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Abstract—The operational security of latency-sensitive net-
worked applications is increasingly threatened by evolving mali-
cious attacks that compromise operational integrity and network
performance. Human-to-machine (H2M) applications, which rely
on seamless bidirectional control signals and haptic feedback
transmission, exemplify such latency-sensitive use cases. Existing
learning-based malicious attack detection frameworks suffer
from their reliance on pre-trained datasets, making machine
learning models within them ineffective against previously unseen
attack patterns. As attack profiles dynamically evolve, static
models become obsolete, necessitating adaptive mechanisms to
maintain detection accuracy. In this context, concept drift adap-
tation will serve as a critical tool for enabling models to continu-
ously adjust to changing traffic distributions and emerging attack
patterns. However, real-world H2M applications lack access
to accurately labeled malicious traffic data, making real-time
adaptation of defense mechanisms infeasible. To address these
challenges, we propose a Concept Drift Adaptation-facilitated
malicious attack Defense framework (CDAD). Firstly, CDAD
employs Adaptive Random Forest as an incremental learning
approach, integrating an error-rate-based concept drift detection
mechanism to dynamically identify evolving attack patterns and
trigger adaptive model updates. Secondly, a haptic behavior
classifier is introduced to classify expected human operator
interactions and compare them with real-time haptic feedback
from remote machines. This enables automated traffic relabeling,
allowing CDAD to adapt to previously unseen attacks without
relying on pre-labeled datasets. The superior performance of
CDAD over existing state-of-the-art methods is demonstrated
across various malicious attack scenarios through extensive
simulations. Results show that with CDAD, the attack success
rate can be limited to 3%, while maintaining an inference time
below 1ms, thereby ensuring effective and efficient malicious
attack defense in latency-sensitive H2M applications.

Index Terms—Network security, human-to-machine, malicious
attack, concept drift adaptation.

I. INTRODUCTION

THE evolution of communication networks has shifted
from traditional data-centric transmission to highly inter-

active and immersive human-to-machine (H2M) applications
as part of the paradigm shift towards Tactile Internet [1]–[3]. It
is envisioned that these applications bridge physical and virtual
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environments, allowing human operators to control remote
machines with seamless feedback. Unlike conventional IoT
systems that rely solely on autonomous machine-to-machine
communication, H2M applications introduce dynamic human
intervention, facilitating domains such as industrial automa-
tion, telesurgery, and immersive virtual reality interactions [4].
To ensure an immersive and real-time responsive user experi-
ence, H2M applications impose stringent latency constraints,
typically from 1ms to 10ms, and ultra-high reliability of
99.9999% [5]. Converged fiber and wireless access networks
play a crucial role in supporting ultra-low-latency H2M ap-
plications. These networks, illustrated in Fig. 1, effectively
accommodate diverse H2M interaction scenarios based on the
relative connectivity and geographical distribution of human
and machine entities by facilitating both optical and wireless
segments [5], [6]. To overcome latency barriers caused by long
distances and shared optical network unit (ONU) bandwidth,
machine learning (ML)-driven predictive dynamic bandwidth
allocation schemes [2], [7] have been proposed recently. These
schemes assign bandwidth based on predicted H2M applica-
tion traffic of control signals from human operators and haptic
feedback from remote machines, thereby reducing queuing
delays and ensuring efficient uplink transmission. Beyond
network layer optimizations, ML-enhanced H2M servers are
deployed near ONUs to further reduce transmission delays. A
haptic classification mechanism is employed in those servers
to preemptively predict and transmit haptic feedback based on
the received control signals from human operators, effectively
reducing the round-trip delay in H2M applications [5].

The deployment of security and protection measures to sup-
port traditional traffic [8], [9] in the access segment has been
slow due to high cost-sensitivity. However, with the increased
interest in deploying ML techniques to enhance efficiency and
responsiveness of H2M applications, the threat of malicious
traffic severely introduces vulnerabilities that will compromise
the operational security of human-machine interactions within
the network. For example, after getting access to an ONU, a
malicious attacker can impersonate a legitimate H2M device
by mimicking its IP or MAC address via spoofing [10].
Consequently, the adversary can inject manipulated control
signals or replace legitimate control signals with malicious
packets, deceiving the remote machine into executing an unin-
tended action that could result in operational failure or safety
hazards. Such adversarial interference could result in catas-
trophic failures, particularly in applications such as telesurgery
or remote bomb disposal, where precise task execution is
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Fig. 1: ML-enhanced converged networks supporting H2M applications

crucial. Meanwhile, malicious traffic can significantly degrade
network performance, as the continued injection of malicious
packets increases the bandwidth utilization and the uplink
latency, potentially leading to violations of the strict latency
constraints typical of seamless H2M operations [11]. In this
context, it is essential to guarantee the operational security
and stability of H2M applications by adopting robust malicious
traffic detection and mitigation strategies. In our previous work
[11], we proposed a malicious traffic detection and mitigation
framework for H2M applications against malicious attacks
that employed a pre-trained XGBoost-based traffic classifier to
identify and filter known malicious traffic patterns. While this
framework effectively defended against attacks seen during
training, it heavily relied on static datasets and lacked adapt-
ability to unforeseen threats, which is remained fixed after
deployment. This poses a vulnerability to concept drift [12],
where evolving attack patterns lead to changes in the statistical
properties of network traffic not observed during the training
phase. As a result, it fails to detect and mitigate emerged attack
variants, making it vulnerable to adversaries who continuously
evolve their attack patterns. Furthermore, existing malicious
attack defense frameworks operate under the assumption that
accurate ground-truth labels for network traffic are readily
available, allowing models to be retrained on newly observed
attack instances. However, in real-world scenarios, labeling
malicious traffic is inherently challenging and often infeasible,
as determining whether an incoming packet is truly malicious
requires deep packet inspection, forensic analysis, or domain
expertise, which are time-consuming, resource-intensive, and
impractical processes in real-time network environments. The
lack of timely, accurately labeled attack data significantly

impairs the ability of existing concept drift adaptation models
to incrementally update effectively, leaving them unable to
respond dynamically to evolving threats.

In light of the above, this paper builds on the foundation of
[11], where a Concept Drift Adaptation-facilitated malicious
attack Defense framework (CDAD) is proposed to defend
H2M applications against evolving malicious attacks and to
remove the malicious traffic at the ONU. In contrast to [11],
which relies on a static pre-trained traffic classifier and does
not account for dynamic changes from previously unseen
malicious attack patterns during training, CDAD incorporates
a concept drift adaptation model, Adaptive Random Forest
(ARF) [13], at the ONU. To ensure reliable and accurate
labels for model adaptation, a haptic behavior classifier is
integrated to enable an automated relabeling mechanism. This
enables ARF to adapt quickly without manual labeling or
offline supervision. The key contributions of this paper are
outlined below:

1) Firstly, we propose CDAD, which integrates ARF with
a haptic behavior classifier. ARF is adopted for its
incremental online learning strategy, featuring an error-
rate-based concept drift detection method. This enables
continuous detection of shifts in malicious attack pat-
terns and supports dynamic model updates upon de-
tecting a concept drift. As a result, ARF can adapt to
evolving and previously unseen attack patterns with-
out requiring full model retraining. Simultaneously, the
haptic behavior classifier automatically relabels every
control signal packet by comparing the predicted haptic
behavior with the actual haptic feedback received from
remote machines. This behavioral consistency check
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provides relabeled packets, which are then fed back into
ARF for incremental self-update, thereby maintaining
robust defense performance against malicious attacks in
dynamic H2M application scenarios.

2) Secondly, to evaluate the performance of CDAD against
evolving malicious attacks in H2M applications, we
conduct a packet-level simulation based on a 10 km
10G-passive optical network (PON) with 16 ONUs.

3) Finally, we compare CDAD with existing traffic
classification-based defense mechanisms through com-
prehensive simulation and performance evaluation in
terms of attack success rate, bandwidth utilization, infer-
ence time, and uplink latency. Results demonstrate that
CDAD achieves superior attack detection and mitigation
performance, keeping the attack success rate below 3%
with an inference time of less than 1ms, thus ensuring
responsiveness and operational security in H2M appli-
cations.

The rest of the paper is organized as follows. Section II
presents a comprehensive review of the work related to mali-
cious attack detection and mitigation, Section III introduces the
architecture and methodology of CDAD, Section IV presents
the performance evaluation results, and Section V summarizes
the paper.

II. RELATED WORK

A. Malicious Attacks and Defense Strategies

Malicious attacks correspond to any adversarial action that
can compromise system integrity, confidentiality, or availabil-
ity by manipulating network traffic, injecting malicious data,
or exploiting vulnerabilities in security mechanisms [14]. Two
primary malicious attack patterns that significantly threaten the
operational security of H2M applications are: packet injection
as shown in Fig. 2 and payload manipulation as shown
in Fig. 3. Packet injection attacks occur when adversaries
inject malicious packets into a legitimate data stream, ex-
ploiting vulnerabilities in the packet-handling mechanisms to
disrupt communication, consume network resources, or evade
detection-based security measures. Packet injection attacks in
software-defined networks have been studied in [15], where
adversaries exploit the reactive mode of OpenFlow switches
to manipulate topology views and overwhelm controllers.
Similar threats emerge in H2M applications, where attack-
ers can spoof ONUs to inject malicious packets alongside
legitimate H2M application traffic, leading to severe network
performance degradation. This malicious traffic consumes crit-
ical network resources, resulting in bandwidth over-utilization
and inefficient allocation of available resources. More criti-
cally, excessive packet loads introduce transmission delays,
increasing uplink latency and potentially violating the latency
constraints of H2M applications [11]. Payload manipulation
involves the modification of legitimate packets to alter their
intended function while maintaining their structural validity,
thus exploiting legitimate traffic streams to evade detection.
Furthermore, attackers who gain control over routers can
intercept traffic streams and execute malicious modifications,
such as dropping, altering, or rerouting packets, to compromise

data integrity and network functionality [16]. In the context of
H2M applications, payload manipulation poses a significant
threat, as minor perturbations to control signal payloads can
result in degraded operational accuracy, unexpected machine
behaviors, or compromised task execution [17].

Fig. 2: Packet injection in H2M applications

Fig. 3: Payload manipulation in H2M applications

With the increasing complexity of network systems and
the growing reliance on artificial intelligence-driven security
mechanisms, malicious attack defense has become a critical
research area. Specifically, ML-enhanced network intrusion
detection systems (NIDS) have demonstrated improved adapt-
ability by learning traffic patterns and distinguishing between
normal and malicious activities [23]. The authors of [18]
and [22] report that deep learning models such as Convolu-
tional Neural Network (CNN) and Long Short-Term Memory
(LSTM) have further advanced malicious traffic classification
and anomaly detection by capturing both spatial and temporal
dependencies in network behavior. However, despite these ad-
vantages, learning-based security mechanisms introduce new
vulnerabilities that malicious attackers can exploit through
adversarial attacks, where carefully crafted perturbations can
cause malicious packets to be misclassified as legitimate traffic
[24]. Examples of adversarial attacks include the Fast Gradient
Sign Method (FGSM) [25], which generates adversarial exam-
ples by computing the gradient of the loss function and mod-
ifying input data in the direction of the gradient, effectively
deceiving deep learning-based NIDS in IoT systems [26]. The
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TABLE I: Comparison among different malicious attack defense frameworks

Paper Attack type Defense methodology Suitability for H2M application
[18] Denial of service (DoS)

attacks, remote to local
(R2L) attacks, user to

root (U2R) attacks, and
probing attacks

Proposes a multi-CNN fusion approach to improve
binary and multiclass intrusion detection accuracy

Relies on the known attack patterns, leaving robustness
under unknown malicious attacks uncertain; no consid-
eration of evolving or adversarial attack patterns

[19] FGSM, BIM Uses adversarial training with both legitimate and
adversarially manipulated samples to enhance model
robustness against adversarial inputs

Relies on known attack patterns; requires extensive
adversarial sample generation and labeling, limiting
real-time applicability; no consideration of evolving
attack patterns

[20] Adversarial examples
produced by the proposed
GANs-based framework

Proposes the GANs-based framework to generate syn-
thetic adversarial samples for adversarial training to
enhance the robustness of ML/DL-based IDSs against
adversarial ML attack

Computationally intensive when generating GANs-
based adversarial samples; defense effectiveness is con-
strained by the representativeness of GAN-generated
samples; no consideration of evolving attack patterns

[21] DoS, R2L, U2R and
probing attacks

Proposes a hybrid network anomaly detection frame-
work that incorporates concept drift detection to capture
traffic distribution shifts under evolving attack scenarios

Computationally intensive due to repeated distribution
checks; Relies on pre-labeled attack data for model
adaptation; no consideration of adversarial attack pat-
terns

[22] DoS attackmalicious
scan, malicious control,

malicious operation,
spying, data probing,

wrong setting

Proposes an improved LSTM with concept drift adap-
tive method to enhance anomaly detection and multi-
class classification under streaming IoT data

Relies on pre-labeled attack data for model adaptation;
no consideration of adversarial attack patterns

Our
paper

FGSM, BIM, ZOO,
malicious user-generated

attack data in H2M
applications

Proposes CDAD framework, which integrates ARF to
rapidly detect and adapt to evolving malicious traffic
in H2M applications. A haptic behavior classifier is in-
corporated into ARF to enable an automated relabeling
mechanism without requiring manual labeling

Eliminates dependence on pre-labeled data via auto-
mated relabeling; enables online defense adaptation
against evolving malicious attack patterns targeting
real-time H2M applications

Basic Iterative Method (BIM) [27] extends FGSM by running
the gradient update in multiple iterations to maximize the
attack success rate, while the zeroth-order optimization attack
(ZOO) [28], also known as a grey-box attack, utilizes zeroth-
order stochastic coordinate descent to iteratively add pertur-
bations and estimate the gradients of classifiers. To improve
the resilience of learning-based classifiers against adversarial
attacks, adversarial training [19] has emerged as a promising
defense mechanism, where the classifier is trained on both
legitimate and adversarially manipulated samples, allowing
the model to learn how to recognize and mitigate adversarial
attack samples. However, adversarial training is limited by its
reliance on known attack patterns, making it ineffective against
unknown malicious attack threats. Furthermore, generating
and labeling sufficient adversarial samples requires significant
effort, making adversarial training resource-intensive and less
practical in real-time network environments. To address this
challenge, generative adversarial networks (GANs)-based de-
fenses [20] are proposed to supplement adversarial training.
GANs-based defenses enhance the robustness of NIDS and
the classifier by simulating adversarial attack scenarios and
generating synthetic adversarial samples for training. How-
ever, GANs-based defenses introduce additional computational
overhead, as generating realistic adversarial samples requires
significant training time and computing power. Moreover, the
effectiveness of GANs-generated adversarial samples depends
on the quality and diversity of the generated attack traffic,
which may not always accurately reflect real-world adversarial
strategies.

Despite advancements in ML-based security mechanisms,
existing frameworks remain inadequate against evolving ma-
licious attack patterns, as they rely on static training data

and struggle to adapt to previously unseen threats, making
them vulnerable to concept drift where the statistical properties
of malicious traffic change over time, rendering pre-trained
models ineffective. The limitations of adversarial training and
GANs-based defense further emphasize the need for adaptive
malicious attack defense mechanisms that can evolve along-
side emerging threats. In H2M applications, where low latency
and operational security are paramount, an effective defense
framework must dynamically identify, mitigate, and adapt to
new attack patterns in real time without imposing excessive
computational overhead. In this context, concept drift detection
and adaptation techniques [29], [30] will play a crucial role by
enabling continuous model refinement, allowing the defense
framework to remain proactive and resilient against emerging
attack patterns in H2M applications.

B. Concept Drift Detection and Adaptation
Concept drift in malicious traffic detection refers to changes

in the statistical properties of malicious traffic caused by
shifts in network environments and malicious attack patterns
[31]. This dynamic nature makes it challenging to maintain
accurate malicious traffic detection and ensure system re-
sponsiveness. Two primary approaches are commonly used
to detect concept drift: distribution-shift-based and error-rate-
based methods [32]. Distribution-shift-based approaches detect
concept drift by analyzing differences in data distribution
across two distinct time windows [33]. For instance, in [21],
the authors proposed a hybrid network anomaly detection
framework that incorporates concept drift detection by ap-
plying a sliding window approach with KL divergence to
capture distribution shifts under evolving traffic conditions.
However, distribution-shift-based methods often entail high
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computational complexity, making them less suitable for real-
time defense. In contrast, error-rate-based drift detection meth-
ods monitor the performance degradation of predictive models
using predefined thresholds to detect concept drift. Since
attackers often introduce minimal modifications to malicious
traffic to evade detection, error-rate-based approaches are more
suitable for identifying subtle yet impactful changes in mali-
cious traffic patterns. Once concept drift is detected, learning
models must adapt to evolving data distributions to maintain
detection accuracy and enhance overall model performance.
Ensemble-based online learning models have emerged as ef-
fective drift-adaptive techniques by integrating multiple base
learners to improve classification robustness [34]. Leverage
bagging (LB) [35] is a basic ensemble approach that enhances
model diversity by constructing multiple base learners, such
as Hoeffding Trees [32], through bootstrap sampling, with
final predictions determined via majority voting. Moreover,
ARF [13] and Streaming Random Patches (SRP) [36] are two
state-of-the-art ensemble learning models that train multiple
Hoeffding Trees as base classifiers. Both methods include drift
detection mechanisms for each Hoeffding Tree to identify and
address changes in data distributions. However, their structural
design differs: ARF employs local subspace randomization,
where each Hoeffding Tree is trained on a randomly selected
subset of features, balancing computational efficiency and
adaptability to different types of drift. In contrast, SRP adopts
a global subspace randomization approach, where different
instances of the ensemble are trained on distinct feature sub-
sets. Furthermore, SRP integrates online bagging techniques,
enhancing its ability to handle non-stationary distributions.
Although ensemble-based learning models provide an effective
mechanism for handling concept drift in malicious attack
defense, they inherently rely on access to labeled data for
incremental model updates and drift adaptation. In real-world
network environments, obtaining timely, accurately labeled
malicious traffic is impractical. The dynamic and evolving
nature of network traffic and the emergence of new attack
patterns render the manual labeling of incoming data infeasi-
ble. Notably, for such attack defense mechanisms to function
effectively, they would require frequent, high-speed labeling
by domain experts, which is an unrealistic expectation in an
online setting. This problem is common to other works in
the intrusion detection and concept drift literature [22], [33],
[37]. To address this critical limitation, this paper introduces a
traffic relabeling mechanism into CDAD, leveraging a haptic
behavior classifier to validate and relabel incoming traffic in
the absence of ground-truth labels. This approach enables
CDAD to maintain accurate model adaptation in evolving at-
tack environments without requiring manual labeling or offline
supervision. In Table I, we provide a consolidated comparison
among some of the aforementioned works, positioning the
contributions of our proposed CDAD framework relative to
these existing defense frameworks.

III. MALICIOUS ATTACK DEFENSE IN H2M APPLICATIONS

In H2M applications within network environments, instead
of encrypting control signals, which is commonly used for

Fig. 4: Proposed CDAD framework

haptic feedback prediction [5], to preserve the operational
integrity, a learning-based attack defense mechanism is em-
ployed to detect malicious packets via control signal traf-
fic payload analysis. Each packet contains a feature vector
x ∈ Rd, representing the control signal payload, where d is
the dimensionality of the control signal feature space. A traffic
classifier f : Rd → Y , with Y = {0, 1}, is employed to assign
a label y = f(x), indicating whether a packet is legitimate
(labeled 1) or malicious (labeled 0). Fig. 4 illustrates the
proposed CDAD against malicious attack in H2M applications.
Specifically, the feature extraction module employed in CDAD
inspects every incoming packet at the application layer of the
ONU to extract crucial payload features for subsequent traffic
classification. The concept drift adaptation-facilitated classifier
(e.g., ARF and SRP) deployed at the ONU differentiates
between legitimate and evolving malicious packets based on
extracted payload features, enabling early malicious attack
detection and mitigation before malicious traffic is forwarded
upstream to the CO. To effectively classify diverse malicious
packets generated by a malicious attacker, CDAD harnesses
a dynamic traffic relabeling mechanism, which is uniquely
designed for the concept drift adaptation-facilitated classifier.
To enhance adaptability, CDAD is also equipped with a haptic
behavior classifier to relabel every packet deployed at the
H2M server near the ONU. Consequently, the traffic relabeling
guarantees real-time correction at the ONU and enables the
traffic classifier to continuously refine its understanding of
evolving malicious attack patterns, ensuring classifiers remain
robust and effective against emerging malicious attack threats
in H2M applications.

A. Malicious Attack Generation

The goal of a malicious attacker is to mislead the deployed
traffic classifier model, making it fail to distinguish between
legitimate H2M application packets and malicious packets. To
achieve this, an attacker can slightly modify the payload of
the malicious packet with a feature vector x by introducing
a crafted perturbation δ ∈ Rd such that x̃ = x + δ. Through
these subtle adjustments, the attacker can bypass the traffic
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classification, enabling malicious packets to appear legitimate
while still compromising the normal operation of the H2M
application. Thus, the malicious attack process can be formu-
lated as an optimization problem where the attacker aims to
minimize the perturbation magnitude ||δ|| while ensuring that
malicious packets x̃ are misclassified (remain undetected) by
the traffic classifier as shown in (1) [26].

min ∥δ∥, s.t. f(x̃) ̸= f(x). (1)

The assumptions regarding the capabilities and constraints
of the adversary are defined following the black-box threat
model detailed in [26] and [38], which align with realistic
and practical H2M operational security challenges. We assume
that the attacker only knows the defense mechanism, that is
traffic classification, but lacks knowledge about the detailed
configuration of the employed traffic classifier, such as the
specific hyperparameters. This assumption is consistent with
real-world scenarios where specific details of the defense
system are public, but the internal configurations are kept
confidential [28]. Importantly, the attacker must possess sig-
nificant domain knowledge about H2M applications, such as
network protocols, H2M packet inter-arrival time distributions,
H2M traffic payload structures, etc., to carefully craft effective
malicious packets, as a key constraint on generating malicious
attack data in H2M applications is to preserve the functional
behavior of generated malicious attack packets. The attacker
must ensure that malicious packets retain the critical H2M
application payload features required for the operation of the
application. Any disruption to these features would prevent
the application from correctly processing the packet, making
the attack ineffective. Additionally, we assume the integrity
of the attack defense framework is preserved, meaning the
attacker cannot modify the deployed traffic classifier or tamper
with its detection results. The target traffic classifier is also
assumed to be well-trained on clean H2M traffic flows without
poisoned samples.The malicious attacker is assumed to be
able to passively monitor network traffic flows and actively
replace legitimate packets to compromise the legitimate H2M
application. This ability allows the attacker to craft and inject
malicious packets while adhering to the constraints necessary
to maintain the operation of the H2M application.

Two complementary approaches that align with the assump-
tions and the described threat model can be utilized to gener-
ate malicious attack packets in H2M applications. The first
approach employs adversarial attack generation algorithms,
such as FGSM, BIM, and ZOO. In this method, the attacker
constructs a shadow model that mimics the behavior of the
target traffic classifier using a subset of the legitimate H2M
application packets dataset. By training the shadow model on
this dataset, the attacker ensures that it behaves similarly to
the target traffic classifier. Subsequently, adversarial algorithms
are applied to the shadow model to introduce minimal pertur-
bations (δ) to the legitimate payloads. These perturbations are
carefully crafted to bypass the traffic classification mechanism
while preserving the functional integrity of the H2M packets.
The second approach involves generating malicious packets
by directly operating the legitimate H2M application but
performing alternative actions to collect corresponding control

signals. These actions produce control signals structurally
similar to legitimate traffic but serve as malicious data. For
example, the malicious attacker could perform different yet
legitimate-looking operations with different wrist rotation an-
gles or finger tension signals to generate a dataset representing
malicious behavior. This method adheres to the constraint of
maintaining the functional features of the H2M application,
ensuring that malicious packets do not disrupt its operational
requirements while compromising its security. Both malicious
attack generation methods preserve the functional behavior
of H2M applications and operate within the constraints of a
black-box threat model, ensuring the validity of the generated
malicious packets in real-world H2M application scenarios.

B. Malicious Attack Detection and Mitigation

To guarantee robust defense performance against malicious
attacks in H2M applications, pre-training the deployed traffic
classifier is essential. This process begins with the preparation
of pre-training data, which includes two components: legit-
imate H2M application packets and malicious packets from
known attacks. Including known attack packets ensures that the
pre-training phase effectively models scenarios encountered
during deployment. Feature extraction is then conducted to
distill distinct H2M application payload features from the
traffic datasets, as detailed in [5], for training the traffic
classifier to differentiate between benign and malicious traffic.
Upon pre-training, the traffic classifier is deployed into the
ONU that connects to the human operator, as shown in Fig.
1, to classify incoming traffic during real-time operation to
ensure the secure and reliable operation of H2M applications.
All incoming packets received at the ONU are subjected to a
thorough application-layer packet inspection process, during
which their payloads are extracted for analysis. Using the
same feature extraction method employed during pre-training,
the extracted payload is represented as a feature vector x
consisting of control signal features, such as wrist rotation
angles, finger rotation angles, etc. This feature vector is then
fed into a binary traffic classifier (i.e., f : Rd → Y)
which determines whether an incoming packet is legitimate
(y = 1) or malicious (y = 0). Following classification,
the framework takes appropriate mitigation actions: legitimate
H2M packets are queued for upstream transmission to the CO,
maintaining seamless operation and adherence to strict latency
requirements; malicious packets are discarded to protect the
network from contamination and service disruptions.

To detect attack types not included in the training phase
and ensure adaptability to evolving threats, CDAD is proposed
to incorporate a concept drift adaptation-facilitated classifier,
which integrates an error-rate-based concept drift detection
method and a concept drift adaptation model, promptly de-
tecting and responding to evolving attack patterns in real-time
without requiring prior knowledge of the attack. The con-
cept drift detection mechanism monitors the traffic classifica-
tion performance degradation against user-defined confidence
thresholds and triggers the concept drift adaptation process
when significant deviations are detected [39]. Specifically,
two user-defined confidence levels are used to quantify the
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model degradation: the warning and drift confidence levels.
The classification error rate of the classifier is continuously
monitored using the cumulative mean error rate and standard
deviation computed at each time step t, as shown in (2) and
(3), respectively.

ei =

∑t=i
t=0 et
i

, (2)

si =

√
ei(1− ei)

i
, (3)

where ei is the cumulative mean error rate, and si the standard
deviation of the mean error rate. The drift status of the
classifier is determined by whether the degree of the observed
error rate change reaches a certain confidence level illustrated
as follows:

ei + si ≥ emin + λ · smin, (4)

where emin and smin represent minimum recorded values of
ei and si. Compared with the distribution-based concept drift
detection method, the incorporated error-rate-based concept
drift detection method enhances the capability of CDAD by
statistically identifying significant concept drift in evolving
malicious attack scenarios, triggering timely updates to the
classification model without compromising latency constraints
critical to real-time H2M operations. Meanwhile, to achieve
efficient concept drift adaptation against evolving malicious
attacks, ARF, an advanced ensemble-based online learning
model, is employed in CDAD, overcoming the constraints
of static, pre-trained traffic classifiers. Unlike the methods
proposed in [21], which require complete model retraining
when concept drift is detected, leading to high computa-
tional overhead and increased latency, ARF incrementally
updates the background Hoeffding Trees. This incremental
approach continuously adapts to evolving malicious traffic
patterns while remaining computationally efficient. Notably,
the warning confidence level serves as a preemptive alert for
potential drifts in ARF, enabling early model adjustments and
a better model adaptation efficiency before model replacement
when a real drift is detected. Studies [13], [36], [40] have
shown that ARF achieves superior classification accuracy and
reduced inference time compared to alternative drift adaptation
methods such as SRP and LB, making it a strong candidate
for real-time H2M applications. Furthermore, the concept
drift adaptation-facilitated classifier is designed to be model-
agnostic, enabling integration with any concept drift detection
method and concept drift adaptation model with similar or
improved performance.

A fundamental strategy of CDAD involves continuous
model refinement through incremental updates of the concept
drift adaptation-facilitated classifier, enabling rapid adaptation
to emerging malicious attack patterns. However, this incre-
mental updating process critically relies on the availability of
accurately labeled traffic data. This is particularly challenging
when dealing with unknown malicious attacks that lack pre-
defined labels in real-world scenarios. Without an automated
and accurate traffic relabeling mechanism, the adaptation capa-
bilities of the traffic classifier would be significantly limited,
hindering its ability to detect and mitigate emerging threats

in real time. To further enhance the adaptability of CDAD,
a haptic behavior classifier is harnessed to facilitate traffic
relabeling. Similarly to the traffic classifier, the haptic behavior
classifier is trained using control signal features (see Section
IV-A) from a human operating a legitimate H2M application
before being deployed in the H2M application server near
the ONU. These features capture the human operator’s natural
operational patterns, enabling the haptic behavior classifier to
establish a baseline operational profile during legitimate H2M
interactions. A traffic classifier functions as a binary classifier,
distinguishing between legitimate and malicious packets based
solely on packet payload. Conversely, the haptic behavior clas-
sifier evaluates whether the control signal payload in received
packets exhibits coherence with legitimate human interaction
profiles. Since remote machines execute operations based on
the received traffic and generate real haptic feedback (denoted
as H) accordingly, malicious attack packets can disrupt this
process. If a malicious packet is successfully transmitted and
received by the remote machine, the resulting haptic feedback
will deviate significantly from the predicted haptic feedback
(denoted as Ĥ) determined by the haptic classifier. This
mismatch indicates an inconsistency between the expected
operational profile and the actual executed operation, signaling
the presence of a malicious packet. When a discrepancy is
detected, the traffic payload is relabeled as malicious, and
both the modified payload and its new label are fed back
into the drift adaptation model. This feedback loop allows
CDAD to update the classification model, ensuring adaptation
to evolving malicious attack patterns and enhancing long-term
resilience. By integrating the haptic behavior classifier with the
concept drift adaptation-facilitated classifier, CDAD achieves
a more robust and adaptive defense approach against evolv-
ing malicious attacks, ultimately safeguarding the operational
integrity of H2M applications.

IV. PERFORMANCE EVALUATION

A. Simulation Setup

To evaluate the performance of CDAD, we conducted
packet-level simulations based on a 10 km 10G-PON com-
prising 16 ONUs on a Windows-based machine with an i5-
13600KF CPU, Nvidia RTX4060 GPU, and 64 GB of memory.
The evaluation utilizes one legitimate H2M traffic dataset and
five malicious traffic datasets, namely Cube, FGSM, BIM,
ZOO, and a malicious user dataset, to assess the performance
of each traffic classifier. Specifically, the legitimate H2M
traffic dataset represents traffic generated by a legitimate user
operating an authorized H2M application. The Cube dataset
reflects H2M application traffic generated when the same
legitimate user operates a different H2M application, which is
not authorized to operate at the given time. The FGSM, BIM,
and ZOO datasets are malicious datasets derived from the
legitimate H2M application traffic dataset using the respective
FGSM, BIM, and ZOO adversarial attack generation methods.
Finally, the malicious user dataset represents H2M application
traffic generated by a malicious user operating the legitimate
H2M application. All tested traffic classifiers are pre-trained
using the legitimate traffic dataset (labeled as 1) and the cube
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Fig. 5: Network performance under different malicious attack and traffic loads

dataset (labeled as 0). All traffic data is injected into all ONUs
following the Generalized Pareto distribution packet arrival
time [5], [7]. The legitimate H2M traffic load is set to 0.4,
while the malicious traffic load is randomly selected from 0.1
to 0.9 during the simulation for online testing. A predictive
dynamic bandwidth allocation (DBA) scheme is adopted to
assign bandwidth by predicting network traffic distribution
based on observed traffic load to minimize queuing delays
and maximize transmission efficiency within the network [2],
[7], [30]. To support timely and accurate traffic relabeling, an
XGBoost model is employed as the haptic behavior classifier.
This classifier is pre-trained using control signal features
collected from a legitimate H2M application running on a
VR-based H2M platform [5]. These control signal features
include Quaternion and Euler angles, which accurately track
the orientations of thumb, wrist, and finger joints. Additionally,
tension readings from two flex sensors per finger are included
to comprehensively capture fine-grained variations in grip
force and finger movement during interactions. Each instance
of control signal data comprises 64 elements, providing a
comprehensive representation of fine-grained human operator
movements when interacting with the legitimate H2M appli-
cation. The corresponding output from the haptic behavior
classifier consists of five distinct haptic feedback categories,
each reflecting a specific interaction pattern. These categories
encapsulate key tactile responses associated with various op-
erational behaviors, including single-finger touch, multi-finger
grasp, etc. Moreover, to balance the sensitivity and robustness
of the concept drift detection algorithm shown in (4), the
coefficient λ is set to 2 for the warning level and 3 for the

drift level.

TABLE II: Hyperparameters of the traffic classifiers.

Model Components

XGBoost [11]
n estimators(100), max depth (50), learning rate
(0.05), subsample (0.8), colsample bytree (0.8),
eval metric (logloss)

LSTM [22] LSTM layer (128), Dropout (0.3), Dense layer (64),
Output layer (1)

CNN [18] Conv1D layer (64), MaxPooling1D (2), Dropout (0.3),
Dense layer (64), Output layer (1)

CDAD (SRP)
n models (5), max depth (14), delta (0.07914),
grace period (95), leaf prediction (nba), split criterion
(info gain)

CDAD (ARF)
n models (5), max depth (25), max features (0.2),
grace period (155), leaf prediction (nba), split criterion
(info gain)

Table II outlines the structure and hyperparameters of the
proposed CDAD and three commonly used traffic classifiers
from literature. Meanwhile, to assess the generality of CDAD
in integrating different concept drift adaptation models, SRP
is incorporated as an alternative adaptation model within the
framework, serving as a benchmark to evaluate the effective-
ness of ARF in malicious attack defense. Four performance
metrics averaged across all 16 ONUs are considered to eval-
uate the malicious attack defense performance: attack success
rate in %; bandwidth utilization in %; inference time per
sample in ms; and uplink latency in ms. The attack success
rate is calculated using:

Attack success rate =
1

N

N∑
i=1

PCOi

SONUi
, (5)
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where N , PCOi, SONUi represent the total numbers of the
ONU, the total number of received malicious packets at the
CO, and the total number of packets sent from the ONU,
respectively. A lower attack success rate indicates a better
attack defense performance as fewer malicious packets are
received at the CO. Bandwidth utilization is calculated as the
ratio of the total number of bytes from the packets received
at the CO and the total available network bandwidth over a
time period. In the absence of malicious attacks, the predictive
DBA scheme allocates bandwidth in proportion to the traffic
load of the legitimate H2M application, resulting in bandwidth
utilization that accurately reflects real traffic demands without
unnecessary overhead. Inference time, defined as the time the
traffic classifier takes to process and classify a packet, is par-
ticularly critical in H2M applications. A lower inference time
means a more efficient traffic classification process, essential
for meeting the stringent latency requirements of 1 to 10ms.
As defined in (6), the uplink latency in H2M applications
is composed of packet transmission delay (Dtrans), packet
queuing delay (Dqueue), packet propagation delay (Dprop),
and packet inference time (Tinfer).

Uplink latency = Dtrans +Dprop +Dqueue + Tinfer. (6)

In particular, Dtrans is a function of the transmitted packet’s
size and the link transmission bandwidth, while Dprop depends
on the transmission distance. It is important to note that
bandwidth utilization is critical in determining Dqueue expe-
rienced in the uplink transmission. Excessive bandwidth uti-
lization increases queuing delays as multiple ONUs compete
for limited uplink bandwidth, causing significant transmission
bottlenecks. Moreover, inference time further contributes to
uplink latency, as illustrated in (6).

B. Simulation Results and Discussion

Fig. 5(a) presents the attack success rate achieved by
different traffic classifiers under a packet injection attack sce-
nario, where malicious packets generated using different attack
patterns are actively injected into the network with varying
traffic loads alongside legitimate H2M application packets.
As can be observed, CDAD consistently outperforms all other
learning-based traffic classifiers across all types of malicious
attacks, regardless of the concept drift adaptation-facilitated
classifier employed. This superior performance highlights the
robustness and adaptability of CDAD, even without prior
knowledge of malicious attack types. By leveraging malicious
attack adaptation and traffic relabeling, CDAD addresses the
limitations of both machine learning and deep learning-based
traffic classifiers, ensuring a significantly lower attack success
rate across diverse attack scenarios. While deep learning-based
traffic classifiers show promising classification accuracy when
trained on known malicious attack datasets, they exhibit sig-
nificant drawbacks during unknown malicious attacks, such as
under FGSM, BIM, and ZOO attacks. For instance, the CNN
experiences attack success rates of 98.06% under FGSM at-
tacks and 95.39% under BIM attacks. These attacks are highly
effective because they exploit the gradient-based optimization
methods used in deep learning models. Specifically, FGSM

generates adversarial examples by adding perturbations in the
direction of the model gradient to maximize classification
error, while BIM extends this strategy by iteratively applying
small perturbations. Similarly, ZOO attacks use zeroth-order
optimization to create adversarial examples, further compro-
mising the robustness and effectiveness of these deep learning
models. In this context, the malicious concept drift adaptation
mechanism is particularly critical in mitigating adversarial
attack patterns such as those employed in FGSM, BIM,
and ZOO attacks. In contrast, the machine learning-based

Fig. 6: Attack success rate of CDAD

traffic classifier, XGBoost, demonstrates relative robustness to
gradient-based attacks but is highly susceptible to the mali-
cious user dataset, showing an attack success rate of 79.87%.
This vulnerability stems from its inability to adapt to subtle
behavioral changes caused by malicious users, highlighting the
limitations of traditional machine learning models in dynamic
malicious attack environments.

In an optimal scenario with no malicious packets in the
network, the bandwidth utilization should align with the le-
gitimate traffic load, which is approximately 40% highlighted
by the red dash line in Fig. 5(b). As can be observed, it is
evident that lower attack success rates correlate with reduced
bandwidth utilization, highlighting the effectiveness of CDAD
in mitigating the impact of malicious traffic across all attack
scenarios. Results demonstrate that CDAD, irrespective of the
concept drift adaptation method employed, maintains a band-
width utilization close to the expected threshold in both con-
cept drift adaptation methods, whereas other traffic classifiers
exhibit excessive bandwidth utilization, even reaching 100%
under certain attack scenarios. Furthermore, the inference time
significantly impacts real-time attack detection performance,
as illustrated in Fig. 5(c). Results indicate that CNN and LSTM
incur inference times exceeding 1ms among all malicious
attack scenarios. Additionally, while CDAD (SRP) achieves
comparable attack mitigation to CDAD (ARF) shown in Fig.
5(a), it demonstrates even higher inference times than other
classifiers in some malicious attack scenarios, specifically,
Cube, 0.4, BIM, 0.3, and USER, 0.4. Notably, CDAD (ARF)
maintains the lowest inference time across all scenarios, en-
suring minimal computational delays in traffic classification.
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As can be observed from Fig. 5(d), the impact of bandwidth
utilization and inference time on the uplink latency is evident,
where excessive bandwidth consumption and higher inference
times result in substantial increases in overall uplink latency.
Specifically, 1ms is highlighted in an orange dashed line, and
10ms is highlighted in a red dashed line. The performance of
CNN and LSTM is significantly impacted under high-traffic
attack scenarios, with CNN and LSTM reaching an uplink
latency of 14.00ms and 12.04ms under FGSM, respectively,
due to excessive bandwidth utilization and prolonged inference
times. Similarly, XGBoost, despite having lower inference
times than deep learning models, experiences a degraded up-
link latency of 10.72ms and 12.28ms under FGSM and ZOO
attacks, respectively, due to network congestion from high
malicious traffic loads. In contrast, CDAD (ARF) maintains
the lowest uplink latency across all attack scenarios, with a
peak of only 1.07ms, effectively minimizing queuing delays
and computational overhead. These results further validate
CDAD (ARF) as an appealing solution, balancing security,
computational efficiency, and ultra-low latency requirements
for real-time H2M applications.

To further evaluate the robustness of CDAD under differ-
ent traffic conditions, we conducted simulations in a packet
manipulation scenario where all incoming legitimate H2M ap-
plication packets are intercepted and replaced with malicious
attack packets generated by the attacker at the application
layer. For every intercepted legitimate packet, a correspond-
ing adversarial packet is substituted in its place, effectively
overwriting the original and simulating a one-to-one packet
replacement attack. Consequently, the traffic load of malicious
packets mirrors the original legitimate traffic load, which is
varied between 0.1 and 0.9 to simulate different network
conditions. Results, in Fig. 6, demonstrate the consistent
effectiveness of CDAD across all considered attack types. The
attack success rate remains below 3% for FGSM, BIM, ZOO,
and USER attack types, irrespective of the traffic load. This
performance highlights the robustness of CDAD to different
traffic conditions, which maintains robust defense capabilities
even as the proportion of malicious traffic increases. Notably,
the overall performance of CDAD is further underscored by its
minimal sensitivity to changes in network traffic load. Again,
this resilience can be attributed to its dynamic traffic relabeling
mechanism, which continuously adapts to incoming traffic
patterns to counteract evolving malicious attack threats, fur-
ther emphasizing its adaptability and stability under dynamic
network conditions.

V. CONCLUSION

In this paper, we introduced a Concept Drift Adaptation-
facilitated malicious attack Defense framework (CDAD) to
enhance the robustness of H2M applications against evolving
malicious attacks. The employed Adaptive Random Forest
(ARF) integrates an error-rate-based concept drift detection
mechanism to enable incremental learning, dynamically iden-
tifying emerging malicious attack patterns and updating its
classification model accordingly in real-time H2M malicious
attack defense. By learning the packet payload characteristics

of both legitimate and malicious H2M traffic, CDAD ensures
continuous adaptation without requiring extensive retraining.
Additionally, a haptic behavior classifier enables automated
traffic relabeling, addressing the critical challenge of unavail-
able ground-truth labels in real-world malicious traffic scenar-
ios. Extensive packet-level simulations were used to evaluate
the performance of CDAD across multiple malicious attack
patterns in terms of the attack success rate, bandwidth utiliza-
tion, inference time, and uplink latency. Results demonstrate
that CDAD significantly outperforms other traffic classifiers,
limiting the attack success rate to at most 3% with an inference
time below 1ms, ensuring real-time detection and mitigation
of adversarial traffic. These findings collectively demonstrate
that CDAD offers a robust balance among security, computa-
tional efficiency, and latency optimization, ensuring a secure,
adaptive, and low-latency defense framework against evolving
malicious attacks in H2M applications.
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