at every prime dividing
g, hence R is contained in a certain ring R’, such that the index ind(f) :=[R’: Ry]
satisfies ¢ | ind(f) and ind(f) | ¢%. In particular, the discriminant of R’ is smaller
than that of R . Then elements in YV, can be counted by counting the rings R’ in-
stead of Ry. In what follows, we formalize this procedure, and adapt it so that we
may sum congruence functions over Wq (Theorem 6.5 which is a strenghtening of
Proposition 6.1).

6.1 Switching to overrings

We begin with a bijection which allows us to replace sums over Wq with sums over
Wy, » for various integers q; | ¢ with g1 < g. Given a set S C V(Z) and an element
o eP! (Fp), let S$@ denote the set of elements f € S such that f(@¢) =0 (mod p).
Then we have the following result.

Lemma 6.2 Letr g be a positive squarefree number, and let p be a prime such that
P | q. Then there is a bijection between the following two sets:

[ Wl U m i r el v e PIE)
(40)

— @@ igen) aeP @),

uniquely characterized as follows. Both sets are in natural bijection with the set of
isomorphism classes of pairs (R, R") with R C R’, where R is an index-p subring of
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the cubic ring R'. The two bijections are given via (Ry = R, R') — f and (R, R' =
Rg) > g.

Proof The set Wq is in bijection with the set of cubic rings that are nonmaximal at
every prime p dividing g. As in [5, §9], we consider the set of pairs of cubic rings
R C R/, such that R is nonmaximal at every prime dividing ¢, and the index of R in
R’is p.Let f and g be representatives for the GL;(Z)-orbits on V (Z) corresponding
to R and R’, respectively. If f € W, is not a multiple of p, then there exists a unique
index-p overring R’ of R by Proposition 2.3. On the other hand, if f is a multiple
of p, then the set of index-p overrings R’ of R are in natural bijection with the roots
of f/p in P! (F,) (also by Proposition 2.3). Therefore, the set of pairs (R, R') is in
natural bijection with GL;(Z)-orbits on the following set:

{rewnmvunlU e repw vePl@p). @

and every form f in the above set corresponds to the ring R = Ry.

On the other hand, the set of index- p subrings of the ring Ry is in natural bijection
with the set of roots of g in P! (F p) by Proposition 2.3. Therefore, the set of pairs
(R, R) is also in natural bijection with GL;(Z)-orbits on the set

[e.):aeP!@,), ge Wi |, 42)

and every form g in the above set corresponds to the ring R’ = R,. It follows that
GL, (Z)-orbits on the sets (41) and (42) are in natural bijection. O

We will also need the following lemma determining how the above bijection
changes the splitting types of the binary cubic forms.

Lemma 6.3 Let g € W,/p and o € P! (F) be a root of g modulo p. Let f € Wq
correspond to the GL,(Z)-orbit of (g, o) under the bijection of Lemma 6.2. Then

(121) if a is a simple root of g;
op(f)=
g (13) or (0) otherwise.

Moreover, for every prime £ # p, we have o¢(f) = 0¢(g). And more generally, for
every integer n coprime with p, the reduction of f modulo n and the reduction of g
modulo n are GLy(Z/nZ)-conjugates.

Proof By translating g with an element of GL,(Z) if necessary, we can assume that
o =[0: 1]. In that case, we have g(x, y) = ax> + bx?y + cxy? + dy>, where p | d.
Furthermore, we have p { ¢ if and only if « is a simple root. Then, the element f (x, y)
is given by f(x, y) = p%ax’® 4 pbx*y + cxy? 4+ d/ py>, and has splitting type (121)
if and only if p t c. The first part of the lemma follows.

To prove the second part of the lemma, note that by tensoring the exact sequence
0— Ry — Ry — Z/pZ — 0 by the flat Z-module Z,, we obtain the isomorphism
Ry ®Z¢ = Ry ® Zy. Reducing modulo £ yields Ry ® Fy = R, ® Fy (and also Ry ®
Z/nZ = R, ® Z/nZ) which implies the desired conclusion. O
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Let n be a positive integer, and let ¢ : V(Z/nZ) — C be a GL,(Z/nZ)-invariant
function such that ¢ is given by

¢=[] ¢pr

pPln

where f > ¢,6(f) is GL»(Z/ pP7Z)-invariant. When B = 1, we have that dp(f) is
determined by the splitting type of f at p. For any positive integer k dividing n, such
that (k,n/k) = 1, we denote ]_[pﬁ”k $p6 bY ¢i. Let d > 1 be a squarefree integer
dividing n such that (d,n/d) = 1.

Definition 6.4 We say that such a function ¢, is simple at d, if for all p | d, we have
¢p(f) = ¢,(0) when the splitting type of f at p is (13).

Note that the functions of interest in the rest of the paper, namely A« and 6« for
primes p and positive integers k, are all simple.
We are now ready to prove the main result of this subsection.

Theorem 6.5 Let W : R.g — C be a compactly supported function, n be a positive
integer and q be a positive squarefree integer. Let ¢ be a GLo(Z/nZ)-invariant func-
tion on V(Z/nZ). Denote (q,n) by de, where d is the product of primes dividing
(q,n) at which ¢ is simple, and assume that ¢,(0) = O for every prime p|d. Write
n=dm and ¢ = pgpy,. Then

Y SNV (ALI)
fews

g*1A(g)]
e*d?k? )

=0a(1P) Y u® Y of @ore(@)dn (@ (

kel gz geEW;S

Proof We prove Theorem 6.5 by induction on the number of prime factors of d.
First we consider the case d = 1 which we establish by induction on the number of
prime factors of g /e. Let p be a prime dividing ¢ /e. We again use the bijection of
Lemma 6.2 to relate the sum over f € W, to a sum over g € Wy, ,. If f € pW,/p,
then ¢(f/p) = ¢(f) because ¢ is GLo(Z/nZ)-invariant and (p,n) = 1 implies
1/p € Z(GL2(Z/nZ)) which acts by scalar multiplication on V(Z/nZ). Suppose
fe Wq\qu/p corresponds to the GL> (Z)-orbit of g € W/, and aroot a € P! (Fp)
of g modulo p under the surjection of Lemma 6.2. Then since (n, p) = 1, we have
¢ (f) = ¢ (g) from Lemma 6.3. Thus,

Y SOV (ALI)
fews
p4|A(f)|)
k2

1

=3 wen Y o (NeNY(

ki1lp fqui/p
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= we) Y n) Y o (Nowa(Ne v (2 Lkz(kfz)l)
kitilp kata] L fewst

=3 w® Y awnscrv(? '4,55)'),
Wt g

where the second equality follows by induction on the sum over qu/p of the
GL»(Z/ pnZ)-invariant function wy, ¢, - ¢.

It remains to prove the inductive step on the number of prime factors of d. Let
p be a prime dividing d. We use the bijection of Lemma 6.2 to relate the sum over
(a)

fe W to sums over f € Wq/p Suppose f € W corresponds to g € W under

the bijection of Lemma 6.2, then by Lemma 6.3, we have ¢,(g) = ¢>p(1 1) 1f o isa

simple root and ¢,(g) = ¢p(13) = 0 otherwise. Also, we have ¢, /,(g) = ¢n/p(f).
Therefore, we have

A
Y swamn) = Y o @, 0 ew( 28N
rews €Wy,
A
= g(’D Y 5,‘>(g)w§}},,<g)¢n/d(g>w(' ;5’)'),
gEW,,

where the second equation follows by induction on the sum over W of the (simple

at d/p) function ¢/ - w},l). The result now follows since a),(C ) is multlphcatlve in

k. O
6.2 Summing congruence functions over W;':

Let n be a positive integer and let ¢ : V(Z/nZ) — C be of the form ¢ = ]_[pﬂ”n Gyt
where ¢ 6 : V(Z/pPZ) — C and B := vp(n). Let V(Z,)™™ be the subset of V(Z))
of nonmaximal cubic forms. It is the closure of W[jf inside V(Z). Given a positive
squarefree integer g, we define

A% = ] /V b0 (H1df - [T Ay @),

plg @p)m p)l(n
pla
@) = [] / B (Fep(DAf [T Cor @),
plg V@™ pln
rla

where df denotes the probability Haar measure on V(Z,), and the values of ¢, (f)
are given in Table 1. When p|q but p { n, we assume by convention that ¢ pp = linthe

integral above. Note that if ¢ = 1 then A% = A, and C\’ = C,,, and more generally
if (n,q) =1, then Aﬁlq) is equal to .4,, times the probability that f is nonmaximal at
every prime dividing g (with something similar holding for C,(,q) ).
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Let ¢ = ]_[p,an ¢,6 be a GLo(Z/nZ)-invariant function on V(Z/nZ). We say
that ¢ is an S3-function if there exist two prime powers pll || n and 1722 || n such
that ¢ ,sl is supported on elements with splitting type (3) and ¢ ﬁz is supported on
elements with splitting type (12). Note that the support of an 53 functlon in V(Z)

is contained within the set of integral binary cubic forms corresponding to orders in
cubic S3-fields.

Theorem 6.6 Let W : R.g — C be a smooth function with compact support, let n
be a positive integer, let q be a positive squarefree integer, and let d := (q,n). Let
¢ = l—lpﬁ”n ¢ 6 be a GLo(Z/nZ)-invariant S3~function on V(Z/nZ), such that ¢ is
simple at d and ¢,(0) = 0 for every prime p | d. Then for every X > 1,

o(f) [ACS)]
Z _ [Stab( /) ( X )

LAY @) T X +yE-C(9) - Ef(%) L x3/0

+ 0€<dl+eql+e . (z

4+€
7)

En/d((ﬁ/n;i)'Eoo(ﬁ;’e))

Remark Note that ¢ being an S3-function implies that the elements f in the support
of ¢ have trivial stabilizer, and similarly below for the elements f € W,(X). We
keep Stab( f) in the theorem statement and its Corollary 6.7 below as a reminder that
the Shintani zeta function counting methods of Sect. 5 are used to estimate the sum.

Proof The values of the constants in front of the primary and secondary main terms
follow from Theorem 5.6. The term 5, (¢) vanishes because there exists a prime p
dividing n such that ¢4 is supported on elements in V(Z/ pP7Z) with splitting type
(3), which implies Bp,s (¢,8) = 0 because ¢ ,5 - b vanishes on V(Z/pP7Z) in view
of Table 1.

It remains to justify the size of the error term. For this, we first use Theorem 6.5
to write

P (f) 1A
2iIStab(f)|\Il( X )
fews

Pnja(g) \II(q“IA(g)I)’

1
=¢d(121)Zu(€) Z “’51)(8)“’"4(5’)|5tab(g)| Xd2k?

k1§ geV(ZL)*

where we have used that the elements g in the support of ¢, /4 have trivial stabilizer.
For each k and ¢, we apply Theorem 5.6 to the inner sum, obtaining

) Dnja(®)  1q*A(Q)]
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=ci) X +c) X/
—
+ O (k)™ - Eg @) Exe @F0) Enja($nja) Eoo (W, ©))
= c,(:zX + cl(f%XS/ﬁ

+ O¢ (d2+e(k£)1+e . (§)4+€En/d(¢/nﬁ)Eo@(\i, e)).

The second estimate above follows since we have the bounds

D 1

1)
)< o

Eq(w, Exe(@ke) <

k3—€p3—€’

Indeed, we have wiy =[] plke (Ap + 1) (with a slight modification when the splitting
at p is (0)), and then the bounds on the Fourier transform follow from Lemmas 5.7
and 5.8. Summing over k¢ dividing g /d, we obtain

Zd2+e(k£)l+€ < (dq)1+€,
k{|%

which yields the result. g

Recall that for a finite collection ¥ of local specifications, we defined a family of
fields Fx . The finite collection X can also be used to cut out subsets of binary cubic
forms. Namely, for a set S of integral binary cubic forms, let S(X) denote the subset
of elements f € S such that Ry ® Q, € X, for each place v associated to X. Here, as
usual, Ry denotes the cubic ring associated to f. Henceforth, we will always assume
that X is a singleton set. That is, it is either RO R B R, corresponding to cubic fields
and forms with positive discriminant, or it is R @ C, corresponding to cubic fields and
forms with negative discriminant. Accordingly the sign & in o™, y*, V(Z)%, W(j‘,
and so on, will be + for the former case and — for the latter case.

Let xx be the characteristic function of the set of elements (f,) € I1 » V(Z,) such
that Ry, ® Q) € X, for every prime p. We have that x5 factors through the quotient
I » V(Zp) — V(Z/rsZ) to a GLy(Z/rs Z)-invariant function which we also denote
by the same letter xx. Here ry is a positive integer which is the product of p over
all primes p # 2, 3 such that X, is specified at p and of 16 (resp. 27) for the prime 2
(resp. 3).

We say that ¥ is an S3-collection, and that Fx is an S3-family if there exist two
primes p and p’ such that £, = {Qpa} and £, ={Q, x Qp/z}. Note that when X
is an S3-collection, it automatically follows that xy is an S3-function.
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Corollary 6.7 Let X be a finite Sz-collection of local specifications. For every positive
integer n, positive squarefree integer q and X > 1, we have

A (f) [A(H)]
Z_ |Stab(f)|\y< X )
FEW,(E)

gt A@ )

[n,rs

+ 02 (1) - Eao (¥, 6)).

n,ry

~ ~ 5
Jnxe) W) X 4y O Gaxs) - T () - X7/0

Proof The two main terms of the asymptotic follow from Theorem 6.6, and it is
only necessary to analyze the size of the error term. We write n = n1n,, where nj is
squarefree, n, is powerful and (n1,n2) = 1. Let m denote the radical of n;. Recall
that A, is defined modulo nm, the radical of n. (Indeed, A Pk only depends on the
reduction of f modulo p.) Thus, Theorem 6.6 yields an error term of

44€ 1+e€ _— ~
T s () En(@.0)).
(n.q)

0cx (n.q)3 )

For a prime p and integer k > 2, it follows from Lemma 5.8 that we have
— 1 — k
E,(Ap) K F; Epk()»pk) < F
Therefore, we obtain

E

. () <
wo \ g/ € nim?

The theorem now follows since n1m2 <n. O

We end with two re&lts. The first is a uniform estimate, proved in [12], on the
number of elements in WV, with bounded discriminant. This estimate will be used to
bound the tail of the sum in the right-hand side of (39).

Proposition 6.8 (Davenport [12]) For every € > 0, X > 1, and squarefree integer q,

- X
#{fEqu:|A(f)|<X}<<eqT

=
The multiplicative constant is independent of q and X (it depends only on €).
Proof With the notation we have set up, Davenport’s proof can be expressed as fol-

lows: We use Proposition 6.1 with W the indicator function of the interval [%, X].
Then, instead of applying Theorem 5.6 as above, we apply the more direct upper

bound wi¢(f) < g€ and estimate from above the sum over f € V(Z)* by };—’jz. Il
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Second, we add up the functionals of Theorem 6.6 over squarefree numbers g.
Let ¢ : V(Z/nZ) — C be a function of the form ¢ = ]_[p,g”n ¢ 6, Where ¢ 5 :

V(Z/pPZ) — C and B = vp(n). For every prime p { n, we define ¢pp: V(Zp) —>C
to simply be the constant 1 function. We now define the functionals

amgy = 1 [ b (S
o reva,me "’

gy = [] / cp (Db (NS,

» fEV(Zp)max

where the values of ¢, (f) are given in Table 1. By multilinearity, the domain of
definition of the functionals A™* and C™#* extends to all functions ¢ : V(Z/nZ) —
C.

Lemma 6.9 For every integer n, the following identity between functionals defined on
functions from V (Z/nZ) holds:

Y n@AP = A,

g>1
Y n@e? = ¢

q=1
Proof This follows from the partition
V(Zp)=V(Zp)™ 0V (Z,)"™
for every prime p, and the inclusion-exclusion principle. |

6.3 Application to smooth counts of cubic fields with prescribed local
specifications

In this subsection, we use (39), Theorem 6.6, Proposition 6.8 and Lemma 6.9 to
sum congruence functions over the space of cubic fields. We denote the set of all
cubic fields K with £A(K) > 0 by F*. We say that 6 : F* — C is a simple
function defined modulo n if there exists a simple GL;(Z/nZ)-invariant function
¢ : V(Z/nZ) — C such that for every cubic field K, whose ring of integers corre-
sponds to a maximal binary cubic form f, we have 8(K) = ¢ (f), where f denotes
the reduction of f modulo n. For example Ak (n) is a simple function defined modulo
n corresponding to the function X, (f).

Theorem 6.10 Let W : R.g — C be a smooth function with compact support such
that [ W =1. Let T be a finite S3-collection of local specifications. For every real
X > 1 and integer n > 1, we have

A(K ~ 5
> k() <o Am G X 4 G B )X
KeFs

+ 05,):,\11(X2/3+6n1/3).
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Before we turn to the proof of Theorem 6.10, we make the following two obser-
vations. First, the quadratic analogue of the above result is the question of summing
the Legendre symbol ( ;) over the set of fundamental discriminants (or squarefree
integers).

Second, the case n = 1 of the above result (with the simplifying assumption that
¥ is an S3-collection) is a smoothed version (instead of a sharp version counting
K € Fx(X) without the W-smoothing) of the refined Roberts’ conjecture, proved in-
dependently in [5] and [34]. Those works obtain the error terms O (X 5/6=1/ 48te
and O (X7/°+€) for the sharp version of the refined Roberts’ conjecture. Indepen-
dently from the present article, the recent work [6] obtains an improved error term of
O (X 2/ 3+€) for the sharp count. This indicates that X 2/3+¢€ s the natural exponent
both for our present purposes of smoothly summing the Artin character of cubic fields
and for the problem of sharp counting of cubic fields.

Proof of Theorem 6.10 'We start with the sieve (39) to write

AK)] ) A
> k() =Y w@) Z b= (=)

KeFs g>1

Note that the sum over K is not weighted by the size of the automorphism group
because every K € Fy is an S3-field, hence Aut(K) is trivial.

Pick a real number Q to be optimized later. Using Corollary 6.7 for ¢ < Q, Propo-
sition 6.8 for ¢ > Q, and Lemma 6.9 to evaluate the main terms, we obtain

A(K ~ 5
> ax () = AT G X 4y G B )X
KeFy

X
+00z0(00)') + 0w ( i)

Optimizing, we pick Q = (X/n)!/3 which yields Theorem 6.10. O

Finally, we have a result estimating smoothed sums over cubic fields, where we
sum over arbitrary congruence functions defined modulo a squarefree integer. (We
could allow more general specifications, but this situation seems to be the most com-
mon in applications).

Theorem 6.11 Let W : R.g — C be a smooth function with compact support such
that W = 1. Let n be a positive squarefree integer, and let 6 be a simple function on
the family FT (resp. F ™) of totally real cubic fields (resp. complex cubic fields) cor-
responding to a GLy(Z/nZ)-invariant congruence S3-function ¢ : V(Z/nZ) — C,
which is simple at n and such that ¢,(0) = 0 for every prime p|n. Namely 6(K ) =
& (f) for every f € V(Z)™MX_ Then we have

A(K ~ 5
KeF*

+ Oe,\ll (X2/3+6n2/3+6||9”00).
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Proof As before, we begin with the inclusion-exclusion sieve. Pick Q > 1 to be opti-
mized and write

2 G(K)‘I’<|A(K)|) > n@ Z |SZ;{J)‘)I <|A§(K)|)+OG’W(QT_G)

KeF* q=Q

+0(X1/2||9||00).

For g < Q, we use Theorem 6.6 to write

A(K s
Z |SZ£{})| (' g()|)=wiAff”(¢)X+yic,5‘“(¢)\y(g)X5/6

n4+e 1+e

+Ocuw (ﬁ B (d)/_’\))

(n,q)

From the definition of the error term E s and Corollary 2.7, we obtain the bound
n.q

(n,q)?
) Ke o 101]00-

(n.9) (" q)

Using Lemma 6.9 to evaluate the main term, we therefore obtain

A(K ~ 5
KeF*

+ 0cw (51 ) + Ocw(n 0716 ).

X
Ql—e

Optimizing, we pick Q = X'/3/n?/3, which yields the result. O

7 Low-lying zeros of Dedekind zeta functions of cubic fields

We follow the setup of [30, §2.4] and of the previous Sect. 6. Namely, we pick an S3-
collection of local specifications X, and let Fx, be the associated S3-family of cubic
fields. We will simplify notation throughout this section by letting < denote <, x -
all error terms depend on X. For every function 1 : 7y, — C, we define

§:0.30:= Y necyw ()

KeFs

to be the smoothed average of n(K) over fields K in Fx with discriminant close to
X. Note in particular that Sy (1, X) denotes a smooth count of elements in Fy.

For a cubic field K, recall from Proposition 3.1 that the function L(s, px) is
known to be entire and that the Artin conductor of L(s, px) is equal to |A(K)]|.

@ Springer



Central values of zeta functions of non-Galois cubic fields 83

We define the quantity Ly to be the average value of log|A(K)| over K € Fx(X),
i.e., we define

__ Sz(og|AK)|, X)

' Sy (1, X) '

Lx

The Davenport—Heilbronn theorem implies that we have

Lx =logX + O(1).

We write the nontrivial zeros of L(s, pg) as 1/2 4 iy,(<] ), where the imaginary
part of y,((] ) is bounded in absolute value by 1/2. We pick & R — C to be a smooth
and even function such that the Fourier transform @ : R — C has compact support
contained in the open interval (—a, a). It is then known that ® can be extended to an

entire function of exponential type a. Define Zx (X) by

Zk(X) :=Z¢(&).

2m
j

We work with the following variant of the 1-/evel density D(Fx (X), ®) of the family
of Artin L-functions L(s, px) (equivalently, of the family of Dedekind zeta functions
Lk (s)) of K € Fx:

Sz (Zk(X), X)

D(Fs(X), @) := Se (LX)

Recall that Ok (n) was defined in (21) so that the nth Dirichlet coefficient of the
logarithmic derivative of L(s, px) is Ok (n) A(n). We use the explicit formula [30,
Prop.2.1] to evaluate Zg (X):

e¢]

Gy L[ 1 & Ok(mA®) < logn
;CD()/K ) =5 /_Oo¢(t)(log|A(K)|+O(l))dt ”n; o qn( = )
: _ @)
Ityields Zx (X) = Z " (X) + Zy (X), where
1 o tL
o) _ b X .
ZPX) = 700@( = )(log|AK)| + O (1))dr;
2 A Ok (m)A(n) ~ slogn
zZPx) = —-— d .
x (X) I 2 NG ( I )
A computation identical to [30, Eq. (17)] gives
Ss(zWx), X) -
52(Zx 0-X) 5. (44)

m
X—o00 Sy (1, X)
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To compute the 1-level density, we need to compute the asymptotics of Sy (Z 5(2) (X),
X). We write

S(zP(x),x) = ——S (ZQK(”)A(”)A(IZ%(”) X)
" (45)

2 logpA(mlogp)
= —— S (0k (p™). X).
2
EX p,m pm/ [:X
We now have the following result estimating the ratios Sy, (QK M, X ) /Sx (1, X).

Proposition 7.1 Let p be a prime number, and let X > 1 be a real number. Then, for
integers m > 3, we have

Sz (6 , X 1 1 13
SsOx (. X) 1, "
Sz(1,X) p | plAXI/6 " X135
Sz 0k (p*), X) o1 2B
Sx(1,X) I < D2 + X1/6 + Xi/—< (46)
Sz Ok (p™), X
x0T X
Sx(1, X)

Proof From Lemma 3.7 we have that 6x (p) = Ag (p). The left-hand side of the first
line of (46) can be computed from Theorem 6.10, yielding

SO X) e A ) + XV ) 4 X1,
Sx (1, X)
Note that the first summand in the right-hand side is bounded by O(u p - Ap(0)),
where u, (defined in Sect. 3) is the characteristic function of the set of elements
in V(Z/p*7Z) that lift to binary cubic forms which are maximal at p. The required
bound then follows from the first part of Proposition 3.9. Similarly, the second term is
bounded by O(X’I/Gump(O)). We prove in Lemma 5.9 that c/p)»\p(O) < p~ 1.
The same bound holds for u m »(0) since u , differs from 1 only at a density 1/p?
subset.

The proof of the second inequality is similar: this time, we use Theorem 6.11 to
deduce the estimate

Sz 0k (p?), X)

_1 Amax 9 _1 X—l/6cmax 9 X—l/3+é 2/3.
Se(1.X) Ke (@, — Dxs) + 0p2xz) + P

The third part of Proposition 3.9 implies the required bound on the first summand
on the right-hand side above, while the required bound on the second summand fol-
lows immediately since 6,2 is absolutely bounded. Finally, Lemma 3.7 states that
|0k (p™)| < 2, from which the third inequality follows immediately. O

We are now ready to prove the main result of this section.
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Proof of Theorem 5 From (45) and Proposition 7.1, we obtain

_ Ss(ZR (X, X)
Sy (1, X)

2 Zlogpa<210gp>sz(eK(p2),X>

TLx4p N ix ) S0X)

+0( 1 Z 10gp52(9K(p’”),X)>

1 m/2
0gX exaP Sxz(1, X)
m#2
2 logp ~/2logp 1 a=1 Sa—2
= ©< )+0(—+X6 +X6+6)
ﬁxz p Lx “\log X

p

1 1 a—1 1
0 + X H X o).
+ O log X + + + log X
where the three error terms respectively arise from the three estimates of Proposi-

tion 7.1. Assuming that a < %, and using the above computation in conjunction with
(44), gives

. ~ ) 2 logp ~/2logp
Xli)mooD(J:z (X), ®) ®(0) - Xhm Tv Z cb( )

—oo Ly & p Lx
~ 1 -
= @(0)——/ O(t)dt,
2J)

where the final equality follows from the prime number theorem. This concludes the
proof of Theorem 5. g

8 Main term for the average central values

Let ¥ = (X,) be a finite collection of local specifications. Without loss of generality
we assume that ¥, is a singleton set, which is to say that either the cubic fields
prescribed by X, = {R x R x R} are all totally real, or the cubic fields prescribed by
Yoo = {R x C} are all complex. We also assume (by imposing additional constraints
at two different primes, if necessary) that ¥ is an S3-collection. Let Fx denote the
family of cubic fields K prescribed by the set ¥ of specifications, namely such that
for each place v we have K ®q Q, € %,.

We let V(Z)(Z) denote the set of elements f € V(Z) such that xs(f) =1 and
such that A(f) > 0if oo = {R x R x R} (resp. A(f) < 0 if ¥ = {R x C}). For
each prime p, let W, (X) denote the set of elements in V (Z)(X) that are nonmaximal
at p. If g is a squarefree positive integer, we set W, (X) = Ny, W, (). In particular
Wi(E) = V(L) (3).

Since we have assumed that ¥ is an S3-collection, it follows that every form
f € V(Z)(X) corresponds to an order in an S3-field K ¢, in particular V(Z)(X) C

@ Springer



86 A. Shankar et al.

V(Z)i“. This implies that the set V (Z)(X)™* of GL,(Z)-orbits parametrizes under
the Delone-Faddeev correspondence the S3-family Fx of cubic fields prescribed by
the finite collection X of specifications.

Let W : R. 9 — C be a smooth function of compact support with [ W = 1.

For a real number X > 1, the inclusion-exclusion principle in conjunction with
Proposition 4.3 yields:

A(K
A= Y0 1 pow ()
KeFs (47)
A

=2y ug Y sorw(BL),

9=l FeW, ()
where S(f) was defined in (29) to be

M) iy m

=32 v IA(f)I)’ “

n=1

with V* as in Proposition 4.3 and where the sign is + if oo = {R x R x R} and —
if oo = {R x C}. The identity holds because for a maximal irreducible binary cubic
form f e V(Z)™™ corresponding to the ring of integers R ¢ of a cubic field K,
we have 2S5 (f) = L(%, pk ;) by Corollary 3.5 and Proposition 4.3.

In this section, we will prove two results. First, we will prove an upper bound
on Ay (X), which improves on the pointwise bound coming from summing the best
known upper bounds on |L(%, Pk )| over the associated fields K. Second, assuming
a sufficiently strong upper bound on |L(%, Pk )|, we obtain asymptotics for Ay (X).

8.1 Asymptotics for the terms withg < Q

For O € R> to be chosen later, we split the right-hand side of (47) into two parts,
> owa Y.
q<Q q9=Q

This section is concerned with the first part:

22“(‘1) Z Z)Ll(/é) (lA(f)|)V (./|An(f)|)‘ “9)

q<Q feW (T)n= 1

It will be convenient for us to set some notation surrounding the smooth functions
above and their Mellin transforms. For any positive real number y € R, let H, :
R. ¢ — C denote the compactly supported function

Hy () = w(0) - VE(

ﬁ). (50)
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The relevance of H,(¢) is that we have the equality

(IA(f)I).

A
V(SR () = (B

Lemma 8.1 (i) There exists a constant C > 0 depending only on V such that for
everye € [—1,1]and y e Ry,

o0

[Hy(—e +ir)|(1 +|r]) > dr < C.
o0

Eoo(77y;6)=/

(if) There exists a constant C > 0 depending only on V such that for every y €
R-o. [Hy ()| < C.

Proof We have by definition (26),
G(s) y* (5 +9)

VEGs) =
srEQ)
We deduce that the Mellin transform of 7 > V= (%) is equal to

5, G(=25) y (% —25)

s yE3)

292 VE(=2s) = —y

Since Hy is the product of the two functions ¥ and 7 > VE( \lﬁ), its Mellin transform
is the convolution of the Mellin transforms of the respective functions:

~ ~ ~ d
’Hy(a—i—ir)=2/ ‘-IJ(G—I—ir—i—u)y_z“Vi(Zu)z—u,, (51)
i

R(u)=n

where 0 < n < % is fixed. Indeed, to establish (51) it suffices to compute the inverse
Mellin transform of the right-hand side with a translation of the integration of the
v-variable:

~ ~  du d
2 / - / B0+ u)y 2 VEQuy e 22
R(v)=0 Rw)=n 2mi 2mi

~ dv ~ d
_ / ) 21y~ VE (2u) e
9N (v)=n 278 Jwy=y 2mi

Y
NG

which coincides with the inverse Mellin transform of the left-hand side.
We deduce from (51) the following inequality:

- w(z)vi( ) =H,y (1),

- =2n poo —_~
|7—Ly(a+ir)|§yT 1B (o +ir +n+it)| - |[VEQy +2it)|d.

—0o0

We shall use this inequality for y € [1, 400), in which case y~27 < 1.
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On the other hand, if we shift the contour of (51) to % (u) = —n, picking up a
simple pole at u = 0 of V*(2u), we then obtain the following inequality:

~ y2n o —
[Hy(o +ir)| < —/ V(o +ir—n+it)|-|VE(—2n+2it)|dT
T J-oo
+ U (o +ir)| - |G(0)].
We shall use this inequality for the other interval y € (0, 1], in which case y2’7 <1.
Assertion (ii) follows immediately by inserting o = % and r = 0. Assertion (i)

follows by inserting o = —e and integrating over r because Eoo(”gy; e€)fory>1is
bounded by

1 [ ~ o __
—f |\y(—e+n+ir)|(1+|r|)2+4fdr-f IVEQn+2i0)|(1+ |t dr < C,

T J-co —o0

where C depends only on W. The estimate for y < 1 is similar. g
We are now ready to prove the main result of this subsection.

Proposition 8.2 For every e > 0 and Q, X > 1, the sum (49) is asymptotic to

1+€

~ X
Cs-X- (IOgX + \l»’/(l)) + C/2 X+ 05,2,\1/( +X11/12+e + Q2+éx3/4+€)’

where Cx > 0 and Cy, € R depend only on the finite collection X of local specifica-
tions.

Proof Since V¥ is a function rapidly decaying at infinity, we may truncate the n-sum
in the definition of S(f) ton < X 1/2+€ with negligible error term. To estimate (49)
we switch order of summation and consider

An(f) A
2 Z ZM(Q) Z /2 Hﬁ( X )

n<X1/2+eq<Q feW,(2)

We may then use Corollary 6.7, to estimate the inner sum over f:

2 Z %Zu(q)

n<X1/2+e q<Q
—— —~ 5
x (aiAEZ?rz]@nxz) Ho (DX +y e Gaxs) Ho () X5/6) (52)
1 . —
+ousu( D = 20 B 0).
n<X/2+e !1<Q

The error term above is seen to be bounded by O x y(Q>T€X3/4+€) thanks to
Lemma 8.1.
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Next, we bound the secondary term in (52). Since ry is fixed, the contribution
to C(n sl ()m xx) from primes p | ry is bounded. Therefore, we consider without
further mention in the remainder of this paragraph only the primes p 1 rs. We begin
with the primes p dividing g. The contribution to C(g rz](k,, xx) from primes p | g
and p {n is given in [34, Thm.2.2] and [33, Cor.8.15] to be O(p~>/?). (Note that

our quantity C(p )(1) defined in §6.2 corresponds to the quantity denoted C,2(®, 1)

in [33].) The contribution to C Z rs] (An Xxx) from primes p | g and p | n is estimated
from [33, Prop.8.16] to also be O (p~>/3). (If a = (1*1,), then Cpla, 1) = p'/3, and
the cardinality of the orbit GL,(Z/ p*Z) - a inside V (Z/p>Z) is equal to p*(p*> — 1)
by [33, Lem.5.6], which yields p'/3p®/p® = p=/3, whereas the other nonmaximal
types a = ( li), (li*), (0) have a smaller contribution.)

We turn to the primes p not dividing g. The contribution to C(q rs1(Anxx) from
primes p {q and p 1 n is a convergent infinite product that is umformly bounded. The

contribution to C(n rs ](k,1 xx) from primes p{g and p || n is computed from (23)

and Table 1 to be O( p‘l/ 3) (see also Lemma 5.9). The contribution to C[n rs (kn Xx)

from primes p { ¢ and p? | n is bounded by O (n€) since ¢ p is absolutely bounded
and |A,| < n€. Therefore, letting n; :=[],, p and writing n = n1ny, we see that
the secondary term in (52) is K¢, 5w

s (n.q)'" St 1 !
X Z \/— Z 5/3 n 1/3 € <<€’E’\IJX Z W Z M

n<Xl/2+e ny<x\/2te ny ny<X\/2te
[u(np)l=1

plin

11
Lezw X1
where the final estimate follows since the inner sum is over powerful integers n, and
hence is <, X€.

Finally, to express the first main term in a more convenient form, we define the
function g(y) to be

o0
g(y):=Hy() =](; Hy(@t)dt. (53)
From Lemma 6.9, we see that for a fixed n, we have

Z U(Q)A[n rz](AnXE)

A Gxs) + 0 (Y AL Gnts) )

q<Q q=0
(n1,9)
= Amax()\nXZ)+06(Z 2, 1 e)

q=0Q

where as before n :=[],,,, p. We omit the details of the bound on A[n rsl ()\n xz),

(9)

[n,rs]

pln

since it is similar (and simpler) to the bound on C (A xx). Thus, writing n =
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niny, the first term in (52) is equal to

8( % max X
Z f A R xs) + 06,2,\1’< Z W)

n<X1/2te n<X1/2+e
The result now follows with the values of the constants being

Cs:=a*Res_ 1 Tx(s), C%:=2a%C/, (54)

$=3
as is shown in Proposition 8.5 below, and where T is defined in (55). O

8.2 Computing the leading constants

We compute the constants Cy, Cy, arising in Proposition 8.2. We begin with the
following lemma.

Lemma 8.3 The Mellin transform of the function g in (53) is

G(s) yEA/2+5)
yE(1/2)

2(s)=V(+s5/2)

where G is as in (26). In particular, g(s) is meromorphic on the half-plane R(s) >
—1/2 with only a simple pole at s = 0.

Proof Unwinding definitions (50) and (53), we see that

N 00 o] dy
= (s vE(2Z) 2
W = [vof (55
= /oozs/z“\y(r)ﬂ/oo Vi(u)usd—u
0 r Jo u

= T +s/2VE@).

The lemma follows from the expression (32) for \%(s). O

Define the Dirichlet series

Tes) =3 20 (55)

N
n=1
where tx (n) = A™* (X, xx) is the average of Ag (n) over K in Fy (note that this is
actually a finite average, since the value of Ag (n) is determined by the splitting type
of K at the primes dividing n.)

Proposition 8.4 The Dirichlet series Tx (s) has a meromorphic continuation to the

half-plane R(s) > 1/3 with a simple pole at s = . Moreover, this simple pole has a
positive residue.

@ Springer



Central values of zeta functions of non-Galois cubic fields 91

Proof For every integer n > 1, we have

s =[TY ”k(a),

pkin @

where O, C V(F,) is the GL, (I ,)-orbit attached to o, and o ranges over all splitting
types that are compatible with X,. The quantity tx (n) is clearly multiplicative, and
so T (s) has an Euler product decomposition

Ts(s) : _HZfE(P )

P k=0

If p # 3 and there is no specification X, at p, then Proposition 3.9 asserts that
2 2 2
ts(p) = (p_l)p(if_l) and that t5(p?) = %. Therefore, the Dirichlet series

Ts(s)¢(2s)~! converges absolutely for 9i(s) > 1/3.
It follows that the residue at s = % is given by the following convergent product

1
Res,_1Tx(s) =3 [Ta- *‘)Z tz(k’/’z).
14

We claim that each factor in the product is positive:

i rs () .
Kz 0 for every prime p.
k=0 p

Indeed, A, (f) is only negative if o, (f) = (3) and m =1 (mod 3), in which case

k
Apn(f) = —1. Therefore, the minimum possible value of > ;2 ”;(,f/’z) occurs when
¥, ={(3)}. In this case

. 15 (ph) 1 1
YEF = Y - Y (56)

k=0 P k=0 (mod 3) P k=1 (mod 3) P

which is clearly positive since the nth term of the sum on the left is greater than the
nth term of the sum on the right. 0

Proposition 8.5 As X — oo, we have the asymptotic

o0
tg(n) n 1 ~ 1 e
X_: T = JRes 1 Tx(s) - (log X + T'(1) + €'+ Oc zv (X 17),

where

+/1
Yy (—+s)
C=— Ts(A +5) 22—~
sleo® 2@ T 205
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Proof From Lemma 8.3, we obtain

e ¢]

z(n) n
Z ()
1 -
= Ts (3 +9)8(s) X"/ ?ds
270 Jois)=2
(57)
1 yE(3+5) o, pds
= T V(1 +5/2G) L2 5288
271 e 2S 2(2 + )W +5/2)G(s) JE(1/2) )
1 o d
=— J)x* 2%
270 Joi(s)=2 s

where the jbove equation serves as a definition of J (s).
Since W (1) = G(0) = 1, it follows that J(s) is holomorphic in N(s) > —1 and
J(0) =Res _ 1 Ts (s). Expanding in Taylor series, we write

J(0)log X
J() X2 = J(0) + (()% + J’(O))s +
Shifting the integral to N(s) = + € forsome 0 < € < 6, we therefore obtain

ZIZ(”) ()= TRes12T5(s) - Tog X + 7'(0) 4 Ocx.w (X 1:75).

Calculating J’(0), we obtain, using that G(s) is even:
1 ~
J'(0) = —Res Tz(s) WD) +C.
This concludes the proof of the proposition. O

8.3 Upper bound for the first moment

In this subsection we investigate pointwise bounds for the tail of the sieve when
q=0.

Proposition 8.6 For every Q, X > 1 and € > 0,

5/475+e
> X 1561=0( )
q=0 fEW‘lI"
lA()I<X
Jfor 8 = 135 as in Theorem 4.1.

Proof Let f € V(Z)™ be an irreducible binary cubic form, and denote the field of
fractions of the ring associated to f by K .
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Note that for f € W, with [A(f)| < X, we have |[A(Kf)| < X/q?, and recall
from Proposition 6.8 that

_ X
#{feW,: IAN)] < X} < =

€

Therefore, we deduce from (30) the estimate

Z Z IS Ke X:(X/qz)(“‘6 . X/q2_€’

420 ey 9>0
[A(HI<X
where we recall that 6 = 1/4 — §. The result follows. 0

Optimizing, we pick 0 = X = in (49). We have now established the following
by combining the two Propositions 8.2 and 8.6.

Theorem 8.7 Forevery X > 1 and € > 0,

29288
As(X) Lesow X B0 1€, (58)
Numerically,
29 —285 921
—— =—=1.0325...
28 —1656 892

for the best known value of § = l]ﬁ of Theorem 4.1.

The exponent is smaller than 5/4 —§ = % = 1.2421875, thus (58) is an improve-

ment on the exponent arising from summing the pointwise bound on |L(%, oK )| over
cubic fields K with discriminant bounded by X.

9 Conditional computation of the first moment of L(%, PK)

In this section, we shall compute the first moment of L(%, Pk ) assuming one of two
hypotheses. More precisely, we prove the following result.

Theorem 9.1 Assume one of the following two hypotheses:

(S) Strong Subconvexity: For every K € Fx, we have |L(%, oK) <K |A(K)|%_’9 for
some ¥ > 0.
(N) Nonnegativity: For every K € Fx, we have L(%, px) > 0.

Then we have for small enough € > 0,

AK _
Z L(%”OK)\I](| ; )|>:C2X(IOgX—f“I//(l))—f-C/EX_lr_OG’E"y(lee)’
KeFyx

where Cx and C, are the constants arising in Proposition 8.5.
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Compared to Sect. 8, the proof is significantly more difficult, and will require
several new inputs. Indeed, recall that we have
A
IACSf )I) (59)

AsX)=2)"u@) Y S(He(=

9=l W, (X)

Pick a small «| > 0. Proposition 8.2 provided an estimate for the above sum with ¢
in the range [1, X /3-%1].

For ¢ > X'/8=%4 our approach is to approximate the smoothed sum of S(f) with
a smoothed sum of D(%, f). We do this by breaking up these ¢ into two ranges:
the “large range” and the “border range”. Namely, we pick a small x4 > 0. Then
the range ¢ > X'/8+%1 is the large range while the range [X /3% X1/3+17] is the
border range. For g in both of these ranges we want to prove

3 S(f)\I,(IA(f)I) 3 D(%’f)\IJ(IA(f)I)' (60)

X
FeEW, (D) FEWy ()

On average over f € W, (%), this is an unbalanced approximation of the central value
D(%, f) by the Dirichlet sum S(f) of the coefficients A, (f).

In §9.1, we establish (60) with ¢ in the large range, which is straightforward. The
bulk of the section is devoted to proving (60) in the border range. This is proved
in §9.2 and §9.3 using the unbalanced approximate functional equation of Proposi-
tion 4.11. The crux of the proof is to estimate the average of the coefficients ey (f) of
the unbalanced Euler factors E, (s, f) over the forms f € W, (X). Finally, in §9.4,
we compute the average of D(%, f) (assuming either nonnegativity or strong subcon-

vexity of L(%, 0K )), thereby obtaining the average of S(f) and finishing the proof of
Theorem 9.1.

9.1 Estimates for the large range
We begin by estimating S( f) for integral binary cubic forms with large index.

Lemma 9.2 For every integral binary cubic form f € V(Z)'™ and every € > 0, we
have

|A(f)|1/4Te
S(f)=D(}, 0 (7>
() (3, f) + Oc ind(/)
Proof Recall the computation of \ﬁ(s) in (32), and note that by definition, we have

1 —
S(0=57 [ PG +s DTEOIAC s

2mi
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Shifting to the line s = —1/2 + €, we pick up the pole of \ﬁ(s) at O (with residue 1),
to obtain

1

S(f) = D(l,f>+—./ DG +5, HVESIAG) [ ds
2 270 Joisy=—1/24¢  °

= DG, )+ O (IAHIT* A K) e,

where the final estimate follows since D (s, f) is within |[A(f)|€ of L(s, pg) for R(s)
close to 0. The lemma now follows since A(f) = ind(f)>A(K). U

Adding up the above estimate for f € W, (X), we immediately obtain the follow-
ing result.
Proposition 9.3 For every square-free q, and X > 1, we have

X 5/4+e

S ()= 5 o w20 0552

FEWy(2) FEWy(E)

Proof The proposition follows from Lemma 9.2 and the tail estimate in Proposi-
tion 6.8. O

An immediate consequence of the previous result is the following estimate for g
in the large range.

Corollary 9.4 For every small iy > 0, square-free q > X841 and X > 1, we have

A Xl_ZKT+€
> 5o - () <o s

FEW (%)

9.2 Preparations and strategy for the border range

In this subsection, we shall introduce spaces, notation, and some preliminary results
that will be useful subsequently in handling the border range. One of the key tools
in comparing S(f) and D(%, f) is the unbalanced approximate functional equation
of Proposition 4.11. To apply this result, it is not possible to only work with the
information that forms f € W, (X) are nonmaximal at primes dividing q. Rather, we
shall work with the additional information of the index of f, including at primes not
dividing gq.

To this end, for a positive (not necessarily squarefree) integer b, let Uy (¥) denote
the set of binary cubic forms f € V(Z)(X) such that ind( f) = b. Note the inclusion
Up(2) C Wradp) (£), and in fact we have

Wy (D) = || Ung (),

m>1
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where the union is disjoint and g is square-free. Let U, (X) denote the set of GL;(Z)-
orbits on Up(X).

Let b be a positive integer, and let r be a positive squarefree integer such that
(b, r) = 1. Finally, we define the set ), ,(X¥) to be the subset of elements in W, (%)
whose index at primes p dividing b is exactly p'»® . As usual we let Vp.r(X) denote
the set of GL,(Z)-orbits on YV, (X). The significance of these subsets ), - (X) is the
following disjoint union

Vor(E) = | | Uprs(2).

(b,s)=1

hence for any function ¢ : U, (X) — C, we have

Z qj(f)qj(IA;f)l) Z Z ¢(f)\p(|A(f)|>

felty (%) ®.n=1 €Yy (2)

Recall that the border range is what we are calling g € [X 18—y x1/ 8+"T], where
K|, K4 are positive constants that can eventually be taken to be arbitrarily small. We
next estimate the sum of S(f) — D(%, f) over f in Uy, (X), where m is somewhat
large.

We begin by bounding the number of elements in U, (X) C Z/I,inrfi that have dis-
criminant less than X.

Lemma 9.5 For every positive integer m and square-free q, write mq = m1q1, where
my is powerful, (m1, q1) = 1, and q is squarefree. Then for every X > 1,
1+e

5/3 5"
mpq

L €U A < X} <e 1)

The multiplicative constant depends only on € (it is independent of m, q, X).

Proof Elements f in the left-hand side of (61) are in bijection with rings Ry that
have index mgq = mq in the maximal orders Ok, of their fields of fractions K s. It
follows that the discriminants of these fields K are less than X/ (m]q1 ). It follows
that the total number of such fields that can arise is bounded by O (X/ mlql

To estimate the total number of rings Ry that can arise, it suffices to estimate
the number of such rings Ry within a single K y. This can be done prime by prime,
for each prime dividing the index mq;. Let p be a prime dividing ¢;. Since g is
squarefree, it follows that the index of Ry, at the prime p, is p. Given the index
p overorder R of Ry, it follows from Proposition 2.3, that the number of index p
suborders of R is bounded by 3.

For primes dividing m, this procedure is more complicated since there can be
many more subrings with prime power index. However, this question is completely
answered by work of Shintani [31] and Datskovsky—Wright [11] (see [24, §1.2]), who
give an explicit formula for the counting function of suborders R of a fixed cubic field
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K, which we state as Proposition 9.18. They show that the number of suborders of
index m, for m > 1, is the mth Dirichlet coefficient of

¢k (5)
Ck (29)

§QB3s)5Bs — 1.

To verify the lemma, it suffices to bound the Dirichlet coefficients of the Euler factor
of primes p having splitting type (111), since these coefficients majorize those of
primes with all other splitting types. For such a prime, the pth Euler factor of the
above Dirichlet series is:

(1 _ p—s‘)—?a(l _ p—zs‘)3(1 _ p—3S)—1(1 _ p—3S+1)—1

—(1+ p—5)3(§:p—3ks)(§: pk—sks)_
k=0 k=0

It is thus clear that the kth Dirichlet coefficient is bounded by O( pk/ 3). Therefore,
the number of possible suborders of index p* is bounded by O (p*/3).
Putting this together, it follows that the number of suborders of K, having index

qi1m is bounded by O(qui/ 3). Multiplying this quantity by X/(m1q1)? yields the
result. 0

Lemma 9.6 For X > 1, square-free q, and small enough n > 0

> X 5th-0d (B = ouna(

m>X1 felng ()

X 5/4—n+e )
> )

Proof From Lemma 9.2, it follows that for f € Uy, (X) with |A(f)| < X, we have
X 1/4+e

S(f) — D(%, f)=0( " ). We write mq as miq1, where g is squarefree with
(gq1,m1) =1, and m is powerful. We now have

X1/4+E Xl+€

A
Y X (sch-pd (N «erw
m>X" feUng () m>X"

mq mi/ 3 ‘112 ’
where the final estimate follows from Lemma 9.5. O

We then have the following corollary.

Corollary 9.7 Let X > 1, squarefree ¢ > X'/37\  and n > 0 be such that n — 2k >
0. Then we have

> X -t () = 0

M>X" felfng (2)

X]+2K¢77)+€>

q
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Furthermore, «| and hence 7 can be taken to be arbitrarily small. Therefore, a
consequence of the above lemma is that when ¢ is in the border range, sums over
Upmg (Z) only have to be considered for m less than arbitrarily small powers of X.

Let g € [X!/87%1 Xx1/8+¢t] be fixed for the rest of this subsection. For a posi-
tive integer m, we write mq = mq1, where m is powerful, (m1,q1) =1, and g is
squarefree. Note that since m will be taken to be very small (< X7), ¢; will be quite
close in size to g. We restate Proposition 4.11 for convenience: for f € Uy, 4, (X), we
have

oo oo

o e (K2 S Ma(f) s mikn
S(f)_D(f’f)_;qlrad(moZ a7 \denragnz ) ©?

n=1

where e (f k172 is the kth Dirichlet coefficient of the series

o 12 1_
3 Dk =gq{ Frad(m;)' =% Lf uEey
pri EGz +s. /)

Our next and final goal of this subsection is to perform a switching trick, anal-
ogous to Theorem 6.5, in which our sums over U4 (¥) are replaced with sums
over Uy, (X). We thus need to understand how the quantity ex(f) behaves under
such a switch. The next lemma does just that: more precisely, if f is nonmaximal
and switches to the pair (g, o) with prime index p, then the next lemma determines
ep,m(f)interms of (g, @).

As recalled in Proposition 2.3, the proof of [5, Prop.16] implies that there is a
bijection between the zeros in P! (IF) of the reduction modulo p of g(x, y) and the
set of cubic rings that are index-p subrings of R,. Thus, f* corresponds uniquely to
a pair (g, o), where a € P! (F}) is a root of g(x,y) modulo p. Then the following
lemma determines E, (s, f) given this pair (g, o).

Lemma 9.8 Let g € V(Z)™ be an irreducible binary cubic form that is maximal at a
prime p. Let a € ]Pl(IFp) be a root of the reduction of g modulo p. Let f € V(Z)"™
be a binary cubic form corresponding to the index-p subring of R, associated to the
pair (g, a). Then E,(s, f), and hence ey, , (f) for m > 0, is determined by the pair
(g, @). More precisely, we have

(@) Ifo,(g) = (111), then o,(f) = (121) and E, (s, f) =1 — p~*;

(b) If op(g) =(12), then o, (f) = (121) and Ey(s, f)=14p7%

(©) Ifop(g) = (121) and « is the single root, then o, (f) = (121) and EyGs, f)=1;

d) Ifop(g) = (121) and « is the double root, then op(f) = (13) and Ey(s, f) =
1—p~%,

() Ifo,(g) =(1%), theno,(f) = (13) and E (s, f) = 1.

Proof As in the proof of the second part of Lemma 6.3, the procedure to compute
f(x, y) given the pair (g, ) is as follows: use the action of GL,(Z) to move « to the
point [1: 0] € P! (F ). This yields the binary cubic form ax3 4+ bx%y + cxy? + dy3,
where p | a. Moreover, since g is maximal at p, we see that p | b implies that p®{ a.
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Then f(x, y) can be taken to be (a/p)x> +bx%y+ pcxy? + p?dy>. Running this pro-
cedure for the different splitting types of g immediately shows that the corresponding
f has the splitting type listed in the lemma.

For example, if g has splitting type (111) or (12), then we may bring one of
the simple roots (using a GLj(Z)-transformation) to infinity. Then we may write
g(x,y) =ax® + bx?y + cxy? 4+ dy3, where p | a and p 1 b since g is unramified.
Then the procedure gives f(x, y) = (a/p)x> 4+ bx>y + pcxy? + p*dy>. Since p b,
the splitting type of f(x,y) is (121) as claimed. The other cases are similar, and we
omit them. g

Lemma 9.9 Suppose that f,g € V(Z)"™ are GLy(Zy)-equivalent for some prime £.
Then we have E¢(s, f) = E(s, g), and hence ep () = eo.m(g) for all m > 0.

Proof As in the proof of the second part of Lemma 6.3, we have oy (f) = o¢(g).
In view of Definition 3.3 and (24) this implies D¢ (s, f) = D¢(s, g). We also have
o¢(K ) =0¢(Kg), and hence L (s, ,oKf) = Ly(s, PK,)-In view of Definition 4.4 this
implies E¢(s, f) = E¢(s, g). O

The final result of this subsection is to determine what happens to the quantity
ex (f)An(f) after applications of switches.

Lemma9.10 Let m and q1 be positive integers, where m1 is powerful, (m1,q1) =1,
and q is squarefree. Let k be a positive integer divisible only by primes dividing
m1qy. Let n be a positive integer and write n = n1£1 where (£1,q1) = 1 and n is
divisible only by primes dividing q1. Then we have

Yo alMmOVIAND = Y cq(@)dm, (e, (W (gTIARD.

feumlql(z) gGZ/{nq(Z)

where ¢y, and dy,, are congruence functions on V(Z) defined modulo q1 and m?,
respectively. Furthermore, we have cq,(g8) <e q} and dy,(g) Ke m{ uniformly for
every g € V(Z).

Proof Asin Sect. 6, we will write sums over Uy, 4, (X) in terms of sums over Uy, (X).
In this case, we have the simple bijection

Unygr (D) < {(g.0) 1 g €U, (2), 0 € PH(Z/q1Z), g(@) =0 (mod q1)},

which follows by an argument similar to that of Lemma 6.2.
Since every prime factor of k also divides ind( ) =mq;, we have

(N =TT epmr(H)=(TTernr)(TT etiwr ().
rlmiqi rlqi Lim

We denote the two terms between the parentheticals in the right-hand side above
e; ,(f) and dy,, (f), respectively. Since the function n — A, (f) is multiplicative, we

have )\.n(f) = )"nl (f))‘-el (f)
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Therefore, to prove the lemma, we need to express efh (f)s dn; (), An, (f), and
Ag, (f) in terms of congruence functions on the (g, «) corresponding to f under the
above bijection. We begin by noting that we have d,,,, (f) = d,,, (g) by Lemma 9.9
and Ag, (f) = A¢, (g), since f and g are GL,(Zy)-equivalent for any £ 1 q; (in par-
ticular for every £|m and for every £|¢;). Moreover, the function g — d,, (g) on
U, (X) can be extended to a congruence function on V (Z) defined modulo m? be-
cause o¢(Kg) depends only on ¢ modulo £3vem) for every prime £|m and we apply
Definition 4.4 and Definition 4.7 to find also that eg ,,x)(g) depends only on g mod-
ulo ¢3vetmi)

Next, we have that A,,(f) =0if a € ]P)l(Z/qlz) reduces modulo p to a dou-
ble root of g for some prime p | ny, and A, (f) = 1 otherwise. We have seen in
Lemma 9.8 that the value eﬁn (f) depends only on the splitting type of g modulo
all the primes dividing g1, and on whether « is a simple or double root modulo all
the primes dividing g;. It is thus clear that the sum of e/qI (f)An, (f) over the roots

a € PY(Z/q1Z) of g, where f <> (g, ) under the above bijection, is a function of
g € Uy, () that can be extended to a congruence function on V(Z) defined modulo
q1. The first claim of the lemma now follows.

The estimates in the second claim of the lemma are immediate since A, (f) < qf
because the radical of n; divides g1, and since e/q1 (f) and d,,, (f), each are bounded
by < g} and <« m{, respectively, because of the estimate e, ,,(f) < 1 in the proof
of Proposition 4.9. 0

9.3 Estimates for the border range

In this subsection, we assume that our integers g lie in the border range [X 1/8=ky
X 1/8+€1] with small enough « |, k4 > 0. Our goal is to bound

> (s -, pyw(BI),

FEWy ()

for ¢ in this range. Recall that we have a disjoint union

Wy (E) = || Ung (),

m>1

and that we will be summing S(f) — D(%, f) over Uy, (X) (and then summing over
m) rather than simply summing over W, (X). From Lemma 9.6, it follows that we
may restrict the sum to m < X", where n may be taken to be arbitrarily small. All
multiplicative constants are understood to depend on the initial choices of k|, k4,1 >
0.

We write mq = m1q1, where m is powerful, (m,q1) =1 and ¢ is squarefree.
Note then that m| < m? < X2"_ and thus q1>q/m=> XU/8=n—k, We begin by fixing
k and n in (62), and bounding the sum over f € Uy, 4, (2).

Proposition 9.11 For every small enough k1 > 0, the following estimate holds. Let
mi, q1, k, and n be positive integers and X > 1. Assume that my is powerful,
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(m1,q1) =1, and q is squarefree. Write n = n1£1 where (£1,q1) =1 and n is
divisible only by primes dividing q1. Denote the radical of £1 by £. Then

> amnvE( ki o (120

— rad(m1)?| A(f)|1/? X
F Uy (D)
Lexw X -H(n,mi,q1; X),
where
X X5/6+/c1/3 s 1299 le’q
H(n,my,q1: X) = ——3-+ —753 +Lgim XN+ ——.
gimie g 0 g2m3

Proof Without loss of generality, we may assume that every prime factor of k also
divides m1q, since otherwise e;(f) = 0 by definition and hence the sum is zero.
Applying the preceding Lemma 9.10, we obtain

S (5 (120
_ " rad(m1)?/TA(f)] X
fez/[mlql ()
2
qi1A(f)]
= Y cu(Pdu (D (W1 (T7=).
f U, (%)
where cg, is defined modulo g1, dy, is defined modulo m?, and V1 =H nkm?
«/Yrad(ml)z

Recall that in Corollary 8.1, we bound Eoo(klﬂ;/l; —e) by an absolute constant. For
brevity in this proof, we will write <« as a shorthand for <¢ » w.

We perform an inclusion-exclusion principle to write the sum over U, (¥) in
terms of sums over ), (X). This yields

2|A
2 qu(f)dml(f)kz.(f)wl(%w)
[l (Z)
2IA
= Z /"L(r) Z qu(f)dml(f))”fl(f)‘*pl(w>
(my,r)=1 fem

We split up the above sum into two sums, corresponding to the ranges r < B and
r > B, for some B > 1.

We estimate each summand in the range r < B using Theorem 5.6, and each sum-
mand in the range r > B using Lemma 9.5, to respectively obtain

2IA
> e P (P, (D (T2
F €V, ()
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X, r)y X3, r)

3 5/3 1751
912’”1/ r20 ‘11/ F5/3¢1/3
i+ x5/6+e
<S5+ 53 +Lgim i riX€;
6]1’"1 re g rA3elss
2 14+€
qiIACf)] X
S (P (P (D81 () < prm e

nyml,r(E)

The second bound is simply an application of the tail estimate of Lemma 9.5. The
first bound is more complicated, and we explain how it is derived. Summing over
Ymy,r (X) can be replaced by summing a function ¢ x5 over V(Z), where ¢ is defined
modulo m%r2 and xy is the indicator function defined in §6.2 before Corollary 6.7. In
the above equation, we are therefore summing a function defined modulo rzm?qlﬁrz
(here, we also use Lemma 9.10). Moreover q; is squarefree, and the function defined
modulo £ is Ay, . Therefore, the error term with applying Theorem 5.6 is bounded by
< quzmierXE.

We now estimate the first and second main terms. The density of the first main term
follows from the uniformity estimates and the bound A, (A¢,) < % from Lemma 5.9.
The second main term computation follows similarly using the bound Cy, (A¢,) < ﬁ
from Lemma 5.9.

Adding the above bounds over the appropriate ranges of r yields

> amny( ko Ju (1200

= rad(m )2/ TACS)] X
flnyq, (2) f
X]+€ log B X5/6+€B1/3 X1+€
5/3g iy laimP X+ o T
qimy”t a "t qimy
Choosing B = X! concludes the proof of the proposition. g

Let notation be as in the beginning of this section. We have

> (06 n-seye(SL)

FeW, (@

- ¥ \D(A(f)>§:ek<f)k”2

- X rad(ind( f))
FeW,(®) k=1

o M () L san(a(r)) ind(f)%kn
2 Y <rad(ind(f))2|A(f)|‘/2)

n=1

> AN > e (fHk'/?
- ¥ X ()T

el =1 girad(my)
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00 2
D () sania mykn
ysen(A() 1
XZ nl/2 (rad(m1)2|A(f)|l/2)

A\ > ex(fHk!/?
Z Z ( )kz girad(my)

m=1 e, (%) >1

Mn(f) L san(acsy mikn
Z nl/2V (rad(m1)2|A(f)|1/2)

x1/2+€
k

X1*77+2K¢+€
+ Oe,@,z,w(T),

where the final estimate follows from Corollary 9.7, and the rapid decay of V* to
truncate the n-sum, and where the b above indicates that the sum over k is supported
on multiples of g and ranges only over integers whose prime factors are all divisors
of mq.

Next, we truncate the sum over k as follows. For the next two results, we will write
k = k1kyp, where k| is cubefree, k; is cubeful, and (k1, kp) = 1.

Lemma9.12 For every small enough k> > 0, X > 1, and q1, m| as above (i.e., satis-
fying mp < X2 and q1 > X/8=n—xy ), we have

b lex(f)IK'? 2n ()]

IA(f)|<Xk2>X . - (63)

X L—Ko+4n+26 +e

Le,ir 7

Proof The integers k that arise range over products of powers of primes dividing mgq.
It follows from Proposition 4.9 that

X€ <k*1/3 < X tate

en(f) <e rad,ik”

Hence the sums over n and k can be bounded as follows: we have

Zb lex (f)|k'/ 3 (DI X1/4+e Yl
o qirad(my) = nl/2 © qirad(m) p
ko>X32 n=t— ko>X3%2
X1/4—K2+26
S qurad(o)

@ Springer



104 A. Shankar et al.

We already know from Lemma 9.5 that

> Xl+6
Z € 5/3 o°
/qz

feuis, e d
[A(NHI<X

Therefore, the left-hand side of (63) is bounded by

X 5/4— 3 1= +3n+2ic ) +3
5/4—1y+3€ S X5/4—ratnt3e  yl—ra+3n+2i+3€
Lewr X 2 573 5 Lewr 3 < ,
m=1 My “rad(mi)q; qi q1
which is sufficient because g; > g/m and m < X". 0

We input Proposition 9.11, which bounds the sum over f, and obtain with Corol-
lary 9.7 and (63):

> (6 n-sye(S2)

fEW, ()
X2
—————X‘H(n,m1,q1; X 64
Ler, 2,0 Zl ; Z I/qurad(ml) (n.mi,qi; X)  (64)
mi <x/+E
k2<X3K2 =

X 1-nt+2c +e€ X =Ko +4n+2k +e
+ +

q q

In our next result, we estimate the triple sum in (64):

Proposition 9.13 For every square-free g € [X'/87% X1/34<1) and X > 1, we have

XZ))
H(n,ml,ql;X)<<, s H(g: X),
k2<x3/(2 =

where H(q; X) is the sum of the final terms in Equations (65), (66), (67), and (68).

Proof 1In this proof we shall write < as a shorthand for < y, ., As before, we write
n =n1f1, where n is only divisible by primes dividing ¢ and (£1, g) = 1, and denote
the radical of £ by £. For convenience, we recall the definition of H(n, m1, q1; X):

5/641/3 1—k
H(n,my, q1; X) = — X5/3 + X5/3 + Lgim}P X + }i 573
gimy"C g3 qpm,

To prove the proposition, we take each term in H(n, m1, q1; X) by turn, and sum it
over n, k, and m1. The sum over n is broken up into sums over n| and £;. Note that
since n1 is only divisible by primes dividing ¢, the presence of 1/n'/? in the sum
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(and no ny’s in H(n,m1, q1; X)) means that the sum over n] can be ignored, at the
cost of the harmless factor O (X€). Indeed, we have

1 1
— — @
> l/25||(1+ Tt + )<<2“”1<<6X€.
PR g p P

Next note that k = k1k>, where k; is cubefree, and k is only divisible by primes
dividing mq = mq;. Hence, we have k1 < qlzrad(ml)2, and in conjunction with ky <
X3%2 we also have k < qlzX 2132 We begin with the first term: in this case, the sums
over £1 and m converge, and so we have

S S
1 53
1 mi=1 x1/2+¢ E /2 qlrad(ml)m /
k2<X3'(2€1 %
1
X +e€ Z k1/2
szXzKZ (65)
Xl+6 302
< L XTI N
! ky<Xx32
X 7/8430+9/2r+icy +e
< ,
q

where the final estimate follows because g1 > ¢gX " and g > X /8= Similarly, for
the second term, we have

X 5/6+K1/3+€ X K12 1
e XYY Y s
mi=1  k x1/2+¢ Z qirad(my)
kpx¥2 =T (66)
X 11/12+48/3)n+x1 /3+4i2+€
< 3
q

To estimate the third term, we write

X2 K12
2 9k1+e 12
R D VD DD DI e
mi=1  k xl1/2+¢ £ qirad(my)
kZSXSKZZI_ 15
b 1
« gy X349k 260+e 1 67)
k2§X3K2

X7/8+9K| +26n+K4+€

< )
q
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where the final estimate follows because non-zero values of k are all multiples of the
squarefree g1; see Proposition 4.10. Finally, we have

X X17K1+3r)+3K2+2K¢+€

k2 1
Z Z Z 172 53 K - (68)

mi=1 . X1/2+e £, "qirad(my) m} q
k2<X'§K2 Sy

Xl —K1+€

This concludes the proof of Proposition 9.13. 0
We are now ready to prove the main result of this subsection.

Proposition 9.14 There exist positive constants k4, k|, k3 such that the following
holds. For every X > 1 and every squarefree g € [X'/87%¢, X 1/81%1] we have

> (str - p)w(A) OE’W<X1q_K3 )

FEW, (%)

Proof We apply (64) and then apply Proposition 9.13. It is only necessary to ensure
that the exponent of X is less than 1 for each of the 6 different error terms. This is
easily done. First, we temporarily pick any positive x4 and « | . Next we pick n > 2« .
Then we pick k2 > 4n + 2« and k1 > 3n + 2« + 3«3. This takes care of (68) and
of the last two terms of (64).

Finally, to ensure that the exponents of X in the final terms of (65), (66), and
(67) are less than 1, we simply divide our constants k4, k|, 1, K1, k2 by the same
sufficiently large number. g

We now put together our results for the border range and the large range.

Theorem 9.15 There exists an absolute constant > > 0 such that for every X > 1 and
every squarefree ¢ > X/87%_ we have

> (stn-nd p)w() = OE’W(X:%)-

FEW, (%)

Proof We combine Corollary 9.4 and Proposition 9.14, where we choose » =
min(ky, £3). O

Corollary 9.16 There exists an absolute constant p > O such that for every X > 1, we
have

> X (sor-nd n)e(BN = osuxt. @)

g squarefree feW )
g=Xx/3-n
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Proof Adding up the above result for ¢ > X!/37* we note that {f € Wy (Z) :
|A(f)] < X} is empty for ¢ > X!/2 because A(f) =ind(f)>A(Kf) > g>A(Ky) >
g% for f € Wy. d

Remark 9.17 An admissible set of values of the constants is as follows: x| = ﬁ,

Kt = 31@, n= ﬁ K1 = 1%’ Ky = ()]ﬁ’ » = mlW' To verify the admissibility of
these numerical values, it suffices to insert them in each of the remainder terms of
Proposition 8.2, Corollary 9.4, Corollary 9.7, (63), (65), (66), (67), and (68).

9.4 Counting suborders

In this subsection we prove Theorem 9.1 by conditionally bounding

> 2 S

q>X18=% f W (%)

Note that by Corollary 9.16, we may replace S(f) in the above sum by D(%, f). The

advantage of using D(%, f) over S(f) is that the values of D(%, f) for binary cubic
forms f corresponding to suborders of a fixed cubic field K can be simultaneously
controlled in terms of L(%, pk)- To this end, we start by recalling the following result,
due to works of Shintani [31] and Datskovsky—Wright [11] (see [24, §1.2]), giving
an explicit formula for the counting function of suborders R of a fixed cubic field K.

Proposition 9.18 Let K be a cubic field with ring of integers Ok . For an order R C
Ok, let ind(R) denote the index of R in Ok . Then

1 Tk (s)
= 3 3s —1).
RcZoK nd(Ry  txas) 2O D

We thus obtain the following corollary regarding the number Nk (Z) of orders of
Ok with index less than Z for a cubic field K.

Corollary 9.19 For every € > 0, Z > 1 and cubic field K , we have
Nk (Z) e Z'EIAK)IC.
The implied constant is independent of K and Z.

Proof This follows from Perron’s formula integrating along the vertical line N(s) =
I+e. |

The above result can be used to give a very useful bound on the sum of D(%, ,
over f € W, (%) for g greater than some positive Q.

Lemma9.20 Forevery Q,X > 1 and e > 0,

Y pdinHlies X7 Y v S (Ll er)le (70)

920 FeW, () N5y <x/02 KeFs
[ACf)I<X Y<|A(K)|<2Y
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Proof Consider a real number ¥ with ¥ <« X/Q? and a cubic field K such that ¥ <
|A(K)| < 2Y. Then the number of binary cubic forms f € U;>oW,(X) such that
IA(f)| < X and Ky = K is bounded by

1

X2
NK(_1> _ Oe(Xl/He/Y]/z),

using Corollary 9.19.

Summing over all K in the discrimant range ¥ < |A(K)| < 2Y, and then sum-
ming over Y € 2N such that the dyadic ranges [Y,2Y) cover (more than) the in-
terval [1, X/Qz], we capture the sum over f € W, (X), for all ¢ > Q, such that
IA(H] < X.

Recall from (31) that we have D(3. f) = L(5.pk)E(3. f) and E(5, f) =

[Tpacn+ 0(p~2)) = |A(F)1°D, which concludes the proof of the lemma.  [J

The above lemma yields the following consequence, which clarifies how nonneg-
ativity is used by us.

Corollary 9.21 For every cubic field K € Fyx, assume that L(%, pk) > 0. Then for
0, X > 1, we have

Z Z D(%, f) <<€,E X29/28+E Q_15/14- (71)

920 feW,(3)
IA(H)I<X

Proof First note that the assumption L ( %, pk) > 0 for all cubic fields K implies that
D(%, f) = 0 for all irreducible integral binary cubic forms. Thus, we may apply the
previous lemma to estimate the left-hand side of (71).

From Theorem 8.7 (using a smooth function which dominates the characteristic
function of [1, 2]), we obtain

29-288
> ILG pR)| Loy YEISTE
KeFy
Y<|A(K)|<2Y

for § = 1/128. Even the bound with § = 0 in conjunction with (70), yields the result.
d

We are now ready to prove Theorem 9.1.

Proof of Theorem 9.1 Proof assuming strong subconvexity: The hypothesis (S) would
imply that the central value in the right-hand side of (70) is bounded by Y 7 Hence
the bound in (70) becomes X%“(X/Qz)%’ﬁ. We pick Q = X80 with €,k,>0
sufficiently small such that % +e+ (% + 2k ¢)(% — 1) < 1. Proposition 8.2, together
with Corollary 9.4 and Corollary 9.16, now yield the result.
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Proof assuming nonnegativity: We pick Q = X!/87*_ with s as in Theorem 9.15.
It follows that we have

> oY soe(BEN =y > pdpe(BEY)

920 feW, (%) 920 feW, (%)

+ Oz w (X771,

Since we are assuming hypothesis (N), Corollary 9.21 implies that we have

Y Y DO ) s X1V

az0Q feW, (%)
IA(HIKX

which is sufficiently small. The result now follows from Proposition 8.2. d

10 Proofs of Theorems 3 and 4

In addition to the quantity Ay (X), that we defined in (47), we also define

MAs(X) = Yo LG Rl

KeFs
X<|A(K)|<2X

PAs(X) = Y. LGk
KeFs

X/2<|A(K)|<3X
L(5.pK)20
The letter M stands for maximal and the letter P for positive.
Proposition 10.1 For every € > 0 and X > 1, we have the asymptotic inequality

MAg(X) <2PA5(X) + O p(X 5 107¢),

Proof We let W : Ry — [0, 1] be a smooth function compactly supported on the
interval [%, 3] such that Wy (¢) = 1 for ¢ € [1, 2]. We have an inequality followed by a
basic identity

IA(K)|>

MAz (0= Y ILG. ol (5

KeFs

—2 Y Ldoeow ()

KeFy X (72)
L(3.0x)20
|AK)|
- Y L opowi ().
KeFyx
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which follows from |x| = 2max(x,0) — x for every x € R. The first sum is <
2P Ay (X). (Note that in the respective definitions of M Ax(X) and PAx(X), the
discriminant range has increased from X < |A(K)| <2X to X/2 < |A(K)| < 3X
for this purpose). The second sum is equal to Ax(X) (up to negligible error) for
which we have established the estimate (58). This concludes the proof. Il

We finally arrive at the proof of our main result of this paper. In Sect. 8, we have
estimated the terms g < Q of the first moment Ay (X). In Sect. 9, we have estimated
for the other terms g > Q the difference S(f) — D(%, f). The conclusion of all
these results is summarized in the following which was stated in the introduction as
Theorem 4:

Theorem 10.2 There is an absolute constant . > 0 such that the following holds. For
every0<v<pu,e>0,and X > 1,

As(X) — Cx - X(log X +¥'(1)) - C& - X
Z MAx(Y) (73)

172
NSy <x3/4+v Y

<<e,v,):,\ll X1+e—u +X1/2+e .

where the sum over Y is dyadic, namely Y € 2N is constrained to be a power of 2.

Proof The result will follow from Proposition 8.2, Corollary 9.16 and (70). It follows
from Proposition 8.2 that

As(X) — Cx - X(log X +¥'(1)) - Cy - X

x1+e

0

Cesw T+ XTTE QPEXIF LTS S(fw <|A(f)|> :

= X
920 | feW,(Z)

Let a > 0 be sufficiently small such that W(¢#) = 0 whenever at > 1. Choose 0=
a~'X/8=/2_ Using that Q >y X'/87#, we can apply Corollary 9.16 to obtain the
bound

S| X (so-ndon)e(HP) «npxtraxi

9z0 | feW, (%)

The estimate (70) yields

3 ;‘D(%,f)’\If<|A;f)|><<\pZ 3 ‘D(%,f)‘

920 feW,(3) 920 feW, (%)
|A()I<X/a?
Lye MAx(Y)
Lezw X277 Z Ty
2Ny <(X/a?)/Q?
It remains to observe that (X/a?)/ Q% = X3/**V to conclude the proof. O
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We are now ready to prove our main Theorem 3. Recall that the qualitative version
in Theorem 2 follows from Theorem 3.

Proof of Theorem 3 Recall that Cy > 0 in Proposition 8.2. We are going to use (73),
Theorem 4.1, Proposition 10.1 which each have their own arbitrarily small € > 0,
and without loss of generality we arrange that € be the same in each. (An alternative
approach commonly used would be to assume that € may vary from line to line.)

We distinguish fwo cases depending on the size of the sum of MAx(Y) in the
right-hand side of (73).

In the first case, if the right-hand side of (73) is < X, then we have Ay (X) ~
Cyx - X -log X. In combination with Theorem 4.1, we obtain that >, » X 3+9-¢ cubic
fields K € Fyx with |[A(K)| < X satisfy L(%, px) > 0. Hence

1

55 (X) > > 48— — Ou(——
E( )—4 € G(IOgX)

(74)
Assume in the second case that the right-hand side of (73) is > X, namely

> x1/2¢

Z MAx(Y)

y12
2N3Y§X3/4+"

This implies that there exists ¥ € 2N with ¥ < X34t such that M Ax(Y) >
x1/2=¢ logz(X)_lYl/z. It follows from Proposition 10.1 that

2PAL(Y) > X2 1og,(X) Y2 4 O g (Y FT05 ),

Since ¥ < X3/4*V the error term is negligible. (The convexity bound § = 0 suffices
for this). We deduce

PAs(Y) > X'/272€y1/2, (75)

Theorem 4.1 and (75) imply that >, X!/272¢y1/4+3=¢ cubic fields K € Fx with
|A(K)| <Y satisfy the inequality L(%, pk) > 0. Hence

1 log X 1 1
82(Y)Z(§—26)10gy +(Z+8—e)—06(@). (76)

We are now ready to conclude the lower bound on the limsup in Theorem 3 by
showing that

3
limsupdx (X) > 1 + 4.

X—00

Indeed, the inequality is satisfied either in the first case by §x (X) in (74), or in the
second case by dx(Y) in (76), since llg% > 3_;% > 1 and since (75) implies that

Y — o0.
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To establish the lower bound on the liminf in Theorem 3, we need a lower bound

on Y in the second case. Theorem 4.1 implies PAx(Y) = O (Y%_‘H‘e). Together
with (75), this yields the following lower bound:

2
Y>> X5757¢ (77)
This implies
8(X)>1+(1+8) 2 Oc( ! ) (78)
-+ (- e —€— .
IR 348 “og X
The first two terms of (78) simplify to ﬁ, hence
liminféy (X) > ——.
o0 = 3755
This concludes the proof of Theorem 3. g

The same argument implies something slightly stronger than an Omega result
MAs(X) = Qx(X) as X — oo. Namely, that there is a sequence X; — oo such
that M Ax (Xx)/ X — oo. Indeed, in the first case of the proof of Theorem 3, we
have Ay (X) ~ Cx - Xlog X. In the second case, we have

in view of ¥ < X3/4tV. Moreover we have seen that (75) implies ¥ — oo, which
enables us to extract a sequence X; =Y — oo such that MAx(Y)/Y — oo.
For completeness, we also record the following lower bound for the first moment:

Proposition 10.3 Foreverye >0and X > 1,

S (L k)| e xEH
KeFs(X)

Proof Suppose first that we are in the first case of the proof of Theorem 3. Then
we have Ay (X) ~ Cyx - Xlog X, implying that the left-hand side of the above equa-
tion is >y X log X. Suppose instead that we are in the second case. Then the lower
bound (77) for Y implies the lower bound in Proposition 10.3 as follows:

1_ e 1
Do OILG = Y LG pr)l e X7V,
KeFs(X) KeFz(Y)

i | 5-4s
and 5 + 3=75 = =5 O

Notation
Ax(X) smoothed first moment of L(%, PK)
Cs, Cy, main terms for the first moment
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DG, f)
Exc(¥;€)

E, ()

Ep(s’ )

G(s)
Kr=R;r®Q
M

MAyx(X)
PAs(X)
Ry

Ts(s)

|4
V(Z)max
V(Z)irr
V(Zp)nm

Amax’ Cmax

A (@), Bu(#), Cu(9)
Xz

§>0

3z (X)

yE(s)

ind(f)

Ak (n)

Mn(f)

oy (f)

p(8)

T

¢p(13) =¢,(0)
+

rad(k)

Dirichlet series of A, (f)

archimedean norm of W

norm of ¥ weighted by splitting types

Euler factor of the form f nonmaximal at p
choice of an even holomorphic function
cubic field corresponding to the form f € V (Z
matrix of the Fourier transform of GL; (IF ,)-orbits on
V{Ep)

sum of |L(%, px)| for K € Fx(X)

sum of L(%, pk) >0 for K € Fx(X)

cubic ring corresponding to a form f € V (Z)

Dirichlet series of tx (n)

space of binary cubic forms with twisted action by GL,
subset of maximal binary cubic forms

subset of irreducible binary cubic forms

subset of V(Z,) of nonmaximal cubic forms

dual of V with compatible action by GL;

test function in the approximate functional equation
discriminant of the cubic field K

discriminant of the cubic ring R

discriminant of the binary cubic form f

family of cubic fields prescribed by =

compactly supported function on R ¢

orbits for the action of GL»(IF,) on V*(F,)

orbits for the action of GL,(IF,) on V()

finite collection of local specifications

set of cubic forms f with ind(f) =b

elements in V (Z) nonmaximal at every prime dividing g
subset of cubic forms f € W, with b || ind(f)

residues of Shintani zeta function

) irr

residue functionals with nonmaximality condition at g
residue functionals with maximality condition

linear functionals for residues of £+ (¢, s)
characteristic function of forms with specification X
subconvexity exponent for {g (%)

logarithmic density of fields K € Fx(X) with (g (%) <0
Gamma factor in the functional equation of L(s, px)
index of Ry in Ok,

nth Dirichlet coefficient of L(s, pg)

Artin character on the space of cubic forms

number of simple roots of f modulo m

number of zeros in P! (F p) of g modulo p

set of GL,(Z)-orbits on T

simple congruence function at p

+ is for totally real fields and — is for complex fields
radical of the positive integer k
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PK two-dimensional Galois representation

op(f) splitting type of f at p

Ok (n) coefficient of the logarithmic derivative of L(s, px)

0,(f) coefficients of the logarithmic derivative of D(s, f)

é:V(Z/nZ)y— C
o, U

£(¢.5)
W, 5)

bp(f)s cp(f)
ep,m(f)

f < (g, a) switch
g(y)

Fourier transform of function ¢ on V (Z/n7Z)

Mellin transforms of &, ¥

Shintani zeta function with congruence function ¢

dual Shintani zeta function with congruence function ¥
densities of splitting types

coefficients of Euler factor of f nonmaximal at p

Ry is an index-p subring of R,

equal to Hy(1)

q square-free integer entering into the sieve
g > X/8+kt large range of the sieve
g € [X'/8=%1 X1/8+%1] border range of the sieve

ry product of primes p such that X, is specified at p
ty(n) average of Ak (n) over K in Fyx

vp(k) > 2 for every p | k powerful integer

S(f) truncated Dirichlet sum of A, (f)
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