
MOSE: A Novel Orchestration Framework for Stateful Microservice
Migration at the Edge

Downloaded from: https://research.chalmers.se, 2025-10-30 13:51 UTC

Citation for the original published paper (version of record):
Calagna, A., Yu, Y., Giaccone, P. et al (2025). MOSE: A Novel Orchestration Framework for
Stateful Microservice Migration at the Edge. IEEE Transactions on Network and Service
Management, 22(5): 4827-4841. http://dx.doi.org/10.1109/TNSM.2025.3579051

N.B. When citing this work, cite the original published paper.

© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025 4827

MOSE: A Novel Orchestration Framework for
Stateful Microservice Migration at the Edge

Antonio Calagna , Graduate Student Member, IEEE, Yenchia Yu , Graduate Student Member, IEEE,
Paolo Giaccone , Senior Member, IEEE, and Carla Fabiana Chiasserini , Fellow, IEEE

Abstract—Stateful migration has emerged as the dominant
technology to support microservice mobility at the network
edge while ensuring a satisfying experience to mobile end
users. This work addresses two pivotal challenges, namely,
the implementation and the orchestration of the migration
process. We first introduce a novel framework that efficiently
implements stateful migration and effectively orchestrates the
migration process by fulfilling both network and application
KPI targets. Through experimental validation using realistic
microservices, we then show that our solution (i) greatly improves
migration performance, yielding up to 77% decrease of the
migration downtime with respect to the state of the art, and (ii)
successfully addresses the strict user QoE requirements of critical
scenarios featuring latency-sensitive microservices. Further, we
consider two practical use cases, featuring, respectively, a AAV
autopilot microservice and a multi-object tracking task, and
demonstrate how our framework outperforms current state-of-
the-art approaches in configuring the migration process and in
meeting KPI targets.

Index Terms—Edge computing, service migration, mobile
networks, computer vision, machine learning.

I. INTRODUCTION

IN RECENT years, edge computing has been acknowl-
edged as the state-of-the-art paradigm to bring applications,

computational capabilities, and storage facilities closer to the
end users. To fully exploit the benefits of edge computing
architectures, applications are increasingly designed in the
form of MicroServices (MSs) chains, taking advantage of the
lightweight container virtualization technology. Concurrently,
due to the steady growth of mobile communication networks,
the main consumers of edge services have evolved from static
to mobile devices, e.g., Autonomous Aerial Vehicles (AAVs).
In this context, MS migration has gathered momentum as the

Received 18 March 2024; revised 6 June 2025 and 7 June 2025; accepted
8 June 2025. Date of publication 12 June 2025; date of current version
7 October 2025. The work was supported by the EC through Grant
No. 101139266 (6G-INTENSE project), Grant No. 101095363 (ADROIT6G
project) and Grant No. 101095871 (TRIALSNET project). The work of
Y. Yu was supported by Leonardo S.p.A. The associate editor coordinating
the review of this article and approving it for publication was H. Lutfiyya.
(Corresponding author: Antonio Calagna.)

Antonio Calagna, Yenchia Yu, and Paolo Giaccone are with the
Department of Electronics and Telecommunications, Politecnico di Torino,
10129 Turin, Italy (e-mail: Antonio.Calagna@polito.it; Yenchia.Yu@polito.it;
Paolo.Giaccone@polito.it).

Carla Fabiana Chiasserini is with the Department of Electronics and
Telecommunications, Politecnico di Torino, 10129 Turin, Italy, also with
CNIT, 43124 Parma, Italy, and also with Chalmers University, 412-96
Göteborg, Sweden (e-mail: CarlaFabiana.Chiasserini@polito.it).

Digital Object Identifier 10.1109/TNSM.2025.3579051

key technology to ensure continuous proximity of latency-
sensitive and bandwidth-consuming MSs to mobile end users.

In this paper, we focus on stateful migration, which
is used whenever keeping track of an MS state is
essential to service continuity. In fact, despite the cur-
rent trend favoring the development of stateless MSs,
stateful MSs are still extremely common due to the com-
plexity in refactoring legacy monolithic applications [1].
Furthermore, according to service-oriented architecture pat-
terns [2], some essential stateful utility services will always be
required, even if stateless service implementation will become
dominant.

Existing Issues. Although migration represents a powerful
tool to ensure MSs proximity to the end users as they move, in
practice, some service disruption during a migration process
is unavoidable and must be accounted for. This is because:
(i) stateful container migration techniques require freezing the
MS state, and (ii) the network connection between the server
running the MS and the mobile end users has to be migrated,
along with the containerized MS. Further, as discussed in
detail in Section II, no existing migration framework enables
an effective and efficient implementation of the stateful MS
migration process at edge scale. We fill this gap by proposing
a Migration Orchestration framework for microServices at the
Edge (MOSE), designed to attain stateful migration of latency-
critical edge MSs.

Technical Challenges. Implementing an effective and effi-
cient migration framework at the edge is challenging since:
(i) the service disruption duration due to the migration

process depends on several factors, such as cod-
ing optimization, communication protocols, and limited
nodes’ computational capabilities, thus its minimization
is not trivial;

(ii) upon statefully migrating an MS, the established con-
nection thereof with the mobile end user needs to be
preserved;

(iii) the stateful migration process needs to be independent of
the specific MS and of the underlying edge technology;

(iv) to effectively actuate and configure the migration process,
it has to be envisioned an orchestrator that can collect
and aggregate all relevant metrics.

To the best of our knowledge, no other work has jointly tackled
all these four aspects at the same time.

Summary of Novel Contributions. We present MOSE,
which implements stateful MS migration at the edge and
orchestrates the migration process to ensure minimal impact

1932-4537 c© 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 20,2025 at 13:24:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8693-1268
https://orcid.org/0009-0004-6911-3588
https://orcid.org/0000-0003-4283-7936
https://orcid.org/0000-0003-1410-660X

4828 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

on the user’s QoE. Specifically, MOSE (i) enables the imple-
mentation of stateful migration of a generic MS at edge scale
while (ii) preserving its connection with the mobile end user.
Importantly, (iii) its agnostic design enables a seamless and
efficient integration on top of already existing edge platforms,
(iv) it features several optimizations of the migration workflow,
thus minimizing the experienced service disruption duration,
and (v) leveraging the PAM model [3], it effectively configures
the migration process, so that the target migration KPIs and
the vertical’s objectives are met, even in the presence of strict
reliability and robustness requirements.

We validate MOSE using realistic MSs and, by experimen-
tally comparing MOSE to other solutions in prior art, we show
how it greatly reduces service disruption thanks to an effective
migration orchestration. Moreover, to demonstrate the benefits
of our solution in real-world scenarios, we consider two prac-
tical use cases featuring, respectively, a AAV autopilot MS and
a Machine Learning (ML)-based multi-object tracking MS. We
demonstrate how MOSE can be exploited to attain the MS
state preservation upon migration and effectively configure
the migration process to guarantee a satisfying QoE, while
greatly outperforming the state-of-the-art in terms of both time
performance and resource utilization.

Paper organization. Before introducing MOSE in
Section IV, we discuss some related work while highlighting
the novelty of our study in Section II. Section III provides
some preliminaries to introduce stateful migration and our
previous contributions, while Sections V and VI validate and
show the benefits of MOSE. Finally, we draw our conclusions
in Section VII.

II. RELATED WORK

There exists a considerable amount of literature regarding
MS migration. Specifically, two fundamental migration tech-
niques have been consolidated: stateless and stateful migration.
The former is well-established and supported by most off-the-
shelf container orchestration platforms, such as Proxmox [4]
and Kubernetes [5]. For instance, [6] migrates 5G core network
functions across Kubernetes clusters by simply stopping and
restarting containers, thus neglecting the containers’ internal
state. Our work, instead, focuses on stateful migration of
containers and migration of service-user connections, address-
ing the challenge of keeping track of an MS state, and the
connection thereof with the end users, to guarantee service
continuity.

Most of prior art related to service migration highlights the
need for effective migration techniques that minimize service
disruption in practical scenarios, e.g., [7], [8], [9], tackling,
respectively, IoT tasks offloading, video streaming MSs, and
vehicular mobility. Focusing on stateful container migration
technique, relevant examples of works include [10], which
gives an overview of current container migration techniques
along with their fundamental metrics, and [11], [12], [13],
[14], which present promising applications of stateful migra-
tion by using CRIU. However, in spite of quite a large body of
work in the field, few studies have addressed the implemen-
tation of a migration framework at the network edge. Among
these, [15] proposes a solution for mobile service continuity in

edge-enabled WiFi networks and addresses service disruption
minimization using a real-time operating system [16], instead,
focuses on the components of the mobile core network
and demonstrates that container PreCopy outperforms other
migration strategies and virtualization technologies. A proof-
of-concept orchestration architecture is introduced in [17],
for improving fault-tolerance by leveraging container migra-
tion. Further, [18], [19] formulate optimization problems that
aim, respectively, to achieve minimal downtime for fault
recovery and to meet QoS requirements while relocating
edge applications. [20], [21] demonstrate the effectiveness of
reinforcement learning-based solutions to track user mobility
and proactively migrate containers while jointly minimizing
application latency and migration cost.

As for connection migration, many existing studies,
e.g., [22], [23], [24] have tackled re-connection after a con-
tainer migration. From a practical perspective, such an
approach implies a customization of the client application
source code to support the re-connection procedure. Only
few works discuss solutions that enable connection migra-
tion in a completely transparent manner for the client and
these are mostly based on dedicated protocols, network
proxy, overlay network tunneling, and SDN. The studies
in [25], [26] propose MPTCP protocol as an effective solution,
since it permits to define multiple sub-flows for the same
connection. Nonetheless, MPTCP requires kernel customiza-
tion, implying practical limitations in real-world scenarios.
Similarly, [27], [28] respectively investigate and enhance LISP
and QUIC protocol to effectively support connection migra-
tion, although yielding a custom protocol solution with limited
generality. Goethals et al. [29] proposes a decentralized, con-
nectionless tunneling framework that enables communication
between services deployed across public and private edge
networks; however, it requires kernel customization to support
ePBF technology. Other approaches [30], [31], [32] leverage
either dedicated or cloud platform’s network proxy to hold and
redirect active connections upon service migration. Despite
being quite simple and effective, the use of centralized proxies
in unfit for latency-critical edge computing scenarios as it
breaks the proximity principle with mobile end users.

At last, we mention that an initial version of this work has been
presented in our conference paper [33], sketching the design
and implementation of MOSE. Here, we have significantly
enhanced our contribution by (i) leveraging a more realistic
testbed featuring a cloud computing architecture based on
OpenStack [34], (ii) thoroughly extending our experimental
validation results, and (iii) proposing two practical exploitation
scenarios to demonstrate the effectiveness of our solution
compared to prior art, namely multi-object tracking and AAV
autopilot MSs.

Novelty. Unlike existing works, MOSE enables an effective
orchestration of the MS migration at the network edge while
preserving the connection between the MS and the mobile end
users. MOSE achieves this goal by leveraging and effectively
combining (i) the PAM model to configure the migration
process and (ii) our overlay network solution to enable con-
nection migration, which we introduced in [3]. MOSE builds
upon such solutions creating a novel, full-fledged algorithmic
framework and technological solution that, differently from the

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 20,2025 at 13:24:35 UTC from IEEE Xplore. Restrictions apply.

CALAGNA et al.: MOSE: A NOVEL ORCHESTRATION FRAMEWORK 4829

existing alternatives, (i) minimizes service disruption in a way
that is application independent and requires neither dedicated
protocol nor modifications to the kernel or application source
code, and (ii) accurately configures and orchestrates the
migration process of real-world MSs, such as a AAV autopilot
and a multi-object tracking MS, while fulfilling both target
KPIs and the vertical’s objective.

III. PRELIMINARIES: USED TECHNOLOGIES

This section presents an overview of stateful container
migration and the primary enabling tools to implement it.
Further, it introduces COAT, our network solution to enable
connection migration, and PAM, our model for the fundamen-
tal KPIs of stateful migrations [3].

Stateful Container Migration. We focus on stateful migra-
tion, which enables the relocation across edge hosts of MSs
containers whose internal state must be migrated to ensure
service continuity. In other words, the migrated container can
seamlessly restore its previous working state, thus guarantee-
ing minimal impact on the Quality of Experience (QoE) of
the final users. The fundamental off-the-shelf tools required to
implement stateful container migration are CRIU and Podman,
as detailed below.

CRIU [35]. Checkpoint/Restore In Userspace (CRIU) is
widely considered the key tool for stateful migration from a
process layer perspective. It implements two major procedures:
(i) the checkpoint procedure that freezes a running process,
collects its internal state, and encapsulates it into an image,
and (ii) the restore procedure that creates a new process and
restores its state by using a previously acquired checkpoint
image. The latter includes: (i) the CPU-context state, e.g., the
processes tree structure and the associated registers, (ii) the
network sockets, (iii) the memory content, and (iv) the open
file descriptors.

Podman [36]. It is an open-source tool designed to develop,
manage, and run containers and pods according to the Open
Container Initiative (OCI) standards. Among all off-the-shelf
container engines, e.g., Docker and LXC, Podman is the one
featuring the strongest integration with CRIU, by directly
leveraging its APIs and, thus, effectively supporting container
migration at the microservice layer.

Leveraging both CRIU and Podman, multiple stateful
migration strategies can be defined. The most traditional and
simplest one, i.e., Cold Migration, consists of the following
steps: (1) creation of a checkpoint image at the source host,
(2) transfer of such image from source to destination host, (3)
restoration of the container at the destination host. Throughout
these steps, the MS needs to be stopped at source host while
it is yet to be restored at destination host, thus causing service
disruption – commonly referred to as “downtime” (Tdown).
To minimize the service disruption, the Iterative PreCopy
strategy has been envisioned, which draws on the MS dirty-
page rate concept, i.e., the number of memory pages a MS
modifies per time unit. As depicted in Fig. 1, this strategy
consists of: (i) the iterative transfer of dirty pages to the
destination host while the MS is still running at the source,
(ii) a Stop&Copy stage, during which the MS is stopped at the

Fig. 1. Stateful MS migration under the Iterative PreCopy strategy.

Fig. 2. Enhanced Stop&Copy stage for the stateful MS migration procedure
integrating the COAT network solution [3].

source host and the remaining dirty pages are transferred to
the destination host where the MS will be eventually resumed.
Hence, by minimizing the amount of data that needs to be
transferred over the network, this approach allows trading a
larger total migration duration (Tmig) for a shorter downtime,
at the cost of an increased traffic burstiness.

COAT [3]. We proposed COAT, a network solution that
permits to preserve the connection established between an MS
and the mobile end users during stateful migration. COAT is
application independent, requires no dedicated protocol and
no modifications to the kernel or application source code.
To do so, it leverages Open vSwitch (OvS) [37] to define
a proper logical overlay network in which traffic flows can
be dynamically managed. Further, to effectively integrate
COAT with the traditional migration process, we introduced
the COAT migration procedure, which includes an enhanced
version of the Stop&Copy stage of the stateful container
migration process consisting of the steps illustrated in Fig. 2:
(1) checkpoint the running container at the source host, thus
collecting both the MS state and the established connec-
tion state; (2) clear the network namespace, thus preventing
network configuration conflicts in the following steps; (3)
transfer the checkpoint image from source to destination host;
(4) re-create and configure the network namespace at the
destination to match the original one, so that the later container
restore procedure can successfully take place; (5) update the
network flow of the connection by redirecting it towards the
new network namespace; (6) restore the container from the
checkpoint image. Now, the MS and its established connection
can resume from their previous working state.

PAM Model [3]. We developed PAM, an analytical
model that effectively characterizes the fundamental stateful

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 20,2025 at 13:24:35 UTC from IEEE Xplore. Restrictions apply.

4830 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

Fig. 3. Reference system architecture integrating MOSE.

migration KPIs, i.e., migration duration and downtime, inde-
pendently of the specific MS. PAM accounts for the processing
time overhead introduced by the migration tool and its impact
on the KPIs. In the following, we use PAM model to configure
the migration process so as to fulfill the migration KPI targets
and the vertical’s objective, i.e., to either minimize migration
downtime or resource usage in terms of bandwidth allocation
and CPU consumption.

IV. THE MOSE FRAMEWORK

This section presents our reference scenario and introduces
our Migration Orchestration framework for microServices at
the Edge (MOSE) along with its fundamental components.

A. MOSE’s Overview and Components

We start by introducing a simple, yet relevant, MS migration
scenario, as depicted in Fig. 3. The example scenario includes
a AAV as mobile device, connecting to different 5G base
stations (gNBs) as it moves over the area of interest. Due
to the AAV’s limited computational resources, some of its
critical functions (e.g., flight control with collision avoidance
algorithm) must be offloaded at the edge through one or
more MSs, hosted at an edge server with which the AAV
connects using a given network protocol. To minimize the
service latency, such MSs should be deployed on and, hence,
migrated to, the edge server that is co-located with the gNB
currently serving the AAV, as the latter changes its point of
access. This fact, along with the need to maintain the internal
state of the considered MS, makes stateful container migration
the key technology to ensure the continuous fulfillment of the
service requirements.

The MOSE framework is specifically designed to solve the
above issue, i.e., to effectively configure and implement a
stateful migration process while addressing all the relevant
technical challenges: (i) it minimizes service disruption, (ii) it
preserves connectivity at the application level, (iii) it migrates
an MS independently of the specific MS and the underlying
edge technology, and (iv) it attains the migration KPI targets
and vertical’s objective.

MOSE does so by leveraging three main components: a
migration orchestrator, which properly configures the migra-
tion process; a migration agent residing at each edge host

and mobile device, which implements the MS migration;
a migration protocol enabling the interaction between the
migration orchestrator and the agents, as well as between the
agents.

Fig. 3 depicts the above scenario, mapping the MOSE
components onto physical network entities. The MOSE
orchestrator is deployed on an edge server which is responsible
for monitoring and managing the overall edge system, while a
MOSE edge agent is hosted at every other edge server, which
may also be co-located with a gNB. The mobile device, which
consumes the service deployed at one of the edge servers, hosts
a MOSE client agent, which is responsible for configuring the
connection between the client and the edge MS.

The migration protocol, which allows the agents to interact
with each other as well as with the orchestrator, is based
on Zenoh [38], a highly scalable [39] pub/sub/query protocol
that provides extremely low latency and high throughput, sub-
stantially outperforming popular communication protocols like
MQTT, Kafka, NATS, and DDS [40], [41], [42], [43]. Given
its simple mechanisms for Remote Procedure Calls (RPC)
and low latency optimizations, Zenoh enables an effective and
efficient message exchange between the migration entities.
Also, its adaptive routing mechanism allows MOSE agents to
dynamically and seamlessly join the framework at any time.
As a result, our framework can adapt to diverse and evolving
network topologies, including geo-distributed environments
and scenarios with a large number of edge nodes.

As discussed in Section III, our COAT migration process
relies on an overlay network to preserve the network connec-
tion established between the MS and the mobile end user upon
migration. We thus design the MOSE agent both to implement
the COAT migration process and to configure the required
overlay network using OvS.

In summary, from a high-level perspective, the application
running on board of the mobile device (client application)
interacts with an edge MS through a generic network con-
nection. Leveraging MOSE, such MS, together with the
connection established with the client application, can be
migrated across different edge hosts in a transparent way with
respect to both the client application and the MS itself. Further,
leveraging the migration orchestrator, the migration procedure
can be configured to satisfy (i) the migration KPI targets, thus
guaranteeing minimum impact on the mobile device’s QoE,
and (ii) the vertical’s objective (i.e., to either minimize the
experienced service disruption or the resource consumption in
terms of required network bandwidth and CPU usage).

Below, we describe the fundamental characteristics of the
MOSE components. Their structure and the employed libraries
are also illustrated in Fig. 4.

B. The MOSE Agent

The MOSE agent runs at the mobile device and at each edge
host; in the case of MS migration we refer to “source agent” as
the instance running in the source host and “destination agent”
as the one running in the destination host. It consists of three
main modules handling, respectively, the COAT migration
process, the overlay network, and the profiling mechanism.

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 20,2025 at 13:24:35 UTC from IEEE Xplore. Restrictions apply.

CALAGNA et al.: MOSE: A NOVEL ORCHESTRATION FRAMEWORK 4831

Fig. 4. MOSE Agent and Orchestrator: modules and libraries.

The COAT Migration module is responsible for implement-
ing the COAT migration process according to the configuration
provided by the MOSE orchestrator. Then, the Overlay
Network Management module is in charge of managing and
configuring the overlay network, thus enabling our COAT
migration strategy. Finally, the Profiling module allows the
agent to characterize all the relevant aspects regarding migra-
tion, i.e., to estimate the available bandwidth on the links
connecting edge hosts, measure the MS state size and dirty-
page rate, and estimate the PAM model parameters. The
value of available bandwidth can be obtained through an
existing performance monitoring system at the edge, which is
reasonable to assume is in place in real-world deployments.
Alternatively, it can be estimated by using Zenoh, which
can foresee proper probes from the source to the destination
host. Then, while the MS state size is attained by gathering
the container memory usage through Podman, the MS dirty-
page rate is derived leveraging the kernel’s capabilities to
keep track of memory changes [44]. Specifically, we exploit
CRIU to measure the number of memory pages NR that
are modified per time unit ΔT , yielding a dirty-page rate
estimate R̂=NR/ΔT . The normalized dirty-page rate r is then
computed as (R̂−Rmin)/(Rmax−Rmin), where Rmin=1/ΔT
(measured in pages/s) and Rmax=�M /σ�/ΔT , with M and
σ denoting, respectively, the MS state size and the page
memory size. Finally, PAM model parameters are estimated
using DPRGen [3], a benchmark MS whose behavior in
terms of memory allocation and dirty-page rate can be finely
controlled. These parameters enable accurate modeling of the
overall migration performance by capturing the impact of the
computational capabilities allocated to each agent. As a result,
the MOSE orchestration algorithm is independent of specific
resource configurations and is inherently adaptive to diverse
edge environments with heterogeneous capabilities. The result-
ing metrics, periodically collected, are sent to, and processed
by, the MOSE orchestrator, running on an edge server that
is responsible for monitoring and managing the overall edge
system. Importantly, the computation and collection of these
metrics can be performed in the background, with negligible
communication overhead and impact on the overall migration
performance.

The functionality of these agent modules strongly rely on
the fundamental sets of RESTful APIs provided by Podman
and OvS, both introduced in Section III. While the former is
used by Profiling and COAT Migration modules to interact
with the Podman container engine, the latter is leveraged by

the Overlay Network Management module to configure the
overlay network. Finally, the message exchange between agent
and orchestrator is regulated through the Zenoh protocol.

C. The MOSE Orchestrator

The main modules composing the MOSE orchestrator are
the migration task handler, the metrics aggregator, and the
migration designer.

The Migration Task Handler is responsible for processing
the migration task whenever this is triggered by a migration
scheduler, and it is able to handle multiple migrations of
heterogeneous MSs. The design and implementation of the
migration scheduler are orthogonal to our solution and out
of the scope of this work. The handler assigns the migration
task to MOSE by specifying: (i) the ID of the container to be
migrated, (ii) the IDs of the source and destination agents, and
(iii) the target KPIs, along with the objective to be fulfilled,
i.e., minimization of resource usage or minimization of migra-
tion downtime. Depending on this objective, the appropriate
migration technique is selected and configured using our
algorithm in the migration designer module described below.

The Metrics Aggregation module is instructed by the migra-
tion task handler about the set of information that has to be
collected to fulfill the given task.

The Migration Designer uses the aforementioned set of
information and the PAM model to predict an upper bound
on the migration KPIs and to properly set the migration
parameters with the aim to fulfill the required level of QoE.
This module executes the orchestration algorithm, summarized
in Fig. 5, defining a configuration that specifies (i) which
migration strategy to adopt (i.e., Cold Migration, PreCopy, or
Iterative PreCopy), (ii) the network bandwidth that the network
controller must allocate for the migration process, and, in case
of Iterative PreCopy, (iii) the number of iterations to execute.
To apply such configuration, the Designer module conveys it
to the COAT migration module of both source and destination
agents, using Zenoh protocol.

The algorithm input is given by: (i) the metrics and
parameters retrieved through the profiling module from the
source and destination agents, and (ii) the migration task as
defined by the migration task handler, including the target
KPIs and the driving vertical’s objective. When the objective
is to minimize resource usage (see the right branch), the Cold
Migration strategy is adopted, as it is the one that minimizes
the amount of required bandwidth and CPU consumption. The
algorithm then uses the PAM model to compute the minimum
required bandwidth to meet the target on the downtime and
checks whether it exceeds or not the estimated available one.
When instead the goal is to minimize the migration downtime
(see the left branch), the Iterative PreCopy strategy is enacted,
as it minimizes the service disruption. The algorithm prelim-
inary checks whether this strategy meets the target migration
duration and, if so, it computes the maximum number of
iterations to meet such target. Importantly, in the PAM model
we consider the worst-case situation, i.e., the MS dirty-page is
set to its maximum value, so that we obtain an upper bound to
the migration and downtime duration. This allows neglecting

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 20,2025 at 13:24:35 UTC from IEEE Xplore. Restrictions apply.

4832 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

Fig. 5. Configuration algorithm executed by the MOSE orchestrator.

Fig. 6. MOSE protocol under Iterative Precopy strategy and COAT
Stop&Copy.

the dependency on the specific iteration and, hence, a practical,
yet accurate, safe way to configure the migration process.

To summarize, the algorithm outputs the migration configu-
ration, consisting of (i) the migration strategy the agents should
adopt, (ii) the minimum amount of network bandwidth that the
network controller should reserve for the migration process,
and, (iii) the number of PreCopy iterations to run, in case such
strategy is selected.

D. The MOSE Protocol

The MOSE protocol is implemented via pub/sub/query
mechanisms provided by Zenoh. It regulates: (i) the signaling
of migration tasks, (ii) the actuation of the steps of the
migration process, and (iii) the transfer of checkpoint images.

As an example, Fig. 6 illustrates the communication flow
between the orchestrator and the agents when an Iterative
PreCopy migration task is performed. The migration task is
published on a Zenoh topic and is accessed by the source
and destination agents. First, the source agent informs the

orchestrator that migration has begun. Then, while the source
agent starts the pre-checkpoint procedure, the destination agent
queries the required information to restore locally the MS, e.g.,
the MS’s network namespace configuration setting. After the
pre-checkpoint, the source agent asks the destination agent to
gather the related pre-checkpoint image. Similarly, the source
agent runs the checkpoint stage and notifies the destination
host, which queries the corresponding image. After the check-
point image is transferred, the MS’s network namespace at the
source host is cleared, while the namespace is recreated and
configured, simultaneously, at the destination host.

Upon being informed of the migration of the MS’s network
namespace, the mobile agent updates the client’s network
flow towards the agent, thus preserving the MS established
connection with the client application. Finally, the destination
agent restores the MS and notifies the orchestrator accordingly.

We remark that our communication solution enables an
automated migration process with no need for additional
remote control protocols such as SSH, thus minimizing the
migration latency.

V. EXPERIMENTAL TESTBED AND MOSE’S VALIDATION

Below, we first describe the testbed we developed and the
configuration used for our experiments (Section V-A). Then,
we evaluate the performance of our framework (Section V-B)
and show the effectiveness of our orchestration algorithm
(Section V-C).

A. Testbed Setup

The testbed we developed to validate MOSE comprises
four identical virtual machines (VMs), each with 4 vCPUs and
16 GB of RAM and hosted on a cloud computing architecture
based on OpenStack [34] and featuring Intel Xeon Skylake
CPU. As depicted in Fig. 7, VM1 and VM2 represent two
edge servers, acting, respectively, as the source and destination
of the migration process. VM3 hosts the client container, thus
acting as an end device that interacts with the edge servers,
while VM4 acts as the edge server in charge of monitoring
and managing the overall edge system.

To build our framework, we deploy three independent
instances of the MOSE agent, respectfully on VM1, VM2,

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 20,2025 at 13:24:35 UTC from IEEE Xplore. Restrictions apply.

CALAGNA et al.: MOSE: A NOVEL ORCHESTRATION FRAMEWORK 4833

TABLE I
SOCKPERF MS MIGRATION PERFORMANCE COMPARISON BETWEEN SOTA AND MOSE FRAMEWORK FOR THE COAT PROCEDURE STEPS IN FIG. 2

Fig. 7. Testbed setup for the MOSE framework.

and VM3, and one MOSE orchestrator on VM4. Whenever
a MOSE agent is initiated, it first measures the properties of
the host machine through the profiling module and registers
to the MOSE orchestrator using Zenoh protocol. Unlike the
testbed in our previous study [45], which depends on scripts
and SSH tunnels to deliver the migration commands, thus being
inefficient and complex to configure, the MOSE framework
leverages the discovery mechanism implemented by Zenoh
(see Section IV-A) to automatically create always-established
connections among agents and orchestrator. Such enhancement
brought by the MOSE framework significantly simplifies the
testbed deployment and improves the scalability of the solution.

We conducted two independent sets of experiments employ-
ing SockPerf [46] and iPerf3 [47] as MSs to migrate. SockPerf
is a network latency benchmarking tool to measure the com-
munication latency in request-reply connectivity tests on the
client side, while iPerf3 is a popular tool for active measure-
ments of the achievable bandwidth on IP networks. Both MSs
are meaningful examples of stateful MSs since their internal
state comprises multiple counters and accumulators, which
need to be preserved to attain consistent benchmarking results
upon migration. Further, they resemble real-world MSs with
an established TCP connection and their features as network
measurement tools allow us to effectively assess the impact
of the migration process on the user QoE. For both SockPerf
and iPerf3 experiments, we deploy their server-side at source
host (VM1), and their client-side on the mobile device (VM3).
Leveraging the profiling module (see Section IV-B), we
characterize the MSs in terms of state size and dirty-page rate

under default settings. Specifically, we measured the state size
of the SockPerf and iPerf3 MSs containers respectfully equal
to 10 MB and 0.5 MB. Furthermore, we observed a dirty-page
rate for both MSs containers ranging from 3 to 5 pages/s,
which, given a default page-size of 4096 B, is a relatively low
value compared to their state size.

According to the mobility scenario shown in Fig. 3, we first
consider a mobile device (VM3) moving away from the gNB
co-located with the source edge host (VM1) and approaching the
one co-located with the destination host (VM2); the increased
latency triggers the migration process. Such radio link does not
impact migration performance but we preserve the established
connection between the MS and the mobile device application.
Further, we consider a network slice dedicated to the migration
process to ensure a high-data rate network connection between
the source and destination hosts.

B. MOSE Migration Performance

Leveraging our testbed, we experimentally characterize each
step of the migration process, for both SockPerf and iPerf3,
accounting for different strategies. We consider the state-of-
the-art (SotA) migration strategies, which rely on scripts and
SSH tunnels to control the migration procedure, alongside
two variants of MOSE framework, depending on the driving
vertical’s objective that is considered: MOSE-MD to Minimize
Downtime (MD) and MOSE-RM to Minimize Resource usage
(MR). All results have been obtained by considering the
90% confidence interval over 100 repetitions, and providing
the average time improvement under MOSE with respect to
the SotA. Specifically, we compare Iterative PreCopy and
Cold migration strategies as defined in prior art with MOSE-
MD and MOSE-MR, respectively. Further, for the MOSE
experiments, we respectively set the target migration duration
at 5 s and the target migration downtime at 2 s, yielding a
configured network bandwidth equal to the maximum available
one, i.e., 1 Gbps, and a number of iterations I = 8 for SockPerf
and I = 9 for iPerf3.

The results are shown in Tables I and II. They report
the operational duration of each container migration step (as
shown in Fig. 2), along with the fundamental migration KPIs,
i.e., the migration downtime Tdown and the total migration
duration Tmig. We remark that, compared to the results in
Fig. 2, the duration of the migration steps S2 and S4 are
reported in a combined way, as such steps are executed in
parallel. Further, these steps, along with S5, refer to our
COAT network solution to achieve connection migration [3].

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 20,2025 at 13:24:35 UTC from IEEE Xplore. Restrictions apply.

4834 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

TABLE II
IPERF3 MS MIGRATION PERFORMANCE COMPARISON BETWEEN SOTA AND MOSE FRAMEWORK FOR THE COAT PROCEDURE STEPS IN FIG. 2

Fig. 8. MOSE-MD (a)-(b) and MOSE-MR (c)-(d) performance. (a) Number of iterations for varying target migration duration and measured downtime;
(b) Predicted and measured migration duration for varying target values; (c) Required network bandwidth for varying target downtime; (d) Predicted and
measured downtime for varying target values.

Instead, most prior art leverages proxy-based solutions, which
do not feature any of these steps related to namespace and
overlay network management. Importantly, such additional
COAT steps have negligible impact on the final KPIs, thus
demonstrating the effectiveness of our solution, which, we
recall, enables connection migration in a way that is applica-
tion independent and requires neither dedicated protocol nor
modifications to the kernel or application source code.

Looking at both tables and by focusing on the duration of
the migration steps (S1 to S6), it can be noticed that the most
significant time improvement brought by MOSE relatively
to the SotA is on S3 (Transfer step), corresponding to a
reduction of approximately 100% for both SockPerf and iPerf3
MSs. Such an improvement is due to our efficient approach
to signaling, according to which MOSE completely avoids
the time overhead due to SSH, which is quite substantial,
especially for low values of state size. In addition, comparing
the results in the two tables, most of the values in Table II
are smaller than those in Table I, which is mainly due to the
smaller state size characterizing iPerf3 container.

Consider now the measurements for the single MSs. From
Table I, it can be noticed that S3 (Transfer step) highlights a
significant time difference between the two scenarios. In fact,
when minimizing resource usage, MOSE-MR employs the
Cold migration strategy, which performs a checkpoint of the
entire container at once and computes the minimum amount
of network bandwidth that allows to transfer such checkpoint
image while fulfilling the target downtime. Conversely, when
minimizing downtime, MOSE-MD configures the agents to
use the Iterative PreCopy migration strategy. Therefore, during
the final Stop&Copy step, only dirty memory pages and the
CPU-context are included in the checkpoint image, signifi-
cantly reducing its size compared to the whole MS state size.
Additionally, besides using the more efficient Zenoh protocol

in place of SSH tunnels, agents utilize the maximum avail-
able network bandwidth for transferring checkpoint images,
resulting in a minimal transfer duration. At last, by looking at
the operation time of the other migration steps (i.e., S1, and
S6), the MOSE framework achieves a reduction by up to 63%
compared to the SotA.

On the other hand, observing the operation time for S3
in Table II, no significant time difference between MOSE-
MR and MOSE-MD can be observed. This is due to the fact
that iPerf3 MS features both significantly small state size and
dirty-page rate, yielding a comparable state transfer duration
regardless of the vertical’s objective. Again, MOSE reduces
the operation time of the other migration steps (i.e., S1, and
S6) by up to 75%.

The last two rows of Tables I and II present the values
of the fundamental migration KPIs. Notably, MOSE achieves
a significant improvement in migration downtime, up to
approximately 71% and 77% for, respectively, SockPerf and
iPerf3 MSs. Such significant reduction on the KPIs and on
each migration step, allows passing from second to sub-second
operations, thus making stateful container migration suitable
for time-critical MSs. We recall that this improvement is
due to two key features of MOSE: (i) its efficient approach
to signaling, which completely avoid the time overhead due
to SSH; (ii) the direct interaction of the agents with the
Podman and OvS APIs, resulting in a more efficient command
execution.

C. MOSE Orchestration Strategy

We now demonstrate the effectiveness of our MOSE orches-
tration algorithm under the two vertical’s objectives adopted in
MOSE. To do so, for MOSE-MD we vary the target migration
duration, as in Figures 8(a)-8(b), and for MOSE-MR the

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 20,2025 at 13:24:35 UTC from IEEE Xplore. Restrictions apply.

CALAGNA et al.: MOSE: A NOVEL ORCHESTRATION FRAMEWORK 4835

target downtime, as in Figures 8(c)-8(d). The results show the
configuration output by the orchestrator, along with the values
obtained for the fundamental migration KPIs. Importantly,
depending on the target values, we identify three main regions
where the given target can be met (i) for neither SockPerf nor
iPerf3 (red), (ii) for iPerf3 only (yellow), and (iii) for both
MSs (green).

Migration downtime minimization. To attain this goal,
MOSE-MD configures the migration process so as to leverage
the maximum available bandwidth for the link connecting
source and destination edge hosts, and it computes the number
of PreCopy iterations that allows meeting the target migration
duration. We validate our orchestration algorithm by varying
the target migration duration from 2 s to 10 s, and observe, for
both SockPerf and iPerf3, the resulting migration configura-
tion, along with the KPIs values that are actually experienced.
Specifically, Fig. 8(a) shows the number of PreCopy iteration
I and the corresponding migration downtime Tdown as func-
tions of the target migration duration θmig. When θmig cannot
be met (red region), the MOSE orchestrator configures the
migration process according to the Cold migration strategy,
thus resulting in a relatively high migration downtime. Instead,
when the migration duration target can be met (green region),
the MOSE orchestrator selects the Iterative PreCopy migration
strategy and increases the number of iterations I consistently
with the target. Due to the iPerf3 smaller state size, the
Iterative PreCopy strategy is feasible for smaller values of θmig

relatively to SockPerf, resulting in a performance in the yellow
region.

Further, Fig. 8(b) depicts the total migration duration for
varying values of θmig. Specifically, it shows the upper
bound that is predicted using the PAM model and the actual
migration duration, both of which exhibit a behavior that is
consistent with the configured number of iterations. Notably,
the measured migration duration is always shorter than the
prediction thereof, thus validating the capability of PAM of
providing an upper bound for such KPI. However, due to
the accumulation of the error, the gap between the predicted
and actual migration durations becomes more evident as the
number of PreCopy iterations increases.

Resource usage minimization. To achieve this goal,
MOSE-MR selects Cold Migration and computes the mini-
mum bandwidth, L, required on the link connecting the source
and destination edge hosts that fulfills the target downtime.
To validate our orchestration algorithm, we now vary the
target downtime from 1 s to 5 s, and, again, we record the
migration configuration and the KPIs values for both SockPerf
and iPerf3.

Fig. 8(c) shows L as a function of the target downtime
θdown. When θdown cannot be met (red region), MOSE con-
figures the migration to use the maximum available network
bandwidth, i.e., 1 Gbps. Otherwise (green region), it computes
through the PAM model the minimum amount of network
bandwidth between source and destination hosts that meets
the corresponding target. In fact, as θdown increases, the value
of L decreases. Since the iPerf3 container has a smaller state
size than the SockPerf container, the reduction of the required
bandwidth L is feasible for smaller values of θdown (yellow

Fig. 9. AAV autopilot MS migration reference scenario.

region). Furthermore, Fig. 8(d) presents the upper bound that
is computed through the PAM model and the value that is
actually experienced, as θdown varies. Both values exhibit a
negative correlation with the value of L. Again, the measured
value of downtime is always smaller than the predicted one,
which underlines how the PAM model provides an accurate
upper bound on such KPI.

Summary. Our results highlight that MOSE: (i) greatly
improves the migration performance relatively to the state of
the art (in both its considered variants, i.e., MOSE-MD and
MOSE-MR); (ii) reduces the duration of each migration step
from seconds to sub-seconds, thus making migration feasible
for time-critical applications; (iii) effectively configures the
migration process to meet the KPI target values and accounting
for different vertical’s objectives.

VI. MOSE FRAMEWORK EXPLOITATION

To demonstrate the benefits of our solution, we now demon-
strate how MOSE can be used to implement and configure the
stateful migration process in two practical scenarios featuring
real-world MSs with diverse workload complexities. We first
consider an autopilot MS controlling AAVs that provide
connectivity to users in a geographical area (Section VI-A).
Then we focus on the migration of an ML task leveraging
a AAV as data source and state-of-the-art computer vision
models of different sizes to execute multi-object tracking
(Section VI-B).

A. AAV Autopilot Migration

In this case, we use MOSE to implement and configure
stateful migration of a AAV autopilot MS residing at the
network edge. After introducing our reference scenario and
the testbed setup we developed, we show how MOSE allows
preserving the tracking state upon migration while attaining
the target migration KPIs and the vertical’s objective. To con-
clude, we compare our solution to state-of-the-art alternatives.

Reference scenario and testbed setup. As depicted in
Fig. 9, our reference scenario features a flying AAV and an
autopilot MS that controls its trajectory. Due to the AAV’s
limited computational resources, the autopilot MS resides at
the network edge. It periodically collects the AAV’s position
and outputs the target velocity vector the AAV should enact
to accurately follow the imposed trajectory. Further, since
the AAV moves across the network and connects to different
gNBs, we consider an edge server devoted to monitoring
and managing the edge system, which migrates the autopilot
MS to the nearest edge server, i.e., the one co-located with
the gNB to which the AAV is connected, to minimize the

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 20,2025 at 13:24:35 UTC from IEEE Xplore. Restrictions apply.

4836 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

experienced latency. We thus consider stateful migration as the
key technology to address this mobility challenge.

To implement this scenario, we used the same testbed we
used to validate the MOSE framework (see Section V-A),
and we developed an autopilot MS that controls the flight
of the AAV along a specific trajectory. To do so, our MS
periodically gathers the AAV’s GPS position and produces
the target velocity the AAV should enact onto each of the
3D spatial axis. We consider a maximum speed of 5 m/s,
and a predefined trajectory, i.e., a circle of diameter equal to
100 m. This trajectory is the simplest, yet most effective, to
observe the trajectory error due to the migration process. We
remark that this approach can be easily extended to a full-
fledged autopilot that intelligently determines and updates the
trajectory that the AAV should follow. Finally, to realistically
simulate the behavior of the AAV, we use the well-known
off-the-shelf PX4 framework [48] and Gazebo simulator [49],
which enable, respectively, a robust flight control and an
accurate simulation of a real-world environment. Leveraging
our MOSE profiling module, we characterized the autopilot
MS in terms of state size and dirty-page rate, which resulted
to be equal to 25 MB and 0.03, respectively.

Migration configuration. Leveraging our testbed, we now
show the configuration output by the MOSE orchestrator
and the values obtained for the fundamental migration KPIs
upon migration of the autopilot MS. To do so, we consider
the two MOSE variants previously introduced, depending on
the driving vertical’s objective: MOSE-MD and MOSE-MR.
When the goal is to minimize the downtime, we vary the
value of target migration duration (Fig. 10(a)); when, instead,
we aim at minimizing the resource usage, we vary the value
of target downtime (Fig. 10(b)). Importantly, given the target
values, we identify two main regions where the given target
is met (green) or not (red).

In the case of minimizing migration downtime, Fig. 10(a)
presents the configured number of iterations I and the fun-
damental KPIs Tdown and Tmig as functions of the target
migration duration θmig. Specifically, for Tmig, we report both
the predicted value and the one we actually measured. When
θmig cannot be met (red region), MOSE-MD configures the
migration process according to the Cold migration strategy.
Conversely, in the green region, MOSE-MD selects Iterative
PreCopy strategy and computes the value of I that fulfills the
given target. As expected, θmig is positively correlated with I
since, the larger the target KPI values, the higher the number
of iterations that turns out to be feasible. Also, as the value of
I grows, the measured migration downtime Tdown decreases,
which is consistent with the given vertical’s objective, i.e.,
downtime minimization. Importantly, the predicted value of
Tmig, computed by MOSE-MD using our PAM model, is
always larger than the measured one, confirming that PAM
provides an accurate upper bound on this KPI.

For the case of resource usage minimization, Fig. 10(b)
shows the migration downtime Tdown and the value of
network bandwidth L configured by MOSE-MR, for varying
values of target migration downtime θdown. We recall that
MOSE-MR configures the migration process according to the
Cold migration strategy, under which the two fundamental

Fig. 10. MOSE migration results for AAV autopilot MS (a) for downtime
minimization (MOSE-MD) and (b) for resource usage minimization (MOSE-
MR) and for varying values of target KPIs. (a) MOSE-MD (b) MOSE-MR.

KPIs Tdown and Tmig coincide. MOSE-MR then computes
the minimum amount of network bandwidth L between source
and destination hosts that meets the given target (green region).
When instead θdown cannot be met (red region), MOSE-MR
configures the migration process to use the maximum available
bandwidth, i.e., 1 Gbps. In fact, as θdown increases, the value
of L decreases, yielding a reduced usage of network resources.
Further, the measured downtime Tdown is always shorter than
θdown, which demonstrates PAM model’s ability to provide a
tight upper bound on this KPI.

Comparison with the state of the art. We now compare
MOSE with the state-of-the-art (SotA) approaches to stateful
container migration. Regarding the SotA, we consider both
Cold migration and Iterative PreCopy strategy, and fix realistic
values for both bandwidth L and number of PreCopy iterations
I. We recall that our work is the first that accurately configures
the migration process by leveraging an analytical model.
Further, we assess MOSE performance under its two variants,
MOSE-MD and MOSE-MR, and for varying values of the
target KPI. Specifically, we set θmig equal to 5 and 10 seconds
for the former and θdown equal to 3 and 5 seconds for
the latter. Table III shows, for each scenario, the migration
configuration output by MOSE along with the measured
values for the fundamental KPIs and the AAV trajectory error
caused by the migration process. Notably, compared to SotA
Cold Migration, MOSE-MR yields up to 89% reduction in
the allocated network bandwidth, with negligible impact on
the migration KPIs and the AAV trajectory error. Similarly,
when the goal is to minimize the downtime, MOSE-MD,
compared to SotA Iterative PreCopy, substantially reduces

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 20,2025 at 13:24:35 UTC from IEEE Xplore. Restrictions apply.

CALAGNA et al.: MOSE: A NOVEL ORCHESTRATION FRAMEWORK 4837

TABLE III
COMPARISON BETWEEN SOTA AND MOSE: AAV AUTOPILOT MS MIGRATION CONFIGURATION AND KPIS

Fig. 11. Reference scenario for the migration of the machine-learning task
for multi-object tracking.

both downtime and AAV trajectory error, up to 70% and
97%, respectively, while exhibiting a comparable value of
migration duration. Such significant reduction demonstrates
MOSE’s effectiveness in attaining migration of time-critical
MSs, such as the AAV autopilot we considered, for which
the AAV trajectory error can be lowered up to 0.65 m – a
negligible error relatively to the 100 m diameter of the area
we considered.

B. Multi-Object Tracking Task Migration

Here we use MOSE to implement and configure stateful
migration of a machine-learning (ML) task. We start by intro-
ducing our reference scenario, featuring an edge-assisted AAV
and a Multi-Object Tracking (MOT) application. Then, using
our testbed, we demonstrate how MOSE outputs an accurate
migration configuration that attains both target migration KPIs
and the vertical’s objective for varying ML model complexity.
Finally, we present a probabilistic characterization of MOSE
orchestration features, and a comparison with the migration
strategies in prior art.

Reference scenario and testbed setup. We focus on the
practical scenario depicted in Fig. 11, featuring a AAV with
an on-board camera and a MOT task residing at the network
edge that performs inference on a camera stream. As the
AAV moves across the considered area, it connects to different
gNBs. Due to the AAV’s limited computational resources,
the MOT task must be deployed at the edge in the form
of an MS. We thus consider an edge server responsible for
monitoring and managing the edge system that, to minimize
the experienced latency, deploys such MSs on the nearest
edge server, i.e., the one co-located with the gNB the AAV
is currently connected to. We thus consider stateful container
migration as the key technology to address such mobility
challenge while ensuring continuous proximity of the edge
MSs to the AAV and preserving the tracking state.

Fig. 12. Ultralytics MS performance vs. YOLO model size.

To implement the above scenario, we employ the same
testbed we developed to validate the MOSE framework (see
Section V-A) and consider Ultralytics [50] as the MS to
be statefully migrated. Ultralytics is a renown off-the-shelf
solution that integrates (i) YOLOv8 [51], a widely used
collection of pre-trained real-time object detection and image
segmentation models, and (ii) BoT-SORT [52], a cutting-
edge multi-object tracking algorithm that, leveraging motion
modeling and re-identification, assigns a unique ID to each
detected object as the video progresses. Specifically, YOLOv8
consists of multiple deep-learning models, each identified by
a size indicator, from nano to extralarge, thus allowing to
establish the desired trade-off between inference accuracy and
latency. Indeed, as shown in [53], a higher model complexity
in terms of number of parameters generally corresponds to a
higher inference accuracy but also larger latency and resource
consumption. We account for this trade-off by reporting
MOSE configuration results for all the available models.
Interestingly, MOSE can be proactively used to select which
model size best fits the desired targets and user’s QoE level.
Further, to mimic the behavior of a AAV streaming an on-
board camera feed, we use MediaMTX [54], a real-time media
server supporting a wide variety of video codecs and streaming
protocols. For our experiments, we deploy MediaMTX in
VM3, which, we recall, acts as an end device, and use it to
generate, under default settings, an RTSP video stream. Such
stream is then consumed by the Ultralytics MS to attain the
MOT task.

Fig. 12 presents a preliminary characterization of the
Ultralytics MS performance as a function of the YOLO model
size. It shows the total CPU time per frame, accounting for
the 4 vCPUs allocated, and the related internal contributions,
i.e., the time the ML model needs to provide an inference
result and the time needed to pre-process and post-process
the input video frame. These results can be used to derive
(i) the inference rate ρ, i.e., the number of video frames that
our testbed is capable of processing per second, and (ii) the
number of frames lost due to the migration downtime, derived

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 20,2025 at 13:24:35 UTC from IEEE Xplore. Restrictions apply.

4838 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

Fig. 13. MOSE-MD performance and configuration for varying target migration duration and YOLO model size.

Fig. 14. MOSE-MR performance and configuration for varying target downtime and YOLO model size.

as ρTdown. With regard to the experimental results presented
in the following, we show the migration downtime as the
fundamental KPI, considering that this can be easily mapped
onto frame loss as an alternative reference metric. Further,
leveraging our MOSE profiling module (see Section IV-B), we
characterize the Ultralytics MS in terms of state size, which, as
highlighted in Fig. 12, is proportional to the configured YOLO
model size, and the normalized dirty-page rate, which, instead,
resulted to be approximately equal to 0.66, independently of
the YOLO model size.

Migration configuration. Leveraging our testbed, we now
show the configuration output by the orchestrator and the
values obtained for the fundamental migration KPIs upon
MOT MS migration. To do so, we consider the two MOSE
variants previously introduced, depending on the considered
vertical’s objective: MOSE-MD and MOSE-MR. When the
goal is to minimize the downtime, we vary the target migration
duration (Fig. 13); when, instead, we aim at minimizing the
resource usage, we vary the target downtime (Fig. 14). Again,
given the target values, we identify two main regions where
the target is met (green) or not (red).

For the case of migration downtime minimization, Fig. 13
depicts the fundamental KPIs Tdown and Tmig and the
configured number of PreCopy iterations I as the YOLO model
size and the values of target migration duration θmig vary.
When θmig cannot be met (red region), MOSE-MD config-
ures the migration process according to the Cold migration
strategy. Otherwise (green region), MOSE-MD selects Iterative
PreCopy strategy and computes the number of iterations I
that fulfills the target. As the model size increases, the value
of I decreases, which is due to the increased MS state size.
Further, the experienced downtime Tdown slightly increases
with the model size but, as θmig varies, it remains almost
constant, regardless of the value of I. This is due to the
fact that, as described above, the MOT MS is characterized
by a high dirty-page rate, which reduces the effectiveness of

Iterative PreCopy strategy in minimizing the downtime in a
way that is proportional to I. Notably, the measured migra-
tion duration Tmig is always shorter than θmig, underlining
that the PAM model provides an accurate upper bound on
this KPI.

In the case of minimizing resource usage, Fig. 14 presents
the migration downtime Tdown and the required bandwidth
L for different values of YOLO model size and target down-
time θdown. We recall that, to attain this goal, MOSE-MR
configures the migration process according to Cold migration
strategy and, in such a case, downtime and migration duration
coincide. Moreover, when θdown cannot be met (red region),
MOSE-MR configures the migration to use the maximum
available bandwidth, i.e., 1 Gbps. Otherwise (green region),
it computes the minimum amount of network bandwidth
between source and destination hosts that meets the corre-
sponding target. Accordingly, the value of L is positively
correlated with the model size, and increases with θdown.
Importantly, the actually experienced downtime Tdown is
always shorter than θdown.

Comparison with the state of the art. We now present a
comparison of MOSE performance with the SotA approaches
under the MOT MS use case. Specifically, we report the
migration configuration and the experienced KPI values for
multiple scenarios, i.e., (i) SotA, when either Cold migration
or Iterative PreCopy is used, (ii) MOSE, for varying vertical’s
objective, i.e., MOSE-MD and MOSE-MR variants, and (iii)
for each objective, two representative values of target KPI.
When SotA is considered, the bandwidth L and the number
of iterations I are fixed a priori; the former is set to the
maximum value, i.e., 1 Gbps, and the latter to 15 since, as
shown in previous works, e.g., [55], the larger the number of
iterations, the lower the downtime. Instead, as mentioned, our
solution is the first that does not rely on fixed parameters,
rather, leveraging an analytical model, it accurately configures
and orchestrates the migration process.

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 20,2025 at 13:24:35 UTC from IEEE Xplore. Restrictions apply.

CALAGNA et al.: MOSE: A NOVEL ORCHESTRATION FRAMEWORK 4839

TABLE IV
COMPARISON BETWEEN MOSE AND SOTA: MOT MS MIGRATION CONFIGURATION AND KPIS

Fig. 15. MOSE-MD probability mass function for varying YOLO model size and target migration duration.

Fig. 16. MOSE migration strategy probability for downtime minimization and for varying target migration duration and YOLO model size.

The results are summarized in Table IV. We recall that,
when the goal is to minimize resource usage, MOSE-MR
selects Cold migration strategy and computes the value of L
that fulfills the target downtime θdown. Remarkably, MOSE-
MR allows for up to 91% reduction of allocated bandwidth,
thus reducing network congestion and preventing resource
over-provisioning. Similarly, when the goal is to minimize
the migration downtime, MOSE-MD selects Iterative PreCopy
and computes the value of I that allows meeting the target
migration duration θmig. Differently from SotA, MOSE-MD,
by accounting for the target KPI value, outputs a migration
configuration that yields a comparable downtime and, concur-
rently, up to 86% reduction of the observed migration duration,
hence a lower consumption of computing resources.

Probabilistic analysis. To thoroughly characterize our
Migration Designer module (see Section IV-C), we present
a probabilistic analysis of MOSE orchestration features. To
do so, we consider the maximum available bandwidth for the
link between source and destination edge hosts as a truncated,
normally-distributed random variable with 1 Gbps as mean
value and 100 Mbps as standard deviation, and observe the
migration configuration output by MOSE. Importantly, we focus
on the more complex vertical’s objective to minimize the migra-
tion downtime. Indeed, while for resource usage minimization
MOSE-MR always selects Cold migration strategy, when the
goal is to attain downtime minimization, MOSE-MD selects
the strategy that best matches the KPI targets.

Fig. 15 depicts the probability mass function of I versus the
target migration duration θmig and for varying YOLO model

sizes. Notably, as the value of θmig increases, the range of
possible values for I increases. Further, while a tight target
like 12.5 s can only be achieved for the nano model size and
with a particularly small probability, a loose target like 75 s
can always be met, regardless of the chosen YOLO model.

Fig. 16 shows the probability that MOSE-MD selects a
migration strategy out of Cold migration, PreCopy, and
Iterative PreCopy. Such probability is evaluated as a function
of the target migration duration θmig and for varying YOLO
model sizes. Specifically, for each model size, four relevant
values of θmig are considered. The first is a value below which
Cold migration is always selected, and, similarly, for the fourth
value and larger ones, Iterative PreCopy is always feasible.
Instead, the second and third values show the probability of
PreCopy being feasible and thus selected by MOSE-MD as
the most appropriate strategy.

Summary. Our results show that MOSE: (i) effectively
attains migration of ML tasks with varying complexity and
accounting for both KPI target values and different vertical’s
objectives; (ii) greatly outperforms state-of-the-art approaches,
yielding a migration configuration that prevents resource over-
provisioning; (iii) can be used to proactively identify the most
appropriate KPI target values and model complexity in the
case of randomly distributed system parameters.

VII. CONCLUSION

Stateful MS migration has emerged as the fundamental
technology to support service mobility at the network edge.

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 20,2025 at 13:24:35 UTC from IEEE Xplore. Restrictions apply.

4840 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

Nevertheless, several technical challenges related to the imple-
mentation and orchestration of the migration process still need
to be addressed. To fill such gaps, we envisioned MOSE,
a novel framework that efficiently implements stateful MS
migration at the edge and effectively orchestrates the migration
process to ensure a minimal impact on the user’s QoE.
Leveraging our testbed and realistic MSs, we showed that
MOSE greatly outperforms the state of the art, with a reduction
of the service downtime up to 77%. Then, we validated
MOSE for varying migration KPI targets and accounting for
different vertical’s objectives, thus proving that MOSE can
effectively address scenarios where reliability and robustness
are of primary importance, e.g., those featuring time-critical
applications. To further demonstrate the effectiveness of our
solution, we considered two relevant practical use cases
featuring, respectively, a AAV autopilot MS, and a multi-
object tracking MS. In both cases, MOSE effectively attains
migration of such MSs while greatly outperforming the state-
of-the-art approaches by up to 97% reduction of the AAV
trajectory error, for the former, and up to 91% reduction of
network resources utilization, for the latter.

REFERENCES

[1] A. Furda, C. Fidge, O. Zimmermann, W. Kelly, and A. Barros,
“Migrating enterprise legacy source code to microservices: On multite-
nancy, statefulness, and data consistency,” IEEE Softw., vol. 35, no. 3,
pp. 63–72, May/Jun. 2018.

[2] T. Erl, Service-Oriented Architecture: Analysis and Design for Services
and Microservices, 2nd ed. Upper Saddle River, NJ, USA: Prentice Hall
Press, 2016.

[3] A. Calagna, Y. Yu, P. Giaccone, and C. F. Chiasserini, “Design,
modeling, and implementation of robust migration of stateful edge
microservices,” IEEE Trans. Netw. Service Manag., vol. 21, no. 2,
pp. 1877–1893, Apr. 2024.

[4] D. Maurer and M. Maurer. “Proxmox.” Jun. 2025. [Online]. Available:
https://www.proxmox.com/en/

[5] J. Beda et al. “Kubernetes.” Jun. 2025. [Online]. Available: https://
kubernetes.io/

[6] K. Kaur, F. Guillemin, and F. Sailhan, “Live migration of containerized
microservices between remote Kubernetes clusters,” in Proc. IEEE
INFOCOM, 2023, pp. 1–6.

[7] C. Dupont, R. Giaffreda, and L. Capra, “Edge computing in IoT context:
Horizontal and vertical Linux container migration,” in Proc. Global
Internet Things Summit (GIoTS), 2017, pp. 1–4.

[8] J. Liu, Q. Yang, G. Simon, and W. Cui, “Migration-based dynamic
and practical virtual streaming agent placement for mobile adaptive
live streaming,” IEEE Trans. Netw. Service Manag., vol. 15, no. 2,
pp. 503–515, Jun. 2018.

[9] I. Labriji et al., “Mobility aware and dynamic migration of MEC services
for the Internet of Vehicles,” IEEE Trans. Netw. Service Manag., vol. 18,
no. 1, pp. 570–584, Mar. 2021.

[10] M. Terneborg, J. K. Rönnberg, and O. Schelén, “Application agnostic
container migration and Failover,” in Proc. IEEE Conf. Local Comput.
Netw. (LCN), 2021, pp. 565–572.

[11] G. Berg, M. Brattlöf, A. Blanche et al., “Evaluating distributed MPI
checkpoint and restore using docker containers and CRIU,” in Proc.
IEEE Int. Conf. Environ. Elect. Eng. (ECEIC), 2019, pp. 1–4.

[12] M. Sindi and J. R. Williams, “Using container migration for HPC
workloads resilience,” in Proc. IEEE High Perform. Extreme Comput.
Conf. (HPEC), 2019, pp. 1–10.

[13] C. Puliafito, A. Virdis, and E. Mingozzi, “The impact of container
migration on fog services as perceived by mobile things,” in Proc. IEEE
SMARTCOMP, 2020, pp. 6–16.

[14] H. Htet, N. Funabiki, A. Kamoyedji, X. Zhou, and M. Kuribayashi, “An
implementation of job migration function using CRIU and Podman in
docker-based user-PC computing system,” in Proc. ACM ICCCM, 2021,
pp. 92–97.

[15] O. I. Abdullaziz, L.-C. Wang, S. B. Chundrigar, and K.-L. Huang,
“Enabling mobile service continuity across orchestrated edge networks,”
IEEE Trans. Netw. Sci. Eng., vol. 7, no. 3, pp. 1774–1787,
Jul.–Sep. 2020.

[16] S. Ramanathan, K. Kondepu, M. Razo, M. Tacca, L. Valcarenghi,
and A. Fumagalli, “Live migration of virtual machine and container
based mobile core network components: A comprehensive study,” IEEE
Access, vol. 9, pp. 105082–105100, 2021.

[17] R. H. Müller, C. Meinhardt, and O. M. Mendizabal, “An architec-
ture proposal for checkpoint/restore on stateful containers,” in Proc.
ACM/SIGAPP Symp. Appl. Comput., 2022, pp. 267–270.

[18] S. Aleyadeh, A. Moubayed, P. Heidari, and A. Shami, “Optimal
container migration/re-instantiation in hybrid computing environments,”
IEEE Open J. Commun. Soc., vol. 3, pp. 15–30, 2022.

[19] G. Panek, P. Matysiak, N. E.-h. Nouar, I. Fajjari, and H. Tarasiuk, “5G-
edge relocator: A framework for application relocation in edge-enabled
5G system,” in Proc. IEEE ICC, 2023, pp. 4885–4891.

[20] K. Ray, A. Banerjee, and N. C. Narendra, “Learning-based microservice
placement and migration for multi-access edge computing,” IEEE Trans.
Netw. Service Manag., vol. 21, no. 2, pp. 1969–1982, Apr. 2024.

[21] S. N. Afrasiabi, A. Ebrahimzadeh, C. Mouradian, S. Malektaji, and
R. H. Glitho, “Reinforcement learning-based optimization framework
for application component migration in NFV cloud-fog environments,”
IEEE Trans. Netw. Service Manag., vol. 20, no. 2, pp. 1866–1883,
Jun. 2023.

[22] W. Bao et al., “Follow me fog: Toward seamless handover timing
schemes in a fog computing environment,” IEEE Commun. Mag.,
vol. 55, no. 11, pp. 72–78, Nov. 2017.

[23] P. Bellavista, A. Corradi, L. Foschini, and D. Scotece, “Differentiated
service/data migration for edge services leveraging container character-
istics,” IEEE Access, vol. 7, pp. 139746–139758, 2019.

[24] N. An, S. Yoon, T. Ha, Y. Kim, and H. Lim, “Seamless virtualized
controller migration for drone applications,” IEEE Internet Comput.,
vol. 23, no. 2, pp. 51–58, Mar./Apr. 2019.

[25] Y. Qiu, C.-H. Lung, S. Ajila, and P. Srivastava, “LXC container
migration in cloudlets under multipath TCP,” in Proc. IEEE COMPSAC,
2017, pp. 31–36.

[26] F. Le and E. M. Nahum, “Experiences implementing live VM migration
over the WAN with multi-path TCP,” in Proc. IEEE INFOCOM, 2019,
pp. 1090–1098.

[27] P. Raad, S. Secci, D. C. Phung, A. Cianfrani, P. Gallard, and G. Pujolle,
“Achieving sub-second downtimes in large-scale virtual machine migra-
tions with LISP,” IEEE Trans. Netw. Service Manag., vol. 11, no. 2,
pp. 133–143, Jun. 2014.

[28] C. Puliafito, L. Conforti, A. Virdis, and E. Mingozzi, “Server-side QUIC
connection migration to support microservice deployment at the edge,”
Pervasive Mobile Comput., vol. 83, Jul. 202, Art. no. 101580.

[29] T. Goethals, M. Al-Naday, B. Volckaert, and F. De Turck, “Warrens:
Decentralized connectionless tunnels for edge container networks,” IEEE
Trans. Netw. Service Manag., vol. 21, no. 4, pp. 4282–4296, Aug. 2024.

[30] S. Kassahun, A. Demessie, and D. Ilie, “A PMIPv6 approach to maintain
network connectivity during VM live migration over the Internet,” in
Proc. IEEE Int. Conf. Cloud Netw. (CloudNet), 2014, pp. 64–69.

[31] T. Benjaponpitak, M. Karakate, and K. Sripanidkulchai, “Enabling live
migration of Containerized applications across clouds,” in Proc. IEEE
INFOCOM, 2020, pp. 2529–2538.

[32] P. S. Junior, D. Miorandi, and G. Pierre, “Good shepherds care for their
cattle: Seamless pod migration in geo-distributed Kubernetes,” in Proc.
IEEE Int. Conf. Fog Edge Comput. (ICFEC), 2022, pp. 26–33.

[33] Y. Yu, A. Calagna, P. Giaccone, and C. F. Chiasserini, “Design and
implementation of microservice migration at the edge,” in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), 2024, pp. 1–6.

[34] “OpenStack.” Jun. 2025. [Online]. Available: https://www.openstack.org/
[35] CRIU. “Checkpoint/restore.” 2017. [Online]. Available: https://github.

com/checkpoint-restore/criu
[36] Containers Organization. “Podman.” 2022. [Online]. Available: https://

github.com/containers/podman/
[37] (Linux Found., San Francisco, CA, USA). Open vSwitch. Jun. 2025.

[Online]. Available: https://www.openvswitch.org/
[38] (Eclipse Found., Ottaw, ON, USA). Zenoh. 2022. [Online]. Available:

https://github.com/eclipse-zenoh/zenoh
[39] C.-S. Shih, H.-J. Lin, Y. Yuan, Y.-H. Kuo, and W.-Y. Liang, “Scalable

and bounded-time decisions on edge device network using eclipse
Zenoh,” in Proc. IEEE RTCSA, 2022, pp. 170–179.

[40] W.-Y. Liang, Y. Yuan, and H.-J. Lin, “A performance study on the
throughput and latency of Zenoh, MQTT, kafka, and DDS,” 2023,
arXiv:2303.09419.

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 20,2025 at 13:24:35 UTC from IEEE Xplore. Restrictions apply.

CALAGNA et al.: MOSE: A NOVEL ORCHESTRATION FRAMEWORK 4841

[41] P. LeVasseur. “Benchmarking comparison of Zenoh vs NATS.”
Jun. 2025. [Online]. Available: https://github.com/PLeVasseur/zenoh-
benchmark

[42] J. Zhang, X. Yu, S. Ha, J. Peña Queralta, and T. Westerlund,
“Comparison of middlewares in edge-to-edge and edge-to-cloud commu-
nication for distributed ROS-2 systems,” J. Intell. Robot. Syst., vol. 110,
no. 4, p. 162, Nov. 2024. [Online]. Available: http://dx.doi.org/10.1007/
s10846-024-02187-z

[43] M. Barón, L. Diez, M. Zverev, J. R. Juárez, and R. Agüero, “On
the performance of Zenoh in industrial IoT scenarios,” Ad Hoc Netw.,
vol. 170, Apr. 2025, Art. no. 103784. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1570870525000320

[44] P. Emelyanov. “Ability to monitor task memory changes.” Jun. 2025.
[Online]. Available: https://lwn.net/Articles/546966/

[45] Y. Yu, A. Calagna, P. Giaccone, and C. F. Chiasserini, “TCP connection
management for stateful container migration at the network edge,” in
Proc. IEEE MedComNet, 2023, pp. 151–157.

[46] (Mellanox Technol., Sunnyvale, CA, USA). SockPerf. Jun. 2025.
[Online]. Available: https://github.com/Mellanox/sockperf

[47] ESNet. “iPerf3.” Jun. 2025. [Online]. Available: https://github.com/
esnet/iperf

[48] (Dronecode Found., San Francisco, CA, USA). PX4. Jun. 2025. [Online].
Available: https://github.com/PX4

[49] (Open Source Robot. Found., Mountain View, CA, USA). Gazebo.
Jun. 2025. [Online]. Available: https://github.com/gazebosim

[50] G. Jocher, A. Chaurasia, and J. Qiu. “Ultralytics YOLOv8.” 2023.
[Online]. Available: https://github.com/ultralytics/ultralytics

[51] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), 2016, pp. 779–788.

[52] N. Aharon, R. Orfaig, and B.-Z. Bobrovsky, “BoT-SORT: Robust
associations multi-pedestrian tracking,” 2022, arXiv:2206.14651.

[53] G. Jocher et al. “YOLOv8 overview.” Jun. 2025. [Online]. Available:
https://docs.ultralytics.com/models/yolov8/

[54] Bluenviron. “MediaMTX.” Jun. 2025. [Online]. Available: https://github.
com/bluenviron/mediamtx

[55] K. Z. Ibrahim, S. Hofmeyr, C. Iancu, and E. Roman, “Optimized pre-
copy live migration for memory intensive applications,” in Proc. ACM
Int. Conf. High Perform. Comput., Netw., Storage Anal., 2011, pp. 1–11.

Antonio Calagna (Graduate Student Member, IEEE) received the Ph.D.
degree from Politecnico di Torino in 2025, where he is a Postdoctoral
Researcher.

Yenchia Yu (Graduate Student Member, IEEE) received the M.Sc. degree
from Politecnico di Torino in 2022, where he is currently pursuing the Ph.D.
degree.

Paolo Giaccone (Senior Member, IEEE) received the Ph.D. degree from
Politecnico di Torino, Italy, in 2001, where he is currently a Full Professor.

Carla Fabiana Chiasserini (Fellow, IEEE) is Full Professor with the
Politecnico di Torino, Italy, and a Research Associate with CNR and CNIT.

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 20,2025 at 13:24:35 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

