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Abstract
The Dedekind zeta functions of infinitely many non-Galois cubic fields have negative
central values.
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1 Introduction

Let K be a number field of degree n, and denote its Dedekind zeta function by ζK .
It was known to Riemann that ζℚ(

1
2 ) = −1.46... < 0. Hecke proved that ζK(s) has

a meromorphic continuation with a simple pole at s = 1 and root number +1. The
generalized Riemann Hypothesis claims that all the nontrivial zeros lie on the line
ℜs = 1/2, which would imply that ζK(s) takes only negative real values in the open
interval s ∈ (1/2,1) by the intermediate value theorem. This leads to the question of
the possible vanishing of ζK(s) at the central point s = 1/2. The answer was given
by Armitage [1] who showed that a certain number field K of degree 48 constructed
by Serre [29, §9] satisfies ζK( 1

2 ) = 0, and also by Fröhlich [17] who constructed
infinitely many quaternion fields K of degree 8 such that ζK( 1

2 )= 0. In each of these
examples, ζK(s) factors into Artin L-functions some of which have root number −1.
Such an L-function is forced to vanish at s = 1/2 which in turn forces ζK( 1

2 )= 0.
Conversely, which conditions on K can warrant that ζK( 1

2 ) is non-vanishing? A
conjecture of Serre [19, Conjecture 8.24.1(2)] claims that if ρ is an irreducible rep-
resentation of Gal(M/ℚ) for a finite Galois extension M of ℚ, then the Artin L-
function L(s,ρ) vanishes at the central point s = 1/2 if and only if ρ is self-dual
and the root number is −1. An Sn-number field K is a degree-n extension of ℚ such
that the normal closure M of K has Galois group Sn over ℚ. For such a field K ,
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ζK(s) factors as the product of ζℚ(s) and an Artin L-function L(s,ρK) which is ir-
reducible because ρK is the standard (n− 1)-dimensional representation of Sn, and
whose root number is +1 because the root numbers of both ζK and ζℚ are +1. This
conjecture of Serre (in conjunction with GRH) would thus imply that ζK( 1

2 ) < 0 for
every Sn-number field K .

In the case n = 2, a classical result of Jutila [23] establishes that ζK( 1
2 ) is non-

vanishing for infinitely many quadratic number fields K . This was later improved
in a landmark result of Soundararajan [32] to a positive proportion of such fields
when ordered by discriminant, with this proportion rising to at least 87.5% in some
families. In this article, we study the case n= 3. Our main result is as follows.

Theorem 1 The Dedekind zeta functions of infinitely many S3-fields have negative
central values.

We will in fact prove a stronger version of Theorem 1, in which we restrict our-
selves to cubic fields satisfying any finite collection of local specifications. To state
this result precisely, we introduce the following notation. Let Σ = (Σv) be a finite
collection of cubic local specifications. That is, for each place v of ℚ, Σv is a non-
empty set of étale cubic extensions of ℚv , such that for large enough primes p, Σp
contains all étale cubic extensions of ℚp . We let ℱΣ denote the set of cubic fields K
such that K ⊗ℚv ∈Σv for each v. Then we have the following result.

Theorem 2 LetΣ be a finite collection of local specifications. Then there are infinitely
many S3-fields in ℱΣ with negative central value.

Define ℱΣ(X) to be the set of fields K ∈ℱΣ with |Δ(K)|<X. The foundational
work of Davenport–Heilbronn [12] determined asymptotics |ℱΣ(X)| ∼ αΣ ·X with
an explicit constant αΣ > 0.

We prove quantitative versions of our main theorems, where we give lower bounds
for the logarithmic density δΣ(X) of the set of fields arising in Theorem 2 with
bounded discriminant:

δΣ(X) := log
⃓
⃓{K ∈ℱΣ(X), ζK( 1

2 ) < 0}⃓⃓/ logX. (1)

Our next result implies that the number of cubic S3-fields whose Dedekind zeta func-
tion is negative at the central point has logarithmic density ≥ 0.67:

Theorem 3 For any finite collection Σ of local specifications,

lim inf
X→∞ δΣ(X)≥ 64

95
= 0.67368 . . . ; lim sup

X→∞
δΣ(X)≥ 97

128
= 0.75781 . . .

Note that Theorem 2 is an immediate consequence of Theorem 3 since we may
add a specification Σp at an additional prime p that forces all cubic fields K ∈ℱΣ to
be non-Galois. Alternatively, we may observe that the number of Galois cubic fields

K , with discriminant less thanX, is known to be asymptotic to cX
1
2 by work of Cohn
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[10], where c is an explicit constant. Hence, Theorem 3 implies that most cubic fields
K ∈ℱΣ(X) with ζK( 1

2 ) < 0 must be non-Galois.
The above numerical values are established from

lim inf
X→∞ δΣ(X)≥ 2

3− 4δ
; lim sup

X→∞
δΣ(X)≥ 3

4
+ δ,

where δ = 1
128 is the current record subconvexity exponent due to Blomer–Khan [7],

which implies

|ζK( 1
2 )| ≪ϵ |Δ(K)| 1

4−δ+ϵ.

The convexity bound δ = 0 still yields the same kind of asymptotic results for δΣ(X),
only with the weaker lower bound of 2

3 . The same applies to all other results in this
paper so that a reader who wouldn’t want to rely on the above recent subconvexity es-
timate could stay with δ = 0. Other numerical values for δ > 0 have been obtained by
Duke–Friedlander–Iwaniec [16], Blomer–Harcos–Michel [8, Corollary 2], and Wu
[36].

Conditional on the Lindelöf Hypothesis for all ζK( 1
2 ), K ∈ ℱΣ , we would have

lim
X→∞ δΣ(X) = 1. Even this conditional result would not imply that a positive pro-

portion subset of ℱΣ(X) is non-vanishing, it does only guarantee the existence of
≫ϵ X

1−ϵ cubic fields K ∈ℱΣ(X) with ζK( 1
2 ) < 0 for every ϵ > 0.

A cubic number field is an S3-field if and only if it is not Galois; hence we refer to
non-Galois cubic fields as S3-fields. Galois cubic fields are cyclic and (as is already
noted above) the number of cyclic cubic fields K of discriminant less than X is about

X
1
2 . The zeta function of a cyclic cubic field K factors as a product of Dirichlet L-

functions of conjugate cubic characters of conductor |Δ(K)| 1
2 (see §3.1). It follows

from a result of Baier–Young [2, Corollary 1.2] that for ≫X
3
7 cyclic cubic fields of

discriminant less than X the Dedekind zeta function is negative at the central point.
Recently, David–Florea–Lalin [14] have studied the analogous problem of cyclic cu-
bic field extensions of the rational function field 𝔽q(T ), where they obtain a positive
proportion of non-vanishing. Their results and methods would also yield a positive
proportion of non-vanishing (conditional on GRH) for the family of cyclic cubic ex-
tensions over ℚ. See also the papers of David–Güloğlu [13], Güloğlu–Yesilyurt [21],
and Güloğlu [20] for analogous results for families of extensions of the Eisenstein
field ℚ(ζ3).

1.1 The first moment of the central values of Artin 𝑳-functions of cubic fields

There is an extensive literature on the non-vanishing at special points of L-functions
varying in families. The present situation of cubic fields is an important geometric
family. Its central values are of GL2-type and well-studied from an analytic perspec-
tive. At the same time, the geometry of the count of cubic number fields with bounded
discriminant has a rich history.
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Let K be a cubic field. The Dedekind zeta function of K factors as ζK(s) =
ζℚ(s)L(s, ρK), where L(s,ρK) denotes the Artin L-function associated with the 2-
dimensional Galois representation

ρK :Gal(M/ℚ) ↪→ S3 ↪→GL2(ℂ),

whereM is the Galois closure of K . It is known from work of Hecke that L(s,ρK) is
an entire function. It will be more convenient for us to work with the central L-value
L( 1

2 , ρK) rather than ζK( 1
2 ), which is equivalent since they differ by the non-zero

constant ζℚ(
1
2 ).

In order to prove Theorem 3, the standard approach is to estimate the first moment
of L( 1

2 , ρK) for K ∈ℱΣ . Thus we ask the question: can one obtain an asymptotic for

∑︂

K∈ℱΣ(X)
L( 1

2 , ρK), as X→∞?

This question is still open. Fortunately, we observe that we may weaken the ques-
tion in the following three ways: First, we shall study the smooth version which is
technically much more convenient. Second, we shall impose two local specifications
Σp , Σp′ at additional primes p ≠ p′. Third, and this is our most important point, we
observe that it suffices that the remainder term can be expressed in terms of central
values of cubic fields with lower discriminant. Indeed, we then have a dichotomy of
either an asymptotic for the first moment or an unusually large remainder term, either
of which implies the non-vanishing of many central values.

Theorem 4 There exists an absolute constant μ > 0 such that the following holds.
Suppose that for some prime p, the specification is Σp = {ℚp3} (i.e., the cubic fields
in ℱΣ are prescribed to be inert at p), and for another prime p′, the specification is
Σp′ = {ℚp′ ×ℚp′2} (i.e., the cubic fields in ℱΣ are prescribed to be neither inert nor
split at p′). LetΨ :ℝ>0 →ℂ be a smooth compactly supported function and suppose
that ˜︁Ψ(1)= ∫︁∞

0 Ψ = 1. Then, for every 0< ν ≤ μ, ϵ > 0, and X ≥ 1,

∑︂

K∈ℱΣ
L
(︁ 1

2 , ρK
)︁

Ψ
(︂ |Δ(K)|

X

)︂

= CΣ ·X ·
(︁

logX+ ˜︁Ψ ′(1)
)︁+C′Σ ·X

+ Oϵ,ν,Σ,Ψ
(︂

X1+ϵ−ν +X 1
2+ϵ ·

∑︂

K∈ℱΣ
(︁

X
3
4+ν

)︁

⃓
⃓L

(︁ 1
2 , ρK

)︁⃓
⃓

⃓
⃓Δ(K)

⃓
⃓

1
2

)︂

,

where CΣ > 0 and C′Σ ∈ℝ depend only on Σ.

It is easy to see that Theorem 4 implies that infinitely many fields K ∈ ℱΣ have
nonzero central values using an argument by contradiction. If there were finitely many
non-vanishing L-values, then the left-hand side would be bounded, and the second

term inside Oϵ,ν,Σ,Ψ(·) of the right-hand side would be bounded by X
1
2+ϵ . This is a
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contradiction because the term CΣX logX would be larger than all the other terms.
The fact that Theorem 4 also implies Theorem 3 is established in Sect. 10.

The main term of Theorem 4 is familiar in the study of moments of L-functions.
In particular the nature of the constants CΣ and C′Σ is transparent, with CΣ propor-
tional to the Euler product (2). We denote the nth Dirichlet coefficient of L(s,ρK) by
λK(n), which is a multiplicative function of n. For a prime power pk , the coefficient
λK(p

k) depends only on the cubic étale algebra K ⊗ℚp over ℚp , and is in fact de-
termined by 𝒪K ⊗ 𝔽p , where 𝒪K denotes the ring of integers of K . Therefore, for
a fixed positive integer n, the asymptotic average value of λK(n) over K ∈ ℱΣ is in
fact an average over a finite set (see [27, §2.11] and [30, §2] for a general discussion
of this phenomenon in the context of Sato–Tate equidistribution for geometric fami-
lies). We denote this average by tΣ(n) and note that this is a multiplicative function
of n.

We have tΣ(p)=OΣ( 1
p
) as the prime p→∞, which also is a general feature [30,

§2] that implies that the number field family ℱΣ is expected [27, Eq. (11)] to have
average rank 0. Moreover, tΣ(p2) = 1 +OΣ( 1

p2 ) for the present family ℱΣ which
implies that the following normalized Euler product converges:

∏︂

p

[︂

(1− p−1)

∞
∑︂

k=0

tΣ(p
k)

pk/2

]︂

. (2)

This product is shown to be positive and to be proportional to CΣ (see Sect. 8).
We shall discuss the remainder terms and our proof of Theorem 4 in §1.3. An

explicit value of μ is a tenth of a thousandth. This small numerical value arises from
the complications in bounding the remainder terms in all of the different ranges in

our proof coupled with that the exponent of the secondary term X
5
6 of the asymptotic

count of cubic fields is already by itself close to 1.

1.2 Low-lying zeros of the Dedekind zeta functions of cubic fields

Our equidistribution results in Sect. 6 on the asymptotic average value of λK(n) over
K ∈ℱΣ(X) with robust remainder terms as n,X→∞ have applications towards the
statistics of low-lying zeros of the Dedekind zeta functions of cubic fields (the Katz–
Sarnak heuristics). A conjecture in [27] predicts that for a homogeneous orthogonal
family of L-functions, the low-lying zeros of the family should have symplectic sym-
metry type. Given a test function Φ : ℝ→ ℂ, let 𝒟(ℱΣ(X),Φ) denote the 1-level
density (defined precisely in Sect. 7) of the family of Dedekind zeta functions of the
fields in ℱΣ with respect to Φ. Then the Katz–Sarnak heuristics predict the equality

lim
X→∞𝒟(ℱΣ(X),Φ)= ˆ︁Φ(0)− 1

2

∫︂ 1

−1

ˆ︁Φ(t)dt, (3)

for all even functionsΦ, whose Fourier transform ˆ︁Φ has support contained in (−a, a)
for a constant a to be determined. Yang [37] verifies (3) for even functions Φ whose
Fourier transform has support contained in (− 1

50 , 1
50 ). The constant 1

50 has been
subsequently improved to 4

41 by work of Cho–Kim [9] and independently [30]. Here,
we prove the following result:
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Theorem 5 Let Σ be a finite collection of local specifications and assume that
Σp = {ℚp3} and Σp′ = {ℚp′ × ℚp′2} for two primes p ≠ p′. Then (3) holds for

even functions Φ whose Fourier transform has support contained in (− 2
5 , 2

5 ).

1.3 Overview of the proof of the main theorems

These proofs are carried out in several steps. First, we control the central value
L( 1

2 , ρK) using the approximate functional equation. This allows us to approximate
L( 1

2 , ρK) in terms of a smooth sum of the Dirichlet coefficients λK(n), where the
sum has length Oϵ(|Δ(K)|1/2+ϵ). More precisely, we have

L( 1
2 , ρK)=

∞
∑︂

n=1

λK(n)

n1/2
V ±

(︂ n√|Δ(K)|
)︂

, (4)

where V ± is a rapidly decaying smooth function depending only on the sign ± of
Δ(K). Therefore, studying the average value of L( 1

2 , ρK) asK varies over the family
ℱΣ(X) of cubic fields with discriminant bounded by X necessitates the study of
smoothed sums of Dirichlet coefficients λK(n):

∑︂

n≤X1/2+ϵ

1

n1/2

∑︂

K∈ℱΣ
λK(n)Ψ

(︂ |Δ(K)|
X

)︂

, (5)

whereΨ :ℝ>0 →ℂ is a smooth function with compact support. In particular, a basic
input for the proof is the determination of the average value tΣ(n) of λK(n) over
K ∈ ℱΣ(X). Moreover, it is necessary to obtain good error terms for this average
with an explicit dependence on n.

1.3.1 Expanding the definition of 𝝀𝑲(𝒏) to cubic rings 𝑹

In order to compute the average value of λK(n) over K ∈ℱΣ with good error terms,
it is necessary for us to expand this average to one over cubic orders R. This is be-
cause cubic rings can be parametrized by group orbits on a lattice and Poisson sum-
mation, applied through the theory of Shintani zeta functions following Taniguchi–
Thorne [33] and [34], becomes available as an important tool.1 It is therefore neces-
sary for us to define a quantity λR(n), for positive integers n and cubic rings R. There
are different natural choices for the value of λR(n). For example, it is possible to set
the Dirichlet coefficients of R to be equal to the corresponding coefficients of R⊗ℚ.
Another possible choice arises from work of Yun [38], in which Yun defines a natural
zeta function ζR(s) associated to orders R in global fields. It is then possible to set
the Dirichlet coefficients of R to equal the corresponding coefficients of ζR(s)/ζ(s).

1This is in direct analogy to the quadratic case, in which Pólya–Vinagradov type estimates are used to esti-
mate the sum of Legendre symbols

(︁
n
D

)︁

, as D varies over all discriminants and not merely the squarefree
ones.
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However, we require λR(n) to satisfy the following three conditions:

(a) We require λR(n)= λK(n) when R is the ring of integers of K .
(b) We require λR(n) to be multiplicative in n.
(c) When p is prime, we require the value of λR(pk) to be defined modulo p, i.e.,

λR(p
k) should be determined by R⊗ 𝔽p .

The above two candidate choices for λR(n) satisfy the first two properties, but not the
third. In fact, the above three conditions uniquely determine the value of λR(pk) for
rings R such that R⊗ℤp is Gorenstein, in the sense that Hom(R,ℤp) is free.2 More
precisely, λR(n) should be defined to be the nth Dirichlet coefficient of D(s,R),
where D(s,R) is defined by an Euler product whose pth factor Dp(s,R) is given by

Dp(s,R) :=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− p−s)−2 if R⊗ 𝔽p = 𝔽
3
p;

(1− p−2s)−1 if R⊗ 𝔽p = 𝔽p ⊕ 𝔽p2;

(1+ p−s + p−2s)−1 if R⊗ 𝔽p = 𝔽p3;

(1− p−s)−1 if R⊗ 𝔽p = 𝔽p ⊕ 𝔽p[t]/(t2);
1 else.

(6)

It is clear from the definition that λR(n) satisfies the three required properties.

1.3.2 Summing 𝝀𝑹(𝒏) over cubic rings 𝑹 with bounded discriminant

Next, we need to evaluate a smoothed sum of λR(n), for R varying over cubic rings
having bounded discriminant. Such a result follows immediately from the following
three ingredients. First, the Delone–Faddeev parametrization of cubic rings in terms
of GL2(ℤ)-orbits on V (ℤ), the space of integral binary cubic forms. Second, results
of Shintani [31] on the analytic properties of the Shintani zeta functions associated to
V (ℤ). Third, local Fourier transform computations of Mori [26] on V (𝔽p).

Let n be a positive integer, and write n=mk, wherem is squarefree, k is powerful,
and (m, k)= 1. Then we have the following result, stated for primes and prime pow-
ers as Theorem 5.10, which is a smoothed cubic analogue of the Pólya–Vinogradov
inequality: There exist explicit constants α(n) and γ (n) such that

∑︂

[R:ℤ]=3

λR(n)Ψ
(︂ |Δ(R)|

X

)︂

= α(n)X+ γ (n)X5/6 +Oϵ
(︁

nϵ ·m · rad(k)2
)︁

, (7)

where rad(k) denotes the radical of k, and the sum over rings is weighted by the
inverse of the size of the stabilizer, |Stab(R)|−1.

2Non Gorenstein rings R over ℤp are those such that R⊗𝔽p is of the form ⟨1, x, y⟩ with x2 = y2 = xy =
0 (see [18]).
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1.3.3 Sieving to maximal orders

We define the quantity

S(R)=
∑︂

n

λR(n)

n1/2
V ±

(︂ n√|Δ(R)|
)︂

.

We note that S(R)= L( 1
2 , ρK) when R is the ring of integers of K . However, when

R is not maximal, it is not necessarily true that S(R) is equal to D( 1
2 ,R). In order to

evaluate (5), we need to perform an inclusion-exclusion sieve. Thus, for all squarefree
integers q , we need estimates on the sums

∑︂

R∈ℳq

S(R)Ψ
(︂ |Δ(R)|

X

)︂

, (8)

where ℳq denotes the space of cubic orders R that have index divisible by q in the
ring of integers of R ⊗ℚ. Estimating sums over ℳq is tricky since the condition of
nonmaximality at q is defined modulo q2 and not modulo q . That is, maximality of R
at a prime p cannot be detected from the local algebra R⊗𝔽p . To reduce our mod q2

sum to a mod q sum, we use an idea originating in the work of Davenport–Heilbronn
[12] and further developed as a precise switching trick in [5]. Namely, we replace the
sum over ℳq with a sum over the set of overorders of ℳq of index-q .

For q in what we call the “small range”, i.e., q ≤ X1/8−ϵ , the switching trick in
conjunction with (7) allows us to estimate each summand in (8) with a sufficiently
small error term. Ideally, we would use a tail estimate for large q . This tail estimate
requires bounding the value of S(R) for nonmaximal rings R. The convexity bound
yields the following estimate for rings R ∈ℳq with Δ(R)≍X:

|S(R)| ≪ϵ

X1/4+ϵ

q1/2
. (9)

Neither the convexity bound nor the best known subconvexity bounds give suffi-
ciently good estimates to cover all squarefree integers q > X1/8−ϵ . However, as-
suming the generalized Lindelöf Hypothesis (or indeed, a sufficiently strong sub-
convexity bound) is enough to determine the first moment for L( 1

2 , ρK). Moreover,
this method yields unconditional upper bounds on the average value of L( 1

2 , ρK), a
slightly stronger version of which is proven in Theorem 8.7:

Theorem 6 Let Σ be a finite collection of local specifications and assume that Σp =
{ℚp3} and Σp′ = {ℚp′ ×ℚp′2} for two primes p ≠ p′. Then for X ≥ 1, we have

∑︂

K∈ℱΣ
L
(︁ 1

2 , ρK
)︁

Ψ
(︂ |Δ(K)|

X

)︂

≪Σ,Ψ X
29/28. (10)

We note that this average bound is significantly stronger than the bound obtained
by simply summing the best known pointwise upper bounds for L( 1

2 , ρK).
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1.3.4 The approximate functional equation for cubic rings

The first ingredient required for estimating S(R), when R is a nonmaximal cubic
order with index>X1/8−ϵ , is a generalization of the approximate functional equation
(4) to the setting of cubic orders. This modification is proved in Proposition 4.11,
and expresses S(R) − D( 1

2 ,R) as a sum of arithmetic quantities associated to R.
The advantage of expressing S(R) in this way is that this latter sum is much shorter
than the original sum defining S(R): of length ≪ϵ X

1/2+ϵ/q rather than ≪ϵ X
1/2+ϵ .

However, this shortening comes at a cost. The summands of this new sum involve
Dirichlet coefficients from both D(s,R) and L(s,ρR⊗ℚ).

In order to control the coefficients of L(s,ρR⊗ℚ), it is necessary to isolate the
exact index of R in the ring of integers of R⊗ℚ. Merely knowning that q divides the
index is not enough. To precisely control the index, a secondary sieve is necessary.
Carrying out this secondary sieve yields the following estimate for q >X1/8−ϵ :

∑︂

R∈ℳq

S(R)Ψ
(︂ |Δ(R)|

X

)︂

≈
∑︂

R∈ℳq

D( 1
2 ,R)Ψ

(︂ |Δ(R)|
X

)︂

. (11)

This estimate is proved in Sect. 9, and is the crucial technical ingredient in the proof
of Theorem 4. Equation (11) allows us to exploit the advantages of using S(R) and
D( 1

2 ,R) in the original inclusion exclusion sieve. Namely, for small q , the sum of
S(R) over R ∈ℳq , can be well estimated with Equation (7) since S(R) is simply a
sum of the coefficients λR(n). However for large q , it is advantageous to instead sum
D( 1

2 ,R) over R ∈ℳq . This is because the value of D( 1
2 ,R) behaves predictably as

R varies over suborders of a fixed cubic field.

1.3.5 Summing 𝑫( 1
2 ,𝑹) over 𝑹 ∈ 𝓜𝒒 and over large 𝒒

We are left to estimate the sum

∑︂

q>X1/8−ϵ
μ(q)

∑︂

R∈ℳq

D( 1
2 ,R)Ψ

(︂ |Δ(R)|
X

)︂

. (12)

Expressing D( 1
2 ,R) in terms of L( 1

2 , ρR⊗ℚ) allows us to repackage (12) into sums
of the following form:

∑︂

K∈ℱΣ|Δ(K)|≍Y

∑︂

R⊂𝒪K
ind(R)≍√X/Y

D( 1
2 ,R)

≪ϵ,Σ X
ϵ

∑︂

K∈ℱΣ|Δ(K)|≍Y

#
{︁

R ⊂𝒪K : ind(R)≍√︁

X/Y
}︁ · |L( 1

2 , ρK)|.
(13)

Let K be a fixed cubic field. A result of Datskovsky–Wright [11] gives asymptotics
for the number of suborders of K having bounded index. This yields Theorem 4.

Our next idea is to assume the nonnegativity of L( 1
2 , ρK). Since the result of

Datskovsky–Wright is very precise, it turns out that we can input the unconditional
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upper bound on the sums of L( 1
2 , ρK) in (10), to obtain an improved upper bound on

the right-hand side of (13). This improved upper bound is enough to obtain asymp-
totics for the first moment of L( 1

2 , ρK), conditional on its nonnegativity.
Finally, we obtain Theorem 3 by making a version of the following simple idea

precise: If L( 1
2 , ρK) does indeed vanish for most fields K , then the right-hand side of

(13) is forced to be small, which in turn implies an upper bound on the left-hand side
of (13), which in turn allows for the computation of the first moment of L( 1

2 , ρK),
which in turn implies non-vanishing for many fields K . This leads to a contradiction,
and it follows that L( 1

2 , ρK) does not vanish for many fields K .
Finally, we observe that the same method of proof applies to the values L( 1

2 +
it, ρK) for a fixed t ∈ ℝ and yield variants of Theorems 1, 2, 3, 4, 6 with suitable
modifications.

1.4 Organization of the paper

This paper is organized as follows. In Sect. 2, we collect preliminary results on
the space of cubic rings and fields. In particular, we recall the Delone–Faddeev
parametrization of cubic rings in terms of GL2(ℤ)-orbits on integral binary cubic
forms. We also discuss Fourier analysis on the space of binary cubic forms over 𝔽p
and ℤ/nℤ. In Sect. 3, we introduce the Artin character on cubic fields K that arise as
Dirichlet coefficients of L(s,ρK) = ζK(s)/ζ(s). We then define an extension to the
space of cubic rings (and thus also the space of binary cubic forms). Next, in Sect. 4,
we recall the analytic properties of L(s,ρK), for a cubic field K . In particular, we
recall the approximate functional equation. We then discuss an unbalanced form of
the approximate functional equation for orders within cubic fields.

In Sect. 5, we recall Shintani’s theory of the zeta functions associated to the space
of binary cubic forms. As a well-known consequence of this theory, we derive esti-
mates for the sums of congruence functions (i.e., functions ϕ on the space of cubic
rings R such that ϕ is determined by R⊗ℤ/nℤ for some integer n) over the space of
cubic rings with bounded discriminant. Then in Sect. 6, we apply a squarefree sieve
to determine the sum of these congruence functions over the space of cubic fields.

In Sect. 7, we use the results from Sect. 6 to prove Theorem 5 on the statistics of
the low-lying zeros of the zeta functions of cubic fields. Next, in Sect. 8, we start our
analysis of the average central values of L(s,ρK), where K ranges over cubic fields.
In particular we prove the upper bound Theorem 8.7, obtaining an improved estimate
on the average size of L( 1

2 , ρK) compared to the pointwise bound.
In Sect. 9, we complete the most difficult part of the proof, in which we show that

for each somewhat large q , the values of S(R) and D( 1
2 ,R) are close to each other,

on average over R ∈ℳq . We use this result in Sect. 10 to first prove Theorem 4, and
using this in addition, to prove our main result Theorem 3.

1.5 Notations and conventions

• A positive integer k is said to be powerful if vp(k)≥ 2 for every prime p|k.
• The radical, also called the square-free kernel, of a positive integer k is the product

of its prime factors, rad(k) :=∏︁

p|k p.
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• We shall always use Σ to refer to the finite set of local conditions imposed on the
family of cubic fields.

• We shall always use Ψ to denote a compactly supported Schwartz function that
will control the discriminants of binary cubic forms, cubic rings, or cubic fields.

2 Preliminaries on cubic rings and fields

Let V = Sym3(2) denote the space of binary cubic forms. The group GL2 acts on V
via the following twisted action:

γ · f (x, y) := det(γ )−1f ((x, y) · γ ).
It is well-known that the representation (GL2,V ) is prehomogeneous and that the
ring of relative invariants for the action of GL2 on V is freely generated by the dis-
criminant which we denote by Δ. We have that Δ is homogeneous of degree 4 and
Δ(γ · f ) = (detγ )2Δ(f ). In this section, we describe the parametrization of cubic
rings and fields in terms of GL2(ℤ)-orbits on V (ℤ). We also discuss Fourier anal-
ysis on the space V (ℤ/nℤ), and in particular describe the Fourier transforms of all
GL2(𝔽p)-invariant functions on V (𝔽p).

2.1 Binary cubic forms and the parametrization of cubic rings

Levi [25] and Delone–Faddeev [15], further refined by Gan–Gross–Savin [18], prove
that there is a bijection between the set of GL2(ℤ)-equivalence classes of integral
binary cubic forms and isomorphism classes of cubic rings over ℤ:

Proposition 2.1 There is a bijection between the set of isomorphism classes of cu-
bic rings and the set of GL2(ℤ)-orbits on V (ℤ), given as follows. A cubic ring R is
associated to the GL2(ℤ)-equivalence class of the integral binary cubic form corre-
sponding to the map

R/ℤ → ∧2(R/ℤ)

θ ↦→ θ ∧ θ2.

Throughout this paper, for an integral binary cubic form f ∈ V (ℤ), we denote the
cubic ring corresponding to f by Rf , the cubic algebra Rf ⊗ℚ by Kf , and the ring
of integers of Kf by 𝒪Kf . We have

Δ(Rf )=Δ(f )= b2c2 − 4ac3 − 4b3d − 27a2d2 + 18abcd,

for f (x, y)= ax3 + bx2y + cxy2 + dy3, and where we denote by the same letter Δ
the discriminants of rings and algebras. Since Δ(Kf ) = Δ(𝒪Kf ) by definition, we
have the equality

Δ(f )=Δ(Kf )[𝒪Kf :Rf ]2 =Δ(Kf )ind(f )2, (14)

where we define the index of f , or ind(f ), to be [𝒪Kf :Rf ].



Central values of zeta functions of non-Galois cubic fields 45

In particular, we see that |Δ(Kf )| ≤ |Δ(f )|, and that the signs of Δ(f ) and
Δ(Kf ) coincide. If Δ(f ) ≠ 0, then the algebra Kf is étale. If f ∈ V (ℤ)irr is ir-
reducible, then Kf is a field. Furthermore, Δ(f ) > 0 when Kf is totally real, and
Δ(f ) < 0 when Kf is complex.

We say that a ring R has rank n if it is free of rank n as a ℤ-module. We say that
a rank n ring R is maximal if it is not a proper subring of any other ring of rank n.
For a prime p, we say that a rank n ring R is maximal at p if R ⊗ ℤp is maximal
in the sense that it is not a proper subring of any other ring that is free of rank n as
a ℤp-module. We have that R is maximal if and only if it is maximal at p for every
prime p.

We say that an integral binary cubic form f is maximal (resp. maximal at p) if the
corresponding cubic ring Rf is maximal (resp. maximal at p). We have the following
result [5, §3] characterizing binary cubic forms that are maximal at p.

Proposition 2.2 An integral binary cubic form f ∈ V (ℤ) is maximal at a prime p if
and only if both of the following two properties hold:

(i) f is not a multiple of p, and
(ii) f is not GL2(ℤ)-equivalent to a form ax3+ bx2y+ cxy2+ dy3, with p2 | a and

p | b.

We will also need the following result, proved in [5, Props.15-16], that determines
the number of index-p subrings and index-p overrings of a cubic ring.

Proposition 2.3 For an integral binary cubic form f ∈ V (ℤ), the number of cubic
rings in Kf containing Rf with index p is equal to the number of double zeros
α ∈ ℙ

1(𝔽p) of f modulo p such that p2|f (α′) for all α′ ∈ ℙ
1(ℤ) with α′ ≡ α mod p.

For an integral binary cubic form g ∈ V (ℤ), there is a bijection between index-p
subrings of Rg and zeros in ℙ

1(𝔽p) of g modulo p, whose number we denote by
ωp(g).

Example 2.4 Consider a form f (x, y) = ax3 + bx2y + cxy2 + dy3 ∈ V (ℤ), with
p2 | a and p | b which is nonmaximal by Proposition 2.2.(ii). Then α = [1 : 0] ∈
ℙ

1(𝔽p) is a double root of f modulo p. The form
(︁ 1
p

1

)︁ · f (x, y) = (a/p2)x3 +
(b/p)x2y + cxy2 + pdy3 corresponds to an index-p overring of Rf . This is consis-
tent with Proposition 2.3 which implies that the number of cubic rings in Kf con-
taining Rf with index p is at least one.

2.2 Binary cubic forms over 𝔽𝒑 and ℤ/𝒏ℤ

Let V ∗ = Sym3(2) denote the dual of V , and denote by [, ] the duality pairing. The
GL2-action on V ∗ is defined by the rule that [, ] is relatively invariant:

[γ · f,γ · f∗] = det(γ )[f,f∗], ∀γ ∈GL2, f ∈ V, f∗ ∈ V ∗. (15)

The scalar matrices in Z(GL2) act by scalar multiplication on both V and V ∗.
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Let a∗ := [y3, f∗], b∗ := −[xy2, f∗], c∗ := [x2y,f∗], d∗ := −[x3, f∗], and

Δ∗(f∗) := 3b2∗c2∗ + 6a∗b∗c∗d∗ − 4a∗c3∗ − 4b3∗d∗ − a2∗d2∗ .

Both Δ and Δ∗ are homogeneous of degree 4 and satisfy Δ(γ · f )= (detγ )2Δ(f )
and Δ∗(γ · f∗)= (detγ )2Δ∗(f∗).

Following [31, §3] and [4, Table 1], the lattice V ∗(ℤ) is isomorphic to the sub-
lattice

V ∗(ℤ)≃ {a∗x3 + 3b∗x2y + 3c∗xy2 + d∗y3 : a∗, b∗, c∗, d∗ ∈ ℤ} ⊂ V (ℤ), (16)

with compatible GL2(ℤ)-action. The restriction of Δ to V ∗(ℤ) coincides with 27Δ∗
as a direct calculation shows. We also see that the pairing [, ] : V (ℤ)× V ∗(ℤ)→ ℤ

coincides with the restriction of the antisymmetric bilinear form

V (ℤ)× V (ℤ) → 1
3ℤ

(f1, f2) ↦→ d1a2 − c1b2
3 + b1c2

3 − a1d2.

For an integer n≥ 1, the ℤ/nℤ points of V , which we denote by V (ℤ/nℤ), form a
finite abelian group which can be identified with the quotient V (ℤ)/nV (ℤ). The same
holds for V ∗(ℤ/nℤ)≃ V ∗(ℤ)/nV ∗(ℤ). We obtain a perfect pairing [, ] : V (ℤ/nℤ)×
V ∗(ℤ/nℤ)→ ℤ/nℤ.

The finite abelian group V ∗(ℤ/nℤ) is in natural bijection with the group of
characters V (ℤ/nℤ)→ S1, where S1 denotes the unit circle in ℂ

×. Indeed, given
f∗ ∈ V ∗(ℤ/nℤ), we associate the character

χf∗ : V (ℤ/nℤ) → S1

f ↦→ e
(︂ [f,f∗]

n

)︂

,

where e(α) := e2πiα .
Given a function ϕ : V (ℤ/nℤ)→ ℂ, we have the notion of its Fourier transform

ˆ︁ϕ given by

ˆ︁ϕ : V ∗(ℤ/nℤ) → ℂ

ˆ︁ϕ(f∗) := 1

n4

∑︂

f∈V (ℤ/nℤ)
e
(︂ [f,f∗]

n

)︂

ϕ(f ).

In this paper, we will be concerned with the Fourier transforms of GL2(ℤ/nℤ)-
invariant functions. Regarding this, we have the following result which is probably
known although we couldn’t find the statement in the literature.

Lemma 2.5 The Fourier transform ˆ︁ϕ of a GL2(ℤ/nℤ)-invariant function ϕ is
GL2(ℤ/nℤ)-invariant.
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Proof Let γ ∈GL2(ℤ/nℤ), f∗ ∈ V ∗(ℤ/nℤ) and the function ϕ be given. We have

ˆ︁ϕ(γ · f∗) = 1

n4

∑︂

f∈V (ℤ/nℤ)
e
(︂ [f,γ · f∗]

n

)︂

ϕ(f )

= 1

n4

∑︂

f∈V (ℤ/nℤ)
e
(︂det(γ )[γ−1 · f,f∗]

n

)︂

ϕ(f )

= 1

n4

∑︂

f∈V (ℤ/nℤ)
e
(︂det(γ )[f,f∗]

n

)︂

ϕ(f ),

(17)

where the first equality is by definition, the second equality follows from (15), and the
third equality follows from the GL2(ℤ/nℤ)-invariance of ϕ and the bijective change
of variable f by γ · f . To finish the proof of the lemma, we absorb the det(γ ) factor
into the sum over f since ϕ(uf )= ϕ(f ) for every u ∈ (ℤ/nℤ)× and f ∈ V (ℤ/nℤ)
because Z(GL2) acts by scalar multiplication on V . □

2.3 Fourier transforms of GL2-orbits

We now consider a prime number p ≠ 3. The orbits for the action of GL2(𝔽p) on
V (𝔽p) and V ∗(𝔽p) are characterized as follows [33, §5]. There are six GL2(𝔽p)-
orbits on V (𝔽p) depending on how a binary cubic form factors over 𝔽p . Using
(16), we may identify V ∗(𝔽p) = V ∗(ℤ)⊗ 𝔽p with V (𝔽p). There are thus also six
GL2(𝔽p)-orbits on V ∗(𝔽p). We denote the orbits on V (𝔽p) by

𝒪(111),𝒪(12),𝒪(3),𝒪(121),𝒪(13),𝒪(0), (18)

and the orbits on V ∗(𝔽p) by

𝒪∗
(111),𝒪∗

(12),𝒪∗
(3),𝒪∗

(121),𝒪
∗
(13)
,𝒪∗

(0), (19)

respectively, where 𝒪(111), 𝒪∗
(111) denote the sets of forms having three distinct ratio-

nal roots in ℙ
1(𝔽p), the sets 𝒪(12), 𝒪∗

(12) consist of forms having one root in ℙ
1(𝔽p)

and one pair of conjugate roots defined over the quadratic extension of 𝔽p , the sets
𝒪(3), 𝒪∗

(3) consist of forms irreducible over 𝔽p , the sets 𝒪(121), 𝒪∗
(121)

(resp. 𝒪(13),

𝒪∗
(13)

) consist of forms having a root in ℙ
1(𝔽p) of multiplicity 2 (resp. 3), and 𝒪(0),

𝒪∗
(0) is the singleton set containing the zero form. Given a subset S of V (𝔽p) or

V ∗(𝔽p), let CS denote its characteristic function. Every GL2(𝔽p)-invariant function
on V (𝔽p) (resp. V ∗(𝔽p)) is a linear combination of the six functions

C𝒪(0) , C𝒪(13)
, C𝒪

(121)
,C𝒪(111) , C𝒪(12) , C𝒪(3)

(resp. C𝒪∗
(0)
, C𝒪∗

(13)
, C𝒪∗

(121)
,C𝒪∗

(111)
, C𝒪∗

(12)
, C𝒪∗

(3)
).

Therefore, the Fourier transforms of the first six of the above functions determine the
Fourier transforms of every GL2(𝔽p)-invariant function on V (𝔽p).
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Proposition 2.6 (Mori [26]) Let p ≠ 3 be a prime number, and M = (mij ) be the
following 6× 6 matrix

M := 1

p4

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 (p+ 1)(p− 1) p(p+ 1)(p− 1) p(p+ 1)(p− 1)2/6 p(p+ 1)(p− 1)2/2 p(p+ 1)(p− 1)2/3

1 −1 p(p− 1) p(p− 1)(2p− 1)/6 −p(p− 1)/2 −p(p+ 1)(p− 1)/3

1 p− 1 p(p− 2) −p(p− 1)/2 −p(p− 1)/2 0

1 2p− 1 −3p p(±p+ 5)/6 −p(±p− 1)/2 p(±p− 1)/3

1 −1 −p −p(±p− 1)/6 p(±p+ 1)/2 −p(±p− 1)/3

1 −p− 1 0 p(±p− 1)/6 −p(±p− 1)/2 p(±p+ 2)/3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where the signs ± appearing in the bottom-right 3× 3 corner are according as p ≡
±1 (mod 3). Then

ˆ︂Cj =
6

∑︂

i=1

mijC
∗
i , 1≤ j ≤ 6,

where we have set

(C1,C2,C3,C4,C5,C6) := (C𝒪(0) ,C𝒪(13)
,C𝒪

(121)
,C𝒪(111) ,C𝒪(12) ,C𝒪(3) );

(C∗1 ,C∗2 ,C∗3 ,C∗4 ,C∗5 ,C∗6 ) := (C𝒪∗
(0)
,C𝒪∗

(13)
,C𝒪∗

(121)
,C𝒪∗

(111)
,C𝒪∗

(12)
,C𝒪∗

(3)
).

Proof The result was announced in [26], and a proof appears in the work of
Taniguchi–Thorne [35, Thm.11] and [33, Rem.6.8]. □

Remarks (i) For j = 1, that is for the first column ofM , Proposition 2.6 says that the
Fourier transform of C𝒪(0) , which is the Dirac function of the origin, is equal to the
constant function 1/p4 as should be.

(ii) For i = 1, the first row ofM in Proposition 2.6 provides the respective sizes of
each of the 6 conjugacy classes, because

∑︂

f∈V (𝔽p)
Cj (f )= p4ˆ︂Cj (0)= p4m1j .

They add up to m11 +m12 + · · · +m16 = 1 as should be.
(iii) For every j , k, we have

∑︁

f∈V (𝔽p) Cj (f )Ck(f ) = p4δjkm1j , because the
characteristic functions are pairwise orthogonal since the orbits are pairwise dis-
joint. This implies, by the Plancherel formula,

∑︁

f∗∈V ∗(𝔽p)ˆ︂Cj (f∗)ˆ︂Ck(f∗)= δjkm1j .
Hence, Proposition 2.6 implies

p4
6

∑︂

i=1

mijmikm1i = δjkm1j , 1≤ j, k ≤ 6, (20)

which indeed holds true as a direct verification shows. Because of the symmetry
between j , k, verifying (20) entails to verifying 21 equalities.

Proposition 2.6 has the following important consequence.
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Corollary 2.7 Let p ≠ 3 be a prime number, and let ϕ : V (𝔽p)→ ℂ be a GL2(𝔽p)-
invariant function such that |ϕ(f )| ≤ 1 for every f ∈ V (𝔽p). Then we have

ˆ︁ϕ(f∗)≪

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p−2 if f∗ ∈𝒪∗
(111) ∪𝒪∗

(12) ∪𝒪∗
(3) ∪𝒪∗

(121)
;

p−1 if f∗ ∈𝒪∗
(13)

;
1 if f∗ ∈𝒪∗

(0).

The absolute constant in ≪ can be taken to be 4.

Proof The rows of M are bounded by m1• = O(1), m2• = O(p−1) and mi• =
O(p−2) for 3 ≤ i ≤ 6, or equivalently M = [︁

O(1),O(p−1),O(p−2),O(p−2),

O(p−2),O(p−2)
]︁T . For example, we can make the absolute constant explicit as fol-

lows:
∑︁6
j=1m1j = 1,

∑︁6
j=1 |m2j | ≤ 1/p,

∑︁6
j=1 |m3j | ≤ 2/p2,

∑︁6
j=1 |m4j | ≤ 4/p2,

∑︁6
j=1 |m5j | ≤ 2/p2,

∑︁6
j=1 |m6j | ≤ 2/p2.

By assumption, ϕ =
6∑︁

j=1
ajCj with |aj | ≤ 1. Proposition 2.6 implies that

|ˆ︁ϕ(f∗)| ≤
6

∑︂

i=1

C∗i (f∗)
6

∑︂

j=1

|mij |.

We deduce

|ˆ︁ϕ(f∗)| ≪ C∗1 (f∗)+ p−1C∗2 (f∗)+ p−2 (︁

C∗3 (f∗)+C∗4 (f∗)+C∗5 (f∗)+C∗6 (f∗)
)︁

,

from which the corollary follows. □

3 The Artin character of cubic fields and rings

Let K be a cubic field extension of ℚ, with normal closure M . The Dedekind zeta
function ζK(s) of K factors as

ζK(s)= ζℚ(s)L(s, ρK),
where ζℚ(s) denotes the Riemann zeta function and L(s,ρK) is an Artin L-function
associated to the two-dimensional representation ρK of Gal(M/ℚ),

ρK :Gal(M/ℚ) ↪→ S3 →GL2(ℂ).

In this section, we first begin by collecting some well-known properties of
L(s,ρK). We denote the Dirichlet coefficients of L(s,ρK) by λK(n). Then we ex-
tend the definition of λK(n) to the set of all cubic rings R. We do this by defining
λn(f ) for all binary cubic forms f . Finally, for primes p ≠ 3, we compute the Fourier
transform of the function λp .
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3.1 Standard properties of 𝑳(𝒔,𝝆𝑲)

We denote the Euler factors ofL(s,ρK) at primes p byLp(s,ρK), and the nth Dirich-
let coefficient of L(s,ρK) by λK(n). We have that λK is multiplicative. We write the
pk th Dirichlet coefficient of the logarithmic derivative of L(s,ρK) as θK(pk) logp.
That is, we have for ℜ(s) > 1,

L(s,ρK) =
∏︂

p prime

Lp(s,ρK) =
∞
∑︂

n=1

λK(n)

ns
,

−L
′(s, ρK)
L(s,ρK)

= −
∑︂

p prime

L′p(s, ρK)
Lp(s, ρK)

=
∞
∑︂

n=1

θK(n)Λ(n)

ns
.

(21)

Note that θK is supported on prime powers.
Next, we recall some classical facts about L(s,ρK). Let Γℝ(s) := π−s/2Γ( s2 ) and

Γℂ(s) := 2(2π)−sΓ(s). Hecke proved that the completed Dedekind zeta function

ξK(s) := |Δ(K)|s/2ζK(s) ·
{︄

Γℝ(s)
3, if Δ(K) > 0,

Γℝ(s)Γℂ(s), if Δ(K) < 0,

has a meromorphic continuation to s ∈ ℂ with simple poles at s = 0,1 and satisfies
the functional equation ξK(s)= ξK(1− s). We introduce the following notation:

γ+(s) := Γℝ(s)
2 = π−sΓ( s2 )2;

γ−(s) := Γℂ(s)= 2(2π)−sΓ(s).

Proposition 3.1 (Hecke) L(s,ρK) is entire and satisfies the functional equation
Λ(s,ρK) = Λ(1 − s, ρK), where Λ(s,ρK) := |Δ(K)|s/2L∞(s, ρK)L(s,ρK) is the
completed L-function, and

L∞(s, ρK) := γ sgn(Δ(K))(s)=
{︄

Γℝ(s)
2, if Δ(K) > 0,

Γℂ(s), if Δ(K) < 0.

Proof The functional equation of L(s,ρK) follows from the functional equations of
ζK(s) and ζℚ(s). It remains to show that L(s,ρK) is entire and there are two cases to
distinguish: If K is non-Galois, thenM/ℚ is Galois with Galois group isomorphic to
S3, whereas if K is Galois, then M =K with Galois group isomorphic to ℤ/3ℤ.

(i) If K =M is Galois, then the Artin representation

ρK :Gal(M/ℚ)∼= ℤ/3ℤ ↪→ S3 →GL2(ℂ)

is the direct sum of the two nontrivial characters of ℤ/3ℤ. Hence L(s,ρK) =
L(s,χK)L(s,χK) for two conjugate Dirichlet characters χK and χK of order 3 and

conductor |Δ(K)| 1
2 . Dirichlet proved that L(s,χK) and L(s,χK) are entire.

(ii) If K is non-Galois, then the Artin representation

ρK :Gal(M/ℚ)∼= S3 →GL2(ℂ)
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obtained from the standard representation of S3 is irreducible. In this case, the sextic
field M has a unique quadratic subfield denoted L. We have an exact sequence

Gal(M/L) ↪→Gal(M/ℚ)↠ Gal(L/ℚ),

and the representation ρK of Gal(M/ℚ) ≃ S3 is induced from a character χK of
Gal(M/L)≃A3 = ℤ/3ℤ:

ρK ≃ IndGal(M/ℚ)
Gal(M/L) (χK).

Thus we have L(s,ρK)= L(s,χK). Via class field theory, χK corresponds to a ring-
class character of L of order 3. We have that L(s,χK) is entire by work of Hecke on
the L-functions attached to Grössencharacters. □

The following standard result isn’t directly used in the rest of the paper, except that
the second case of the proposition when K is an S3-field is relevant to Theorem 4.1
below. The reader can safely skip it.

Proposition 3.2 (Hecke, Maass) The representation ρK is modular. That is, there ex-
ists a unique automorphic representation πK of GL2 such that L(s,ρK) is equal to
the principal L-function L(s,πK).

• If K/ℚ is cyclic, then πK is an Eisenstein series with trivial central character.
• If K is an S3-field, then πK is cuspidal and its central character is the quadratic

Dirichlet character associated to the quadratic resolvent of K . Moreover,
– if Δ(K) < 0 then πK,∞ is holomorphic of weight 1,
– if Δ(K) > 0 then πK,∞ is spherical of weight 0.

Sketch of proof The construction of πK is due to Hecke and Maass and comes from
the theory of theta series. The unicity of πK follows from the strong multiplicity-one
theorem for GL2. The central character of πK corresponds under class field theory to
the determinant character

detρK :Gal(M/ℚ)↠ Gal(M/ℚ)ab→ℂ
×.

If K is Galois, then the permutations in ℤ/3ℤ have trivial determinant. If K is non-
Galois with quadratic resolvent L, then the transposition permutations in S3 have
non-trivial determinant, and since Gal(M/ℚ)ab = Gal(L/ℚ)∼= ℤ/2ℤ we obtain that
detρK is the quadratic Dirichlet character associated with L/ℚ. □

3.2 Definition and properties of 𝝀𝒏(𝒇 )

Let K be a cubic field with ring of integers 𝒪K . We say that K has splitting type
σp(K) to be (111), (12), (3), (121) or (13) at p if p factors as 𝔭1𝔭2𝔭3, 𝔭1𝔭2, p, 𝔭2

1𝔭2,
or 𝔭3, respectively. Recall that L(s,ρK) has an Euler factor decomposition, where
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it may be checked that the pth Euler factor Lp(s,ρK) only depends on the splitting
type of K at p, and is as follows:

Lp(s,ρK)=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− p−s )−2 =
∞
∑︂

m=0

(m+ 1)p−ms if σp(K)= (111);

(1− p−2s )−1 =
∞
∑︂

m=0

p−2ms if σp(K)= (12);

(1+ p−s + p−2s )−1 =
∞
∑︂

m=0

(p−3ms − p−(3m+1)s ) if σp(K)= (3);

(1− p−s )−1 =
∞
∑︂

m=0

p−ms if σp(K)= (121);

1 if σp(K)= (13).

(22)

For a prime p, recall the six GL2(𝔽p)-orbits 𝒪σ on V (𝔽p) defined in (18).

Definition 3.3 Given an element f ∈ V (𝔽p), we define the splitting type σp(f ) of f
to be σ if f ∈𝒪σ . For m≥ 1, we define the function λpm : V (𝔽p)→ ℤ as follows:

Let f ∈ V (𝔽p) have splitting type σ . Let K be any field also having splitting type
σ at p. Then we define λpm(f ) := λK(pm). This serves as a definition for all nonzero
f . For the zero form, we simply define λpm(0) := 0.

Explicitly, we compute

λpm(f ) :=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m+ 1) if σp(f )= (111);
1 if σp(f )= (12) and m≡ 0 (mod 2);
0 if σp(f )= (12) and m≡ 1 (mod 2);
1 if σp(f )= (3) and m≡ 0 (mod 3);

−1 if σp(f )= (3) and m≡ 1 (mod 3);
0 if σp(f )= (3) and m≡ 2 (mod 3);
1 if σp(f )= (121);
0 if σp(f )= (13);
0 if σp(f )= (0).

(23)

Extending notation, we set λpm : V (ℤ) → ℤ by defining λpm(f ) :=
λpm(f (mod p)), where on the right-hand side we have the reduction of f mod-
ulo p. We also write σp(f )= σp(f (mod p)) for the splitting type of f at p. For a
positive integer n≥ 1, we define λn : V (ℤ)→ ℤ multiplicatively in n, i.e., we set

λn(f ) :=
∏︂

pm∥n
λpm(f ).

The function λn(f ) is GL2(ℤ)-invariant and only depends on the reduction of f
modulo rad(n), where rad(n) is the radical of n, that is the largest square-free divisor
of n.
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Next, given a binary cubic form f ∈ V (ℤ), we define the following Dirichlet se-
ries:

D(s,f ) :=
∑︂

n≥1

λn(f )

ns
=

∏︂

p

Dp(s, f ), (24)

where the function Dp(s, f ) depends only on the splitting type of f at p. In fact, if
a cubic field K has the same splitting type as f at p, then Dp(s, f ) = Lp(s,ρK),
where Lp(s,ρK) is given explicitly in (22). When f is a multiple of p, we have
Dp(s, f )= 1.

For an irreducible integral binary cubic form f , with associated number field Kf
as in Proposition 2.1, the relationship between D(s,f ) and L(s,ρKf ) is given by the
following.

Lemma 3.4 Let f ∈ V (ℤ)irr be irreducible. Assume that f is maximal at the prime
p. Then σp(f )= σp(Kf ), and therefore

Dp(s, f )= Lp(s,ρKf ). (25)

Proof Since f is maximal at p, we haveRf ⊗ℤp
∼=𝒪Kf ⊗ℤp , whereRf denotes the

cubic ring corresponding to f and 𝒪Kf denotes the ring of integers of Kf . Further
tensoring with 𝔽p , we obtain Rf ⊗ 𝔽p

∼=𝒪Kf ⊗ 𝔽p . The former determines σp(f )
while the latter determines the splitting of Kf at p. Thus, the claim follows. □

Corollary 3.5 If f ∈ V (ℤ)irr,max is irreducible and maximal, that is if Rf is the ring
of integers of the number field Kf , then L(s,ρKf )=D(s,f ), and λKf (n)= λn(f )
for all n≥ 1.

Proof This is immediate from Definition 3.3 and the previous Lemma 3.4. □

Corollary 3.6 Let f ∈ V (ℤ)irr be irreducible. Then the function D(s,f ) converges
absolutely for ℜ(s) > 1.

Proof This is immediate since D(s,f ) and L(s,ρKf ) can differ only at the finitely
many Euler factors at p, where f is nonmaximal at p. □

For every f ∈ V (ℤ), and prime power n = pm, define θpm(f ) from the pmth-
coefficient of the logarithmic derivative,

−D
′(s, f )
D(s, f )

= −
∑︂

p

D′
p(s, f )

Dp(s, f )
=

∞
∑︂

n=1

θn(f )Λ(n)

ns
, ℜ(s) > 1.

Lemma 3.7 For every prime p and f ∈ V (ℤ), we have θp(f )= λp(f ) and θp2(f )=
2λp2(f )−λp(f )2. Furthermore, we have the bound |θpm(f )| ≤ 2 for every prime p,
integer m≥ 1 and f ∈ V (ℤ).
Proof The first two claims follow from Dp(s, f )= 1+ λp(f )p−s + λp2(f )p−2s +
O(p−3s) and expanding its logarithmic derivative. The third claim is the case n= 3
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of [30, Lem.2.2], of which we now repeat the argument for completeness. We have
Dp(s, f ) = (1 − α1p

−s)−1(1 − α2p
−s)−1, where |α1|, |α2| ≤ 1 as can be seen by

inspecting each case of (22). Then θpm(f ) = αm1 + αm2 , which implies the desired
inequality |θpm(f )| ≤ 2. □

We conclude this section with certain Fourier transform computations. First, we
have the following result, which will be useful in the sequel when we sum λp and θp2

over GL2(ℤ)-orbits on integral binary cubic forms having bounded discriminant.

Proposition 3.8 Let p ≠ 3 be a prime. Then

ˆ︂λp(f∗) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

−1

p3 if f∗ ∈𝒪∗
(111) ∪𝒪∗

(12) ∪𝒪∗
(3) ∪𝒪∗

(121)
;

p2 − 1

p3 if f∗ ∈𝒪∗
(13)

∪𝒪∗
(0).

Moreover, ˆ︂θp2(0) = 1− 1

p2 .

Proof A beautiful proof of a related result can be found in [35, Prop.1]. However,
for the sake of completeness, we explain how we can recover this result (and indeed
can compute the Fourier transform of any GL2(𝔽p)-invariant function) from a simple
application of Proposition 2.6. When f∗ ∈𝒪∗

(111), we compute

ˆ︂λp(f∗)= 1

p4

(︂

λp(0)+ λp(13)(2p− 1)+ λp(121)(−3p)+ λp(111)(p(5± p)/6)

+ λp(12)(−p(−1± p)/2)+ λp(3)(p(−1± p)/3)
)︂

= 1

p4

(︂

0+ 0− 3p+ p(5± p)/3− 0− p(−1± p)/3
)︂

= −1

p3 ,

as claimed. The computation when f∗ is in the other orbits is similar.
Finally, note that θp2(f ) is equal to 2 when σp(f ) ∈ {(111), (12)}, equal to −1

when σp(f )= (3), equal to 1 when σp(f )= (121), and equal to 0 otherwise. There-
fore, from the first row of the table in Proposition 2.6, we have

ˆ︂θp2(0) = (︁2

6
+ 1− 1

3

)︁p(p+ 1)(p− 1)2

p4
+ p(p+ 1)(p− 1)

p4

= (p− 1+ 1)
(︂ (p+ 1)(p− 1)

p3

)︂

= 1− 1

p2
,

as necessary. □
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Remark Requiring that equality (25) of Lemma 3.4 holds is enough to force the value
of λpm(f ) for every non-zero element f ∈ V (𝔽p)−{0} to be as in (23). We have then
chosen λpm(0) := 0 specifically so that the identities of Proposition 3.8 hold.

Let up : V (ℤ/p2
ℤ)→ {0,1} denote the characteristic function of the set of ele-

ments that lift to binary cubic forms in V (ℤp) that are maximal at p. We then have
the following result.

Proposition 3.9 We have

ˆ︂up · λp(0) = (p− 1)(p2 − 1)

p4
;

ˆ︂up · λp2(0) = (p2 − 1)2

p4
;

ˆ︂up · θp2(0) = (p2 − 1)2

p4 .

Proof The Fourier transform at 0 can be evaluated by a density computation. That it
so say, for any function ϕ : V (ℤ/p2

ℤ)→ℝ, we have

ˆ︁ϕ(0)= 1

p8

∑︂

f∈V (ℤ/p2ℤ)

ϕ(f ).

In [5, Lem.18], the densities of up are listed for each splitting type, asμ(𝒰p(111)),
μ(𝒰p(12)), and so on, which we will abbreviate simply as μ(111), μ(12), and so on.
And so we may calculate:

ˆ︂up · λp(0)= μ(111)λp(111)+μ(12)λp(12)

+μ(3)λp(3)+μ(121)λp(1
21)+μ(13)λp(1

3)

= 1

p4

(︂1

6
(p− 1)2p(p+ 1) · 2+μ(12) · 0

+ 1

3
(p− 1)2p(p+ 1) · (−1)+ (p− 1)2(p+ 1) · 1

)︂

= (p− 1)(p2 − 1)

p4 ,

as necessary. Similarly, we have

ˆ︂up · λp2(0)= μ(111)λp2(111)+μ(12)λp2(12)+μ(3)λp2(3)

+μ(121)λp2(121)+μ(13)λp2(13)

= 1

p4

(︂1

6
(p− 1)2p(p+ 1) · 3+ 1

2
(p− 1)2p(p+ 1)
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+μ(3) · 0+ (p− 1)2(p+ 1) · 1
)︂

= (p
2 − 1)(p− 1)(p+ 1)

p4
,

as necessary. Finally, we have

ˆ︂up · θp2(0)= μ(111)θp2(111)+μ(12)θp2(12)+μ(3)θp2(3)

+μ(121)θp2(121)+μ(13)θp2(13)

= 1

p4

(︂(︂1

6
+ 1

2

)︂

(p− 1)2p(p+ 1) · 2

+ 1

3
(p− 1)2p(p+ 1) · (−1)+ (p− 1)2(p+ 1) · 1

)︂

= 1

p4

(︁

(p− 1)2p(p+ 1)+ (p− 1)2(p+ 1)
)︁

= (p
2 − 1)2

p4 ,

as necessary. □

4 Estimates on partial sums of Dirichlet coefficients of cubic fields
and rings

In this section, we compute smoothed partial sums of the coefficients λK(n) as well
as of λn(f ). This section is organized as follows. First we collect some preliminary
facts about Mellin inversion. Then, we recall the convexity bounds as well as cur-
rent records towards the Lindelöf Hypothesis for principal GL(2) L-functions. We
use these estimates to obtain bounds on smooth sums of the Dirichlet coefficients
λK(n) in terms of |Δ(K)|, where K is a cubic field. Finally in §4.2, we prove analo-
gous bounds on smooth sums of λn(f ) in terms of |Δ(f )|, where f ∈ V (ℤ)irr is an
irreducible integral binary cubic form.

4.1 Upper bounds on smooth sums of 𝝀𝑲(𝒏)

We begin with a discussion of Mellin inversion, which will be used throughout this
paper. Let Φ :ℝ≥0 →ℂ be a smooth function that is rapidly decaying at infinity. We
recall the definition of the Mellin transform

˜︁Φ(s) :=
∫︂ ∞

0
xsΦ(x)

dx

x
.

The integral converges absolutely for ℜ(s) > 0. Integrating by parts yields the func-
tional equation ˜︁Φ(s) = −˜︁Φ′(s + 1)/s. Hence, it follows that ˜︁Φ has a meromorphic
continuation to ℂ, with possible simple poles at non-positive integers. Furthermore,
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˜︁Φ(s) has superpolynomial decay on vertical strips. Mellin inversion states that we
have, for every x ∈ℝ>0,

Φ(x)=
∫︂

ℜ(s)=2
x−s˜︁Φ(s) ds

2πi
.

Consider a general Dirichlet series D(s)=∑︁∞
n=1

an
ns

which converges absolutely for
ℜ(s) > 1. We can then express the smoothed sums of the Dirichlet coefficients an as
line integrals. For every positive real number X ∈ℝ>0, we have

∑︂

n≥1

anΦ
(︂ n

X

)︂

=
∫︂

ℜ(s)=2
D(s)Xs˜︁Φ(s)

ds

2πi
.

Consider the function L(s,ρK) for a cubic field K . The convexity bound obtained
from the Phragmén–Lindelöf principle,

L
(︁ 1

2 + it, ρK
)︁≪ϵ (1+ |t |) 1

2+ϵ |Δ(K)| 1
4+ϵ,

will suffice for our purpose of establishing the main Theorem 4. We shall also use the
current best bound for L( 1

2 + it, ρK) due to Blomer–Khan [7] to achieve an improved
numerical quality of the exponents in Theorem 3 and in the other results.

Theorem 4.1 (Bound for GL(2) L-functions in the level aspect) For every ϵ > 0,
t ∈ℝ and cubic number field K ,

L
(︁ 1

2 + it, ρK
)︁≪ϵ (1+ |t |)O(1)|Δ(K)|θ+ϵ,

where θ := 1
4 − δ and δ := 1

128 .

Proof In the proof of Proposition 3.1, we have seen that if K is cyclic, then
L(s,ρK) = L(s,χK)L(s,χK). We then apply the Burgess estimate for Dirichlet
characters, which yields the upper bound

L
(︁ 1

2 + it, ρK
)︁≪ϵ (1+ |t |)O(1)|Δ(K)| 1

4− 1
16+ϵ .

If K is an S3-field, then L(s,ρK) = L(s,πK) is the L-function of a GL(2) form of
level |Δ(K)|, unitary central character and weight 0 or 1. We then apply the estimate
of Blomer–Khan [7, Thm.1], which yields the desired bound. □

The above result allows us to bound smoothed weighted partial sums of the Dirich-
let coefficients of L(s,ρK).

Corollary 4.2 For every smooth function with compact support Φ :ℝ≥0 → ℂ, ϵ > 0,
T ≥ 1 and cubic number field K ,

∑︂

n≥1

λK(n)

n1/2
Φ

(︂ n

T

)︂

≪ϵ,Φ T
ϵ |Δ(K)|θ+ϵ .
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Proof Applying Mellin inversion, we obtain

∑︂

n≥1

λK(n)

n1/2
Φ

(︂ n

T

)︂

= 1

2πi

∫︂

ℜ(s)=2
L
(︁ 1

2 + s, ρK
)︁
˜︁Φ(s)T sds

≪ϵ,N T
ϵ max|t |≤T ϵ

⃓
⃓L

(︁ 1
2 + ϵ + it, ρK

)︁⃓
⃓

+ max|t |>T ϵ|t |
−N ⃓

⃓L
(︁ 1

2 + ϵ + it, ρK
)︁⃓
⃓,

where the bound follows by shifting the integral contour to the line ℜ(s) = ϵ, and
using the rapid decay of the Mellin transform ˜︁Φ(ϵ + it)≪ϵ,N |t |−N for |t | ≥ 1. The
corollary now follows from Theorem 4.1 and the Phragmén–Lindelöf principle, the
upper-bound on the vertical line 1

2 + it being transported to the vertical line 1
2 + ϵ +

it . □

We continue with the approximate functional equation which gives the value of
L( 1

2 , ρK) as a sum of its Dirichlet coefficients λK . Let G(u) be an even, bounded
and holomorphic function in the strip |ℜ(u)|<A, where A is sufficiently large, and
normalized by G(0)= 1. For example [22, p.99], we could fix G(u) := (cos πu3A)

−1.
Define for y ∈ℝ>0

V ±(y) := 1

2πi

∫︂

ℜ(u)=3
y−uG(u)γ

±(1/2+ u)
γ±(1/2)

du

u
. (26)

We have that V ±(y) is a rapidly decaying function as y→∞ that extends continu-
ously at the origin with V ±(0)= 1.

Proposition 4.3 For every cubic number field K with ±Δ(K) ∈ℝ>0, we have

L
(︁ 1

2 , ρK
)︁= 2

∞
∑︂

n=1

λK(n)

n1/2
V ±

(︂ n

|Δ(K)|1/2
)︂

. (27)

Proof In view of the functional equation of Proposition 3.1, this is [22, Thm.5.3]. □

4.2 Upper bounds on smooth sums of 𝝀𝒏(𝒇 )

Let f ∈ V (ℤ)irr be an irreducible binary cubic form and recall the Dirichlet series
D(s,f ) with Dirichlet coefficients λn(f ) defined in Sect. 3.

Definition 4.4 For f ∈ V (ℤ)irr and a prime p, define Ep(s, f ) by

Dp(s, f )= Lp(s,ρKf )Ep(s, f ).
Let E(s,f )=∏︁

p Ep(s, f ), hence we have D(s,f )= L(s,ρKf )E(s, f ).
It follows from Lemma 3.4 that Ep(s, f )= 1 if f is maximal at p, thus E(s,f )=
∏︁

p|ind(f )
Ep(s, f ).

We next list the different possible values taken by Ep(s, f ).
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Lemma 4.5 Let f ∈ V (ℤ)irr be an irreducible binary cubic form. For every prime p,
we have that Ep(s, f ) is a polynomial in p−s of degree at most two. In fact, it is one
of

1, 1− p−s , 1+ p−s , (1− p−s)2, 1− p−2s , 1+ p−s + p−2s .

Moreover, if p ∥ ind(f ), or if the splitting type of f at p is (121), then Ep(s, f ) is of
degree at most one, hence it is one of

1, 1− p−s , 1+ p−s .

Proof We consider each possible splitting type of f seperately.
If σp(f ) = (0), then Dp(s, f ) = 1 and p2|ind(f ), hence the lemma follows

from (22).
If σp(f ) = (111), (12), or (3), then f is maximal at p, thus Ep(s, f ) = 1 by

Lemma 3.4, and the lemma follows.
Suppose next that σp(f ) = (121). Then we claim that the splitting type of 𝒪Kf

at p is either (111), (12), or (121), which implies the lemma by (22) because then
either Ep(s, f ) = 1− p−s , Ep(s, f ) = 1+ p−s , or Ep(s, f ) = 1, respectively. In-
deed, when f is nonmaximal at p, Proposition 2.2 implies that by replacing f with
a GL2(ℤ)-translate, we may assume that f (x, y) = ax3 + bx2y + pcxy2 + p2dy3,
where p ∤ b. The overorder S of Rf having index [S : Rf ] = p corresponds to the
form g(x, y) = pax3 + bx2y + cxy2 + dy3. Now the splitting type σp(g) is either
(111), (12), or (121). In the former two cases, S is maximal at p and the claim is
proved. In the last case, the claim follows by induction on the index, by repeating the
argument with g instead of f .

Suppose finally that σp(f ) = (13), then Dp(s, f ) = 1, hence Ep(s, f ) =
L(s,ρKf )

−1 is a polynomial in p−s of degree at most two given by (22). Sup-
pose moreover that p ∥ ind(f ). We need to show that Ep(s, f ) is of degree at
most one. From Proposition 2.2, we may assume that f (x, y) is of the form
ax3 + pbx2y + pcxy2 + p2dy3. The index-p overorder S of Rf must be maxi-
mal at p, which implies that the binary cubic form corresponding to 𝒪Kf ⊗ ℤp is
pax3+pbx2y+ cxy2+ dy3. Clearly, the splitting type of 𝒪Kf at p is (121) or (13).
Thus Ep(s, f )= 1− p−s or Ep(s, f )= 1, respectively. □

We obtain the following result analogous to Corollary 4.2 for the coefficients
λn(f ) where f is an irreducible (not necessarily maximal) binary cubic form.

Proposition 4.6 Let Φ : ℝ≥0 → ℂ be a smooth function rapidly decaying at infinity.
For every f ∈ V (ℤ)irr, ϵ > 0 and T ≥ 1,

∑︂

n≥1

λn(f )

n1/2 Φ
(︂ n

T

)︂

≪ϵ,Φ ind(f )−2θ |Δ(f )|θ+ϵT ϵ, (28)

where θ = 1
4 − δ is as in Theorem 4.1.
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Proof The proof is similar to that of Corollary 4.2. We have that the left-hand side is
equal to

1

2πi

∫︂

ℜ(s)=2
T s

∑︂

n≥1

λn(f )

n
1
2+s

˜︁Φ(s)ds

= 1

2πi

∫︂

ℜ(s)=2
T sL

(︁ 1
2 + s, ρK

)︁ ∏︂

p|ind(f )

Ep
(︁ 1

2 + s, f
)︁
˜︁Φ(s)ds.

For ℜ(s) ≥ 0, these local factors Ep( 1
2 + s, f ) are absolutely bounded, (indeed by

the number 4). We have the elementary estimate

∏︂

p|ind(f )

Ep
(︁ 1

2 + s, f
)︁≤

∏︂

p|ind(f )

4≪ϵ |ind(f )|ϵ .

As before, pulling the line of integration to ℜ(s)= ϵ, we deduce that

∑︂

n≥1

λn(f )

n1/2 Φ
(︂ n

T

)︂

≪ϵ,Φ T
ϵ |Δ(Kf )|θ |Δ(f )|ϵ,

from which the assertion follows since Δ(f )= ind(f )2Δ(Kf ). □

In our next result below (Theorem 4.11), we give a more precise estimate of the
smoothed partial sums of λn(f ) when we use Φ = V ± as a smoothing function.
We start by defining, for an irreducible binary cubic form f ∈ V (ℤ)irr, such that
±Δ(f ) ∈ℝ>0, the quantity S(f ):

S(f ) :=
∑︂

n≥1

λn(f )

n1/2 V
±(︂ n

|Δ(f )|1/2
)︂

. (29)

If f ∈ V (ℤ)irr,max is irreducible and maximal, then 2S(f ) = L(︁ 1
2 , ρKf

)︁

by Corol-
lary 3.5 and Proposition 4.3.

For general irreducible f ∈ V (ℤ)irr, Proposition 4.6 yields the bound

S(f )≪ϵ ind(f )−2θ |Δ(f )|θ+ϵ . (30)

Moreover, we have D( 1
2 , f )= L( 1

2 , ρKf )E(
1
2 , f ) and

E
(︁ 1

2 , f
)︁=

∏︂

p|ind(f )

(︂

1+O(︁

p−
1
2
)︁)︂= |ind(f )|o(1), (31)

which implies that the same upper bound as (30) holds for D( 1
2 , f )≪ϵ ind(f )−2θ ×

|Δ(f )|θ+ϵ .
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Definition 4.7 For f ∈ V (ℤ)irr, a prime p | ind(f ), and an integer m ≥ 0, define
ep,m(f ) from the following power series expansion:

Ep
(︁ 1

2 − s, f
)︁

Ep
(︁ 1

2 + s, f
)︁ = p2s−1

∞
∑︂

m=0

ep,m(f )p
m(1/2−s).

Recall from Lemma 4.5 that Ep(s, f ) is a polynomial in p−s of degree at most two.
If p ∤ ind(f ), let ep,m(f )= 0 for every m≥ 0.

Examples (a) Ep(s, f )= 1− p−s : In this case, we have

p

p2s

Ep
(︁ 1

2 − s, f
)︁

Ep
(︁ 1

2 + s, f
)︁ = p

p2s

(︂

1− ps

p1/2

)︂(︂

1− 1

p1/2+s
)︂−1

=
(︂ p

p2s
− p

1/2

ps

)︂(︂∑︂

n≥0

1

pn/2+ns
)︂

= 0− p
1/2

ps
+ p− 1

p2s + p
1/2 − p−1/2

p3s + · · ·

+ p
−(m−4)/2 − p−(m−2)/2

pms
+ · · ·

It therefore follows that we have

ep,0(f )= 0, ep,1(f )=−1, ep,2(f )= 1− 1

p
, ep,m(f )= (p−m+2−p−m+1),

for all m≥ 3. If Ep(s, f )= 1+ p−s , we obtain similar formulas.
(b) Ep(s, f )= (1− p−s)2: In this case, we have

p

p2s

Ep
(︁ 1

2 − s, f
)︁

Ep
(︁ 1

2 + s, f
)︁ = p

p2s

(︂

1− ps

p1/2

)︂2(︂

1− 1

p1/2+s
)︂−2

=
(︂√p
ps

− 1
)︂2(︂∑︂

n≥0

1

pn/2+ns
)︂2

=
(︂

1− 2
p1/2

ps
+ p

p2s

)︂

×
(︂

1+ 2

p1/2+s +
3

p1+2s +
4

p3/2+3s + · · ·
)︂

= 1+
(︂ 2

p1/2
− 2p1/2

)︂ 1

ps
+

(︂

p+ 3

p
− 4

)︂ 1

p2s

+
(︂

2p1/2 − 6

p1/2
+ 4

p3/2

)︂ 1

p3s
+ · · · ,
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where the coefficient of 1/pms is ≪m/p(m−4)/2. It therefore follows that we have

ep,0(f )= 1, ep,1(f )=−2+ 2

p
, ep,2(f )= 1− 4

p
+ 3

p2 , ep,m(f )≪ m

pm−2 ,

for all m≥ 3.
(c) Ep(s, f )= 1+ p−s + p−2s : In this case, we have

p

p2s

Ep
(︁ 1

2 − s, f
)︁

Ep
(︁ 1

2 + s, f
)︁ =

(︂

1+ p
1/2

ps
+ p

p2s

)︂(︂

1+ 1

p1/2+s +
1

p1+2s

)︂−1

=
(︂

1+ p
1/2

ps
+ p

p2s

)︂(︂

1− 1

p1/2+s +
1

p3/2+3s
+ · · ·

)︂

= 1+
(︂

p1/2 − 1

p1/2

)︂ 1

ps
+ (p− 1)

1

p2s

+
(︂ 1

p3/2
− p1/2

)︂ 1

p3s
+ · · · ,

where the coefficient of 1/pms is ≪m/p(m−4)/2. It therefore follows that once again
we have

ep,0(f )= 1, ep,1(f )= 1− 1

p
, ep,2(f )= 1− 1

p
, ep,m(f )≪ m

pm−2
,

for all m≥ 3.

For every integer k ≥ 1, define ek(f ) := 0 if there exists a prime p|k at which f
is maximal, and otherwise

ek(f ) :=
∏︂

p|ind(f )

ep,vp(k)(f ).

In other words, ek(f ) is supported on the integers k all of whose prime factors divide
ind(f ).

Proposition 4.8 For every f ∈ V (ℤ)irr, and ℜ(s) >− 1
2 ,

E
(︁ 1

2 − s, f
)︁

E
(︁ 1

2 + s, f
)︁ = rad(ind(f ))2s−1

∞
∑︂

k=1

ek(f )k
1/2−s .

Proof Since E(s,f )= ∏︁

p|ind(f )
Ep(s, f ), the proposition follows from Definition 4.7,

and from Lemma 4.5 which implies that Ep( 1
2 + s, f ) has no zero for ℜ(s) > − 1

2 .
□

We will need the following result, bounding the absolute value |ek(f )|.
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Proposition 4.9 For every f ∈ V (ℤ)irr, ϵ > 0, and k ≥ 1,

ek(f )≪ϵ k
ϵ,

where the multiplicative constant depends only on ϵ. If k is powerful, then we have
the improved bound

ek(f )≪ϵ

rad(k)2

k
kϵ.

Proof The first claim of the proposition will follow from ep,0(f ) ∈ {−1,0,1} and the
estimate ep,m(f )≪ 1 uniformly for every prime p andm≥ 0. The second claim will
follow from ep,0(f ) ∈ {−1,0,1}, ep,2(f )≪ 1, together with the estimate ep,m(f )≪
m
pm−2 uniformly for every prime p and m≥ 3.

These estimates have been verified in Examples (a), (b), and (c) above (in fact
we have the absolute constant |ep,m(f )| ≤ 2, although this numerical value won’t
be needed). Note that Example (a) implies the estimates for the case Ep(s, f ) =
1−p−2s , and also that the case of Ep(s, f )= 1+p−s is identical to that of Example
(a). This concludes the proof of the proposition. □

Next, we fix a single form f , and analyze the coefficients ek(f ).

Proposition 4.10 Let f ∈ V (ℤ)irr, and write ind(f )= q1q2, where q1 is squarefree,
(q1, q2) = 1, and q2 is powerful. Then e(·)(f ) : ℤ≥1 → ℝ is supported on multiples
of q1. Namely q1 ∤ k implies ek(f )= 0.

Proof Since q1 is squarefree, it follows from Lemma 4.5 that for every prime p | q1,
we have Ep(s, f ) is one of 1, or 1 ± p−s . Observe from Example (a) above that
ep,0(f )= 0. The proposition follows immediately. □

The following is an unbalanced approximate function equation for D(s,f ) anal-
ogous to Proposition 4.3 for L(s,ρK).

Theorem 4.11 For every f ∈ V (ℤ)irr,

S(f )=D(︁ 1
2 , f

)︁−
∞
∑︂

k=1

ek(f )k
1/2

rad(ind(f ))

∞
∑︂

n=1

λn(f )

n1/2
V sgn(Δ(f ))

(︂ ind(f )2kn

rad(ind(f ))2|Δ(f )| 1
2

)︂

.

Proof To ease notation for the proof, we let± := sgn(Δ(f )) andK :=Kf . We begin
by noting that Mellin inversion yields

˜︃V ±(s)= G(s)
s

γ±( 1
2 + s)

γ±( 1
2 )

, (32)
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implying that ˜︃V ±(s) decays rapidly and has a pole at s = 0 with residue 1. Hence, by
shifting the line of integration, we obtain

S(f ) =
∫︂

ℜ(s)=2
D

(︁ 1
2 + s, f

)︁|Δ(f )|s/2˜︃V ±(s) ds
2πi

= D
(︁ 1

2 , f
)︁+

∫︂

ℜ(s)=−1/4
D

(︁ 1
2 + s, f

)︁|Δ(f )|s/2˜︃V ±(s) ds
2πi

.

By Proposition 3.1, the functional equation for L( 1
2 + s, ρK) is

L( 1
2 + s, ρK)γ±( 1

2 + s)|Δ(K)|
s
2 = L( 1

2 − s, ρK)γ±( 1
2 − s)|Δ(K)|−

s
2 .

Therefore, we have

S(f )−D( 1
2 , f )

=
∫︂

ℜ(s)=−1/4
L
(︁ 1

2 + s, ρK
)︁

E( 1
2 + s, f )|Δ(f )|s/2˜︃V ±(s)

ds

2πi

=
∫︂

ℜ(s)=−1/4
L
(︁ 1

2 − s, ρK
)︁γ±( 1

2 − s)
γ±( 1

2 + s)

×E( 1
2 + s, f )|Δ(K)|−s |Δ(f )|s/2˜︃V ±(s)

ds

2πi

=
∫︂

ℜ(s)=1/4
D

(︁ 1
2 + s, f

)︁E( 1
2 − s, f )

E( 1
2 + s, f )

|Δ(f )/q4|s/2 γ
±( 1

2 + s)
γ±( 1

2 − s)
˜︃V ±(−s) ds

2πi
,

where the final equality follows since Δ(f ) = q2Δ(K), where we have set q :=
ind(f ). As a consequence of the above and (32), we have

γ±( 1
2 + s)

γ±( 1
2 − s)

˜︃V ±(−s)=−G(s)
s

γ±( 1
2 + s)

γ±( 1
2 )

=−˜︃V ±(s),

which we inject in the previous equality:

D( 1
2 , f )− S(f )

=
∫︂

ℜ(s)=1/4
D

(︁ 1
2 + s, f

)︁E( 1
2 − s, f )

E( 1
2 + s, f )

|Δ(f )/q4|s/2˜︃V ±(s) ds
2πi

=
∫︂

ℜ(s)=1/4
D

(︁ 1
2 + s, f

)︁(︂

rad(q)2s−1
∞
∑︂

k=1

ek(f )k
1/2−s)︂

× |Δ(f )/q4|s/2˜︃V ±(s) ds
2πi

,

(33)
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where the final equality follows from Proposition 4.8. The summand corresponding
to k in the second line of (33) yields rad(q)−1ek(f )k

1/2 times the integral

∫︂

ℜ(s)=1/4
D

(︁ 1
2 + s, f

)︁(︂ |Δ(f )| 1
2 rad(q)2

kq2

)︂s
˜︃V ±(s) ds

2πi

=
∑︂

n≥1

λn(f )

n1/2 V
±(︂ nkq2

rad(q)2|Δ(f )| 1
2

)︂

.

Theorem 4.11 follows by summing over k ≥ 1. □

We end this section with the following remark.

Remark 4.12 When we consider sums weighted by the function V ±(·/X), which is
rapidly decaying, we say that the length of the sum is at most X1+ϵ (since we have
that V ±(y) is negligible for y >Xϵ).

Suppose f ∈ V (ℤ)irr has large index q = ind(f ), then all of the inner sums arising
in Theorem 4.11 to express S(f ) − D( 1

2 , f ) are always significantly shorter than
the sum defining S(f ). Indeed, the sum defining S(f ) has length |Δ(f )|1/2+ϵ . The
length of any inner sum arising in Theorem 4.11 is easily computed. Let q = q1q2,
where q1 is squarefree, (q1, q2)= 1, and q2 is powerful. Then note that we have

q2

rad(q)2
= q2

2

rad(q2)2
≥ q2,

with equality if and only if the exponent of every prime dividing q2 is 2. Also note
that we have q1|k from Proposition 4.10. Therefore, the length of the inner sum is at
most |Δ(f )|1/2+ϵ/ind(f ).

5 Counting binary cubic forms using Shintani zeta functions

In this section we recall the asymptotics for the number of GL2(ℤ)-orbits of integral
binary cubic forms ordered by discriminant. We will impose congruence conditions
modulo positive integers n and study how the resulting error terms depend on n.
This section is organized as follows: first, in §5.1, we collect results from the theory
of Shintani zeta functions corresponding to the representation of GL2 on V . Next,
we use standard counting methods to determine the required asymptotics in §5.3,
and moreover give an explicit bound on the error terms. Finally, in §5.4, we prove a
smoothed analogue of the Pólya–Vinogradov inequality in the setting of cubic rings.

5.1 Functional equations, poles, and residues of Shintani zeta functions

Let n be a positive integer and let ϕ : V (ℤ/nℤ)→ ℂ be a GL2(ℤ/nℤ)-invariant
function. Let ξ(ϕ, s) denote the Shintani zeta function defined by

ξ±(ϕ, s) :=
∑︂

f∈ V (ℤ)±GL2(ℤ)

ϕ(f )
|Δ(f )|−s
|Stab(f )| , (34)
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where we abuse notation and also denote the composition of ϕ with the reduction
modulo n map V (ℤ)↠ V (ℤ/nℤ) by ϕ. For a function ψ : V ∗(ℤ/nℤ)→ ℂ, let
ξ∗±(ψ, s) denote the dual Shintani zeta function defined in [33, Def.4.2].

Theorem 5.1 (F. Sato–Shintani) The functions ξ± and ξ∗± have a meromorphic con-
tinuation to the whole complex plane, and satisfy the functional equations

(︂ξ+(ϕ,1− s)
ξ−(ϕ,1− s)

)︂

= n4s (3
6π−4)s

18
Γ
(︂

s − 1

6

)︂

Γ(s)2Γ
(︂

s + 1

6

)︂

×
(︂ sin 2πs sinπs

3 sinπs sin 2πs

)︂(︂ξ∗+(ϕ̂, s)
ξ∗−(ϕ̂, s)

)︂

,

where ϕ̂ : V ∗(ℤ/nℤ)→ℂ is the Fourier transform of ϕ as in §2.2.

Proof This is due to Shintani [31] for n= 1 and Sato [28] for general n. See also [33,
Thm.4.3] for a modern exposition. In fact the above theorem is a special case because
the congruence function ϕ in [28, 33] is not necessarily GL2(ℤ/nℤ)-invariant. In
the more general case of an arbitrary congruence function ϕ : V (ℤ/nℤ)→ ℂ, the
Shintani zeta functions, respectively its dual, are defined using the principal subgroup
Γ(n) and summing f over the quotient V (ℤ)±/Γ(n), respectively V ∗(ℤ)±/Γ(n).
Assuming that ϕ is GL2(ℤ/nℤ)-invariant, the general definition reduces to (34). □

The possible poles of ξ±(ϕ, s) occur at 1 and 5/6, and the residues shall be given
in Proposition 5.2 below. First we define

α+ := π2

36
; β+ := π2

12
; γ+ := ζ(1/3)

2π2

9Γ(2/3)3
;

α− := π2

12
; β− := π2

12
; γ− := ζ(1/3)

2
√

3π2

9Γ(2/3)3
.

Then the functions ξ±(s)= ξ±(1, s), corresponding to the constant function ϕ = 1,
have residues α± + β± at s = 1 and γ± at s = 5/6. Moreover, the pole at 1 has
the following interpretation: the term α± comes from the contribution of irreducible
cubic forms and the term β± comes from the contribution of reducible cubic forms.

As before, let n be a positive integer. Let ϕ : V (ℤ/nℤ)→ ℂ be a function of the
form ϕ =∏︁

pβ∥n ϕpβ , where ϕpβ : V (ℤ/pβℤ)→ ℂ and β := vp(n). We define the
linear functionals 𝒜pβ , ℬpβ , and 𝒞pβ to be

𝒜pβ (ϕpβ ) := ˆ︃ϕpβ (0), ℬpβ (ϕpβ ) := ˆ︂ϕpβ · bp(0),
𝒞pβ (ϕpβ ) := ˆ︂ϕpβ · cp(0),

(35)

where ϕpβ ↦→ ˆ︃ϕpβ is the Fourier transform of functions on V (ℤ/pβℤ) from §2 and
where the functions

bp, cp : V (ℤ/pβℤ)↠ V (ℤ/pℤ)→ℝ≥0
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Table 1 Densities of splitting
types Splitting type of f at p bp(f ) (1− p−2)cp(f )

(111) 3 (1− p−2/3)(1+ p−1/3)2

(12) 1 (1− p−4/3)

(3) 0 (1− p−1/3)(1+ p−1)

(121) p+2
p+1 (1+ p−1/3)(1− p−1)

(13) 1
p+1 (1− p−4/3)

(0) 1 (1− p−2)p2/3

are GL2(ℤ/p
β
ℤ)-invariant and defined in Table 1. We define 𝒜n(ϕ), ℬn(ϕ), and

𝒞n(ϕ) multiplicatively as the product over pβ ∥ n of 𝒜pβ (ϕpβ ), ℬpβ (ϕpβ ), and
𝒞pβ (ϕpβ ), respectively. By multilinearity, the domain of definition of the function-
als 𝒜n, ℬn, and 𝒞n extends to all functions ϕ : V (ℤ/nℤ)→ℂ. Abusing notation, we
denote the lift of ϕ (resp. ϕpβ ) to V (ˆ︁ℤ) (resp. V (ℤp)) also by ϕ (resp. ϕpβ ). Note
that 𝒜n(ϕ) can be interpreted as the integral

𝒜n(ϕ)=
∫︂

V (ˆ︁ℤ)

ϕ(f )df =
∏︂

p

∫︂

V (ℤp)

ϕpβ (f )df,

where ϕpβ is simply defined to be the function 1 when p ∤ n. This is true because,
under our normalizations Vol(V (ℤp))= 1.

We then have the following expressions for the residues of Shintani zeta functions,
see [11, 28, 33].

Proposition 5.2 The functions ξ±(ϕ, s) are holomorphic on ℂ − {1,5/6} with at
worst simple poles at s = 1,5/6 and the residues are given by

Res
s=1
ξ±(ϕ, s) = α± ·𝒜n(ϕ)+ β± ·ℬn(ϕ),

Res
s=5/6

ξ±(ϕ, s) = γ± · 𝒞n(ϕ).

The interpretation of these residues is that the term α± ·𝒜n(ϕ) is the main term
contribution from counting irreducible binary cubic forms, the term β± · ℬn(ϕ) is
the main term contribution from counting reducible binary cubic forms, and the term
γ± · 𝒞n(ϕ) is the secondary term contribution from counting irreducible binary cubic
forms, particularly arising from cubic rings that are close to being monogenic, i.e.,
that have an element which generates a subring of small index.

5.2 Uniform bound for Shintani zeta functions near the abscissa of convergence

We recall the following tail estimate due to Davenport–Heilbronn [12]. See also [3]
for a streamlined proof.

Proposition 5.3 (Davenport–Heilbronn) Let n and m be positive squarefree integers.
The number of GL2(ℤ)-orbits on the set of binary cubic forms having discriminant
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bounded by X and splitting type (13) at every prime dividing n and splitting type
(0) at every prime dividing m is bounded by Oϵ(X/(m4n2−ϵ)), where the implied
constant is independent of X, m, and n.

Let p be a prime. Recall that for p ≠ 3 the set of GL2(ℤ/pℤ)-orbits on V ∗(ℤ/pℤ)
(resp. V (ℤ/pℤ)) is classified by the possible splitting types, namely, (111), (12), (3),
(121), (13), and (0). For p = 3, one could extend this classification, or, more simply,
define E3(ψ3) := ||ψ3||∞, which will only affect the multiplicative constants in this
paper.

Definition 5.4 For a prime p and a GL2(ℤ/pℤ)-invariant function ψp on V ∗(ℤ/pℤ)
(resp. ϕp on V (ℤ/pℤ)), we define

Ep(ψp) := |ψp(111)| + |ψp(12)| + |ψp(3)| + |ψp(121)|
+ |ψp(13)|p−2 + |ψp(0)|p−4,

and similarly for Ep(ϕp).

Let n be a positive integer, and let ψ : V ∗(ℤ/nℤ)→ℂ (resp. ϕ : V (ℤ/nℤ)→ℂ)
be a GL2(ℤ/nℤ)-invariant function. If ψ factors as ψ =∏︁

pβ∥n ψpβ , where ψpβ :
V ∗(ℤ/pβℤ)→ℂ are GL2(ℤ/p

β
ℤ)-invariant functions, then we define

En(ψ) :=
∏︂

p∥n
Ep(ψp) ·

∏︂

pβ∥n
β≥2

∥ψpβ∥∞,

where ∥ · ∥∞ denotes the L∞-norm. We have a similar definition for En(ϕ).

Proposition 5.5 Let n be a positive integer. Let ψ be a GL2(ℤ/nℤ)-invariant function
on V ∗(ℤ/nℤ). For every ϵ > 0 and t ∈ℝ, we have

ξ∗±(ψ,1+ ϵ + it)≪ϵ n
ϵEn(ψ). (36)

The same bound holds for ξ±(ϕ,1+ ϵ + it) for a GL2(ℤ/nℤ)-invariant function ϕ
on V (ℤ/nℤ).

Proof Let q be a positive squarefree integer. We say that τ is a splitting type modulo
q if τ = (τp)p|q is a collection of splitting types τp for each prime p dividing q . Let
q(τ,13) (resp. q(τ,0)) denote the product of primes p dividing q , such that τp = (13)

(resp. τp = (0)). That is,

q(τ,13) :=
∏︂

p|q
τp=(13)

p, q(τ,0) :=
∏︂

p|q
τp=(0)

p.

We write n = qℓ, where q is squarefree, ℓ is powerful, and (q, ℓ) = 1. Given
an integral binary cubic form f , we have the factorization ψ(f ) = ψq(f )ψℓ(f ),
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where ψq : V (ℤ/qℤ)→ ℂ and ψℓ : V (ℤ/ℓℤ)→ ℂ are GL2(ℤ/qℤ)-invariant and
GL2(ℤ/ℓℤ)-invariant functions, respectively, and as usual, we are denoting the lifts
of ψq and ψℓ to V ∗(ℤ) also by ψq and ψℓ, respectively. Let S(q) denote the set of
splitting types modulo q . For f ∈ V ∗(ℤ), the value of ψq(f ) is determined by the
splitting type τ modulo q of f . For such a splitting type τ ∈ S(q), we accordingly de-
fine ψq(τ) := ψq(f ), where f ∈ V ∗(ℤ) is any element with splitting type τ modulo
q .

Let s = 1+ ϵ + it . We have

|ξ∗±(ψ, s)| ≤ ∥ψℓ∥∞ ·
∑︂

τ∈S(q)
|ψq(τ)|

∞
∑︂

m=1

cτ (m)

m1+ϵ ,

where cτ (m) denotes the number of GL2(ℤ)-orbits on the set of elements in V ∗(ℤ)
having discriminant m and splitting type τ modulo q . From partial summation, we
obtain

∞
∑︂

m=1

cτ (m)

m1+ϵ =
∞
∑︂

k=1

(︂ 1

k1+ϵ −
1

(k + 1)1+ϵ
)︂ k
∑︂

m=1

cτ (m)

≪ϵ

∞
∑︂

k=1

1

k2+ϵ
k

∑︂

m=1

cτ (m).

From Proposition 5.3, it follows that for every splitting type τ modulo q and every
k ≥ 1, we have

k
∑︂

m=1

cτ (m)≪ϵ k · q(τ,13)−2+ϵ · q(τ,0)−4,

where the multiplicative constant is independent of q and k. Therefore, we have

ξ∗±(ψ, s) ≪ϵ ∥ψℓ∥∞ ·
∑︂

τ∈S(q)
|ψq(τ)|q(τ,13)−2+ϵ · q(τ,0)−4

(︂ ∞
∑︂

k=1

1

k1+ϵ
)︂

≪ϵ nϵEn(ψ).

In the last equation, we used that

En(ψ)= ∥ψℓ∥∞ ·
∏︂

p|q
Ep(ψp)= ∥ψℓ∥∞ ·

∑︂

τ∈S(q)
|ψq(τ)|q(τ,13)−2q(τ,0)−4.

□

5.3 Smooth counts of binary cubic forms satisfying congruence conditions

As in the previous subsection, let n be a positive integer, and let ϕ : V (ℤ/nℤ)→ℂ be
a GL2(ℤ/nℤ)-invariant function. Let Ψ :ℝ>0 →ℂ be a smooth function of compact
support. For a real number X ≥ 1, define the counting function N±

Ψ (ϕ;X) to be

N±
Ψ (ϕ;X) :=

∑︂

f∈ V (ℤ)±GL2(ℤ)

ϕ(f )

|Stab(f )|Ψ
(︂ |Δ(f )|

X

)︂

.
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Note that the notation differs from the notation N(Σ;X) and N(S;X) from [5] in the
presence of stabilizers.

Applying the Mellin transform results from Sect. 4, and shifting the line of inte-
gration from ℜ(s)= 2 to ℜ(s)=−ϵ, with 0< ϵ < 1, we obtain

N±
Ψ (ϕ;X)=

1

2πi

∫︂

ℜ(s)=2
Xsξ±(ϕ, s)˜︁Ψ(s)ds

= Ress=1ξ
±(ϕ, s) · ˜︁Ψ(1) ·X

+Ress=5/6ξ
±(ϕ, s) · ˜︁Ψ(5

6
) ·X5/6 + ℰϵ(ϕ,Ψ)

= (α±𝒜n(ϕ)+ β±ℬn(ϕ)) · ˜︁Ψ(1) ·X

+ γ±𝒞n(ϕ) · ˜︁Ψ(5
6
) ·X5/6 + ℰϵ(ϕ,Ψ).

(37)

The error term ℰϵ(ϕ,Ψ) is defined below, and bounded using the functional equation
in Theorem 5.1 and Stirling’s asymptotic formula in the form Γ(σ + it)≪σ (1 +
|t |)σ− 1

2 e
−π |t |

2 for every σ /∈ ℤ≤0 and t ∈ℝ:

ℰϵ(ϕ,Ψ) :=
∫︂

ℜ(s)=−ϵ
Xsξ±(ϕ, s)˜︁Ψ(s) ds

2πi

≪ϵ n
4+ϵ max

t∈ℝ
|ξ∗±(ˆ︁ϕ,1+ ϵ + it)|E∞(˜︁Ψ; ϵ),

(38)

where we define E∞(˜︁Ψ; ϵ) :=
∫︁∞
−∞

⃓
⃓˜︁Ψ(−ϵ + it)⃓⃓ (1+ |t |)2+4ϵdt .

Theorem 5.6 Let Ψ : ℝ>0 → ℂ be a smooth function with compact support and let
ϵ > 0. Let n be a positive integer, and write n= qm, where q is squarefree, (q,m)=
1, and m is powerful. For every real X ≥ 1, and GL2(ℤ/nℤ)-invariant function ϕ :
V (ℤ/nℤ)→ℂ, we have

N±
Ψ (ϕ;X)=

(︁

α±𝒜n(ϕ)+ β±ℬn(ϕ)
)︁ · ˜︁Ψ(1) ·X

+ γ±𝒞n(ϕ) · ˜︁Ψ(5
6
) ·X5/6 +Oϵ

(︂

n4+ϵEn(ˆ︁ϕ)E∞(˜︁Ψ; ϵ)
)︂

.

Proof This follows from (37), (38), and Proposition 5.5. □

The following lemmas bound En(ˆ︁ϕ) for various functions ϕ.

Lemma 5.7 Let n be a positive integer and ϕ be a GL2(ℤ/nℤ)-invariant function on
V (ℤ/nℤ). Then we have, for every ϵ > 0,

En(ˆ︁ϕ)≪ϵ n
ϵ
(︁∏︂

p∥n
p
)︁−2∥ϕ∥∞.

Proof This follows from the definitions of En and Ep , along with Corollary 2.7. □
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Recall from §3.2 the function λn, which is a GL2(ℤ/rad(n)ℤ)-invariant function
on V (ℤ/rad(n)ℤ).

Lemma 5.8 For every positive integer n and every ϵ > 0,

En(ˆ︁λn)≪ϵ n
ϵ
(︁∏︂

p∥n
p
)︁−3(︁∏︂

p2|n
p
)︁−2
.

Proof Recall that the functions λpk are defined modulo p irrespective of k. Hence
the claimed saving from the factors p with p2 | n follows from Lemma 5.7. The
additional saving from the factors p with p ∥ n is a consequence of Proposition 3.8.

□

Lemma 5.9 For every prime p ≠ 3,

𝒜p(λp)=ˆ︂λp(0)= p
2 − 1

p3 , ℬp(λp)= ˆ︁λpbp(0)= p
3 − 1

p3 ,

𝒞p(λp)= ˆ︁λpcp(0)≪ 1

p1/3
.

Proof The first equation is derived in Proposition 3.8. The second equation is derived
similarly: we have

ˆ︁λpbp(0)= 6 · p(p+ 1)(p− 1)2

6p4
+ p+ 2

p+ 1
· p(p+ 1)(p− 1)

p4
= p

3 − 1

p3
.

To prove the final inequality, we write

cp(111) = (1− p−1/3)(1+ p−1/3)3
(︂

1− 1

p2

)︂−1;

cp(3) = (1− p−1/3)(1+ p−1)
(︂

1− 1

p2

)︂−1;

cp(121) = (1+ p−1/3)(1− p−1)
(︂

1− 1

p2

)︂−1
.

We compute ˆ︁λpcp(0) using Proposition 2.6 and obtain

𝒞p(λp)= 1

3

(︂

1− 1

p

)︂

(1−p−1/3)
(︁

(1+p−1/3)3−(1+p−1)
)︁+ 1

p

(︂

1− 1

p

)︂

(1+p−1/3),

which concludes the proof of the lemma. □

5.4 Application to cubic analogues of Pólya–Vinogradov

We sum the Artin character over isomorphism classes of cubic rings. This is a cubic
analogue of the Pólya–Vinogradov inequality [22, Thm.12.5], which sums Artin char-
acters over quadratic rings. There are some substantial differences between quadratic
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and cubic cases: first, in the cubic case we see the presence of second order terms
which do not occur in the quadratic case. Second, since the parameter space of cu-
bic rings is four dimensional (as opposed to one dimensional), the trivial range for
summing the Artin character λn over cubic rings with discriminant bounded by X is
X≫ n4 (as opposed to X≫ n in the quadratic case).

Theorem 5.10 (Cubic analogue of Pólya–Vinogradov) Let p be a prime and let k ≥ 2
be an integer. Let Ψ :ℝ>0 →ℂ be a smooth function with compact support such that
∫︁∞

0 Ψ(x)dx = 1. Then we have

∑︂

f∈ V (ℤ)±GL2(ℤ)

λp(f )

|Stab(f )|Ψ
(︂ |Δ(f )|

X

)︂

=
(︂

α±p
2 − 1

p3
+ β±p

3 − 1

p3

)︂

X

+ γ±ˆ︁λpcp(0)˜︁Ψ(5
6
) ·X5/6 +Oϵ,Ψ(p1+ϵ);

∑︂

f∈ V (ℤ)±GL2(ℤ)

λpk (f )

|Stab(f )|Ψ
(︂ |Δ(f )|

X

)︂

=
(︂

α±ˆ︃λpk (0)+ β±ˆ︂λpkbp(0)
)︂

X

+ γ±ˆ︂λpkcp(0)˜︁Ψ(
5

6
) ·X5/6 +Oϵ,Ψ(kp2+ϵ).

Proof This is a consequence of Theorem 5.6 in conjunction with Propositions 5.3 and
5.5 and Lemma 5.8. □

6 Sieving to the space of maximal binary cubic forms

In this section, we employ an inclusion-exclusion sieve to sum over maximal binary
cubic forms. To set up this sieve, we need the following notation. Denote the set of
maximal integral binary cubic forms by V (ℤ)max. For a squarefree positive integer
q , we let 𝒲q denote the set of elements in V (ℤ) that are nonmaximal at every prime
dividing q . Given a set S with a GL2(ℤ)-action, we let S := S

GL2(ℤ)
denote the set

of GL2(ℤ)-orbits on S. Let Ψ : ℝ>0 → ℂ be a smooth function with compact sup-
port, and let ϕ : V (ℤ)→ ℂ be a GL2(ℤ)-invariant function defined by congruence
conditions modulo some fixed M . Then we have

∑︂

f∈V (ℤ)±,max

ϕ(f )

|Stab(f )|Ψ(|Δ(f )|)=
∑︂

q≥1

μ(q)
∑︂

f∈𝒲±
q

ϕ(f )

|Stab(f )|Ψ
(︁|Δ(f )|)︁. (39)

In practice, and starting from §6.2 and in subsequent sections, we will assume that the
support of ϕ is contained within the set of binary cubic forms corresponding to orders
in S3-fields (this will imply that the stabilizers are trivial, that is |Stab(f )| = 1).
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The difficulty in obtaining good estimates for the right-hand side of (39) is that ϕ
restricted to 𝒲q is defined by congruence conditions modulo q2M , and a direct ap-
plication of the results of Sect. 5 yields not sufficiently precise error terms for sums
over such sets. We overcome this difficulty in §6.1 by using a “switching trick”, de-
veloped in [5], which transforms the sum over 𝒲p to a weighted sum over V (ℤ),
where the weights are defined modulo p. We then combine the results of Sect. 5
and §6.1 to carry out the sieve and obtain improved bounds for the error term. Fi-
nally, in §6.3, we derive several applications; notably, we obtain a smoothed version
of Roberts’ conjecture for certain (S3-) families of cubic fields, and sum the Artin
character λK(n) over cubic fields K .

For a positive squarefree integer m and an integral binary cubic form f ∈ V (ℤ),
denote the number of roots (resp. simple roots) in ℙ

1(ℤ/mℤ) of the reduction of f
modulo m by ωm(f ) (resp. ω(1)m (f )). By the Chinese remainder theorem, ωm(f ) and
ω
(1)
m (f ) are multiplicative in m.

Proposition 6.1 ([5, Eq. (70)]) For every positive squarefree integer q and every func-
tion Ψ :ℝ>0 →ℂ of compact support,

∑︂

f∈𝒲±
q

Ψ
(︁|Δ(f )|)︁=

∑︂

kℓ|q
μ(ℓ)

∑︂

f∈V (ℤ)±
ωkℓ(f )Ψ

(︂q4|Δ(f )|
k2

)︂

.

The above identity was proved using the following procedure in [5, §9]. Every el-
ement f ∈𝒲q corresponds to a ring Rf that is nonmaximal at every prime dividing
q , hence Rf is contained in a certain ring R′, such that the index ind(f ) := [R′ :Rf ]
satisfies q | ind(f ) and ind(f ) | q2. In particular, the discriminant of R′ is smaller
than that of Rf . Then elements in 𝒲q can be counted by counting the rings R′ in-
stead of Rf . In what follows, we formalize this procedure, and adapt it so that we
may sum congruence functions over 𝒲q (Theorem 6.5 which is a strenghtening of
Proposition 6.1).

6.1 Switching to overrings

We begin with a bijection which allows us to replace sums over 𝒲q with sums over
𝒲q1 , for various integers q1 | q with q1 < q . Given a set S ⊂ V (ℤ) and an element
α ∈ ℙ

1(𝔽p), let S(α) denote the set of elements f ∈ S such that f (α)≡ 0 (mod p).
Then we have the following result.

Lemma 6.2 Let q be a positive squarefree number, and let p be a prime such that
p | q . Then there is a bijection between the following two sets:

{︂

f ∈𝒲q\p𝒲q/p

}︂⋃︂{︂

(f, γ ) : f ∈ p𝒲(γ )
q/p, γ ∈ ℙ1(𝔽p)

}︂

←→
{︂

(g,α) : g ∈𝒲(α)
q/p, α ∈ ℙ1(𝔽p)

}︂

,

(40)

uniquely characterized as follows. Both sets are in natural bijection with the set of
isomorphism classes of pairs (R,R′) with R ⊂R′, where R is an index-p subring of
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the cubic ring R′. The two bijections are given via (Rf = R,R′) ↦→ f and (R,R′ =
Rg) ↦→ g.

Proof The set 𝒲q is in bijection with the set of cubic rings that are nonmaximal at
every prime p dividing q . As in [5, §9], we consider the set of pairs of cubic rings
R ⊂ R′, such that R is nonmaximal at every prime dividing q , and the index of R in
R′ is p. Let f and g be representatives for the GL2(ℤ)-orbits on V (ℤ) corresponding
to R and R′, respectively. If f ∈Wq is not a multiple of p, then there exists a unique
index-p overring R′ of R by Proposition 2.3. On the other hand, if f is a multiple
of p, then the set of index-p overrings R′ of R are in natural bijection with the roots
of f/p in ℙ

1(𝔽p) (also by Proposition 2.3). Therefore, the set of pairs (R,R′) is in
natural bijection with GL2(ℤ)-orbits on the following set:

{︂

f ∈𝒲q\p𝒲q/p)
}︂⋃︂{︂

(f, γ ) : f ∈ p𝒲(γ )
q/p, γ ∈ ℙ

1(𝔽p)
}︂

, (41)

and every form f in the above set corresponds to the ring R =Rf .
On the other hand, the set of index-p subrings of the ring Rg is in natural bijection

with the set of roots of g in ℙ
1(𝔽p) by Proposition 2.3. Therefore, the set of pairs

(R,R′) is also in natural bijection with GL2(ℤ)-orbits on the set
{︂

(g,α) : α ∈ ℙ
1(𝔽p), g ∈𝒲(α)

q/p

}︂

, (42)

and every form g in the above set corresponds to the ring R′ = Rg . It follows that
GL2(ℤ)-orbits on the sets (41) and (42) are in natural bijection. □

We will also need the following lemma determining how the above bijection
changes the splitting types of the binary cubic forms.

Lemma 6.3 Let g ∈𝒲q/p and α ∈ ℙ
1(𝔽p) be a root of g modulo p. Let f ∈𝒲q

correspond to the GL2(ℤ)-orbit of (g,α) under the bijection of Lemma 6.2. Then

σp(f )=
{︄

(121) if α is a simple root of g;
(13) or (0) otherwise.

Moreover, for every prime ℓ ≠ p, we have σℓ(f ) = σℓ(g). And more generally, for
every integer n coprime with p, the reduction of f modulo n and the reduction of g
modulo n are GL2(ℤ/nℤ)-conjugates.

Proof By translating g with an element of GL2(ℤ) if necessary, we can assume that
α = [0 : 1]. In that case, we have g(x, y)= ax3 + bx2y + cxy2 + dy3, where p | d .
Furthermore, we have p ∤ c if and only if α is a simple root. Then, the element f (x, y)
is given by f (x, y)= p2ax3 + pbx2y + cxy2 + d/py3, and has splitting type (121)
if and only if p ∤ c. The first part of the lemma follows.

To prove the second part of the lemma, note that by tensoring the exact sequence
0 → Rf → Rg→ ℤ/pℤ→ 0 by the flat ℤ-module ℤℓ, we obtain the isomorphism
Rf ⊗ℤℓ

∼=Rg ⊗ℤℓ. Reducing modulo ℓ yields Rf ⊗𝔽ℓ
∼=Rg ⊗𝔽ℓ (and also Rf ⊗

ℤ/nℤ∼=Rg ⊗ℤ/nℤ) which implies the desired conclusion. □
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Let n be a positive integer, and let ϕ : V (ℤ/nℤ)→ ℂ be a GL2(ℤ/nℤ)-invariant
function such that ϕ is given by

ϕ =
∏︂

pβ∥n
ϕpβ ,

where f ↦→ ϕpβ (f ) is GL2(ℤ/p
β
ℤ)-invariant. When β = 1, we have that ϕp(f ) is

determined by the splitting type of f at p. For any positive integer k dividing n, such
that (k, n/k) = 1, we denote

∏︁

pβ∥k ϕpβ by ϕk . Let d ≥ 1 be a squarefree integer
dividing n such that (d,n/d)= 1.

Definition 6.4 We say that such a function ϕn is simple at d , if for all p | d , we have
ϕp(f )= ϕp(0) when the splitting type of f at p is (13).

Note that the functions of interest in the rest of the paper, namely λpk and θpk for
primes p and positive integers k, are all simple.

We are now ready to prove the main result of this subsection.

Theorem 6.5 Let Ψ : ℝ>0 → ℂ be a compactly supported function, n be a positive
integer and q be a positive squarefree integer. Let ϕ be a GL2(ℤ/nℤ)-invariant func-
tion on V (ℤ/nℤ). Denote (q,n) by de, where d is the product of primes dividing
(q,n) at which ϕ is simple, and assume that ϕp(0) = 0 for every prime p|d . Write
n= dm and ϕ = ϕdϕm. Then

∑︂

f∈𝒲±
q

ϕ(f )Ψ
(︁|Δ(f )|)︁

= ϕd(121)
∑︂

kℓ| q
de

μ(ℓ)
∑︂

g∈𝒲±
e

ω
(1)
d (g)ωkℓ(g)ϕm(g)Ψ

(︂q4|Δ(g)|
e4d2k2

)︂

.

Proof We prove Theorem 6.5 by induction on the number of prime factors of d .
First we consider the case d = 1 which we establish by induction on the number of
prime factors of q/e. Let p be a prime dividing q/e. We again use the bijection of
Lemma 6.2 to relate the sum over f ∈𝒲q to a sum over g ∈𝒲q/p . If f ∈ p𝒲q/p ,
then ϕ(f/p) = ϕ(f ) because ϕ is GL2(ℤ/nℤ)-invariant and (p,n) = 1 implies
1/p ∈ Z(GL2(ℤ/nℤ)) which acts by scalar multiplication on V (ℤ/nℤ). Suppose
f ∈𝒲q\p𝒲q/p corresponds to the GL2(ℤ)-orbit of g ∈𝒲q/p and a root α ∈ ℙ

1(𝔽p)

of g modulo p under the surjection of Lemma 6.2. Then since (n,p) = 1, we have
ϕ(f )= ϕ(g) from Lemma 6.3. Thus,

∑︂

f∈𝒲±
q

ϕ(f )Ψ
(︁|Δ(f )|)︁

=
∑︂

k1ℓ1|p
μ(ℓ1)

∑︂

f∈𝒲±
q/p

ωk1ℓ1(f )ϕ(f )Ψ
(︂p4|Δ(f )|

k2
1

)︂
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=
∑︂

k1ℓ1|p
μ(ℓ1)

∑︂

k2ℓ2| qpe
μ(ℓ2)

∑︂

f∈𝒲±
e

ωk1ℓ1(f )ωk2ℓ2(f )ϕ(f )Ψ
(︂q4|Δ(f )|
e4k2

1k
2
2

)︂

=
∑︂

kℓ| q
e

μ(ℓ)
∑︂

f∈𝒲±
e

ωkℓ(f )ϕ(f )Ψ
(︂q4|Δ(f )|

e4k2

)︂

,

where the second equality follows by induction on the sum over 𝒲±
q/p of the

GL2(ℤ/pnℤ)-invariant function ωk1ℓ1 · ϕ.
It remains to prove the inductive step on the number of prime factors of d . Let

p be a prime dividing d . We use the bijection of Lemma 6.2 to relate the sum over

f ∈𝒲q to sums over f ∈𝒲q/p . Suppose f ∈𝒲q corresponds to g ∈𝒲(α)
q/p under

the bijection of Lemma 6.2, then by Lemma 6.3, we have ϕp(g)= ϕp(121) if α is a
simple root and ϕp(g) = ϕp(13) = 0 otherwise. Also, we have ϕn/p(g) = ϕn/p(f ).
Therefore, we have

∑︂

f∈𝒲±
q

ϕ(f )Ψ
(︁|Δ(f )|)︁ =

∑︂

g∈𝒲±
q/p

ω(1)p (g)ϕp(1
21)ϕn/p(g)Ψ

(︂ |Δ(g)|
p2

)︂

= ϕd(1
21)

∑︂

g∈𝒲±
q/d

ω(1)p (g)ω
(1)
d/p(g)ϕn/d(g)Ψ

(︂ |Δ(g)|
d2

)︂

,

where the second equation follows by induction on the sum over 𝒲±
q/p of the (simple

at d/p) function ϕn/p · ω(1)p . The result now follows since ω(1)k is multiplicative in
k. □

6.2 Summing congruence functions over 𝓦±
𝒒

Let n be a positive integer and let ϕ : V (ℤ/nℤ)→ℂ be of the form ϕ =∏︁

pβ∥n ϕpβ ,

where ϕpβ : V (ℤ/pβℤ)→ ℂ and β := vp(n). Let V (ℤp)nm be the subset of V (ℤp)
of nonmaximal cubic forms. It is the closure of 𝒲±

p inside V (ℤp). Given a positive
squarefree integer q , we define

𝒜(q)n (ϕ) :=
∏︂

p|q

∫︂

V (ℤp)nm
ϕpβ (f )df ·

∏︂

p|n
p∤q

𝒜pβ (ϕpβ ),

𝒞(q)n (ϕ) :=
∏︂

p|q

∫︂

V (ℤp)nm
ϕpβ (f )cp(f )df ·

∏︂

p|n
p∤q

𝒞pβ (ϕpβ ),

where df denotes the probability Haar measure on V (ℤp), and the values of cp(f )
are given in Table 1. When p|q but p ∤ n, we assume by convention that ϕpβ = 1 in the

integral above. Note that if q = 1 then 𝒜(q)n =𝒜n and 𝒞(q)n = 𝒞n, and more generally
if (n, q)= 1, then 𝒜(q)n is equal to 𝒜n times the probability that f is nonmaximal at
every prime dividing q (with something similar holding for 𝒞(q)n ).
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Let ϕ = ∏︁

pβ∥n ϕpβ be a GL2(ℤ/nℤ)-invariant function on V (ℤ/nℤ). We say

that ϕ is an S3-function if there exist two prime powers pβ1
1 ∥ n and pβ2

2 ∥ n such
that ϕ

p
β1
1

is supported on elements with splitting type (3) and ϕ
p
β2
2

is supported on

elements with splitting type (12). Note that the support of an S3-function in V (ℤ)
is contained within the set of integral binary cubic forms corresponding to orders in
cubic S3-fields.

Theorem 6.6 Let Ψ : ℝ>0 → ℂ be a smooth function with compact support, let n
be a positive integer, let q be a positive squarefree integer, and let d := (q,n). Let
ϕ =∏︁

pβ∥n ϕpβ be a GL2(ℤ/nℤ)-invariant S3-function on V (ℤ/nℤ), such that ϕ is
simple at d and ϕp(0)= 0 for every prime p | d . Then for every X ≥ 1,

∑︂

f∈𝒲±
q

ϕ(f )

|Stab(f )|Ψ
(︂ |Δ(f )|

X

)︂

= α± ·𝒜(q)n (ϕ) · ˜︁Ψ(1) ·X+ γ± · 𝒞(q)n (ϕ) · ˜︁Ψ(56 ) ·X
5/6

+Oϵ
(︂

d1+ϵq1+ϵ · (︁n
d

)︁4+ϵ
En/d

(︁
ˆ︃ϕn/d

)︁ ·E∞(˜︁Ψ,ϵ)
)︂

.

Remark Note that ϕ being an S3-function implies that the elements f in the support
of ϕ have trivial stabilizer, and similarly below for the elements f ∈𝒲q(Σ). We
keep Stab(f ) in the theorem statement and its Corollary 6.7 below as a reminder that
the Shintani zeta function counting methods of Sect. 5 are used to estimate the sum.

Proof The values of the constants in front of the primary and secondary main terms
follow from Theorem 5.6. The term ℬn(ϕ) vanishes because there exists a prime p
dividing n such that ϕpβ is supported on elements in V (ℤ/pβℤ) with splitting type
(3), which implies ℬpβ (ϕpβ ) = 0 because ϕpβ · bp vanishes on V (ℤ/pβℤ) in view
of Table 1.

It remains to justify the size of the error term. For this, we first use Theorem 6.5
to write

∑︂

f∈𝒲±
q

ϕn(f )

|Stab(f )|Ψ
(︂ |Δ(f )|

X

)︂

= ϕd(121)
∑︂

kℓ| q
d

μ(ℓ)
∑︂

g∈V (ℤ)±
ω
(1)
d (g)ωkℓ(g)

ϕn/d(g)

|Stab(g)|Ψ
(︂q4|Δ(g)|
Xd2k2

)︂

,

where we have used that the elements g in the support of ϕn/d have trivial stabilizer.
For each k and ℓ, we apply Theorem 5.6 to the inner sum, obtaining

∑︂

g∈V (ℤ)±
ω
(1)
d (g)ωkℓ(g)

ϕn/d(g)

|Stab(g)|Ψ
(︂q4|Δ(g)|
Xd2k2

)︂
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= c(1)k,ℓX+ c(2)k,ℓX5/6

+Oϵ
(︂

(nkl)4+ϵ ·Ed(ˆ︃ω(1)d )Ekℓ(ˆ︃ωkℓ)En/d(ˆ︃ϕn/d)E∞(˜︁Ψ,ϵ)
)︂

= c(1)k,ℓX+ c(2)k,ℓX5/6

+Oϵ
(︂

d2+ϵ(kℓ)1+ϵ ·
(︂n

d

)︂4+ϵ
En/d(ˆ︃ϕn/d)E∞(˜︁Ψ,ϵ)

)︂

.

The second estimate above follows since we have the bounds

Ed(
ˆ︃
ω
(1)
d )≪

1

d2−ϵ , Ekℓ(ˆ︃ωkℓ)≪ 1

k3−ϵℓ3−ϵ .

Indeed, we have ωkℓ =∏︁

p|kℓ(λp + 1) (with a slight modification when the splitting
at p is (0)), and then the bounds on the Fourier transform follow from Lemmas 5.7
and 5.8. Summing over kℓ dividing q/d , we obtain

∑︂

kℓ| q
d

d2+ϵ(kℓ)1+ϵ ≪ (dq)1+ϵ,

which yields the result. □

Recall that for a finite collection Σ of local specifications, we defined a family of
fields ℱΣ . The finite collection Σ can also be used to cut out subsets of binary cubic
forms. Namely, for a set S of integral binary cubic forms, let S(Σ) denote the subset
of elements f ∈ S such that Rf ⊗ℚv ∈Σv for each place v associated to Σ. Here, as
usual, Rf denotes the cubic ring associated to f . Henceforth, we will always assume
thatΣ∞ is a singleton set. That is, it is either ℝ⊕ℝ⊕ℝ, corresponding to cubic fields
and forms with positive discriminant, or it is ℝ⊕ℂ, corresponding to cubic fields and
forms with negative discriminant. Accordingly the sign ± in α±, γ±, V (ℤ)±, 𝒲±

q ,
and so on, will be + for the former case and − for the latter case.

Let χΣ be the characteristic function of the set of elements (fp) ∈∏︁

p V (ℤp) such
that Rfp ⊗ℚp ∈Σp for every prime p. We have that χΣ factors through the quotient
∏︁

p V (ℤp)↠ V (ℤ/rΣℤ) to a GL2(ℤ/rΣℤ)-invariant function which we also denote
by the same letter χΣ . Here rΣ is a positive integer which is the product of p over
all primes p ≠ 2,3 such that Σp is specified at p and of 16 (resp. 27) for the prime 2
(resp. 3).

We say that Σ is an S3-collection, and that ℱΣ is an S3-family if there exist two
primes p and p′ such that Σp = {ℚp3} and Σp′ = {ℚp′ ×ℚp′2}. Note that when Σ
is an S3-collection, it automatically follows that χΣ is an S3-function.
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Corollary 6.7 LetΣ be a finite S3-collection of local specifications. For every positive
integer n, positive squarefree integer q and X ≥ 1, we have

∑︂

f∈𝒲q (Σ)

λn(f )

|Stab(f )|Ψ
(︂ |Δ(f )|

X

)︂

= α±𝒜(q)[n,rΣ ](λnχΣ)˜︁Ψ(1) ·X+ γ±𝒞
(q)
[n,rΣ ](λnχΣ) · ˜︁Ψ(

5

6
) ·X5/6

+Oϵ,Σ
(︁

(nq)1+ϵ ·E∞(˜︁Ψ,ϵ)
)︁

.

(43)

Proof The two main terms of the asymptotic follow from Theorem 6.6, and it is
only necessary to analyze the size of the error term. We write n= n1n2, where n1 is
squarefree, n2 is powerful and (n1, n2) = 1. Let m denote the radical of n2. Recall
that λn is defined modulo n1m, the radical of n. (Indeed, λpk only depends on the
reduction of f modulo p.) Thus, Theorem 6.6 yields an error term of

Oϵ,Σ

(︂ (n1m)
4+ϵq1+ϵ

(n, q)3
·E n

(n,q)

(︁
ˆ︁λ n
(n,q)

)︁

E∞(˜︁Ψ,ϵ)
)︂

.

For a prime p and integer k ≥ 2, it follows from Lemma 5.8 that we have

Ep(ˆ︂λp)≪ 1

p3
; Epk (

ˆ︃λpk )≪
k

p2
.

Therefore, we obtain

E n
(n,q)

(︁
ˆ︁λ n
(n,q)

)︁≪ϵ

(n, q)3nϵ

n3
1m

2
.

The theorem now follows since n1m
2 ≤ n. □

We end with two results. The first is a uniform estimate, proved in [12], on the
number of elements in 𝒲q with bounded discriminant. This estimate will be used to
bound the tail of the sum in the right-hand side of (39).

Proposition 6.8 (Davenport [12]) For every ϵ > 0, X ≥ 1, and squarefree integer q ,

#
{︁

f ∈𝒲±
q : |Δ(f )|<X

}︁≪ϵ

X

q2−ϵ .

The multiplicative constant is independent of q and X (it depends only on ϵ).

Proof With the notation we have set up, Davenport’s proof can be expressed as fol-
lows: We use Proposition 6.1 with Ψ the indicator function of the interval [ 1

2 ,X].
Then, instead of applying Theorem 5.6 as above, we apply the more direct upper

bound ωkℓ(f )≪ qϵ and estimate from above the sum over f ∈ V (ℤ)± by Xk2

q4 . □
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Second, we add up the functionals of Theorem 6.6 over squarefree numbers q .
Let ϕ : V (ℤ/nℤ)→ ℂ be a function of the form ϕ = ∏︁

pβ∥n ϕpβ , where ϕpβ :
V (ℤ/pβℤ)→ℂ and β = vp(n). For every prime p ∤ n, we define ϕpβ : V (ℤp)→ℂ

to simply be the constant 1 function. We now define the functionals

𝒜max(ϕ) :=
∏︂

p

∫︂

f∈V (ℤp)max
ϕpβ (f )df ;

𝒞max(ϕ) :=
∏︂

p

∫︂

f∈V (ℤp)max
cp(f )ϕpβ (f )df,

where the values of cp(f ) are given in Table 1. By multilinearity, the domain of
definition of the functionals 𝒜max and 𝒞max extends to all functions ϕ : V (ℤ/nℤ)→
ℂ.

Lemma 6.9 For every integer n, the following identity between functionals defined on
functions from V (ℤ/nℤ) holds:

∑︂

q≥1

μ(q)𝒜(q)n = 𝒜max;
∑︂

q≥1

μ(q)𝒞(q)n = 𝒞max.

Proof This follows from the partition

V (ℤp)= V (ℤp)max ⊔ V (ℤp)nm

for every prime p, and the inclusion-exclusion principle. □

6.3 Application to smooth counts of cubic fields with prescribed local
specifications

In this subsection, we use (39), Theorem 6.6, Proposition 6.8 and Lemma 6.9 to
sum congruence functions over the space of cubic fields. We denote the set of all
cubic fields K with ±Δ(K) > 0 by ℱ±. We say that θ : ℱ± → ℂ is a simple
function defined modulo n if there exists a simple GL2(ℤ/nℤ)-invariant function
ϕ : V (ℤ/nℤ)→ ℂ such that for every cubic field K , whose ring of integers corre-
sponds to a maximal binary cubic form f , we have θ(K)= ϕ(f̄ ), where f̄ denotes
the reduction of f modulo n. For example λK(n) is a simple function defined modulo
n corresponding to the function λn(f ).

Theorem 6.10 Let Ψ : ℝ>0 → ℂ be a smooth function with compact support such
that

∫︁

Ψ = 1. Let Σ be a finite S3-collection of local specifications. For every real
X ≥ 1 and integer n≥ 1, we have

∑︂

K∈ℱΣ
λK(n)Ψ

(︂ |Δ(K)|
X

)︂

= α±𝒜max(λnχΣ)X+ γ±𝒞max(λnχΣ)˜︁Ψ
(︁5

6

)︁

X5/6

+Oϵ,Σ,Ψ
(︁

X2/3+ϵn1/3)︁.
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Before we turn to the proof of Theorem 6.10, we make the following two obser-
vations. First, the quadratic analogue of the above result is the question of summing
the Legendre symbol

(︁ ·
n

)︁

over the set of fundamental discriminants (or squarefree
integers).

Second, the case n= 1 of the above result (with the simplifying assumption that
Σ is an S3-collection) is a smoothed version (instead of a sharp version counting
K ∈ℱΣ(X) without the Ψ-smoothing) of the refined Roberts’ conjecture, proved in-
dependently in [5] and [34]. Those works obtain the error terms Oϵ(X5/6−1/48+ϵ)
and Oϵ(X7/9+ϵ) for the sharp version of the refined Roberts’ conjecture. Indepen-
dently from the present article, the recent work [6] obtains an improved error term of
Oϵ(X

2/3+ϵ) for the sharp count. This indicates that X2/3+ϵ is the natural exponent
both for our present purposes of smoothly summing the Artin character of cubic fields
and for the problem of sharp counting of cubic fields.

Proof of Theorem 6.10 We start with the sieve (39) to write

∑︂

K∈ℱΣ
λK(n)Ψ

(︂ |Δ(K)|
X

)︂

=
∑︂

q≥1

μ(q)
∑︂

f∈𝒲±
q

λn(f )

|Stab(f )|χΣ(f )Ψ
(︂ |Δ(f )|

X

)︂

.

Note that the sum over K is not weighted by the size of the automorphism group
because every K ∈ℱΣ is an S3-field, hence Aut(K) is trivial.

Pick a real numberQ to be optimized later. Using Corollary 6.7 for q ≤Q, Propo-
sition 6.8 for q >Q, and Lemma 6.9 to evaluate the main terms, we obtain

∑︂

K∈ℱΣ
λK(n)Ψ

(︂ |Δ(K)|
X

)︂

= α±𝒜max(λnχΣ)X+ γ±𝒞max(λnχΣ)˜︁Ψ
(︁5

6

)︁

X5/6

+Oϵ,Σ,Ψ
(︁

(nQ2)1+ϵ
)︁+Oϵ,Ψ

(︂ X

Q1−ϵ
)︂

.

Optimizing, we pick Q= (X/n)1/3 which yields Theorem 6.10. □

Finally, we have a result estimating smoothed sums over cubic fields, where we
sum over arbitrary congruence functions defined modulo a squarefree integer. (We
could allow more general specifications, but this situation seems to be the most com-
mon in applications).

Theorem 6.11 Let Ψ : ℝ>0 → ℂ be a smooth function with compact support such
that

∫︁

Ψ = 1. Let n be a positive squarefree integer, and let θ be a simple function on
the family ℱ+ (resp. ℱ−) of totally real cubic fields (resp. complex cubic fields) cor-
responding to a GL2(ℤ/nℤ)-invariant congruence S3-function ϕ : V (ℤ/nℤ)→ ℂ,
which is simple at n and such that ϕp(0)= 0 for every prime p|n. Namely θ(Kf )=
ϕ(f ) for every f ∈ V (ℤ)±,irr,max. Then we have

∑︂

K∈ℱ±
θ(K)Ψ

(︂ |Δ(K)|
X

)︂

= α±𝒜max(ϕ)X+ γ±𝒞max(ϕ)˜︁Ψ
(︁5

6

)︁

X5/6

+Oϵ,Ψ
(︁

X2/3+ϵn2/3+ϵ ||θ ||∞
)︁

.
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Proof As before, we begin with the inclusion-exclusion sieve. PickQ> 1 to be opti-
mized and write

∑︂

K∈ℱ±
θ(K)Ψ

(︂ |Δ(K)|
X

)︂

=
∑︂

q≤Q
μ(q)

∑︂

f∈𝒲±
q

ϕ(f )

|Stab(f )|Ψ
(︂ |Δ(K)|

X

)︂

+Oϵ,Ψ
(︂ X

Q1−ϵ
)︂

+O(︁

X1/2||θ ||∞
)︁

.

For q ≤Q, we use Theorem 6.6 to write

∑︂

f∈𝒲±
q

ϕ(f )

|Stab(f )|Ψ
(︂ |Δ(K)|

X

)︂

= α±𝒜(q)n (ϕ)X+ γ±𝒞(q)n (ϕ)˜︁Ψ
(︁5

6

)︁

X5/6

+Oϵ,Ψ
(︂n4+ϵq1+ϵ

(n, q)3
·E n

(n,q)

(︁
ˆ︁ϕ n
(n,q)

)︁)︂

.

From the definition of the error term E n
(n,q)

and Corollary 2.7, we obtain the bound

E n
(n,q)

(︁
ˆ︁ϕ n
(n,q)

)︁≪ϵ

(n, q)2

n2−ϵ ||θ ||∞.

Using Lemma 6.9 to evaluate the main term, we therefore obtain

∑︂

K∈ℱ±
θ(K)Ψ

(︂ |Δ(K)|
X

)︂

= α±𝒜max(ϕ)X+ γ±𝒞max(ϕ)˜︁Ψ
(︁5

6

)︁

X5/6

+Oϵ,Ψ
(︂ X

Q1−ϵ
)︂

+Oϵ,Ψ
(︁

n2+ϵQ2+ϵ ||θ ||∞
)︁

.

Optimizing, we pick Q=X1/3/n2/3, which yields the result. □

7 Low-lying zeros of Dedekind zeta functions of cubic fields

We follow the setup of [30, §2.4] and of the previous Sect. 6. Namely, we pick an S3-
collection of local specifications Σ, and let ℱΣ be the associated S3-family of cubic
fields. We will simplify notation throughout this section by letting ≪ϵ denote ≪ϵ,Σ -
all error terms depend on Σ. For every function η :ℱΣ→ℂ, we define

𝒮Σ(η,X) :=
∑︂

K∈ℱΣ
η(K)Ψ

(︂ |Δ(K)|
X

)︂

to be the smoothed average of η(K) over fields K in ℱΣ with discriminant close to
X. Note in particular that 𝒮Σ(1,X) denotes a smooth count of elements in ℱΣ .

For a cubic field K , recall from Proposition 3.1 that the function L(s,ρK) is
known to be entire and that the Artin conductor of L(s,ρK) is equal to |Δ(K)|.
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We define the quantity ℒX to be the average value of log |Δ(K)| over K ∈ ℱΣ(X),
i.e., we define

ℒX := 𝒮Σ(log |Δ(K)|,X)
𝒮Σ(1,X)

.

The Davenport–Heilbronn theorem implies that we have

ℒX = logX+O(1).

We write the nontrivial zeros of L(s,ρK) as 1/2 + iγ (j)K , where the imaginary

part of γ (j)K is bounded in absolute value by 1/2. We pick Φ :ℝ→ℂ to be a smooth
and even function such that the Fourier transform ˆ︁Φ : ℝ→ ℂ has compact support
contained in the open interval (−a, a). It is then known that Φ can be extended to an
entire function of exponential type a. Define ZK(X) by

ZK(X) :=
∑︂

j

Φ
(︂γ

(j)
K ℒX
2π

)︂

.

We work with the following variant of the 1-level density 𝒟(ℱΣ(X),Φ) of the family
of Artin L-functions L(s,ρK) (equivalently, of the family of Dedekind zeta functions
ζK(s)) of K ∈ℱΣ :

𝒟(ℱΣ(X),Φ) := 𝒮Σ
(︁

ZK(X),X
)︁

𝒮Σ(1,X)
.

Recall that θK(n) was defined in (21) so that the nth Dirichlet coefficient of the
logarithmic derivative of L(s,ρK) is θK(n)Λ(n). We use the explicit formula [30,
Prop.2.1] to evaluate ZK(X):

∑︂

j

Φ
(︁

γ
(j)
K

)︁= 1

2π

∫︂ ∞

−∞
Φ(t)

(︁

log |Δ(K)|+O(1))︁dt− 1

π

∞
∑︂

n=1

θK(n)Λ(n)

n1/2
ˆ︁Φ
(︂ logn

2π

)︂

.

It yields ZK(X)= Z(1)K (X)+Z(2)K (X), where

Z
(1)
K (X) = 1

2π

∫︂ ∞

−∞
Φ

(︂ tℒX
2π

)︂(︁

log |Δ(K)| +O(1))︁dt;

Z
(2)
K (X) = − 2

ℒX

∞
∑︂

n=1

θK(n)Λ(n)√
n

ˆ︁Φ
(︂ logn

ℒX

)︂

.

A computation identical to [30, Eq. (17)] gives

lim
X→∞

𝒮Σ
(︁

Z
(1)
K (X),X

)︁

𝒮Σ(1,X)
= ˆ︁Φ(0). (44)
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To compute the 1-level density, we need to compute the asymptotics of 𝒮Σ(Z(2)K (X),
X). We write

𝒮Σ(Z(2)K (X),X) = − 2

ℒX
𝒮Σ

(︂ ∞
∑︂

n=1

θK(n)Λ(n)√
n

ˆ︁Φ
(︂ logn

ℒX

)︂

,X
)︂

= − 2

ℒX

∑︂

p,m

logp

pm/2
ˆ︁Φ
(︂m logp

ℒX

)︂

𝒮Σ
(︁

θK(p
m),X

)︁

.

(45)

We now have the following result estimating the ratios 𝒮Σ
(︁

θK(p
m),X

)︁

/𝒮Σ(1,X).

Proposition 7.1 Let p be a prime number, and let X ≥ 1 be a real number. Then, for
integers m≥ 3, we have

𝒮Σ(θK(p),X)
𝒮Σ(1,X)

≪ϵ

1

p
+ 1

p1/3X1/6 +
p1/3

X1/3−ϵ ;

𝒮Σ(θK(p2),X)

𝒮Σ(1,X)
− 1 ≪ϵ

1

p2 +
1

X1/6 +
p2/3

X1/3−ϵ ;

𝒮Σ(θK(pm),X)
𝒮Σ(1,X)

≪ 1.

(46)

Proof From Lemma 3.7 we have that θK(p)= λK(p). The left-hand side of the first
line of (46) can be computed from Theorem 6.10, yielding

𝒮Σ(θK(p),X)
𝒮Σ(1,X)

≪ϵ 𝒜max(λpχΣ)+X−1/6𝒞max(λpχΣ)+X−1/3+ϵp1/3.

Note that the first summand in the right-hand side is bounded by O(ˆ︂up · λp(0)),
where up (defined in Sect. 3) is the characteristic function of the set of elements
in V (ℤ/p2

ℤ) that lift to binary cubic forms which are maximal at p. The required
bound then follows from the first part of Proposition 3.9. Similarly, the second term is
bounded by O(X−1/6 ˆ︂up · cpλp(0)). We prove in Lemma 5.9 that ˆ︁cpλp(0)≪ p−1/3.

The same bound holds for ˆ︂up · cpλp(0) since up differs from 1 only at a density 1/p2

subset.
The proof of the second inequality is similar: this time, we use Theorem 6.11 to

deduce the estimate

𝒮Σ(θK(p2),X)

𝒮Σ(1,X)
− 1≪ϵ 𝒜max((θp2 − 1)χΣ)+X−1/6𝒞max(θp2χΣ)+X−1/3+ϵp2/3.

The third part of Proposition 3.9 implies the required bound on the first summand
on the right-hand side above, while the required bound on the second summand fol-
lows immediately since θp2 is absolutely bounded. Finally, Lemma 3.7 states that
|θK(pm)| ≤ 2, from which the third inequality follows immediately. □

We are now ready to prove the main result of this section.
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Proof of Theorem 5 From (45) and Proposition 7.1, we obtain

− 𝒮Σ(Z(2)K (X),X)
𝒮Σ(1,X)

= 2

ℒX

∑︂

p

logp

p
ˆ︁Φ
(︂2 logp

ℒX

)︂𝒮Σ(θK(p2),X)

𝒮Σ(1,X)

+O
(︃

1

logX

∑︂

pm≪Xa
m≠2

logp

pm/2

𝒮Σ(θK(pm),X)
𝒮Σ(1,X)

)︃

= 2

ℒX

∑︂

p

logp

p
ˆ︁Φ
(︂2 logp

ℒX

)︂

+Oϵ
(︂ 1

logX
+Xa−1

6 +X 5a−2
6 +ϵ)︂

+Oϵ
(︂ 1

logX
+X− 1

6+ϵ +Xa−1
3 +ϵ)︂+O

(︂ 1

logX

)︂

,

where the three error terms respectively arise from the three estimates of Proposi-
tion 7.1. Assuming that a < 2

5 , and using the above computation in conjunction with
(44), gives

lim
X→∞𝒟(ℱΣ(X),Φ) = ˆ︁Φ(0)− lim

X→∞
2

ℒX

∑︂

p

logp

p
ˆ︁Φ
(︂2 logp

ℒX

)︂

= ˆ︁Φ(0)− 1

2

∫︂ 1

−1

ˆ︁Φ(t)dt,

where the final equality follows from the prime number theorem. This concludes the
proof of Theorem 5. □

8 Main term for the average central values

Let Σ = (Σv) be a finite collection of local specifications. Without loss of generality
we assume that Σ∞ is a singleton set, which is to say that either the cubic fields
prescribed by Σ∞ = {ℝ×ℝ×ℝ} are all totally real, or the cubic fields prescribed by
Σ∞ = {ℝ×ℂ} are all complex. We also assume (by imposing additional constraints
at two different primes, if necessary) that Σ is an S3-collection. Let ℱΣ denote the
family of cubic fields K prescribed by the set Σ of specifications, namely such that
for each place v we have K ⊗ℚ ℚv ∈Σv .

We let V (ℤ)(Σ) denote the set of elements f ∈ V (ℤ) such that χΣ(f ) = 1 and
such that Δ(f ) > 0 if Σ∞ = {ℝ×ℝ×ℝ} (resp. Δ(f ) < 0 if Σ∞ = {ℝ×ℂ}). For
each prime p, let 𝒲p(Σ) denote the set of elements in V (ℤ)(Σ) that are nonmaximal
at p. If q is a squarefree positive integer, we set 𝒲q(Σ)=∩p|q𝒲p(Σ). In particular
𝒲1(Σ)= V (ℤ)(Σ).

Since we have assumed that Σ is an S3-collection, it follows that every form
f ∈ V (ℤ)(Σ) corresponds to an order in an S3-field Kf , in particular V (ℤ)(Σ) ⊂
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V (ℤ)irr. This implies that the set V (ℤ)(Σ)max of GL2(ℤ)-orbits parametrizes under
the Delone–Faddeev correspondence the S3-family ℱΣ of cubic fields prescribed by
the finite collection Σ of specifications.

Let Ψ :ℝ>0 →ℂ be a smooth function of compact support with
∫︁

Ψ = 1.
For a real number X ≥ 1, the inclusion-exclusion principle in conjunction with

Proposition 4.3 yields:

AΣ(X) :=
∑︂

K∈ℱΣ
L( 1

2 , ρK)Ψ
(︂ |Δ(K)|

X

)︂

= 2
∑︂

q≥1

μ(q)
∑︂

f∈𝒲q (Σ)

S(f )Ψ
(︂ |Δ(f )|

X

)︂

,

(47)

where S(f ) was defined in (29) to be

S(f )=
∞
∑︂

n=1

λn(f )

n1/2
V ±

(︂ n√|Δ(f )|
)︂

, (48)

with V ± as in Proposition 4.3 and where the sign is + if Σ∞ = {ℝ×ℝ×ℝ} and −
if Σ∞ = {ℝ×ℂ}. The identity holds because for a maximal irreducible binary cubic
form f ∈ V (ℤ)irr,max corresponding to the ring of integers Rf of a cubic field Kf ,
we have 2S(f )= L( 1

2 , ρKf ) by Corollary 3.5 and Proposition 4.3.
In this section, we will prove two results. First, we will prove an upper bound

on AΣ(X), which improves on the pointwise bound coming from summing the best
known upper bounds on |L( 1

2 , ρK)| over the associated fields K . Second, assuming
a sufficiently strong upper bound on |L( 1

2 , ρK)|, we obtain asymptotics for AΣ(X).

8.1 Asymptotics for the terms with 𝒒 < 𝑸

For Q ∈ℝ≥1 to be chosen later, we split the right-hand side of (47) into two parts,

∑︂

q<Q

and
∑︂

q≥Q
.

This section is concerned with the first part:

2
∑︂

q<Q

μ(q)
∑︂

f∈𝒲q (Σ)

∞
∑︂

n=1

λn(f )

n1/2 Ψ
(︂ |Δ(f )|

X

)︂

V ±
(︂ n√|Δ(f )|

)︂

. (49)

It will be convenient for us to set some notation surrounding the smooth functions
above and their Mellin transforms. For any positive real number y ∈ ℝ>0, let ℋy :
ℝ>0 →ℂ denote the compactly supported function

ℋy(t) :=Ψ(t) · V ±
(︂ y√
t

)︂

. (50)
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The relevance of ℋy(t) is that we have the equality

Ψ
(︂ |Δ(f )|

X

)︂

V ±
(︂ n√|Δ(f )|

)︂

=ℋ n√
X

(︂ |Δ(f )|
X

)︂

.

Lemma 8.1 (i) There exists a constant C > 0 depending only on Ψ such that for
every ϵ ∈ [−1,1] and y ∈ℝ>0,

E∞(˜︂ℋy; ϵ)=
∫︂ ∞

−∞
|˜︂ℋy(−ϵ + ir)|(1+ |r|)2+4ϵdr ≤ C.

(ii) There exists a constant C > 0 depending only on Ψ such that for every y ∈
ℝ>0, |˜︂ℋy( 5

6 )| ≤ C.

Proof We have by definition (26),

˜︃V ±(s)= G(s)
s

γ±( 1
2 + s)

γ±( 1
2 )

.

We deduce that the Mellin transform of t ↦→ V ±( y√
t
) is equal to

2y2s˜︃V ±(−2s)=−y2s G(−2s)

s

γ±( 1
2 − 2s)

γ±( 1
2 )

.

Since ℋy is the product of the two functionsΨ and t ↦→ V ±( y√
t
), its Mellin transform

is the convolution of the Mellin transforms of the respective functions:

˜︂ℋy(σ + ir)= 2
∫︂

ℜ(u)=η
˜︁Ψ(σ + ir + u)y−2u˜︃V ±(2u) du

2πi
, (51)

where 0< η < 1
2 is fixed. Indeed, to establish (51) it suffices to compute the inverse

Mellin transform of the right-hand side with a translation of the integration of the
v-variable:

2
∫︂

ℜ(v)=0
t−v

∫︂

ℜ(u)=η
˜︁Ψ(v + u)y−2u˜︃V ±(2u) du

2πi

dv

2πi

=
∫︂

ℜ(v)=η
t−v˜︁Ψ(v) dv

2πi

∫︂

ℜ(u)=η
2tuy−2u˜︃V ±(2u) du

2πi

=Ψ(t)V ±
(︂ y√
t

)︂

=ℋy(t),

which coincides with the inverse Mellin transform of the left-hand side.
We deduce from (51) the following inequality:

|˜︂ℋy(σ + ir)| ≤ y
−2η

π

∫︂ ∞

−∞
|˜︁Ψ(σ + ir + η+ iτ )| · |˜︃V ±(2η+ 2iτ )|dτ.

We shall use this inequality for y ∈ [1,+∞), in which case y−2η ≤ 1.
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On the other hand, if we shift the contour of (51) to ℜ(u) = −η, picking up a
simple pole at u= 0 of ˜︃V ±(2u), we then obtain the following inequality:

|˜︂ℋy(σ + ir)| ≤ y
2η

π

∫︂ ∞

−∞
|˜︁Ψ(σ + ir − η+ iτ )| · |˜︃V ±(−2η+ 2iτ )|dτ

+ |˜︁Ψ(σ + ir)| · |G(0)|.
We shall use this inequality for the other interval y ∈ (0,1], in which case y2η ≤ 1.

Assertion (ii) follows immediately by inserting σ = 5
6 and r = 0. Assertion (i)

follows by inserting σ =−ϵ and integrating over r because E∞(˜︂ℋy; ϵ) for y ≥ 1 is
bounded by

1

π

∫︂ ∞

−∞
|˜︁Ψ(−ϵ+η+ ir)|(1+|r|)2+4ϵdr ·

∫︂ ∞

−∞
|˜︃V ±(2η+2iτ )|(1+|τ |)2+4ϵdτ ≤ C,

where C depends only on Ψ . The estimate for y ≤ 1 is similar. □

We are now ready to prove the main result of this subsection.

Proposition 8.2 For every ϵ > 0 and Q,X ≥ 1, the sum (49) is asymptotic to

CΣ ·X ·
(︁

logX+ ˜︁Ψ ′(1)
)︁+C′Σ ·X+Oϵ,Σ,Ψ

(︂X1+ϵ

Q
+X11/12+ϵ +Q2+ϵX3/4+ϵ)︂,

where CΣ > 0 and C′Σ ∈ℝ depend only on the finite collection Σ of local specifica-
tions.

Proof Since V ± is a function rapidly decaying at infinity, we may truncate the n-sum
in the definition of S(f ) to n < X1/2+ϵ with negligible error term. To estimate (49)
we switch order of summation and consider

2
∑︂

n<X1/2+ϵ

∑︂

q<Q

μ(q)
∑︂

f∈𝒲q (Σ)

λn(f )

n1/2
ℋ n√

X

(︂ |Δ(f )|
X

)︂

.

We may then use Corollary 6.7, to estimate the inner sum over f :

2
∑︂

n<X1/2+ϵ

1√
n

∑︂

q<Q

μ(q)

×
(︃

α±𝒜(q)[n,rΣ ](λnχΣ) · ˜︁ℋ n√
X
(1)X+ γ±𝒞(q)[n,rΣ ](λnχΣ) · ˜︁ℋ n√

X
(
5

6
) ·X5/6

)︃

+Oϵ,Σ,Ψ
(︂ ∑︂

n<X1/2+ϵ

1√
n

∑︂

q<Q

(nq)1+ϵ ·E∞(˜︁ℋ n√
X
, ϵ)

)︂

.

(52)

The error term above is seen to be bounded by Oϵ,Σ,Ψ(Q2+ϵX3/4+ϵ) thanks to
Lemma 8.1.
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Next, we bound the secondary term in (52). Since rΣ is fixed, the contribution
to 𝒞(q)[n,rΣ ](λnχΣ) from primes p | rΣ is bounded. Therefore, we consider without
further mention in the remainder of this paragraph only the primes p ∤ rΣ . We begin
with the primes p dividing q . The contribution to 𝒞(q)[n,rΣ ](λnχΣ) from primes p | q
and p ∤ n is given in [34, Thm.2.2] and [33, Cor.8.15] to be O(p−5/3). (Note that
our quantity 𝒞(p)1 (1) defined in §6.2 corresponds to the quantity denoted 𝒞p2(Φp,1)

in [33].) The contribution to 𝒞(q)[n,rΣ ](λnχΣ) from primes p | q and p | n is estimated

from [33, Prop.8.16] to also be O(p−5/3). (If a = (121∗), then 𝒞p2(a,1)≍ p1/3, and
the cardinality of the orbit GL2(ℤ/p

2
ℤ) · a inside V (ℤ/p2

ℤ) is equal to p4(p2 − 1)
by [33, Lem.5.6], which yields p1/3p6/p8 = p−5/3, whereas the other nonmaximal
types a = (13∗), (13∗∗), (0) have a smaller contribution.)

We turn to the primes p not dividing q . The contribution to 𝒞(q)[n,rΣ ](λnχΣ) from
primes p ∤ q and p ∤ n is a convergent infinite product that is uniformly bounded. The
contribution to 𝒞(q)[n,rΣ ](λnχΣ) from primes p ∤ q and p ∥ n is computed from (23)

and Table 1 to be O(p−1/3) (see also Lemma 5.9). The contribution to 𝒞(q)[n,rΣ ](λnχΣ)
from primes p ∤ q and p2 | n is bounded by Oϵ(nϵ) since cp is absolutely bounded
and |λn| ≪ϵ n

ϵ . Therefore, letting n1 :=∏︁

p||n p and writing n= n1n2, we see that
the secondary term in (52) is ≪ϵ,Σ,Ψ

X
5
6

∑︂

n<X1/2+ϵ

1√
n

∑︂

q<Q

(n, q)1/3

q5/3−ϵn1/3−ϵ
1

≪ϵ,Σ,Ψ X
5
6+ϵ

∑︂

n1<X
1/2+ϵ

|μ(n1)|=1

1

n
5/6
1

∑︂

n2<X
1/2+ϵ

1√
n2

≪ϵ,Σ,Ψ X
11
12+ϵ,

where the final estimate follows since the inner sum is over powerful integers n2 and
hence is ≪ϵ X

ϵ .
Finally, to express the first main term in a more convenient form, we define the

function g(y) to be

g(y) := ˜︂ℋy(1)=
∫︂ ∞

0
ℋy(t)dt. (53)

From Lemma 6.9, we see that for a fixed n, we have

∑︂

q<Q

μ(q)𝒜(q)[n,rΣ ](λnχΣ) = 𝒜max(λnχΣ)+O
(︂ ∑︂

q≥Q
𝒜(q)[n,rΣ ](λnχΣ)

)︂

= 𝒜max(λnχΣ)+Oϵ
(︂∑︂

q≥Q

(n1, q)

q2n1−ϵ
1

)︂

,

where as before n1 :=∏︁

p∥n p. We omit the details of the bound on 𝒜(q)[n,rΣ ](λnχΣ),
since it is similar (and simpler) to the bound on 𝒞(q)[n,rΣ ](λnχΣ). Thus, writing n =



90 A. Shankar et al.

n1n2, the first term in (52) is equal to

2α± ·X ·
∑︂

n<X1/2+ϵ

g( n√
X
)

√
n

𝒜max(λnχΣ)+Oϵ,Σ,Ψ
(︂ ∑︂

n<X1/2+ϵ

X

Qn
3/2−ϵ
1 n

1/2
2

)︂

.

The result now follows with the values of the constants being

CΣ := α±Res
s= 1

2
TΣ(s), C′Σ := 2α±C′, (54)

as is shown in Proposition 8.5 below, and where TΣ is defined in (55). □

8.2 Computing the leading constants

We compute the constants CΣ , C′Σ arising in Proposition 8.2. We begin with the
following lemma.

Lemma 8.3 The Mellin transform of the function g in (53) is

˜︁g(s)= ˜︁Ψ(1+ s/2)G(s)
s

γ±(1/2+ s)
γ±(1/2)

,

where G is as in (26). In particular, ˜︁g(s) is meromorphic on the half-plane ℜ(s) >
−1/2 with only a simple pole at s = 0.

Proof Unwinding definitions (50) and (53), we see that

˜︁g(s) =
∫︂ ∞

0
Ψ(t)

∫︂ ∞

0
V ±

(︂ y√
t

)︂

ys
dy

y
dt

=
∫︂ ∞

0
t s/2+1Ψ(t)

dt

t

∫︂ ∞

0
V ±(u)us du

u

= ˜︁Ψ(1+ s/2)˜︃V ±(s).

The lemma follows from the expression (32) for ˜︃V ±(s). □

Define the Dirichlet series

TΣ(s) :=
∞
∑︂

n=1

tΣ(n)

ns
, (55)

where tΣ(n)=𝒜max(λnχΣ) is the average of λK(n) over K in ℱΣ (note that this is
actually a finite average, since the value of λK(n) is determined by the splitting type
of K at the primes dividing n.)

Proposition 8.4 The Dirichlet series TΣ(s) has a meromorphic continuation to the
half-plane ℜ(s) > 1/3 with a simple pole at s = 1

2 . Moreover, this simple pole has a
positive residue.
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Proof For every integer n≥ 1, we have

tΣ(n)=
∏︂

pk∥n

∑︂

σ

λpk (σ )

#𝒪σ
,

where 𝒪σ ⊂ V (𝔽p) is the GL2(𝔽p)-orbit attached to σ , and σ ranges over all splitting
types that are compatible with Σp . The quantity tΣ(n) is clearly multiplicative, and
so TΣ(s) has an Euler product decomposition

TΣ(s) :=
∏︂

p

∞
∑︂

k=0

tΣ(p
k)

pks
.

If p ≠ 3 and there is no specification Σp at p, then Proposition 3.9 asserts that

tΣ(p) = (p−1)(p2−1)
p4 and that tΣ(p2) = (p2−1)2

p4 . Therefore, the Dirichlet series

TΣ(s)ζ(2s)−1 converges absolutely for ℜ(s) > 1/3.
It follows that the residue at s = 1

2 is given by the following convergent product

Res
s= 1

2
TΣ(s)= 1

2

∏︂

p

(1− p−1)

∞
∑︂

k=0

tΣ(p
k)

pk/2
.

We claim that each factor in the product is positive:

∞
∑︂

k=0

tΣ(p
k)

pk/2
> 0 for every prime p.

Indeed, λpm(f ) is only negative if σp(f ) = (3) and m ≡ 1 (mod 3), in which case

λpm(f )=−1. Therefore, the minimum possible value of
∑︁∞
k=0

tΣ(p
k)

pk/2
occurs when

Σp = {(3)}. In this case

∞
∑︂

k=0

tΣ(p
k)

pk/2
=

∑︂

k≡0 (mod 3)

1

pk/2
−

∑︂

k≡1 (mod 3)

1

pk/2
, (56)

which is clearly positive since the nth term of the sum on the left is greater than the
nth term of the sum on the right. □

Proposition 8.5 As X→∞, we have the asymptotic

∞
∑︂

n=1

tΣ(n)√
n
g(

n√
X
)= 1

2
Res

s= 1
2
TΣ(s) ·

(︁

logX+ ˜︁Ψ ′(1)
)︁+C′ +Oϵ,Σ,Ψ

(︁

X−
1
12+ ϵ

2
)︁

,

where

C′ := d

ds

⃓
⃓
⃓
s=0
sTΣ(

1
2 + s)

γ±
(︁ 1

2 + s
)︁

γ±(1/2)
.
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Proof From Lemma 8.3, we obtain

∞
∑︂

n=1

tΣ(n)√
n
g(

n√
X
)

= 1

2πi

∫︂

ℜ(s)=2
TΣ(

1
2 + s)˜︁g(s)Xs/2ds

= 1

2πi

∫︂

ℜ(s)=2
sTΣ(

1
2 + s)˜︁Ψ(1+ s/2)G(s)

γ±
(︁ 1

2 + s
)︁

γ±(1/2)
Xs/2

ds

s2

= 1

2πi

∫︂

ℜ(s)=2
J (s)Xs/2

ds

s2
,

(57)

where the above equation serves as a definition of J (s).
Since ˜︁Ψ(1) = G(0) = 1, it follows that J (s) is holomorphic in ℜ(s) > − 1

6 , and
J (0)= Res

s= 1
2
TΣ(s). Expanding in Taylor series, we write

J (s)Xs/2 = J (0)+
(︂J (0) logX

2
+ J ′(0)

)︂

s + · · ·

Shifting the integral to ℜ(s)=− 1
6 + ϵ for some 0< ϵ < 1

6 , we therefore obtain

∞
∑︂

n=1

tΣ(n)√
n
g(

n√
X
)= 1

2
Ress=1/2TΣ(s) · logX+ J ′(0)+Oϵ,Σ,Ψ

(︁

X−
1
12+ ϵ

2
)︁

.

Calculating J ′(0), we obtain, using that G(s) is even:

J ′(0)= 1

2
Res

s= 1
2
TΣ(s) · ˜︁Ψ ′(1)+C′.

This concludes the proof of the proposition. □

8.3 Upper bound for the first moment

In this subsection we investigate pointwise bounds for the tail of the sieve when
q ≥Q.

Proposition 8.6 For every Q,X ≥ 1 and ϵ > 0,

∑︂

q≥Q

∑︂

f∈𝒲 irr
q

|Δ(f )|<X

|S(f )| =Oϵ
(︂X5/4−δ+ϵ

Q3/2−2δ

)︂

,

for δ = 1
128 as in Theorem 4.1.

Proof Let f ∈ V (ℤ)irr be an irreducible binary cubic form, and denote the field of
fractions of the ring associated to f by Kf .
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Note that for f ∈𝒲q with |Δ(f )| < X, we have |Δ(Kf )| < X/q2, and recall
from Proposition 6.8 that

#
{︁

f ∈𝒲q : |Δ(f )|<X
}︁≪ϵ

X

q2−ϵ .

Therefore, we deduce from (30) the estimate
∑︂

q≥Q

∑︂

f∈𝒲 irr
q

|Δ(f )|<X

|S(f )| ≪ϵ

∑︂

q≥Q
(X/q2)θ+ϵ ·X/q2−ϵ,

where we recall that θ = 1/4− δ. The result follows. □

Optimizing, we pick Q = X 1−2δ
7−4δ in (49). We have now established the following

by combining the two Propositions 8.2 and 8.6.

Theorem 8.7 For every X ≥ 1 and ϵ > 0,

AΣ(X)≪ϵ,Σ,Ψ X
29−28δ
28−16δ+ϵ . (58)

Numerically,

29− 28δ

28− 16δ
= 921

892
= 1.0325 . . .

for the best known value of δ = 1
128 of Theorem 4.1.

The exponent is smaller than 5/4− δ = 159
128 = 1.2421875, thus (58) is an improve-

ment on the exponent arising from summing the pointwise bound on |L( 1
2 , ρK)| over

cubic fields K with discriminant bounded by X.

9 Conditional computation of the first moment of 𝑳(1
2,𝝆𝑲)

In this section, we shall compute the first moment of L( 1
2 , ρK) assuming one of two

hypotheses. More precisely, we prove the following result.

Theorem 9.1 Assume one of the following two hypotheses:

(S) Strong Subconvexity: For everyK ∈ℱΣ , we have |L( 1
2 , ρK)| ≪ |Δ(K)| 1

6−ϑ for
some ϑ > 0.

(N) Nonnegativity: For every K ∈ℱΣ , we have L( 1
2 , ρK)≥ 0.

Then we have for small enough ϵ > 0,

∑︂

K∈ℱΣ
L
(︁ 1

2 , ρK
)︁

Ψ
(︂ |Δ(K)|

X

)︂

= CΣ ·X ·
(︁

logX+ ˜︁Ψ ′(1)
)︁+C′Σ ·X+Oϵ,Σ,Ψ(X1−ϵ),

where CΣ and C′Σ are the constants arising in Proposition 8.5.
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Compared to Sect. 8, the proof is significantly more difficult, and will require
several new inputs. Indeed, recall that we have

AΣ(X)= 2
∑︂

q≥1

μ(q)
∑︂

f∈𝒲q (Σ)

S(f )Ψ
(︂ |Δ(f )|

X

)︂

. (59)

Pick a small κ↓ > 0. Proposition 8.2 provided an estimate for the above sum with q
in the range [1,X1/8−κ↓].

For q ≥X1/8−κ↓ , our approach is to approximate the smoothed sum of S(f ) with
a smoothed sum of D( 1

2 , f ). We do this by breaking up these q into two ranges:
the “large range” and the “border range”. Namely, we pick a small κ↑ > 0. Then
the range q ≥ X1/8+κ↑ is the large range while the range [X1/8−κ↓,X1/8+κ↑] is the
border range. For q in both of these ranges we want to prove

∑︂

f∈𝒲q (Σ)

S(f )Ψ
(︂ |Δ(f )|

X

)︂

≈
∑︂

f∈𝒲q (Σ)

D( 1
2 , f )Ψ

(︂ |Δ(f )|
X

)︂

. (60)

On average over f ∈𝒲q(Σ), this is an unbalanced approximation of the central value
D( 1

2 , f ) by the Dirichlet sum S(f ) of the coefficients λn(f ).
In §9.1, we establish (60) with q in the large range, which is straightforward. The

bulk of the section is devoted to proving (60) in the border range. This is proved
in §9.2 and §9.3 using the unbalanced approximate functional equation of Proposi-
tion 4.11. The crux of the proof is to estimate the average of the coefficients ek(f ) of
the unbalanced Euler factors Ep(s, f ) over the forms f ∈𝒲q(Σ). Finally, in §9.4,
we compute the average ofD( 1

2 , f ) (assuming either nonnegativity or strong subcon-
vexity of L( 1

2 , ρK)), thereby obtaining the average of S(f ) and finishing the proof of
Theorem 9.1.

9.1 Estimates for the large range

We begin by estimating S(f ) for integral binary cubic forms with large index.

Lemma 9.2 For every integral binary cubic form f ∈ V (ℤ)irr and every ϵ > 0, we
have

S(f )=D( 1
2 , f )+Oϵ

(︂ |Δ(f )|1/4+ϵ
ind(f )

)︂

.

Proof Recall the computation of ˜︃V ±(s) in (32), and note that by definition, we have

S(f )= 1

2πi

∫︂

ℜ(s)=2
D( 1

2 + s, f )˜︃V ±(s)|Δ(f )|s/2ds.



Central values of zeta functions of non-Galois cubic fields 95

Shifting to the line s =−1/2+ ϵ, we pick up the pole of ˜︃V ±(s) at 0 (with residue 1),
to obtain

S(f ) = D( 1
2 , f )+

1

2πi

∫︂

ℜ(s)=−1/2+ϵ
D( 1

2 + s, f )˜︃V ±(s)|Δ(f )|s/2ds

= D( 1
2 , f )+Oϵ

(︁|Δ(f )|−1/4+ϵ |Δ(K)|1/2+ϵ)︁,
where the final estimate follows sinceD(s,f ) is within |Δ(f )|ϵ of L(s,ρK) for ℜ(s)
close to 0. The lemma now follows since Δ(f )= ind(f )2Δ(K). □

Adding up the above estimate for f ∈𝒲q(Σ), we immediately obtain the follow-
ing result.

Proposition 9.3 For every square-free q , and X ≥ 1, we have

∑︂

f∈𝒲q (Σ)

S(f )Ψ
(︂ |Δ(f )|

X

)︂

=
∑︂

f∈𝒲q (Σ)

D( 1
2 , f )Ψ

(︂ |Δ(f )|
X

)︂

+Oϵ,Σ,Ψ
(︂X5/4+ϵ

q3

)︂

.

Proof The proposition follows from Lemma 9.2 and the tail estimate in Proposi-
tion 6.8. □

An immediate consequence of the previous result is the following estimate for q
in the large range.

Corollary 9.4 For every small κ↑ > 0, square-free q >X1/8+κ↑ and X ≥ 1, we have

∑︂

f∈𝒲q (Σ)

(︁

S(f )−D( 1
2 , f )

)︁

Ψ
(︂ |Δ(f )|

X

)︂

≪ϵ,κ↑,Σ,Ψ
X1−2κ↑+ϵ

q
.

9.2 Preparations and strategy for the border range

In this subsection, we shall introduce spaces, notation, and some preliminary results
that will be useful subsequently in handling the border range. One of the key tools
in comparing S(f ) and D( 1

2 , f ) is the unbalanced approximate functional equation
of Proposition 4.11. To apply this result, it is not possible to only work with the
information that forms f ∈𝒲q(Σ) are nonmaximal at primes dividing q . Rather, we
shall work with the additional information of the index of f , including at primes not
dividing q .

To this end, for a positive (not necessarily squarefree) integer b, let 𝒰b(Σ) denote
the set of binary cubic forms f ∈ V (ℤ)(Σ) such that ind(f )= b. Note the inclusion
𝒰b(Σ)⊂𝒲rad(b)(Σ), and in fact we have

𝒲q(Σ)=
⨆︂

m≥1

𝒰mq(Σ),
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where the union is disjoint and q is square-free. Let 𝒰b(Σ) denote the set of GL2(ℤ)-
orbits on 𝒰b(Σ).

Let b be a positive integer, and let r be a positive squarefree integer such that
(b, r)= 1. Finally, we define the set 𝒴b,r (Σ) to be the subset of elements in 𝒲r (Σ)

whose index at primes p dividing b is exactly pvp(b). As usual we let 𝒴b,r (Σ) denote
the set of GL2(ℤ)-orbits on 𝒴b,r (Σ). The significance of these subsets 𝒴b,r (Σ) is the
following disjoint union

𝒴b,r (Σ)=
⨆︂

(b,s)=1

𝒰brs(Σ),

hence for any function ϕ : 𝒰b(Σ)→ℂ, we have

∑︂

f∈𝒰b(Σ)
ϕ(f )Ψ

(︂ |Δ(f )|
X

)︂

=
∑︂

(b,r)=1

μ(r)
∑︂

f∈𝒴b,r (Σ)
ϕ(f )Ψ

(︂ |Δ(f )|
X

)︂

.

Recall that the border range is what we are calling q ∈ [X1/8−κ↓ ,X1/8+κ↑], where
κ↓, κ↑ are positive constants that can eventually be taken to be arbitrarily small. We
next estimate the sum of S(f )−D( 1

2 , f ) over f in 𝒰mq(Σ), where m is somewhat
large.

We begin by bounding the number of elements in 𝒰mq(Σ) ⊂ 𝒰 irr
mq that have dis-

criminant less than X.

Lemma 9.5 For every positive integer m and square-free q , write mq =m1q1, where
m1 is powerful, (m1, q1)= 1, and q1 is squarefree. Then for every X ≥ 1,

|{f ∈ 𝒰 irr
mq : |Δ(f )|<X}| ≪ϵ

X1+ϵ

m
5/3
1 q2

1

. (61)

The multiplicative constant depends only on ϵ (it is independent of m, q , X).

Proof Elements f in the left-hand side of (61) are in bijection with rings Rf that
have index mq =m1q1 in the maximal orders 𝒪Kf of their fields of fractions Kf . It
follows that the discriminants of these fields Kf are less than X/(m2

1q
2
1 ). It follows

that the total number of such fields that can arise is bounded by O(X/m2
1q

2
1 ).

To estimate the total number of rings Rf that can arise, it suffices to estimate
the number of such rings Rf within a single Kf . This can be done prime by prime,
for each prime dividing the index m1q1. Let p be a prime dividing q1. Since q1 is
squarefree, it follows that the index of Rf , at the prime p, is p. Given the index
p overorder R of Rf , it follows from Proposition 2.3, that the number of index p
suborders of R is bounded by 3.

For primes dividing m1, this procedure is more complicated since there can be
many more subrings with prime power index. However, this question is completely
answered by work of Shintani [31] and Datskovsky–Wright [11] (see [24, §1.2]), who
give an explicit formula for the counting function of suborders R of a fixed cubic field
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K , which we state as Proposition 9.18. They show that the number of suborders of
index m, for m≥ 1, is the mth Dirichlet coefficient of

ζK(s)

ζK(2s)
ζℚ(3s)ζℚ(3s − 1).

To verify the lemma, it suffices to bound the Dirichlet coefficients of the Euler factor
of primes p having splitting type (111), since these coefficients majorize those of
primes with all other splitting types. For such a prime, the pth Euler factor of the
above Dirichlet series is:

(1− p−s)−3(1− p−2s)3(1− p−3s)−1(1− p−3s+1)−1

= (1+ p−s)3
(︂ ∞
∑︂

k=0

p−3ks
)︂(︂ ∞

∑︂

k=0

pk−3ks
)︂

.

It is thus clear that the kth Dirichlet coefficient is bounded by O(pk/3). Therefore,
the number of possible suborders of index pk is bounded by O(pk/3).

Putting this together, it follows that the number of suborders of K , having index
q1m1 is bounded by O(qϵ1m

1/3
1 ). Multiplying this quantity by X/(m1q1)

2 yields the
result. □

Lemma 9.6 For X ≥ 1, square-free q , and small enough η > 0

∑︂

m>Xη

∑︂

f∈𝒰mq(Σ)

(︁

S(f )−D( 1
2 , f )

)︁

Ψ
(︂ |Δ(f )|

X

)︂

=Oϵ,Σ,Ψ
(︂X5/4−η+ϵ

q3

)︂

.

Proof From Lemma 9.2, it follows that for f ∈ 𝒰mq(Σ) with |Δ(f )| ≍ X, we have

S(f ) − D( 1
2 , f ) = O(X

1/4+ϵ
mq

). We write mq as m1q1, where q1 is squarefree with
(q1,m1)= 1, and m1 is powerful. We now have

∑︂

m>Xη

∑︂

f∈𝒰mq(Σ)

(︁

S(f )−D( 1
2 , f )

)︁

Ψ
(︂ |Δ(f )|

X

)︂

≪ϵ,Σ,Ψ

∑︂

m>Xη

X1/4+ϵ

mq
· X

1+ϵ

m
5/3
1 q2

1

,

where the final estimate follows from Lemma 9.5. □

We then have the following corollary.

Corollary 9.7 Let X ≥ 1, squarefree q > X1/8−κ↓ , and η > 0 be such that η− 2κ↓ >
0. Then we have

∑︂

m>Xη

∑︂

f∈𝒰mq(Σ)

(︁

S(f )−D( 1
2 , f )

)︁

Ψ
(︂ |Δ(f )|

X

)︂

=Oϵ,κ↓,Σ,Ψ
(︂X1+2κ↓−η+ϵ

q

)︂

.
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Furthermore, κ↓ and hence η can be taken to be arbitrarily small. Therefore, a
consequence of the above lemma is that when q is in the border range, sums over
𝒰mq(Σ) only have to be considered for m less than arbitrarily small powers of X.

Let q ∈ [X1/8−κ↓ ,X1/8+κ↑] be fixed for the rest of this subsection. For a posi-
tive integer m, we write mq =m1q1, where m1 is powerful, (m1, q1)= 1, and q1 is
squarefree. Note that since m will be taken to be very small (≪Xη), q1 will be quite
close in size to q . We restate Proposition 4.11 for convenience: for f ∈ 𝒰m1q1(Σ), we
have

S(f )=D( 1
2 , f )−

∞
∑︂

k=1

ek(f )k
1/2

q1rad(m1)

∞
∑︂

n=1

λn(f )

n1/2
V ±

(︄

m2
1kn

rad(m1)2|Δ(f )|1/2
)︄

, (62)

where ek(f )k1/2 is the kth Dirichlet coefficient of the series

∞
∑︂

k=1

ek(f )k
1/2

ks
= q1−2s

1 rad(m1)
1−2s E(

1
2 − s, f )

E( 1
2 + s, f )

.

Our next and final goal of this subsection is to perform a switching trick, anal-
ogous to Theorem 6.5, in which our sums over 𝒰m1q1(Σ) are replaced with sums
over 𝒰m1(Σ). We thus need to understand how the quantity ek(f ) behaves under
such a switch. The next lemma does just that: more precisely, if f is nonmaximal
and switches to the pair (g,α) with prime index p, then the next lemma determines
ep,m(f ) in terms of (g,α).

As recalled in Proposition 2.3, the proof of [5, Prop.16] implies that there is a
bijection between the zeros in ℙ

1(𝔽p) of the reduction modulo p of g(x, y) and the
set of cubic rings that are index-p subrings of Rg . Thus, f corresponds uniquely to
a pair (g,α), where α ∈ ℙ

1(𝔽p) is a root of g(x, y) modulo p. Then the following
lemma determines Ep(s, f ) given this pair (g,α).

Lemma 9.8 Let g ∈ V (ℤ)irr be an irreducible binary cubic form that is maximal at a
prime p. Let α ∈ ℙ

1(𝔽p) be a root of the reduction of g modulo p. Let f ∈ V (ℤ)irr
be a binary cubic form corresponding to the index-p subring of Rg associated to the
pair (g,α). Then Ep(s, f ), and hence ep,m(f ) for m≥ 0, is determined by the pair
(g,α). More precisely, we have

(a) If σp(g)= (111), then σp(f )= (121) and Ep(s, f )= 1− p−s ;
(b) If σp(g)= (12), then σp(f )= (121) and Ep(s, f )= 1+ p−s ;
(c) If σp(g)= (121) and α is the single root, then σp(f )= (121) and Ep(s, f )= 1;
(d) If σp(g) = (121) and α is the double root, then σp(f ) = (13) and Ep(s, f ) =

1− p−s ;
(e) If σp(g)= (13), then σp(f )= (13) and Ep(s, f )= 1.

Proof As in the proof of the second part of Lemma 6.3, the procedure to compute
f (x, y) given the pair (g,α) is as follows: use the action of GL2(ℤ) to move α to the
point [1 : 0] ∈ ℙ

1(𝔽p). This yields the binary cubic form ax3 + bx2y + cxy2 + dy3,
where p | a. Moreover, since g is maximal at p, we see that p | b implies that p2

∤ a.
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Then f (x, y) can be taken to be (a/p)x3+bx2y+pcxy2+p2dy3. Running this pro-
cedure for the different splitting types of g immediately shows that the corresponding
f has the splitting type listed in the lemma.

For example, if g has splitting type (111) or (12), then we may bring one of
the simple roots (using a GL2(ℤ)-transformation) to infinity. Then we may write
g(x, y) = ax3 + bx2y + cxy2 + dy3, where p | a and p ∤ b since g is unramified.
Then the procedure gives f (x, y)= (a/p)x3 + bx2y +pcxy2 +p2dy3. Since p ∤ b,
the splitting type of f (x, y) is (121) as claimed. The other cases are similar, and we
omit them. □

Lemma 9.9 Suppose that f,g ∈ V (ℤ)irr are GL2(ℤℓ)-equivalent for some prime ℓ.
Then we have Eℓ(s, f )=Eℓ(s, g), and hence eℓ,m(f )= eℓ,m(g) for all m≥ 0.

Proof As in the proof of the second part of Lemma 6.3, we have σℓ(f ) = σℓ(g).
In view of Definition 3.3 and (24) this implies Dℓ(s, f ) = Dℓ(s, g). We also have
σℓ(Kf )= σℓ(Kg), and hence Lℓ(s, ρKf )= Lℓ(s, ρKg ). In view of Definition 4.4 this
implies Eℓ(s, f )=Eℓ(s, g). □

The final result of this subsection is to determine what happens to the quantity
ek(f )λn(f ) after applications of switches.

Lemma 9.10 Let m1 and q1 be positive integers, where m1 is powerful, (m1, q1)= 1,
and q1 is squarefree. Let k be a positive integer divisible only by primes dividing
m1q1. Let n be a positive integer and write n = n1ℓ1 where (ℓ1, q1) = 1 and n1 is
divisible only by primes dividing q1. Then we have

∑︂

f∈𝒰m1q1 (Σ)

ek(f )λn(f )Ψ(|Δ(f )|)=
∑︂

g∈𝒰m1 (Σ)

cq1(g)dm1(g)λℓ1(g)Ψ(q
2
1 |Δ(g)|),

where cq1 and dm1 are congruence functions on V (ℤ) defined modulo q1 and m3
1,

respectively. Furthermore, we have cq1(g)≪ϵ q
ϵ
1 and dm1(g)≪ϵ m

ϵ
1 uniformly for

every g ∈ V (ℤ).

Proof As in Sect. 6, we will write sums over 𝒰m1q1(Σ) in terms of sums over 𝒰m1(Σ).
In this case, we have the simple bijection

𝒰m1q1(Σ)↔
{︁

(g,α) : g ∈ 𝒰m1(Σ),α ∈ ℙ
1(ℤ/q1ℤ), g(α)≡ 0 (mod q1)

}︁

,

which follows by an argument similar to that of Lemma 6.2.
Since every prime factor of k also divides ind(f )=m1q1, we have

ek(f )=
∏︂

p|m1q1

ep,vp(k)(f )=
(︂∏︂

p|q1

ep,vp(k)(f )
)︂(︂∏︂

ℓ|m1

eℓ,vℓ(k)(f )
)︂

.

We denote the two terms between the parentheticals in the right-hand side above
e′q1
(f ) and dm1(f ), respectively. Since the function n ↦→ λn(f ) is multiplicative, we

have λn(f )= λn1(f )λℓ1(f ).
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Therefore, to prove the lemma, we need to express e′q1
(f ), dm1(f ), λn1(f ), and

λℓ1(f ) in terms of congruence functions on the (g,α) corresponding to f under the
above bijection. We begin by noting that we have dm1(f ) = dm1(g) by Lemma 9.9
and λℓ1(f ) = λℓ1(g), since f and g are GL2(ℤℓ)-equivalent for any ℓ ∤ q1 (in par-
ticular for every ℓ|m1 and for every ℓ|ℓ1). Moreover, the function g ↦→ dm1(g) on
𝒰m1(Σ) can be extended to a congruence function on V (ℤ) defined modulo m3

1 be-
cause σℓ(Kg) depends only on g modulo ℓ3vℓ(m1) for every prime ℓ|m1 and we apply
Definition 4.4 and Definition 4.7 to find also that eℓ,vℓ(k)(g) depends only on g mod-
ulo ℓ3vℓ(m1).

Next, we have that λn1(f ) = 0 if α ∈ ℙ
1(ℤ/q1ℤ) reduces modulo p to a dou-

ble root of g for some prime p | n1, and λn1(f ) = 1 otherwise. We have seen in
Lemma 9.8 that the value e′q1

(f ) depends only on the splitting type of g modulo
all the primes dividing q1, and on whether α is a simple or double root modulo all
the primes dividing q1. It is thus clear that the sum of e′q1

(f )λn1(f ) over the roots

α ∈ ℙ
1(ℤ/q1ℤ) of g, where f ↔ (g,α) under the above bijection, is a function of

g ∈ 𝒰m1(Σ) that can be extended to a congruence function on V (ℤ) defined modulo
q1. The first claim of the lemma now follows.

The estimates in the second claim of the lemma are immediate since λn1(f )≪ϵ q
ϵ
1

because the radical of n1 divides q1, and since e′q1
(f ) and dm1(f ), each are bounded

by ≪ϵ q
ϵ
1 and ≪ϵ m

ϵ
1, respectively, because of the estimate ep,m(f )≪ 1 in the proof

of Proposition 4.9. □

9.3 Estimates for the border range

In this subsection, we assume that our integers q lie in the border range [X1/8−κ↓ ,
X1/8+κ↑] with small enough κ↓, κ↑ > 0. Our goal is to bound

∑︂

f∈𝒲q (Σ)

(︁

S(f )−D( 1
2 , f )

)︁

Ψ
(︂ |Δ(f )|

X

)︂

,

for q in this range. Recall that we have a disjoint union

𝒲q(Σ)=
⨆︂

m≥1

𝒰mq(Σ),

and that we will be summing S(f )−D( 1
2 , f ) over 𝒰mq(Σ) (and then summing over

m) rather than simply summing over 𝒲q(Σ). From Lemma 9.6, it follows that we
may restrict the sum to m ≤ Xη, where η may be taken to be arbitrarily small. All
multiplicative constants are understood to depend on the initial choices of κ↓, κ↑, η >
0.

We write mq = m1q1, where m1 is powerful, (m1, q1) = 1 and q1 is squarefree.
Note then thatm1 ≤m2 ≤X2η, and thus q1 ≥ q/m≥X1/8−η−κ↓ . We begin by fixing
k and n in (62), and bounding the sum over f ∈ 𝒰m1q1(Σ).

Proposition 9.11 For every small enough κ1 > 0, the following estimate holds. Let
m1, q1, k, and n be positive integers and X ≥ 1. Assume that m1 is powerful,
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(m1, q1) = 1, and q1 is squarefree. Write n = n1ℓ1 where (ℓ1, q1) = 1 and n1 is
divisible only by primes dividing q1. Denote the radical of ℓ1 by ℓ. Then

∑︂

f∈𝒰m1q1 (Σ)

ek(f )λn(f )V
±(︂ nkm2

1

rad(m1)2|Δ(f )|1/2
)︂

Ψ
(︂ |Δ(f )|

X

)︂

≪ϵ,Σ,Ψ X
ϵ ·H(n,m1, q1;X),

where

H(n,m1, q1;X)= X

q2
1m

5/3
1 ℓ

+ X
5/6+κ1/3

q
5/3
1 ℓ1/3

+ ℓq2
1m

12
1 X

9κ1 + X1−κ1

q2
1m

5/3
1

.

Proof Without loss of generality, we may assume that every prime factor of k also
divides m1q1, since otherwise ek(f ) = 0 by definition and hence the sum is zero.
Applying the preceding Lemma 9.10, we obtain

∑︂

f∈𝒰m1q1 (Σ)

ek(f )λn(f )V
(︂ nkm2

1

rad(m1)2
√|Δ(f )|

)︂

Ψ
(︂ |Δ(f )|

X

)︂

=
∑︂

f∈𝒰m1 (Σ)

cq1(f )dm1(f )λℓ1(f )Ψ1

(︂q2
1 |Δ(f )|
X

)︂

,

where cq1 is defined modulo q1, dm1 is defined modulo m3
1, and Ψ1 =ℋ nkm2

1√
Xrad(m1)

2

.

Recall that in Corollary 8.1, we bound E∞(˜︂Ψ1;−ϵ) by an absolute constant. For
brevity in this proof, we will write ≪ as a shorthand for ≪ϵ,Σ,Ψ .

We perform an inclusion-exclusion principle to write the sum over 𝒰m1(Σ) in
terms of sums over 𝒴m1,r (Σ). This yields

∑︂

f∈𝒰m1 (Σ)

cq1(f )dm1(f )λℓ1(f )Ψ1

(︂q2
1 |Δ(f )|
X

)︂

=
∑︂

(m1,r)=1

μ(r)
∑︂

f∈𝒴m1,r (Σ)

cq1(f )dm1(f )λℓ1(f )Ψ1

(︂q2
1 |Δ(f )|
X

)︂

.

We split up the above sum into two sums, corresponding to the ranges r < B and
r ≥ B , for some B > 1.

We estimate each summand in the range r < B using Theorem 5.6, and each sum-
mand in the range r ≥ B using Lemma 9.5, to respectively obtain

∑︂

f∈𝒴m1,r (Σ)

cq1(f )dm1(f )λℓ1(f )Ψ1

(︂q2
1 |Δ(f )|
X

)︂
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≪ X1+ϵ(ℓ, r)
q2

1m
5/3
1 r2ℓ

+ X
5/6+ϵ(ℓ, r)
q

5/3
1 r5/3ℓ1/3

+ ℓq2
1m

12
1 r

8Xϵ

≪ X1+ϵ

q2
1m

5/3
1 rℓ

+ X5/6+ϵ

q
5/3
1 r2/3ℓ1/3

+ ℓq2
1m

12
1 r

8Xϵ;

∑︂

f∈𝒴m1,r (Σ)

cq1(f )dm1(f )λℓ1(f )Ψ1

(︂q2
1 |Δ(f )|
X

)︂

≪ X1+ϵ

q2
1m

5/3
1 r2

.

The second bound is simply an application of the tail estimate of Lemma 9.5. The
first bound is more complicated, and we explain how it is derived. Summing over
𝒴m1,r (Σ) can be replaced by summing a function ϕχΣ over V (ℤ), where ϕ is defined
modulom2

1r
2 and χΣ is the indicator function defined in §6.2 before Corollary 6.7. In

the above equation, we are therefore summing a function defined modulo r2m3
1q1ℓrΣ

(here, we also use Lemma 9.10). Moreover q1 is squarefree, and the function defined
modulo ℓ is λℓ1 . Therefore, the error term with applying Theorem 5.6 is bounded by
≪ ℓq2

1m
12
1 r

8Xϵ .
We now estimate the first and second main terms. The density of the first main term

follows from the uniformity estimates and the bound 𝒜ℓ1(λℓ1)≪ 1
ℓ

from Lemma 5.9.
The second main term computation follows similarly using the bound 𝒞ℓ1(λℓ1)≪ 1

ℓ1/3

from Lemma 5.9.
Adding the above bounds over the appropriate ranges of r yields

∑︂

f∈𝒰m1q1 (Σ)

ek(f )λn(f )V
(︂ nkm2

1

rad(m1)2
√|Δ(f )|

)︂

Ψ
(︂ |Δ(f )|

X

)︂

≪ X1+ϵ logB

q2
1m

5/3
1 ℓ

+ X
5/6+ϵB1/3

q
5/3
1 ℓ1/3

+ ℓq2
1m

12
1 B

9Xϵ + X1+ϵ

q2
1m

5/3
1 B

.

Choosing B =Xκ1 concludes the proof of the proposition. □

Let notation be as in the beginning of this section. We have

∑︂

f∈𝒲q (Σ)

(︁

D( 1
2 , f )− S(f )

)︁

Ψ
(︂Δ(f )

X

)︂

=
∑︂

f∈𝒲q (Σ)

Ψ
(︂Δ(f )

X

)︂ ∞
∑︂

k=1

ek(f )k
1/2

rad(ind(f ))

×
∞
∑︂

n=1

λn(f )

n1/2
V sgn(Δ(f ))

(︂ ind(f )2kn

rad(ind(f ))2|Δ(f )|1/2
)︂

=
∞
∑︂

m=1

∑︂

f∈𝒰mq(Σ)
Ψ

(︂Δ(f )

X

)︂∑︂♭

k≥1

ek(f )k
1/2

q1rad(m1)
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×
∞
∑︂

n=1

λn(f )

n1/2
V sgn(Δ(f ))

(︂ m2
1kn

rad(m1)2|Δ(f )|1/2
)︂

=
Xη
∑︂

m=1

∑︂

f∈𝒰mq(Σ)
Ψ

(︂Δ(f )

X

)︂∑︂♭

k≥1

ek(f )k
1/2

q1rad(m1)

×
∑︂

n≤X1/2+ϵ
k

λn(f )

n1/2
V sgn(Δ(f ))

(︂ m2
1kn

rad(m1)2|Δ(f )|1/2
)︂

+Oϵ,κ↓,Σ,Ψ
(︂X1−η+2κ↓+ϵ

q

)︂

,

where the final estimate follows from Corollary 9.7, and the rapid decay of V ± to
truncate the n-sum, and where the ♭ above indicates that the sum over k is supported
on multiples of q1 and ranges only over integers whose prime factors are all divisors
of mq .

Next, we truncate the sum over k as follows. For the next two results, we will write
k = k1k2, where k1 is cubefree, k2 is cubeful, and (k1, k2)= 1.

Lemma 9.12 For every small enough κ2 > 0, X ≥ 1, and q1, m1 as above (i.e., satis-
fying m1 ≤X2η and q1 ≥X1/8−η−κ↓ ), we have

Xη
∑︂

m=1

∑︂

f∈𝒰 irr
mq

|Δ(f )|<X

∑︂♭

k
k2>X

3κ2

|ek(f )|k1/2

q1rad(m1)

∑︂

n≤X1/2+ϵ
k

|λn(f )|
n1/2

≪ϵ,κ2

X1−κ2+4η+2κ↓+ϵ

q
.

(63)

Proof The integers k that arise range over products of powers of primes dividing mq .
It follows from Proposition 4.9 that

ek(f )≪ϵ

rad(k2)
2

k2
Xϵ ≤ k−1/3

2 Xϵ <X−κ2+ϵ .

Hence the sums over n and k can be bounded as follows: we have

∑︂♭

k
k2>X

3κ2

|ek(f )|k1/2

q1rad(m1)

∑︂

n≤X1/2+ϵ
k

|λn(f )|
n1/2 ≪ϵ

X1/4+ϵ

q1rad(m1)

∑︂

k
k2>X

3κ2

|ek(f )|

≪ϵ,κ2

X1/4−κ2+2ϵ

q1rad(m1)
.
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We already know from Lemma 9.5 that

∑︂

f∈𝒰 irr
mq

|Δ(f )|<X

1≪ϵ

X1+ϵ

m
5/3
1 q2

1

.

Therefore, the left-hand side of (63) is bounded by

≪ϵ,κ2 X
5/4−κ2+3ϵ ·

Xη
∑︂

m=1

1

m
5/3
1 rad(m1)q

3
1

≪ϵ,κ2

X5/4−κ2+η+3ϵ

q3
1

≤ X
1−κ2+3η+2κ↓+3ϵ

q1
,

which is sufficient because q1 ≥ q/m and m≤Xη. □

We input Proposition 9.11, which bounds the sum over f , and obtain with Corol-
lary 9.7 and (63):

∑︂

f∈𝒲q (Σ)

(︁

D( 1
2 , f )− S(f )

)︁

Ψ
(︂Δ(f )

X

)︂

≪ϵ,κ2,Σ,Ψ

X2η
∑︂

m1=1

∑︂♭

k
k2≤X3κ2

∑︂

n≤X1/2+ϵ
k

k1/2

n1/2q1rad(m1)
XϵH(n,m1, q1;X)

+ X
1−η+2κ↓+ϵ

q
+ X

1−κ2+4η+2κ↓+ϵ

q
.

(64)

In our next result, we estimate the triple sum in (64):

Proposition 9.13 For every square-free q ∈ [X1/8−κ↓ ,X1/8+κ↑] and X ≥ 1, we have

X2η
∑︂

m1=1

∑︂♭

k
k2≤X3κ2

∑︂

n≤X1/2+ϵ
k

k1/2

n1/2q1rad(m1)
H(n,m1, q1;X)≪ϵ,κ1,κ2 H(q;X),

where H(q;X) is the sum of the final terms in Equations (65), (66), (67), and (68).

Proof In this proof we shall write ≪ as a shorthand for ≪ϵ,κ1,κ2 . As before, we write
n= n1ℓ1, where n1 is only divisible by primes dividing q and (ℓ1, q)= 1, and denote
the radical of ℓ1 by ℓ. For convenience, we recall the definition of H(n,m1, q1;X):

H(n,m1, q1;X)= X

q2
1m

5/3
1 ℓ

+ X
5/6+κ1/3

q
5/3
1 ℓ1/3

+ ℓq2
1m

12
1 X

9κ1 + X1−κ1

q2
1m

5/3
1

.

To prove the proposition, we take each term in H(n,m1, q1;X) by turn, and sum it
over n, k, and m1. The sum over n is broken up into sums over n1 and ℓ1. Note that
since n1 is only divisible by primes dividing q , the presence of 1/n1/2 in the sum
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(and no n1’s in H(n,m1, q1;X)) means that the sum over n1 can be ignored, at the
cost of the harmless factor O(Xϵ). Indeed, we have

∑︂

n1

1

n
1/2
1

≤
∏︂

p|q

(︂

1+ 1

p1/2 +
1

p
+ · · ·

)︂

≪ 2ω(q)≪ϵ X
ϵ.

Next note that k = k1k2, where k1 is cubefree, and k is only divisible by primes
dividingmq =m1q1. Hence, we have k1 ≤ q2

1 rad(m1)
2, and in conjunction with k2 ≤

X3κ2 , we also have k ≤ q2
1X

2η+3κ2 . We begin with the first term: in this case, the sums
over ℓ1 and m1 converge, and so we have

X1+ϵ

q2
1

X2η
∑︂

m1=1

∑︂♭

k
k2≤X3κ2

∑︂

ℓ1≤X1/2+ϵ
k

k1/2

ℓ
1/2
1 q1rad(m1)

1

m
5/3
1 ℓ

≪ X1+ϵ

q3
1

∑︂♭

k
k2≤X3κ2

k1/2

≪ X1+ϵ

q3
1

· q1X
η+3κ2/2

∑︂

k2≤X3κ2

1

≪ X7/8+3η+(9/2)κ2+κ↓+ϵ

q
,

(65)

where the final estimate follows because q1 ≥ qX−η and q ≥X1/8−κ↓ . Similarly, for
the second term, we have

X5/6+κ1/3+ϵ

q
5/3
1

X2η
∑︂

m1=1

∑︂♭

k
k2≤X3κ2

∑︂

ℓ1≤X1/2+ϵ
k

k1/2

ℓ
1/2
1 q1rad(m1)

1

ℓ1/3

≪ X11/12+(8/3)η+κ1/3+4κ2+ϵ

q2
.

(66)

To estimate the third term, we write

q2
1X

9κ1+ϵ
X2η
∑︂

m1=1

∑︂♭

k
k2≤X3κ2

∑︂

ℓ1≤X1/2+ϵ
k

k1/2

ℓ
1/2
1 q1rad(m1)

ℓm12
1

≪ q1X
3/4+9κ1+26η+ϵ ∑︂♭

k
k2≤X3κ2

1

k

≪ X7/8+9κ1+26η+κ↑+ϵ

q
,

(67)
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where the final estimate follows because non-zero values of k are all multiples of the
squarefree q1; see Proposition 4.10. Finally, we have

X1−κ1+ϵ

q2
1

X2η
∑︂

m1=1

∑︂♭

k
k2≤X3κ2

∑︂

ℓ1≤X1/2+ϵ
k

k1/2

ℓ
1/2
1 q1rad(m1)

1

m
5/3
1

≪ X1−κ1+3η+3κ2+2κ↓+ϵ

q
. (68)

This concludes the proof of Proposition 9.13. □

We are now ready to prove the main result of this subsection.

Proposition 9.14 There exist positive constants κ↑, κ↓, κ3 such that the following
holds. For every X ≥ 1 and every squarefree q ∈ [X1/8−κ↓ ,X1/8+κ↑], we have

∑︂

f∈𝒲q (Σ)

(︂

S(f )−D( 1
2 , f )

)︂

Ψ
(︂ |Δ(f )|

X

)︂

=OΣ,Ψ
(︂X1−κ3

q

)︂

.

Proof We apply (64) and then apply Proposition 9.13. It is only necessary to ensure
that the exponent of X is less than 1 for each of the 6 different error terms. This is
easily done. First, we temporarily pick any positive κ↑ and κ↓. Next we pick η > 2κ↓.
Then we pick κ2 > 4η + 2κ↓ and κ1 > 3η + 2κ↓ + 3κ2. This takes care of (68) and
of the last two terms of (64).

Finally, to ensure that the exponents of X in the final terms of (65), (66), and
(67) are less than 1, we simply divide our constants κ↑, κ↓, η, κ1, κ2 by the same
sufficiently large number. □

We now put together our results for the border range and the large range.

Theorem 9.15 There exists an absolute constant ϰ > 0 such that for every X ≥ 1 and
every squarefree q ≥X1/8−ϰ , we have

∑︂

f∈𝒲q (Σ)

(︂

S(f )−D( 1
2 , f )

)︂

Ψ
(︂ |Δ(f )|

X

)︂

=OΣ,Ψ
(︂X1−ϰ

q

)︂

.

Proof We combine Corollary 9.4 and Proposition 9.14, where we choose ϰ =
min(κ↑, κ3). □

Corollary 9.16 There exists an absolute constant μ> 0 such that for every X ≥ 1, we
have

∑︂

q squarefree
q≥X1/8−μ

⃓
⃓
⃓
⃓
⃓
⃓
⃓

∑︂

f∈𝒲q (Σ)

(︂

S(f )−D( 1
2 , f )

)︂

Ψ
(︂ |Δ(f )|

X

)︂

⃓
⃓
⃓
⃓
⃓
⃓
⃓

=OΣ,Ψ
(︁

X1−μ)︁. (69)
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Proof Adding up the above result for q ≥ X1/8−ϰ , we note that {f ∈ 𝒲q(Σ) :
|Δ(f )|<X} is empty for q ≥X1/2 because Δ(f )= ind(f )2Δ(Kf )≥ q2Δ(Kf )≥
q2 for f ∈𝒲q . □

Remark 9.17 An admissible set of values of the constants is as follows: κ↓ = 1
9000 ,

κ↑ = 1
300 , η = 1

3000 κ1 = 1
100 , κ2 = 1

600 , ϰ = 1
10,000 . To verify the admissibility of

these numerical values, it suffices to insert them in each of the remainder terms of
Proposition 8.2, Corollary 9.4, Corollary 9.7, (63), (65), (66), (67), and (68).

9.4 Counting suborders

In this subsection we prove Theorem 9.1 by conditionally bounding
∑︂

q>X1/8−ϰ

∑︂

f∈𝒲q (Σ)

S(f ).

Note that by Corollary 9.16, we may replace S(f ) in the above sum byD( 1
2 , f ). The

advantage of using D( 1
2 , f ) over S(f ) is that the values of D( 1

2 , f ) for binary cubic
forms f corresponding to suborders of a fixed cubic field K can be simultaneously
controlled in terms ofL( 1

2 , ρK). To this end, we start by recalling the following result,
due to works of Shintani [31] and Datskovsky–Wright [11] (see [24, §1.2]), giving
an explicit formula for the counting function of suborders R of a fixed cubic field K .

Proposition 9.18 Let K be a cubic field with ring of integers 𝒪K . For an order R ⊂
𝒪K , let ind(R) denote the index of R in 𝒪K . Then

∑︂

R⊂𝒪K

1

ind(R)s
= ζK(s)

ζK(2s)
ζℚ(3s)ζℚ(3s − 1).

We thus obtain the following corollary regarding the number NK(Z) of orders of
𝒪K with index less than Z for a cubic field K .

Corollary 9.19 For every ϵ > 0, Z ≥ 1 and cubic field K , we have

NK(Z)≪ϵ Z
1+ϵ |Δ(K)|ϵ .

The implied constant is independent of K and Z.

Proof This follows from Perron’s formula integrating along the vertical line ℜ(s)=
1+ ϵ. □

The above result can be used to give a very useful bound on the sum of D( 1
2 , f ),

over f ∈𝒲q(Σ) for q greater than some positive Q.

Lemma 9.20 For every Q,X ≥ 1 and ϵ > 0,
∑︂

q≥Q

∑︂

f∈𝒲q (Σ)

|Δ(f )|<X

|D( 1
2 , f )| ≪ϵ,Σ X

1
2+ϵ

∑︂

2ℕ∋Y≤X/Q2

Y−
1
2

∑︂

K∈ℱΣ
Y≤|Δ(K)|<2Y

|L( 1
2 , ρK)|. (70)
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Proof Consider a real number Y with Y ≪X/Q2 and a cubic field K such that Y ≤
|Δ(K)| < 2Y . Then the number of binary cubic forms f ∈ ∪q≥QWq(Σ) such that
|Δ(f )|<X and Kf =K is bounded by

NK

(︂X
1
2

Y
1
2

)︂

=Oϵ
(︁

X1/2+ϵ/Y 1/2)︁,

using Corollary 9.19.
Summing over all K in the discrimant range Y ≤ |Δ(K)| < 2Y , and then sum-

ming over Y ∈ 2ℕ such that the dyadic ranges [Y,2Y) cover (more than) the in-
terval [1,X/Q2], we capture the sum over f ∈𝒲q(Σ), for all q > Q, such that
|Δ(f )|<X.

Recall from (31) that we have D( 1
2 , f ) = L( 1

2 , ρKf )E(
1
2 , f ) and E( 1

2 , f ) =
∏︁

p|Δ(f )(1+O(p−
1
2 ))= |Δ(f )|o(1), which concludes the proof of the lemma. □

The above lemma yields the following consequence, which clarifies how nonneg-
ativity is used by us.

Corollary 9.21 For every cubic field K ∈ ℱΣ , assume that L( 1
2 , ρK) ≥ 0. Then for

Q,X ≥ 1, we have

∑︂

q≥Q

∑︂

f∈𝒲q (Σ)

|Δ(f )|<X

D( 1
2 , f )≪ϵ,Σ X

29/28+ϵQ−15/14. (71)

Proof First note that the assumption L( 1
2 , ρK)≥ 0 for all cubic fields K implies that

D( 1
2 , f )≥ 0 for all irreducible integral binary cubic forms. Thus, we may apply the

previous lemma to estimate the left-hand side of (71).
From Theorem 8.7 (using a smooth function which dominates the characteristic

function of [1,2]), we obtain

∑︂

K∈ℱΣ
Y≤|Δ(K)|<2Y

|L( 1
2 , ρK)| ≪ϵ,Σ Y

29−28δ
28−16δ+ϵ,

for δ = 1/128. Even the bound with δ = 0 in conjunction with (70), yields the result.
□

We are now ready to prove Theorem 9.1.

Proof of Theorem 9.1 Proof assuming strong subconvexity: The hypothesis (S) would

imply that the central value in the right-hand side of (70) is bounded by Y
1
6−ϑ . Hence

the bound in (70) becomes X
1
2+ϵ(X/Q2)

2
3−ϑ . We pick Q = X 1

8−κ↓ with ϵ, κ↓ > 0
sufficiently small such that 1

2 + ϵ + ( 3
4 + 2κ↓)( 2

3 − ϑ) < 1. Proposition 8.2, together
with Corollary 9.4 and Corollary 9.16, now yield the result.
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Proof assuming nonnegativity: We pickQ=X1/8−ϰ , with ϰ as in Theorem 9.15.
It follows that we have

∑︂

q≥Q

∑︂

f∈𝒲q (Σ)

S(f )Ψ
(︂ |Δ(K)|

X

)︂

=
∑︂

q≥Q

∑︂

f∈𝒲q (Σ)

D( 1
2 , f )Ψ

(︂ |Δ(K)|
X

)︂

+Oϵ,Σ,Ψ(X1−ϰ+ϵ).

Since we are assuming hypothesis (N), Corollary 9.21 implies that we have
∑︂

q≥Q

∑︂

f∈𝒲q (Σ)

|Δ(f )|≪X

D( 1
2 , f )≪ϵ,Σ X

101/112+ϵ,

which is sufficiently small. The result now follows from Proposition 8.2. □

10 Proofs of Theorems 3 and 4

In addition to the quantity AΣ(X), that we defined in (47), we also define

MAΣ(X) :=
∑︂

K∈ℱΣ
X≤|Δ(K)|<2X

|L( 1
2 , ρK)|;

PAΣ(X) :=
∑︂

K∈ℱΣ
X/2≤|Δ(K)|<3X

L(
1
2 ,ρK)≥0

L( 1
2 , ρK).

The letter M stands for maximal and the letter P for positive.

Proposition 10.1 For every ϵ > 0 and X ≥ 1, we have the asymptotic inequality

MAΣ(X)≤ 2PAΣ(X)+Oϵ,Σ
(︁

X
29−28δ
28−16δ+ϵ)︁.

Proof We let Ψ1 : ℝ>0 → [0,1] be a smooth function compactly supported on the
interval [ 1

2 ,3] such that Ψ1(t)= 1 for t ∈ [1,2]. We have an inequality followed by a
basic identity

MAΣ(X)≤
∑︂

K∈ℱΣ
|L( 1

2 , ρK)|Ψ1

(︂ |Δ(K)|
X

)︂

= 2
∑︂

K∈ℱΣ
L(

1
2 ,ρK)≥0

L( 1
2 , ρK)Ψ1

(︂ |Δ(K)|
X

)︂

−
∑︂

K∈ℱΣ
L( 1

2 , ρK)Ψ1

(︂ |Δ(K)|
X

)︂

,

(72)
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which follows from |x| = 2max(x,0) − x for every x ∈ ℝ. The first sum is ≤
2PAΣ(X). (Note that in the respective definitions of MAΣ(X) and PAΣ(X), the
discriminant range has increased from X ≤ |Δ(K)| < 2X to X/2 ≤ |Δ(K)| < 3X
for this purpose). The second sum is equal to AΣ(X) (up to negligible error) for
which we have established the estimate (58). This concludes the proof. □

We finally arrive at the proof of our main result of this paper. In Sect. 8, we have
estimated the terms q <Q of the first moment AΣ(X). In Sect. 9, we have estimated
for the other terms q ≥ Q the difference S(f ) − D( 1

2 , f ). The conclusion of all
these results is summarized in the following which was stated in the introduction as
Theorem 4:

Theorem 10.2 There is an absolute constant μ> 0 such that the following holds. For
every 0< ν ≤ μ, ϵ > 0, and X ≥ 1,

AΣ(X)−CΣ ·X
(︁

logX+ ˜︁Ψ ′(1)
)︁−C′Σ ·X

≪ϵ,ν,Σ,Ψ X
1+ϵ−ν +X1/2+ϵ ·

∑︂

2ℕ∋Y≤X3/4+ν

MAΣ(Y )

Y 1/2
,

(73)

where the sum over Y is dyadic, namely Y ∈ 2ℕ is constrained to be a power of 2.

Proof The result will follow from Proposition 8.2, Corollary 9.16 and (70). It follows
from Proposition 8.2 that

AΣ(X)−CΣ ·X
(︁

logX+ ˜︁Ψ ′(1)
)︁−C′Σ ·X

≪ϵ,Σ,Ψ

X1+ϵ

Q
+X 11

12+ϵ +Q2+ϵX
3
4+ϵ +

∑︂

q≥Q

⃓
⃓
⃓
⃓
⃓
⃓
⃓

∑︂

f∈Wq(Σ)
S(f )Ψ

(︃ |Δ(f )|
X

)︃

⃓
⃓
⃓
⃓
⃓
⃓
⃓

.

Let a > 0 be sufficiently small such that Ψ(t) = 0 whenever a2t ≥ 1. Choose Q =
a−1X1/8−ν/2. Using that Q≫Ψ X

1/8−μ, we can apply Corollary 9.16 to obtain the
bound

∑︂

q≥Q

⃓
⃓
⃓
⃓
⃓
⃓
⃓

∑︂

f∈Wq(Σ)

(︂

S(f )−D( 1
2 , f )

)︂

Ψ

(︃ |Δ(f )|
X

)︃

⃓
⃓
⃓
⃓
⃓
⃓
⃓

≪Σ,Ψ X
1−μ ≤X1−ν.

The estimate (70) yields
∑︂

q≥Q

∑︂

f∈Wq(Σ)

⃓
⃓
⃓D(

1
2 , f )

⃓
⃓
⃓Ψ

(︃ |Δ(f )|
X

)︃

≪Ψ

∑︂

q≥Q

∑︂

f∈Wq(Σ)
|Δ(f )|<X/a2

⃓
⃓
⃓D(

1
2 , f )

⃓
⃓
⃓

≪ϵ,Σ,Ψ X
1
2+ϵ ·

∑︂

2ℕ∋Y≤(X/a2)/Q2

MAΣ(Y )

Y 1/2
.

It remains to observe that (X/a2)/Q2 =X3/4+ν to conclude the proof. □
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We are now ready to prove our main Theorem 3. Recall that the qualitative version
in Theorem 2 follows from Theorem 3.

Proof of Theorem 3 Recall that CΣ > 0 in Proposition 8.2. We are going to use (73),
Theorem 4.1, Proposition 10.1 which each have their own arbitrarily small ϵ > 0,
and without loss of generality we arrange that ϵ be the same in each. (An alternative
approach commonly used would be to assume that ϵ may vary from line to line.)

We distinguish two cases depending on the size of the sum of MAΣ(Y ) in the
right-hand side of (73).

In the first case, if the right-hand side of (73) is < X, then we have AΣ(X) ∼
CΣ ·X · logX. In combination with Theorem 4.1, we obtain that ≫ϵ,Σ X

3
4+δ−ϵ cubic

fields K ∈ℱΣ with |Δ(K)|<X satisfy L( 1
2 , ρK) > 0. Hence

δΣ(X)≥ 3

4
+ δ − ϵ −Oϵ

(︁ 1

logX

)︁

. (74)

Assume in the second case that the right-hand side of (73) is ≥X, namely

∑︂

2ℕ∋Y≤X3/4+ν

MAΣ(Y )

Y 1/2
≥X1/2−ϵ .

This implies that there exists Y ∈ 2ℕ with Y ≤ X3/4+ν such that MAΣ(Y ) ≥
X1/2−ϵ log2(X)

−1Y 1/2. It follows from Proposition 10.1 that

2PAΣ(Y )≥X1/2−ϵ log2(X)
−1Y 1/2 +Oϵ,Σ

(︁

Y
29−28δ
28−16δ+ϵ)︁.

Since Y ≤X3/4+ν , the error term is negligible. (The convexity bound δ = 0 suffices
for this). We deduce

PAΣ(Y )≫ϵ X
1/2−2ϵY 1/2. (75)

Theorem 4.1 and (75) imply that ≫ϵ X
1/2−2ϵY 1/4+δ−ϵ cubic fields K ∈ ℱΣ with

|Δ(K)|< Y satisfy the inequality L( 1
2 , ρK) > 0. Hence

δΣ(Y )≥
(︁1

2
− 2ϵ

)︁ logX

logY
+ (︁1

4
+ δ − ϵ)︁−Oϵ

(︁ 1

logY

)︁

. (76)

We are now ready to conclude the lower bound on the lim sup in Theorem 3 by
showing that

lim sup
X→∞

δΣ(X)≥ 3

4
+ δ.

Indeed, the inequality is satisfied either in the first case by δΣ(X) in (74), or in the
second case by δΣ(Y ) in (76), since logX

logY ≥ 4
3+4ν ≥ 1 and since (75) implies that

Y →∞.
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To establish the lower bound on the lim inf in Theorem 3, we need a lower bound
on Y in the second case. Theorem 4.1 implies PAΣ(Y ) = Oϵ(Y 5

4−δ+ϵ). Together
with (75), this yields the following lower bound:

Y ≫ϵ X
2

3−4δ−ϵ . (77)

This implies

δΣ(X)≥ 1

2
+ (︁1

4
+ δ)︁ · 2

3− 4δ
− ϵ −Oϵ

(︁ 1

logX

)︁

. (78)

The first two terms of (78) simplify to 2
3−4δ , hence

lim inf
X→∞ δΣ(X)≥ 2

3− 4δ
.

This concludes the proof of Theorem 3. □

The same argument implies something slightly stronger than an Omega result
MAΣ(X) = ΩΣ(X) as X→∞. Namely, that there is a sequence Xk →∞ such
that MAΣ(Xk)/Xk →∞. Indeed, in the first case of the proof of Theorem 3, we
have AΣ(X)∼ CΣ ·X logX. In the second case, we have

MAΣ(Y )≫X1/2−o(1)Y 1/2 ≫ Y 7/6−o(1),

in view of Y ≤ X3/4+ν . Moreover we have seen that (75) implies Y →∞, which
enables us to extract a sequence Xk = Y →∞ such that MAΣ(Y )/Y →∞.

For completeness, we also record the following lower bound for the first moment:

Proposition 10.3 For every ϵ > 0 and X ≥ 1,

∑︂

K∈ℱΣ(X)

⃓
⃓L

(︁ 1
2 , ρK

)︁⃓
⃓≫ϵ,Σ X

5−4δ
6−8δ−ϵ.

Proof Suppose first that we are in the first case of the proof of Theorem 3. Then
we have AΣ(X)∼ CΣ ·X logX, implying that the left-hand side of the above equa-
tion is ≫Σ X logX. Suppose instead that we are in the second case. Then the lower
bound (77) for Y implies the lower bound in Proposition 10.3 as follows:

∑︂

K∈ℱΣ(X)
|L( 1

2 , ρK)| ≥
∑︂

K∈ℱΣ(Y )
|L( 1

2 , ρK)| ≫ϵ,Σ X
1
2−ϵY

1
2 ,

and 1
2 + 1

3−4δ = 5−4δ
6−8δ . □

Notation
AΣ(X) smoothed first moment of L( 1

2 , ρK)

CΣ , C′Σ main terms for the first moment
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D(s,f ) Dirichlet series of λn(f )
E∞(˜︁Ψ; ϵ) archimedean norm of ˜︁Ψ

En(ψ) norm of ψ weighted by splitting types
Ep(s, f ) Euler factor of the form f nonmaximal at p
G(s) choice of an even holomorphic function
Kf =Rf ⊗ℚ cubic field corresponding to the form f ∈ V (ℤ)irr
M matrix of the Fourier transform of GL2(𝔽p)-orbits on

V (𝔽p)

MAΣ(X) sum of |L( 1
2 , ρK)| for K ∈ℱΣ(X)

PAΣ(X) sum of L( 1
2 , ρK)≥ 0 for K ∈ℱΣ(X)

Rf cubic ring corresponding to a form f ∈ V (ℤ)
TΣ(s) Dirichlet series of tΣ(n)
V space of binary cubic forms with twisted action by GL2
V (ℤ)max subset of maximal binary cubic forms
V (ℤ)irr subset of irreducible binary cubic forms
V (ℤp)

nm subset of V (ℤp) of nonmaximal cubic forms
V ∗ dual of V with compatible action by GL2
V ± test function in the approximate functional equation
Δ(K) discriminant of the cubic field K
Δ(R) discriminant of the cubic ring R
Δ(f ) discriminant of the binary cubic form f

ℱΣ family of cubic fields prescribed by Σ
ℋy compactly supported function on ℝ>0
𝒪∗
σ orbits for the action of GL2(𝔽p) on V ∗(𝔽p)

𝒪σ orbits for the action of GL2(𝔽p) on V (𝔽p)
Σ = (Σv) finite collection of local specifications
𝒰b set of cubic forms f with ind(f )= b
𝒲q elements in V (ℤ) nonmaximal at every prime dividing q
𝒴b,r subset of cubic forms f ∈𝒲r with b ∥ ind(f )
α±, β±, γ± residues of Shintani zeta function
𝒜(q)n , 𝒞(q)n residue functionals with nonmaximality condition at q
𝒜max, 𝒞max residue functionals with maximality condition
𝒜n(ϕ), ℬn(ϕ), 𝒞n(ϕ) linear functionals for residues of ξ±(ϕ, s)
χΣ characteristic function of forms with specification Σ
δ > 0 subconvexity exponent for ζK( 1

2 )

δΣ(X) logarithmic density of fields K ∈ℱΣ(X) with ζK( 1
2 ) < 0

γ±(s) Gamma factor in the functional equation of L(s,ρK)
ind(f ) index of Rf in 𝒪Kf
λK(n) nth Dirichlet coefficient of L(s,ρK)
λn(f ) Artin character on the space of cubic forms
ω
(1)
m (f ) number of simple roots of f modulo m
ωp(g) number of zeros in ℙ

1(𝔽p) of g modulo p
T set of GL2(ℤ)-orbits on T
ϕp(13)= ϕp(0) simple congruence function at p
± + is for totally real fields and − is for complex fields
rad(k) radical of the positive integer k
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ρK two-dimensional Galois representation
σp(f ) splitting type of f at p
θK(n) coefficient of the logarithmic derivative of L(s,ρK)
θn(f ) coefficients of the logarithmic derivative of D(s,f )
ˆ︁ϕ : V (ℤ/nℤ)→ℂ Fourier transform of function ϕ on V (ℤ/nℤ)
˜︁Φ, ˜︁Ψ Mellin transforms of Φ, Ψ
ξ±(ϕ, s) Shintani zeta function with congruence function ϕ
ξ∗±(ψ, s) dual Shintani zeta function with congruence function ψ
bp(f ), cp(f ) densities of splitting types
ep,m(f ) coefficients of Euler factor of f nonmaximal at p
f ↔ (g,α) switch Rf is an index-p subring of Rg
g(y) equal to ˜︂Hy(1)
q square-free integer entering into the sieve
q ≥X1/8+κ↑ large range of the sieve
q ∈ [X1/8−κ↓ ,X1/8+κ↑] border range of the sieve
rΣ product of primes p such that Σp is specified at p
tΣ(n) average of λK(n) over K in ℱΣ
vp(k)≥ 2 for every p | k powerful integer
S(f ) truncated Dirichlet sum of λn(f )
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