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Abstract
Superconducting circuits are a powerful platform for studying and controlling the
interaction between light and matter at the quantum level. In these systems,
superconducting qubits act as artificial atoms (with matter-like degrees of freedom),
whereas microwave resonators play the role of oscillators hosting photons (with
photonic-like degrees of freedom). A major advantage of this platform is the ability
to tailor the electromagnetic environment to which the qubits are coupled. This
degree of control makes it possible to realize well-known quantum optics models,
like the Jaynes-Cummings model, as well as more complex systems, like quantum
electrodynamics close to a bandgap.

In this thesis, we engineer structured electromagnetic environments and couple
superconducting qubits to them to experimentally study their interaction. By
coupling multiple microwave resonators together, we create a metamaterial. When
an atom interacts with the metamaterial, an atom-photon bound state emerges. We
observe the dynamics of the creation and dissolution of the atom-photon bound state,
as well as the spectral content of its photonic component, for the first time to our
knowledge. Our metamaterial is intrinsically nonlinear because each resonator is
formed by an array of Josephson junctions to serve as an inductor. When the system
is pumped, its phase diagram exhibits multimode dissipative phase transitions with
timescales on the order of hundred seconds. There is ongoing theoretical debate about
whether such phase transitions can occur in one-dimensional systems, a question we
address and resolve in this work.

Furthermore, we engineer qubit decay using two different approaches. In the
first one, we engineer the decay of two coupled atoms to two waveguides by using a
symmetric–antisymmetric coupling configuration. This approach enables selective
coupling to bright and dark states of the system. In the second one, we suppress the
Purcell decay of a qubit using a compact lumped-element Purcell filter. In addition,
we characterize the Purcell decay by employing an auxiliary superconducting qubit
as a sensitive power detector directly coupled to the feedline waveguide used for the
qubit readout.

In summary, this thesis presents three different methods for controlling light–matter
interactions in structured quantum systems, including decay suppression with both
Purcell filters and symmetry-selective couplings. The thesis also introduces new
experimental techniques for probing atom-photon bound states and provides direct
evidence of collective phenomena in driven-dissipative quantum metamaterials.

Keywords: Metamaterial, superconducting circuits, high-impedance resonators,
lumped resonators, dissipative phase transitions, Purcell filters, waveguide quantum
electrodynamics
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Part I

Introduction





Chapter 1

Control light-matter interactions

The study of light–matter interactions lies at the heart of modern quantum physics.
From the first demonstrations of cavity quantum electrodynamics (QED) with atoms
in optical cavities [1, 2] to today’s circuit-based realizations using superconduct-
ing qubits [3–5], controlling how a quantum emitter couples to its electromagnetic
environment has enabled profound advances in our understanding of coherence, entan-
glement, and measurement. In recent years, the ability to engineer the environment
itself, through artificial structures such as metamaterials [6–8], has opened entirely
new regimes of quantum control.

Circuit quantum electrodynamics (cQED) provides a uniquely powerful platform
to study these questions [5, 9]. Superconducting qubits coupled to engineered mi-
crowave environments combine strong nonlinearity, long coherence times, and nearly
arbitrary design flexibility. By constructing networks of resonators, transmission
lines, and Josephson-junction-based metamaterials, one can tailor both the density
of photonic states and the dissipative pathways available to the system [10–12]. This
level of control enables experiments that probe the interface between quantum optics,
condensed matter, and non-equilibrium statistical physics [6, 13, 14].

In waveguide quantum electrodynamics (wQED) [9, 15, 16], emitters are coupled
to one-dimensional photonic continua, either open transmission lines [10, 17] or
photonic structures with engineered spectral features, such as metamaterial waveg-
uides [12, 18, 19]. Unlike conventional cavity QED systems, where interactions are
confined to discrete resonant modes, waveguide QED enables light–matter coupling
in open, broadband, and spectrally structured environments. This setting allows
for the exploration of phenomena such as collective effects [20–28], non-Markovian
dynamics [29, 30], and the formation of atom–photon bound states [12, 18, 31, 32].
These effects highlight the potential of engineered one-dimensional photonic systems
as versatile platforms for both fundamental studies of open quantum systems and
applications in scalable quantum technologies.

In this thesis, we explore how the coupling to the environment can be designed to
control light–matter interactions in superconducting quantum circuits. We present a
series of experiments that collectively demonstrate how engineering both the photonic
spectrum and the dissipative channels of a quantum system can give rise to new
regimes of quantum dynamics. These include the controlled engineering of qubit

3



4 1.1. Thesis outline

decay through symmetry and Purcell filtering, the realization and characterization
of atom–photon bound states in metamaterials, and the observation of multimode
dissipative phenomena in nonlinear resonator arrays. Together, these results establish
new ways to control and understand light-matter interactions in superconducting
quantum systems, showing how engineering the environment and the coupling to it
can be used as a powerful tool for quantum science.

1.1 Thesis outline
This thesis is organized into four main chapters.

Chapter 2 establishes the experimental and theoretical foundations on which the
subsequent work is built. It introduces the design principles of artificial atoms and
quantum resonators, explains their mutual interaction through the Jaynes–Cummings
model, and describes their interaction with the environment within the Lindblad
master equation formalism.

Chapter 3 examines how decay rates to the environment can be engineered in two
distinct systems. The first, discussed in Paper 4, consists of an artificial molecule
directly coupled to the environment, where selective coupling into two separate
waveguides is achieved. The second system, presented in Paper 3, features an atom
dispersively coupled to a lumped-element readout resonator. Here, the insertion of a
Purcell filter between the resonator and the feedline suppresses the Purcell decay,
while an auxiliary transmon directly coupled to the waveguide enables its direct
measurement.

Chapter 4 goes one step forward by structuring the waveguide to which the atom
is coupled to. We engineer the waveguide into a metamaterial with transmission
bands and bandgaps. When the atom is coupled at the edge of the transmission
band of the metamaterial, the excitation gets trapped around the physical position
of the resonator that the emitter is coupled to, giving rise to an atom-photon bound
state. In Paper 1, we explore the formation of this state and demonstrate direct
measurement of its photonic component following a quench.

Finally, Chapter 5 explores the physics that occur in such metamaterial when
the system is strongly driven. In this setting, a dissipative phase transition emerges
between a quantum, weakly populated dim state and a semiclassical, highly populated
bright state. The detailed study of this transition is presented in Paper 2.

We give a conclusion and outlook for future studies in Chapter 6.



Chapter 2

Circuit QED Building Blocks

2.1 Introduction
In this chapter, we review the essential building blocks of the circuit quantum electro-
dynamics (cQED) framework that underpin the experiments presented throughout
this thesis. Circuit QED provides a versatile platform for engineering quantum
light–matter interactions by integrating microwave photonic structures with non-
linear superconducting elements. A clear understanding of these components and
how they couple is essential for interpreting the results discussed in the following
chapters.

This chapter is organized as follows. Section 2.2 introduces the coplanar waveg-
uides that define our feedlines. Section 2.3 discusses microwave resonators, one of the
central elements of the framework. In Section 2.4, we present the transmon, which
serves as an artificial atom and plays a central role in our work. Section 2.5 describes
the mechanisms by which these elements are coupled in superconducting circuits.
Section 2.6 introduces the Jaynes–Cummings Hamiltonian as the theoretical model
governing the interactions between elements arising from their couplings. Finally,
Section 2.7 outlines the Lindblad master equation, which provides the framework to
account for environmental effects and dissipation.

2.2 Coplanar waveguides
A coplanar waveguide (CPWs) is a type of transmission line used ubiquitously in
superconducting circuits. CPWs are coplanar structures – all conducting elements lie
in the same plane – fabricated on a dielectric substrate. Their standard geometry, in
Fig. 2.1, consists of three superconducting strips: A central signal-carrying strip and
a pair of ground conductors side-strips, running parallel to the signal strip. These
structures are deposited on a dielectric substrate such as silicon. The propagating
mode has both the electric and magnetic field components perpendicular to the
propagation direction (TEM mode) [33].

A waveguide is described by a collection of propagating photonic modes with a
wavevector k and corresponding frequency ωk. Therefore, their Hamiltonian is

5



6 2.3. Resonators

Figure 2.1: Micrograph of a standard CPW design in circuit QED.
Superconducting material is in light gray, the dielectric is in dark gray.

Hfield =
∑

ℏωka†
kak (2.1)

Or, in the continuum limit

Hfield =
∫
ℏωk a†

kak dk (2.2)

In this expression, ωk is the angular frequency of the photonic mode energy with
wavevector k, a†

k (ak) is its corresponding creation (annihilation) operator. These
operators satisfy the canonical commutation relation

[
a, a†

]
= 1; ℏ is the reduced

Planck constant.

2.3 Resonators
Superconducting microwave resonators possess photon-like degrees of freedom. Their
Hamiltonian, derived from an LC circuit and after using second quantization, takes
the form:

H = ℏω
(

a†a + 1
2

)
(2.3)

Here, ω is the angular frequency of the resonator. The term 1
2ℏω represents the

zero-point energy, which does not affect the dynamics and will be omitted in the
following.

The resonator behaves as a quantum harmonic oscillator with an infinite ladder
of equally spaced energy levels. Their energy is given by

En = ℏω
(

n + 1
2

)
, n = 0, 1, 2, . . . (2.4)

The quantum number n corresponds to the number of photons in our resonator,
and corresponds to the Fock state |n⟩. A schematic of a resonator and its energy-level
scheme is given in Fig. 2.2. LC resonators in circuit QED play a central role and
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(a)

Energy

0

(b)

Figure 2.2: Quantum resonator diagrams. (a) Circuit diagram. (b) Harmonic
energy diagram.

Figure 2.3: False-colored micrographs of different resonator designs in
Papers 1, 2, 3. (a) Distributed resonator, (b) Lumped resonator with Josephson
junctions, (c) Two lumped resonators with Josephson junctions.

their applications include reading out the qubit state [3] and as unit of computation
in continuous variable quantum computing [34, 35].

Depending on their spatial structure we can define two types: Distributed linear
resonators and lumped resonators. In Fig. 2.3, we present three different false-colored
images of the resonators that were used in Papers 1, 2, 3.
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2.3.1 Distributed resonators
When a CPW is terminated on both ends with either a short or open boundary
conditions, it becomes a distributed resonator, supporting a discrete set of standing-
wave modes. The resonant frequencies are determined both by the length and
boundary conditions at the ends.

If both ends have the same boundary conditions, either open or shorted, it is
a λ/2-resonator. In this case, the resonator resonates at frequencies for which the
length of the resonator is an integer multiple of λ/2. On the other hand, if the
resonator has asymmetric boundary conditions, one open and the other one shorted,
it is a λ/4-resonator. In this case, it resonates at frequencies for which the length
of the resonator is an integer multiple of λ/4. These modes have a voltage node at
the grounded end and a voltage antinode at the open end. Distributed resonators
are widely used in circuit QED because their resonance frequency is set primarily by
their physical length, which makes them easy to design and fabricate.

In Paper 1, a λ/4-resonator has been used to readout the state of the qubit
through dispersive readout [5, 36]. Its microscope picture is false-colored in green
in Fig. 2.3(a). In this picture, we observe how the lower end of the meandering
structure is left shorted to ground and the one on the top is left open.

2.3.2 Lumped resonators
For scalability of superconducting circuits, compact alternatives to the standard
CPW resonators are highly desired. When the physical size of a resonator is much
smaller than the wavelength at its resonant frequency, the resonator can be modeled
as a lumped LC-circuit. In the frequencies of our interest, this limit occurs when the
resonator is less than 3 mm (approximately ten times smaller than the wavelength).
Unlike distributed resonators, lumped resonators rely on an inductor (L) and a
capacitor (C) to define the resonance frequency, according to

ωr

2π
= 1

2π
√

LC
(2.5)

In order to reach the resonant frequencies in the nominal range of 4−8 GHz, high
inductances are required in the lumped resonators. Three different approaches are
commonly used. The first one is to use of high-kinetic inductance materials, such as
granular aluminum (grAl), TiN [37] or NbN [38] for the fabrication of the resonators.
This approach requires the development of new fabrication techniques. The second
one is to use special geometric inductances of superconducting wires, usually thin
spiral resonators [12, 39, 40], which require very large elements and precise control
of their geometry. The third approach is to integrate arrays of Josephson junctions,
which have a large inductance in a compact geometry [41]. However, they introduce
non-linearity to the inductance.

In Papers 1 and 2, Fig.2.3(b), our metamaterial array is composed of 21 lumped
non-linear resonators with dimensions on the order of 200 µm, far below the limit.
In Paper 3, Fig.2.3(c), we use this type of compact resonator to readout the state
of our qubit and as Purcell filters, with dimensions between 100 and 600 µm. In



Chapter 2. Circuit QED Building Blocks 9

JLC

g

e

f

h

i

Energy

0

(a) (b)

Figure 2.4: Transmon diagrams. (a) Circuit diagram. (b) Anharmonic energy
diagram in orange compared to the harmonic diagram of the harmonic oscillator
in blue.

comparison to the previous approaches mentioned here, our approach uses the high
inductance of the Josephson junctions. Still, its non-linearity is scaled by the number
of Josephson junctions in series [42], which ranges between 10 and 55.

2.4 Transmon qubit as an atom
The transmon qubit is a superconducting circuit composed of two superconducting
elements forming a capacitor as well as shunted via a Josephson junction, which
acts as a nonlinear inductor [43, 44]. Together, these components form a quantum
anharmonic oscillator, in which the capacitor stores the kinetic (or charging) energy,
and the inductor stores the potential (or inductive) energy. The Hamiltonian of the
transmon in the second quantized form, is:

H = ωqb†b + α

2 b†b†bb (2.6)

In this expression, ωq is the qubit transition frequency given by ωq =
√

8EJEC −
EC , and α the anharmonicity given by α = −Ec. The anharmonicity is crucial: it
breaks the degeneracy between transitions, allowing individual energy levels to be
addressed [5, 9, 36]. If we compare this Hamiltonian to the quantum resonator in
equation 2.3, we observe that their difference is the non-linear term arising from the
Josephson junction. The transmon circuit and energy diagram is in Fig.2.4.

If we limit the Hilbert space to the first two levels, this Hamiltonian can be
reduced to:

H = 1
2ℏωqσz (2.7)

where σz is the Pauli z-matrix. Since the transition between the ground state
and the first excited state can be well isolated from higher-order transitions, the
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Figure 2.5: False colored micrographs of the different transmon geome-
tries in this thesis. (a) Transmon design with a circular shape colored in blue,
from Paper 1. (b) Standard X-mon for Paper 3, (c) Two split transmons for
Paper 4. Top inset: SEM picture of JJ similar to the one in the white squares in
designs (b) and (c). Bottom inset: Microscope picture of the SQUID in the white
square in (a).

transmon is commonly regarded as a two-level system, and we use the Hamiltonian
in 2.7 as an approximation at low powers.

In addition, to mitigate sensitivity to charge noise, the transmon is typically
operated in the regime EJ/EC ≥ 50. In this regime, the energy bands flatten
with respect to offset charge, and the qubit energy levels become exponentially less
dependent on charge noise. Transmons are designed with a anharmonicity of the
order of 200 MHz.

In Fig.2.5, we show the optical micrographs of transmons of various geometries
that were used in the Papers of this thesis. Each micrograph also features an
inset zooming in on the device’s Josephson junction or Superconducting Quantum
Interference Device (SQUID), which consists of two parallel Josephson junctions
allowing a flux-tunable EJ . When its two junctions are of different areas, the
SQUID is asymmetric. The total Josephson energy given in a SQUID, considering
its symmetry, is given by [45]

EJ(Φ) = EJΣ cos
(

πΦ
Φ0

)√√√√1 + d2 tan2
(

πΦ
Φ0

)
(2.8)

With EJ1 and EJ2 the charging energy of each Josephson junction that forms
the loop, Φ the applied flux, and Φ0 the flux quantum. EJΣ = EJ1 + EJ2 and
d = (η − 1)/(1 + η) is the junction asymmetry parameter, with η = EJ1/EJ2.

2.5 Coupling between the elements
In free space, a single photon traveling through vacuum has a very low probability of
interacting with an atom. Even if the two of them happen to interact, their coupling
strength is weak, leading to low absorption or emission rates.

To enhance the interaction between atoms and photons, we must confine the
photon field, for example, using a cavity. In this chapter, we will explain the different
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mechanisms to enhance the coupling between the building blocks in our system,
giving rise to emergent light-matter interaction phenomena.

2.5.1 Capacitive and inductive coupling
The Hamiltonian between two coupled systems takes the generic form

HT = H1 + H2 + Hint (2.9)

with HT the total Hamiltonian, H1,2 the Hamiltonian of the two systems and Hint

the interaction Hamiltonian, which couples the two systems.
There are two main coupling mechanisms to make photons and atoms interact:

capacitive and inductive couplings. In the capacitive coupling, energy is transferred
between two elements through a shared electric field. It occurs when two conductive
elements are placed near each other and separated by a dielectric, forming a capacitor.
In a parallel plate capacitor, the value of the coupling capacitance is given by:

Cc = ε
A

d
(2.10)

In which Cc is the coupling capacitance, ε the permittivity of the dielectric, A the
area of the plates, and d the separation of the plates. The interaction Hamiltonian
has the form

Hint = CcV1V2 (2.11)

with V1(V2) the voltage between the two nodes to which the capacitor is connected [36].
In the case of inductive coupling, energy is transferred via a shared magnetic field

between two current-carrying conductors, usually coils or loops. When the current
in one coil changes with time, it produces a changing magnetic field. Faraday’s law
relates this changing field to an induced voltage in a second coil given by:

V2 = M
dI1

dt
(2.12)

In which V2 is the voltage in the second coil, M is the mutual inductance, which
quantifies the strength of the inductive coupling, and I1 is the current through the
first coil. In this case, the interaction Hamiltonian has the form

Hint = MI1I2 (2.13)

with I1(I2) the current in each one of the loops [36].
In Papers 1 and 2, we implemented capacitive coupling between transmons and

resonators, between the charge lines and the transmon, and the resonators to each
other (to form the metamaterial). We used inductive coupling to couple the flux
line to the SQUIDs and the λ/4 resonators to the transmission line. In Papers 3
and 4, we used capacitive coupling to couple the transmon to the readout resonator;
the readout resonator to the waveguide; and to couple directly the transmons to the
transmission line.



12 2.6. Jaynes-Cummings Hamiltonian

2.6 Jaynes-Cummings Hamiltonian
The Jaynes-Cummings model (JCM) describes the interaction between a two-level
system (like our transmon qubit) and a single mode of quantized electromagnetic
field (a resonator). Under the assumption that the number of excitations is preserved
(rotating wave approximation, RWA), the Hamiltonian reads

HJC = ℏωra
†a + 1

2ℏωqσz + ℏg
(
a†σ− + aσ+

)
(2.14)

In this expression, we combine the two Hamiltonians in 2.7 and 2.3 and add an
interacting term. The interaction term, g

(
a†σ− + aσ+

)
with σ− (σ+) the atomic

lowering (raising) operators, represents energy exchange between the atom and the
field.

In our case, the detuning between the two-level system and the electromagnetic
field energies is larger than their coupling, which means that the number of excitations
exchanged is suppressed, and the effect of their coupling is that their frequencies get
dressed. This is called the dispersive regime, and the Hamiltonian is

Hdisp ≈ ℏω′
ra

†a +
ℏω′

q

2 σz (2.15)

In which we have substituted what are called, the bare energies ωr, ωq with their
dressed energies ω′

r, ω′
q. The relationship between these two values is

ω′
r = ωr + χσz, ω′

q = ωq + χ (2.16)

2.7 Lindblad master equation
We already described the Hamiltonian of a 2-level system interacting with an elec-
tromagnetic field. However, the system is not isolated from the environment, so
we require a new equation that describes it. This is achieved using the Gorini-
Kossakowski-Sudarshan-Lindblad master equation, also known as the Lindblad
master equation, which generalizes the Schrödinger equation to open quantum sys-
tems. This equation uses the description of the system given by the density operator
ρ, in which the system’s state could be a statistical mixture of pure states.

ρ =
d∑

i,j=1
ρij |ϕi⟩ ⟨ϕj| =


ρ11 ρ12 . . . ρ1d

ρ21 ρ22 . . . ρ2d
... ... . . . ...

ρd1 ρd2 . . . ρdd

 (2.17)

In this equation, |ϕi⟩ and |ϕj⟩ are the basis states. The diagonal elements of the
density matrix, ρii, are the populations and they denote the probability of finding
the system in the respective basis state. The off-diagonal elements, ρij , are known as
coherences and quantify the degree of the coherent superposition of the basis states
|ϕi⟩ and |ϕj⟩.
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The Lindblad master equation reads

d
dt

ρ = Lρ = −i[H, ρ] +
∑

j

κjD [Lj] ρ (2.18)

in which L is called the Liouvillian superoperator and the dissipator superoperator
D is defined as

D [Lj] ρ = D[Lj]ρ = LjρL†
j − 1

2
(
L†

jLjρ + ρL†
jLj

)
for any of the dissipation process represented by the operator Lj. For a standard
two-level system, we can write the master equation as

dρ

dt
= − i

ℏ
[H, ρ] + Γ1D [σ−] ρ + Γϕ

2 D [σz] ρ (2.19)

Here, Γ1 is the total energy-relaxation rate defined as Γ1 = Γr + Γn, containing
the radiative part, Γr, directly associated with the electromagnetic field and the
non-radiative part, Γnr which is associated with the rest of the environment of the
2-level system. Γϕ is the pure dephasing rate.

The energy-relaxation time, also called longitudinal relaxation time, is defined
as T1 = 1/Γ1. Caused by sources of transverse noise, energy-relaxation time is the
characteristic time of decay of the first excited state to the ground state of the 2-level
system.

The pure dephasing time is defined as Tϕ = 1/Γϕ. This timescale characterizes the
randomization of phase relationship in a 2-level system’s state without any change
to the population of the basis states. Specifically, pure dephasing causes the decay of
the off-diagonal terms in the density matrix, and arises from longitudinal noise, does
not involve a resonant process, and corresponds to elastic processes, which makes
the effect reversible in principle.

The full transverse relaxation time is defined as T2 = 1/Γ2 = Γ1/2 + Γϕ. The
parameter T2 characterizes the overall loss of coherence in a superposition state,
arising from the combined effect of the energy relaxation (due to transverse noise)
and pure dephasing (due to longitudinal noise).

2.8 Black-box superconducting circuit quantiza-
tion

When the number of components in a quantum circuit grows, the Jaynes–Cummings
model becomes insufficient for describing the system dynamics. To address this
challenge, black-box quantization is a semi-classical alternative [36, 46, 47].

The method begins with a linearization of the circuit. All Josephson junctions
are treated as linear inductors, allowing the rest of the system to be described in
terms of its effective response function, expressed as the admittance seen by the
junction. From the admittance, one can directly extract the normal modes of the
system, each characterized by a resonance frequency and a dissipation rate. And,
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by reintroducing the nonlinearity, the effective Hamiltonian can be obtained. We
explain the process in more detail in the following.

When dissipation is weak, the linearized circuit can be accurately approximated
as a set of RLC resonators coupled in series. In this case, the total admittance
simplifies to

Yj(ω) ≃ 1∑
m 1/Ym(ω) (2.20)

With each element having an admittance

Ym(ω) = 1
iLmω

+ iCmω + 1
Rm

(2.21)

Each RLC resonator represents a normal mode of the circuit with a resonance
frequency ωm = 1/

√
LmCm and a dissipation rate κm = 1/RmCm.

Then, reintroducing the nonlinearity perturbatively, we obtain an effective Hamil-
tonian that contains both self-Kerr and cross-Kerr terms.

H =
∑
m

ℏωma†
mam + Ej

[
1 − cos φj −

φ2
j

2

]
(2.22)

With φj = ∑
m φm,j the total phase difference across the josephson junction and

the phase difference between the two nodes of each oscillator φm,j = φzpf,m,j

(
am + a†

m

)
,

with φzpf,m,j = 1
ϕ0

√
ℏ

2ωmCm
. These terms account for the anharmonicity of qubits and

the interactions between different modes, making the model well-suited for practical
device design and analysis. This approach is used by QuCAT [47], which we used for
the designing of the devices in Paper 3 and Paper 4.



Part II

Experimental results





Chapter 3

Tailoring the decay rates of
artificial atoms and molecules

3.1 Introduction

Quantum systems are not isolated from their environment. On the one hand, coupling
to external modes is essential for driving, controlling, and reading out the system. On
the other hand, uncontrolled coupling to the bath inevitably leads to dissipation and
decoherence, as excitations leak into unmonitored degrees of freedom. In this chapter,
we explore two different approaches to tailoring decay rates to the environment.

In the first experiment, we explore the interaction of an artificial molecule compris-
ing two transmon-type elements, directly coupled to a continuum of propagating mi-
crowave modes. This work is related to waveguide quantum electrodynamics (WQED).
We engineer the coupling of two transmons to two waveguides in a symmetry-selective
manner, in such a way that specific transitions appear as bright to one waveguide
and dark to the other one [Paper 4]. This scheme enables efficient Raman frequency
conversion and the direct generation of spatially-separated Bell states, valuable for
distributing quantum entanglement [48–52]. It also opens possibilities for other
experiments related to quantum thermodynamics [53] and single-photon microwave
photodetection.

In the second experiment, in the context of circuit quantum electrodynamics
(CQED) setup [Paper 3], we engineer the dissipation and decay of a transmon coupled
to a resonator through the addition of a lumped-element Purcell filter with Josephson
junction arrays. Controlling the transmon’s decay rate is essential for extending qubit
lifetimes, minimizing information loss, and achieving high-fidelity gates. Furthermore,
we add an auxiliary, frequency-tunable transmon, directly coupled to the waveguide.
This transmon serves as an absolute power sensor to calibrate the input power, from
which we can directly determine the Purcell decay.

This chapter is structured as follows. In Section 3.2, we introduce waveguide QED
and derive the scattering parameters of an atom directly coupled to the waveguide. In
Section 3.3, we describe the experiment reported in Paper 4. Finally, in Section 3.4,
we describe the experiment reported in Paper 3.

17
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3.2 Direct coupling of an atom to a waveguide
Waveguide quantum electrodynamics (wQED) studies the interaction between quan-
tum emitters, such as qubits (transmons in our case), and the continuum of modes
supported by a one-dimensional (1D) waveguide through which itinerant photons
propagate [9, 20–28, 54–56]. This is in contrast to cavity or circuit QED (cQED),
which describes how an emitter couples to discrete, confined electromagnetic modes.
This distinction leads to fundamentally different phenomena: while cQED emphasizes
strong coupling, photon blockade, and dispersive readout through isolated modes,
WQED enables controlled dissipation into propagating modes, directional emissions,
and direct access to scattering properties of individual photons.

Compared to free-space emission in three-dimensional space, the one-dimensional
geometry of WQED further enhances the strength of light–matter interaction, making
WQED a powerful platform for probing open quantum systems. In our experiments,
we exploit WQED for symmetry-selective dissipation and absolute power calibration.

The Hamiltonian of a two-level system in the presence of a classical drive at
frequency ωL, in the rotating frame of the drive, and within the RWA, is

H

ℏ
= −∆

2 σz + Ω
2 (σ+ + σ−) (3.1)

Here, ∆ = ωL − ωq is the detuning between the drive and the atomic transition, Ω is
the Rabi frequency set by the drive amplitude, σz is one of the Pauli matrices and
σ+ (σ−) is raising (lowering) operator. This effective Hamiltonian captures only the
coherent part of the dynamics.

3.2.1 Emitted field
In the following measurements, we focus on measuring the radiation field emitted
into the waveguide. With the emitter directly coupled to the waveguide, the field
amplitude is proportional to the expectation value of the lowering operator.

σ− = |g⟩⟨e|, (3.2)

which lowers the atom from the excited state, |e⟩, to the ground state, |g⟩.
Its expectation value ⟨σ−⟩ quantifies the atomic coherence and the emitted field.
Formally, for any operator O, its expectation value is given by

⟨O⟩ = Tr (Oρ) . (3.3)

Using the Lindblad master equation in 2.18, we write the time evolution of expectation
values as:

d

dt
⟨O⟩ = − i

ℏ
⟨[O, H]⟩ +

∑
j

γj

(〈
L†

jOLj

〉
− 1

2
〈{

L†
jLj, O

}〉)
. (3.4)

Solving this equation for the lowering operator with the Hamiltonian in Eq. 3.1, and
in the steady-state limit,

〈
d
dt

σi

〉
= 0, yields the expression [57–59]



Chapter 3. Tailoring the decay rates of artificial atoms and molecules 19

⟨σ−⟩ = Ω Γ1 (∆ − iΓ2)
2
[
Ω2Γ2 + Γ1

(
∆2 + Γ2

2

)] (3.5)

This equation will be used in the input–output relations to compute the trans-
mission and reflection coefficients of the atom–waveguide system.

3.2.2 Input-output theory and scattering parameters
We treat the waveguide as an environment (bath) that mediates irreversible processes.
The emitter is then naturally an open quantum system, and its interaction with the
fields in the waveguide is governed by the Linblad master equation and input-output
theory. This theory states that the coherent output field, âout, is the sum of the
incoming coherent field, âout, and the field scattered by the two-level system. The
scattered field of the two-level system is proportional to the lowering operator σ−.

In the case, when the emitter is coupled at the end of a waveguide, referred to as
the reflection configuration, the input-output theory yields, at steady-state [59]:

αout = αin − i
√

Γr ⟨σ−⟩ (3.6)

Here, Γr is the coupling rate of the emitter to the waveguide and ⟨âin,out⟩ = αin,out are
the steady-state amplitudes of coherent fields. Furthermore, αin = Ω√

2Γr
. In another

case, when the emitter is coupled in a notch configuration, away from the ends of
the waveguide, it scatters the incoming field into two directions. Thus, only half
of the radiation is emitted back into the region of incoming field. Therefore, the
input-output thoery yields [10, 17]:

αout = αin − i
√

Γr/2 ⟨σ−⟩ (3.7)

Here, αin = Ω
2
√

Γr
.

On solving these equations in conjunction with the Linblad master equation, the
reflection coefficient for the reflective configuration is given by

r = αout

αin
= 1 − iΓrΓ1 (∆ − iΓ2)

Ω2Γ2 + Γ1 (∆2 + Γ2
2)

(3.8)

Here, Γ1 = Γr + Γnr, Γ2 = Γ1/2 + Γϕ, Γnr is the non-radiative coupling rate to the
environment other than the waveguide and Γϕ is the pure dephasing rate. In the
notch configuration, the transmission coefficient is given by

t = 1 − r = 1 − Γr

2Γ2

1 − i∆/Γ2

(1 + ∆/Γ2)2 + Ω2/(Γ1Γ2)
(3.9)

These expressions for scattering parameters are used in fitting the experimental
data in Paper 3 and Paper 4 to extract the exact values of Γr, Γ2, Γ1 and Ω. From
Ω, we can extract the input power to the system and the net attenuation in the
microwave input line.
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Figure 3.1: (a) False-colored image of the superconducting, artificial
molecule. The two transmons are colored in pink and purple, and the two
waveguides are in red and blue. Inset: SEM image of the Josephson junction of
the purple transmon. (b) Energy levels of the system after the formation of the
molecule. Red (blue) color represents the anti-symmetric (symmetric) waveguide
and molecule mode.

3.3 Selective coupling of a molecule to two waveg-
uides

In Paper 4, we hybridize two transmon qubits to form an artificial molecule. Because
the Hamiltonian of the molecule is invariant under exchange of the two transmons,
the resulting collective modes can be classified according to their symmetry under this
exchange, represented mathematically by the permutation operator [60]. Specifically,
the molecule supports symmetric and antisymmetric eigenmodes, that are also the
eigenstates of the permutation operator corresponding to the eigenvalue +1 and −1
respectively. We interface the molecule to two waveguides in a geometry engineered
to exploit the symmetry of its eigenmodes to achieve selective coupling.

3.3.1 Experimental implementation
The complete structure of our system includes two nominally identical split-island
qubit transmons [colored pink and purple in Fig. 3.1], made from aluminium. Each of
these transmons consists of two superconducting islands, which forms the capacitor
and a Josephson junction, acting as a non-linear inductor, shunting the two islands.
The two transmons are capacitively coupled to each other, with a coupling strength
equal to g/2π = 296.4 MHz. In addition, each atom is coupled to a pair of waveguides
in a specific geometry such that the modes of the molecule decay into one waveguide
or the other depending on the symmetry property of the mode.

3.3.2 Formation of the molecule
When we couple two atoms, their energy levels split, creating what are called the
symmetric and antisymmetric states of the molecule. The Hamiltonian of the system
is
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H =
∑

i=1,2

(
ωib

†
ibi + αib

†
ib

†
ibibi/2

)
+ g

(
b†

1b2 + b1b
†
2

)
(3.10)

In this expression, b†
i and bi are the annihilation and creation operators, ωi is the

transition frequency, αi is the anharmonicity of atom i; and g is the coupling rate
between the two atoms.

When the two atoms have the same transition energy, the resonant states |01⟩
and |10⟩ split by 2g into two hybridized states. The resulting states are |a⟩ =
(|01⟩ − |10⟩)/

√
2 and |s⟩ = (|01⟩ + |10⟩)/

√
2, which are antisymmetric and symmetric

states respectively. The eigenstates and eigenvalues resulting from the diagonalization
of the previous Hamiltonian up to the second excited state and their measured values
for Paper 4 are given in Table 3.1.

Eigenstate Bare states composition Eigenvalue Value/2π
|0⟩ |0, 0⟩ 0 0 GHz
|a⟩ |1, 0⟩ − |0, 1⟩ ω − g 5.6981 GHz
|s⟩ |1, 0⟩ + |0, 1⟩ ω + g 6.2909 GHz

Table 3.1: Eigentates and eigenvalues of the diagonalized Hamiltonian.

3.3.3 Selective coupling to the waveguide
Since the artificial molecule is much smaller than the wavelength of the excitation
frequencies (ωa/2π = 5.7 GHz and ωs/2π = 6.3 GHz), the incoming microwave
signals from the waveguide are spatially uniform across the device. In other words,
the molecule behaves as a lumped element, and a near-resonant drive does not acquire
any appreciable phase difference between the two transmons.

The symmetric and antisymmetric eigenstates correspond to distinct voltage
distributions across the circuit nodes (each isolated superconducting island). In the
symmetric state, voltage in the inner nodes of the molecule oscillate in phase while
being π out of phase with the outer nodes. In the antisymmetric state, voltage in
the same side nodes oscillate in phase. This relative phase differences for the modes
within the molecule are crucial. In the manner we engineer the coupling geometry,
we ensure that each waveguide is sensitive to a particular mode. For waveguide
S, the in-phase voltages of the symmetric state add constructively. In contrast,
out-of-phase nodes that couple to waveguide A interfere destructively, leaving the
symmetric mode to only decay into the waveguide S. Analogously, for waveguide
A, the in-phase voltages of the antisymmetric state directly couple and interfere
constructively. The two nodes coupled to waveguide S are out-of-phase in voltage
and interfere destructively. This phenomenon is illustrated in Fig. 3.2, in which
the phase relations of the voltages in the superconducting islands (nodes) make the
selective coupling mechanism visually clear.

We characterize the symmetry-selective coupling by measuring the reflection
coefficient with a VNA, |r|, for each waveguide for different input powers [Fig.3.3].
The reflection coefficient, given by Eq.3.8, depends on the rate at which each molecular
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Figure 3.2: Schematic of the symmetric and antisymmetric coupling to
the waveguide. (a),(b) A signal is sent through the symmetric (antisymmetric)
waveguide, no signal is detected in the antisymmetric (symmetric) waveguide
because of destructive interference.

mode couples to its corresponding waveguide, Γa,s, as well as its residual decay into
other channels, including the cross coupling to the opposite waveguide, Γ0

a,s.

When driving through waveguide A at an input power that corresponds to what
is called the magic power [Fig.3.3(a) in red], there is a complete suppression of the
reflection coefficient at the antisymmetric mode frequency ωa/2π. This behavior is a
signature that the transition |0⟩ ↔ |a⟩ is overcoupled to waveguide A and Γa > Γ0

a.
At the symmetric mode frequency ωs/2π, we instead observe only a shallow dip in
reflection, indicating that the symmetric mode is very undercoupled to waveguide A.

The situation is reversed when probing through waveguide S [Fig.3.3(a) in blue]:
the symmetric transition exhibits full suppression, while the antisymmetric transition
shows only a weak dip. This complementary behavior directly demonstrates the
symmetry-selective coupling of our device.

By analyzing the power dependence of the reflection coefficient, we further confirm
our interpretation [Fig.3.3(b)]. At low drive power, the reflection coefficient traces
nearly a full circle in the IQ plane, characteristic of coherent scattering from a two-level
system. As the power is increased, the circle contracts to a single point, consistent
with saturation of the transition and a crossover to incoherent scattering [10].

Fitting Eq.3.8 to the data, we find that the symmetric mode couples more strongly
than the antisymmetric one, largely due to the stronger capacitance between the
inner nodes connected to waveguide S. In addition, the residual loss channels Γ0

a,s

are dominated by leakage into the opposite-symmetry waveguide. Overall, the
antisymmetric state emits predominantly into waveguide A with a selectivity ratio
Γa/Γ0

a = 35, while the symmetric state emits predominantly into waveguide S with
Γs/Γ0

s = 47. We attribute the difference in selectivity between the two waveguides
to parasitic capacitance, which causes leakage into the unintended waveguide node.
This effect is more noticeable for the antisymmetric mode.
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Figure 3.3: Measurement of the reflection coefficient, r, for the two
waveguides. (a) Reflection coefficient’s magnitude for both waveguides at the
magic power for the symmetric and antisymmetric modes. The waveguide A is
colored red, the waveguide S is colored blue. (b) IQ plane at different input
powers. Solid curves are fits based on the model described in the text.

3.4 Purcell filter and characterization of the Pur-
cell decay

When we couple a qubit to a far detuned resonator for state readout, the system
operates in the dispersive regime. In this regime, the energies of the qubit and
the resonator get shifted by their interaction, but there is no excitation exchange
between the two subsystems. However, the qubit can still decay into the waveguide
through the resonator. This occurs because the resonator eigenstate acquires a small
qubit component due to the interaction. It is precisely this qubit component of the
resonator wavefunction that leaks into the waveguide, leading to an effective qubit
decay channel. This effect is called Purcell decay, and cannot be avoided even in the
dispersive regime. Moreover, there is a fundamental tradeoff: faster qubit readout
requires stronger coupling to the resonator, but this simultaneously enhances Purcell
decay, approximately given by κ( g

∆)2, with κ the coupling of the resonator to the
feedline, g the coupling between the qubit and the resonator and ∆ the frequency
detuning between them [5, 36].

In order to reduce the Purcell decay, a standard approach is to include what is
called a Purcell filter. This filter, reduces the indirect coupling of the qubit to the
waveguide without reducing its coupling to the resonator. Therefore, we can achieve
fast readout without qubit decay [61–64].

Several approaches have been taken to implement these filters [15, 65–83]. How-
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(a) (b)

Figure 3.4: Purcell filter device overview. (a) False-colored optical micrograph
of the device. In red: The power sensor. In purple: The Purcell filter. In green:
The readout resonator. In blue: The transmon qubit. Insets show close-ups of
the non-linear inductors. (b) Simplified circuit of the system.

ever, all of these approaches have the main limitation of using distributed resonators,
which have a large footprint, close to 4 mm per resonator.

In this work, we propose compact, lumped-element resonators fabricated with
Josephson junction arrays as readout resonators with dedicated Purcell filters. The
nonlinearity of the resonators is effectively suppressed by distributing it across
multiple junctions in each array, enabling measurements in the linear regime [42].
To complement this design, we integrate a frequency-tunable transmon directly
coupled to the waveguide, functioning as a power sensor. Once the attenuation
has been calibrated in the line, we can estimate the Purcell decay rate of the qubit
by measuring the rate of Rabi oscillations when driving the qubit via the readout
line [77]. The experimental device is designed to enable fast dispersive readout while
keeping the system very compact, similar to the dimensions of the transmon. In
addition, the design is extensible for multiplexed readout.

3.4.1 Experimental implementation
Our superconducting device, in Fig. 3.4(a), was designed with an optimizer built
on the lumped-element circuit of Fig. 3.4(b), implemented in QuCAT [47]. The
optimizer extracted resonance frequencies, decay rates, and couplings, and evaluated
them with a cost function that minimized the Purcell decay rate, Γp, while keeping
the resonator decay to the waveguide, κ, and the dispersive coupling, 2χ, as close
as possible to each other to obtain the highest SNR between the ground and the
excited state [84] and in the MHz range. Within these constraints, the optimizer
was free to adjust the frequency of each circuit element, while operating within the
dispersive regime, and the design of the Purcell filter.

The core of the device consists of two capacitively coupled lumped-element
resonators fabricated from arrays of Josephson junctions [Fig. 3.4(a)(b)]. Each
resonator is composed of a shunt capacitor to ground and an inductive element
formed by a series array of Josephson junctions. One of these resonators is coupled
to the feedline and functions as a Purcell filter, while the second is directly coupled
to the qubit and acts as the readout resonator.
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The Purcell filter is constructed from an array of 30 identical Josephson junctions,
yielding a total inductance of Lp = 5.8 nH. The readout resonator, built with
55 junctions, has a larger inductance of Lr = 7.79 nH. We use junction arrays
rather than single junctions to suppress the resonators’ intrinsic nonlinearities. The
nonlinearity scales with 1/N2

JJ , with NJJ the number of Josephson junctions in the
array. The suppression factors reach approximately 900 for the filter and 3025 for
the readout resonator. This ensures that both resonators behave linearly over the
operating range, avoiding unwanted Kerr effects that could degrade readout fidelity.

In addition, to suppress parasitic couplings to the transmission line, the Purcell
filter was realized with an elongated structure that increases the separation between
the transmon and readout resonator to the feedline. The readout resonator itself
is compact and strongly coupled to the transmon, g = 403.3 MHz. To further
enhance compactness and inter-element coupling, the ground plane between them
was intentionally removed.

A standard X-mon style transmon qubit is capacitively coupled to the readout
resonator, with a single Josephson junction serving as its nonlinear inductor. To
facilitate direct microwave control and excitation of the qubit, we include a dedicated
charge line in the design. The charge line is designed such that its induced relaxation
time exceeds the intrinsic relaxation time of the qubit, T1 = 120 µ s.

In addition to this protected readout architecture, the device incorporates a second,
frequency-tunable X-mon transmon directly coupled to the same transmission line.
This auxiliary qubit serves as a sensor for probing the attenuation at the line. This
qubit includes a symmetric superconducting quantum interference device (SQUID).
Frequency tunability is achieved by injecting magnetic flux into the SQUID loop via
a flux line and an external coil.

3.4.2 Characterization of the device
We use a VNA to measure the transmission parameter, S21, through the feedline
[Fig. 3.5(a)(b)]. The resonant modes of the system appear as dips in the transmission
spectrum, from which we determine the resonance frequencies of the two hybridized
resonators, ω1/2π = 7.31 GHz and ω2/2π = 7.89 GHz, and the sensor qubit at its
sweet spot, ωs/2π = 6.114 GHz. We use the second hybridized mode as our readout
mode, and we restrict our further analysis to the interaction between this mode and
the qubit.

We study the nonlinearity of the readout mode by measuring the transmission
S21 for different pulse amplitudes [Fig. 3.6]. We extract the number of injected
photons in the resonator by the readout pulse with a Stark-shift measurement of
the qubit frequency [85]. In this measurement, we track the qubit frequency as the
resonator gets populated. The average photon number in the resonator is given
by ⟨a†a⟩ = ∆ωq/2χ, where ∆ωq is the shift in the qubit frequency and 2χ is the
dispersive shift, measured directly with standard spectroscopy of the resonator at
qubit states |g⟩ and |e⟩.

We compare our measurements with the critical photon number, ncrit, which
gives an approximate bound for the average intracavity photon population above
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Figure 3.5: Transmission |S21| through the line depending on the fre-
quency. (a) |S21| around the sensor frequency, ωs/2π = 6.114 GHz. (b) |S21|
around the Purcell and resonator hybridized frequencies, ω1/2π = 7.31 GHz and
ω2/2π = 7.89 GHz, respectively.

which the dispersive approximation breaks down. This value is obtained from
ncrit = ∆2/(2g)2 = 27, where g is the qubit–resonator coupling strength, given by
g =

√
∆χ(1 + ∆/α) = 403.3 MHz, and α/2π = −240 MHz is the qubit anharmonicity

directly measured [5].
With increasing input power [Fig. 3.6], the mode frequency of resonator shifts

driven by two different mechanisms: the breakdown of the low-power dispersive
regime and the self-Kerr nonlinearity. For low photon numbers, n ≪ ncrit, the
response is linear and the resonator mode frequency remains unaltered. With the
addition of only a few photons, however, small frequency shifts on the order of a
few kilohertz emerge. Near the critical photon number, these shifts become larger
due to the contribution of both mechanisms, the nonlinearity and the failure of the
dispersive approximation. Above ncrit, nonlinearity dominates, leading to a bistable
behavior that is the hallmark of a Duffing oscillator [86].

We model this behavior with the standard Duffing oscillator response, which is
valid in the low-photon-number regime,

S21(ω, n) = 1 − κ

γT /2 − i(ω − ωr + Kn) (3.11)

with κ the radiative loss, γT = κ + γ the total decay rate, including the non-radiative
loss, γ, ωr the resonance frequency of the resonator, K is the self-Kerr nonlinearity,
and n is the intracavity photon number.

In practice, the measured transmission spectrum is also affected by environmental
factors, such as impedance mismatches and finite cable delays, which alter the ideal
resonance lineshape [87]. We account for these extrinsic effects by introducing an
overall amplitude factor, A, a phase offset, α, and a frequency-dependent time delay,
τ . The transmission expression becomes

S̃21(ω, n) = Aeiαe−iωτ S21 (3.12)
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Figure 3.6: Characterization of the nonlinearity of the readout mode.
(a) |S21| depending on the readout pulse amplitude and frequency. (b) |S21|
depending on the frequency for selected photon numbers, compared to the fitted
model (In black). (c) IQ plane of (b).

By fitting this model to the experimental data, we extract κ/2π = 2.1 MHz,
γ/2π = 1.8 MHz, and K/2π = −39.35 kHz. We compare the fitted value to the
nonlinearity expected from a simple two-hybridized model K = −Ec/(2N2

JJ) =
−58.342 kHz, with Ec the charge energy extracted from microwave simulations of the
capacitance matrix, and to the one inherited from the qubit, K = ( g

∆)4α = −21.2 kHz.

3.4.3 Single-shot measurements

We characterize the qubit readout by probing the response of the readout mode when
the qubit is prepared in the states |g⟩, |e⟩, and |f⟩ [Fig. 3.7(a)(b)]. We prepare the
qubit in the first excited state, |e⟩, with a π−pulse at the qubit frequency ωq = 3.73
GHz. The second excited state, |f⟩, is populated by applying two sequencial π−pulses
to drive the |g⟩ → |e⟩ and |e⟩ → |f⟩, respectively. The second state is at ω|f⟩

q = 3.49
GHz. After preparing the desired qubit state, we monitor the corresponding shift in
the resonator response to extract the state-dependent dispersive signatures. From
this measurement, we extract the dispersive shift, 2χ/2π = 4.36 MHz, and we identify
ωr/2π = 7.889 GHz as the frequency that provides the maximum separation in both
the real and imaginary quadratures for the states the three states [Fig. 3.7(a)(b),
dashed line].

We compare the dispersive shift to the coupling rate of the resonator to the
transmission line, and obtain a ratio κ/2χ = 0.492. This ratio indicates that the
readout operates in a regime where the dispersive shift is sufficiently large to resolve
the qubit states, while still comparable to the linewidth of the resonator. This
balance is crucial: if 2χ ≪ κ, the qubit states would not be distinguishable in the
resonator response, whereas if 2χ ≫ κ, the critical photon number decreases, limiting
the number of photons used to readout the state, and the distinguishability does not
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Figure 3.7: Single-shot characterization. (a) Real part of the single-tone
measurement of the readout resonator when the qubit is in |g⟩, |e⟩, and |f⟩.
Dashed line: Measurement frequency for maximum differentiation between the
three states. (b) Imaginary part of (a). (c) Assignment fidelity depending on
the integration time for the three prepared states. Dashed line: Maximum state
fidelity for |e⟩, and |f⟩ states. (d) Projection for the states |g⟩ and |e⟩ and
maximum measurement fidelity.

improve further, so the SNR gets reduced.
With the optimal operating frequency of the resonator established, we proceed

to characterize the single-shot performance of the readout. In quantum information
processing, single-shot readout is essential, since averaging over many repetitions
is incompatible with real-time feedback and error correction. For quantum error
correction (QEC) protocols in particular, the readout must be both high-fidelity, to
ensure reliable syndrome extraction, and fast, to avoid qubit decay or measurement-
induced transitions during the pulse. Failure to meet either condition compromises
the accuracy of the measurement and the effectiveness of the QEC cycle [88, 89].

The assignment fidelity is the probability of measuring the qubit in the state that
it was prepared, P (i|i⟩). To validate the readout of our system, we record single-shot
time traces of the resonator with a square template-matching procedure with an
integration window of 100 ns and record times up to 3.8 µs. Then, we average these
integrated traces over a total integration time, tint, and investigate the dependence
of the readout assignment fidelity on this time [Fig. 3.7(c)].

From the acquired single-shot histograms, we extract to the signal-to-noise ratio
from the single-shot histograms as

SNR2 ≡
∣∣∣∣∣ µg − µe

(σg + σe) /2

∣∣∣∣∣
2

(3.13)
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Prepared
|g⟩

Prepared
|e⟩

Prepared
|f⟩

Assigned |g⟩ 95.90% 3.60% 6.03%
Assigned |e⟩ 1.96% 94.73% 4.47%
Assigned |f⟩ 2.14% 1.67% 89.50%

Table 3.2: Tri-state assignment fidelity table with an integration time tint = 1.9 µs.

[75] with µg,e are the mean of the Gaussian distributions in states |g⟩ and |e⟩ and
σg,e their corresponding standard deviations.

As expected, the assignment fidelity improves with increasing integration time
because of the corresponding enhancement of the signal-to-noise ratio (SNR). However,
beyond a certain threshold, the fidelities of the |e⟩ and |f⟩ states begin to degrade.
This reduction arises from state mixing during the readout pulse. In contrast, the
assignment fidelity of the ground state |g⟩ continues to increase monotonically with
integration time up to 2.39%. We expect this value to keep increasing until saturation
at the value of the thermal population of the qubit 1.8%. This value is extracted
independently from the difference in amplitude of the rabi oscillations between |e⟩
and |f⟩ states with and without a π-pulse between |g⟩ and |e⟩ states [90].

We identify tint = 1.9 µs, as the integration time for which the assignment fidelity
for the excited state is maximal. At this integration time, we evaluate the confusion
matrix in Table 3.2. The diagonal elements of the fidelity matrix represent cases
where the qubit is correctly identified in the state in which it was prepared, and
thus should ideally approach 100%. Experimentally, we obtain assignment fidelities
of 95.9%, 94.73%, and 89.50% for the qubit prepared in the |g⟩, |e⟩, and |f⟩ states,
respectively.

We extract the measurement-induced dephasing in the steady state, βm, of our
qubit using the expression [5],

βm = 2κχ2n̄τm

χ2 + (κ/2)2 (3.14)

with n̄ the number of photons injected in the resonator, which we obtain indepen-
dently from a Stark-shift measurement, n̄ = 17.5, and τm is the integration time of
our signal. Then, we can extract the number of added photons by our amplification
chain as [5]

nnoise = βm

SNR2 − 1
2 (3.15)

nnoise = 17 photons, which is well above the quantum limit [84, 91]. The measured
infidelity in the prepared |g⟩ state is mainly attributed to residual thermal excitations
and charge noise that unintentionally populate the |e⟩ and |f⟩ states. These effects
can be mitigated by applying a pre-selection readout pulse to confirm initialization
in the ground state before the main experimental sequence [92]. Additionally, cross-
assignment errors in the |e⟩ and |f⟩ states can arise from excessive readout amplitude,
which distorts the measurement histograms. Reducing the readout drive power and
shortening the readout pulse duration would help minimize these effects.
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Figure 3.8: Purcell decay calibration. (a), (b) Real and imaginary parts of
the transmission of the sensor at the frequency of the qubit, ωs/2π = 3.735 GHz
for an input power Pin = −78.8 dBm. In black: The fitting by the model. (c)
Real part of the transmission at ωs/2π = 3.735 GHz for different input powers. In
black: The fitting by the model. (d) Rabi oscillations when the qubit is excited
from the transmission line for an input power Pin = −16 dBm. (e) Measured
Purcell decay (Red cross) compared to the obtained decay from the model.

The added noise by our gain chain limits the achievable signal-to-noise ratio (SNR)
during readout, and we require a higher readout amplitude. As a result, even when
the qubit is perfectly prepared, we cannot achieve a 100% discrimination fidelity,
due to a higher measurement-induced dephasing. The single-shot measurement
histograms for the |g⟩ and |e⟩ states [Fig. 3.7(d)] establish an upper bound on
the achievable measurement fidelity under the present experimental configuration.
The finite overlap between the two distributions results in a maximum fidelity of
Fm = 99.927% [93], which represents the intrinsic discrimination limit imposed by
the current setup. By improving the amplitication chain to four added noise photons,
we would approach the same Fm with a shorter integration time tint ≈ 447 ns.
In addition, in this case, we expect the assignment fidelities to approach Fm, as
measurement-induced transitions would be reduced.

3.4.4 Measurement of Purcell decay

Having validated the qubit readout fidelity, we next calibrate the Purcell-limited re-
laxation time to assess the performance of the Purcell filter. For this characterization,
we employ the transmon directly coupled to the feedline waveguide, which serves as a
calibrated power sensor [Fig. 3.8]. The transmon’s transmission response is strongly
dependent on the input power and can be accurately modeled using input–output
theory for a two-level system coupled directly to an open waveguide, as it was already
derived in Section 3.2 [10, 17, 59, 94, 95]. The corresponding transmission coefficient,
derived from Eq. 3.2.2 but including the effect of the environment, is expressed as
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S21 = beiθe−iωρ

1 − Γ1

2Γ2

1 − i ∆
Γ2

1 +
(

∆
Γ2

)2
+ Ω2

Γ1Γ2

 , (3.16)

where b, θ, and ρ account for port mismatch and cable delay effects. The parameters
Γ1 and Γ2 denote, respectively, the radiative coupling rate and the total decoherence
rate, with Γ2 = Γ1/2+Γϕ, where Γϕ represents the pure dephasing rate. The detuning
is defined as ∆ = ω − ωs, with ωs the resonance (plasma) frequency of the sensor,
and Ωs the Rabi rate in the sensor, which depends directly on the input power as

Ωs = 2
√

AκPin

ℏωs

, (3.17)

where A is the total input line attenuation, κ the coupling efficiency, and Pin the
input power at room temperature.

To perform the calibration, we apply a magnetic flux via an external coil to
tune the frequency of the transmon sensor to match the qubit frequency at ωs/2π =
3.73 GHz, a point detuned by more than 2 GHz from the sweet spot. At this
frequency, we measure the transmission through the feedline at very low input power
(Pin = −78.8 dBm) [Fig. 3.8(a–b)]. A reference background for the transmission is
obtained by detuning the sensor far from the qubit frequency, allowing subtraction
of the microwave components’ noise.

At this low-power limit, we assume Ωs ≈ 0 MHz and extract the decay and
dephasing rates Γ1/2π = 1.16 MHz and Γϕ/2π = 12.6 MHz, respectively. We
attribute the large dephasing rate to the sensor being operated far from its flux sweet
spot, where the device is more susceptible to flux noise [96]. A small systematic
deviation in the extracted S21 parameter is attributed to the qubit frequency (ωq/2π)
being located near the edge of the amplifier bandwidth (nominally 4–12 GHz), which
slightly degrades the measurement precision.

To further characterize the system, we measure the power dependence of S21
at the sensor frequency [Fig. 3.8(c)]. This dataset is fitted using the theoretical
model above, with the input line attenuation A as the only free parameter. All other
parameters are fixed to the values obtained from the low-power measurement. From
the fit, we extract A = −84.56 dB, which is in good agreement with the nominal
line attenuation of −80 dB, excluding the attenuation from the cables.

The Purcell-limited relaxation rate, ΓP (ωq), can then be determined directly
from the measured Rabi rate Ωq when the qubit is driven through the feedline at its
resonance frequency [77]:

ΓP (ωq) =
Ω2

q

4
ℏωq

APin
. (3.18)

Here, Ωq denotes the Rabi oscillation frequency of the qubit [Fig. 3.8(d)]. The input
power is directly calibrated using the attenuation factor A, which was determined
from the sensor measurements. This expression provides a quantitative link between
the qubit’s measured drive strength and its radiative decay into the feedline, enabling
an experimental verification of the Purcell filter’s suppression performance. For an
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input power of Pin = −16 dBm and a Rabi frequency of Ωq = 990 kHz, we obtain
a Purcell-limited lifetime of Tp = 3.66 ms. This value is significantly higher than
the predicted lifetime in the absence of the Purcell filter, Tp = 1/(κg2/∆2) = 0.4 µs,
and also exceeds the measured relaxation time of T1 = 120 µs. Furthermore, the
extracted result is consistent with the expected value obtained from quantum circuit
analysis [Fig. 3.8(e)].

3.4.5 Conclusion
In this experiment, we study an individual Purcell filter-resonator structure formed
by lumped-element resonators with Josephson junction arrays. The nonlinearity of
the resonators is scaled by the number of Josephson junctions in the array.

We obtain tri-state assignment fidelities over 90% even with a noisy amplification
chain and characterize the Purcell performance by directly extracting the Purcell
decay using an auxiliary transmon as power sensor. We extract a Purcell-limited
decay time exceeding 3.5 ms, substantially longer than the measured qubit lifetime
T1 = 120 µs, confirming the effective suppression of radiative loss through the Purcell
filter.

This design is compact and scalable, which makes it suitable for dense multi-qubit
architectures. This work provides a practical route toward next-generation quan-
tum processors and contributes to the realization of fault-tolerant superconducting
quantum computing platforms.



Chapter 4

Qubits coupled to metamaterials
based on Josephson-junction arrays

4.1 Introduction

In this chapter, we go one step forward in structuring the environment and study
the effect of an atom coupled to a 1D structured waveguide, a metamaterial, with
a spectral density that features bands and bandgaps. When an emitter is coupled
to the band edge of a metamaterial, its emission properties are strongly affected,
giving rise to an atom-photon bound state. Atom-photon bound states have been
studied both theoretically [97–109] and experimentally in different setups [12, 18, 32,
110–123]. These studies have focused on characterizing the exponential localization
of the photonic component of the atom-photon bound state using their interaction
with the metamaterial edges or making the atom-photon bound states interact
with each other [18, 31, 40, 120, 124]. Time-dependent studies have shown non-
Markovian dynamics, population exchanges, and photonic hoppings through the
metamaterials [19, 30, 120]. However, a detailed study of the dynamics in the
formation and melting of the atom-photon bound states and the mode decomposition
of these states had remained unexamined. In Paper 1, we addressed these questions.

This chapter is divided as follows: In Section 4.2, we introduce the metamaterial of
Paper 1, its experimental implementation, and its dispersion relation. In Section 4.3,
we introduce the formation of the atom-photon bound state (APBS). In Section 4.4,
we characterize our device. In Section 4.5, we study the dynamics involved in the
formation and the melting of the atom-photon bound state and identify the threshold
between adiabatic and non-adiabatic regimes. In Section 4.6, we directly measure
the photonic part of the atom-photon bound state, which turns into delocalized
modes that we collect at the output of our metamaterial after quenching the state.
In Section 4.7, we use this technique to characterize the APBS when changing its
hybridization state with the metamaterial and the dynamics when forming it.

33
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Figure 4.1: Metamaterial false-colored optical micrograph. (a) Metama-
terial device showing the resonator arrays and emitters. (b) Three resonators
composed of the JJs arrays and superconducing islands forming capacitors with
the ground plane.

4.2 Metamaterials
We define a metamaterial as an artificially structured material engineered to have
electromagnetic properties not typically found in natural materials. A key feature
of these systems is their engineered dispersion relation that features both bands, in
which propagation is allowed, and bandgaps, in which propagation is suppressed.
This band structure makes them analogous to photonic crystals and electronic band
structures well known in solid-state physics, in which spatial periodicity, either in
material composition or structural geometry, gives rise to allowed and forbidden
energy regions. Within the framework of wQED, the periodicity introduced into the
waveguide by the metamaterial modifies the photonic environment experienced by
the quantum emitters, enabling exotic light-matter interactions.

4.2.1 Experimental implementation
Standard experimental implementations of metamaterials include the use of dis-
tributed and lumped resonators [18, 19, 40, 120, 125]. In our case, we use an array
of capacitively coupled high-impedance lumped resonators, represented in Fig. 4.1.
Each resonator is formed by an array of Josephson junctions serving as an inductor
and a superconducting island capacitively coupled to the ground plane as a capacitor.
All resonators in the array are designed to be nominally identical. This homogeneity
is crucial because it ensures uniform electromagnetic properties through the structure,
so that the resonance frequency of the structures is the same. We include air-bridges
to couple the 9th and 11th resonators (counted from left) to two emitters realized
with transmons (Section 4.3 for more details). We add air-bridges to the ground
plane for the rest of the resonators to maintain electromagnetic homogeneity. In
addition, capacitive couplings between resonators are controlled by their physical
design and distance and give rise to nearest-neighbor couplings.

The characterization of the metamaterial’s resonators is obtained from microwave
simulations of their capacitance matrix and room-temperature resistance measure-
ments of their JJ arrays (in its non-superconducting state). From this, we extract
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the inductance of the array, Lr ≈ 11.7 nH, and the capacitance, Cr ≈ 75 fF. In
addition, the coupling capacitance between the resonators is Cj ≈ 5.3 fF .

From these simulations, the frequency of the resonator is ωr/2π = 1/(2π
√

LrCr) ≈
5.34 GHz. The relatively large inductance of these resonators leads to enhanced
impedance, Zr = 1/(ωrCr) ≈ 390 Ω. Based on the equation for the capacitive
coupling between two resonators

g/ℏ = 1
2Ccω1ω2

√
Z1Z2 (4.1)

. with Cc the coupling capacitor, ω1,2 is the resonance frequency of each resonator,
Cc the coupling capacitor and Z1,2 the impedance of each resonator. The large
impedance in our resonators has two direct consequences: the coupling between the
resonators is enhanced proportional to Zr and the coupling to an atom is enhanced
proportionally to

√
Zr. From the simulated values and the previous expression, we

obtain a resonator-resonator coupling, J/2π ≈ 190 MHz.
The nonlinearity scales as U ′ = U/Nr/N2

JJ , with Nr the number of resonators and
NJJ the number of junctions. Therefore, we assume that the system’s anharmonicity
is sufficiently small to be negligible at low powers, allowing us to approximate it as a
linear system in the following sections.

4.2.2 Tight-binding model Hamiltonian

The tight-binding model describes our system with nearest-neighbor interactions,
which lead to the formation of a photonic band structure. The Hamiltonian of the
metamaterial is

H =
N∑

n=1
ωra

†
nan + J

N−1∑
n=1

(
a†

nan+1 + a†
n+1an

)
(4.2)

in which N is the total number of resonators, a†
n and an are the creation and

annihilation operators of the n-th resonator, ωr is the bare resonance frequency of
each identical resonator, and J is the coupling strength between nearest neighbors.
This Hamiltonian is analogous to that of electrons in a periodic potential, and leads
to a cosine-shaped dispersion relation for the photonic modes

ωn = ωr + 2J cos
(

πn

N + 1

)
n = 1, . . . , N, (4.3)

In this expression, ωn is the frequency of the n-th mode of the system. The resulting
photonic band structure features a transmission band with a bandwidth of 4J and
centered around the bare cavity frequency ωr, and two bandgaps at higher and
lower energies. This tight-binding framework provides a simple yet powerful way to
understand the dynamics of the metamaterial and predict its spectral properties.
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4.2.3 Scattering parameters
The dispersion relation provides insight into the mode distribution within the trans-
mission band. However, to model the transmission coefficient, we employ input-output
theory. Specifically, we use the Green’s function [19] to describe the system’s response
to excitation at the input port, given by

aout (ω) = ain (ω) − i
√

κn

∑
m

Gnm(ω)Fm(ω) (4.4)

In this equation, ω is the probe frequency, aout (ω) is the output field for each
frequency, ain (ω) is the input field, κn is the coupling rate of site n to the output
port in the waveguide, Gnm is the Green’s function from site m to n and Fm(ω) is
the drive field at site m. The Green function is

G(ω) = (ωI − Heff)−1 (4.5)

The non-Hermitian Hamiltonian of the system is

Heff =



ωr − i
(

γ
2 + κ

)
J J ′ 0 s 0 0

J ωr − iγ
2 J J ′ . . . ... ...

J ′ J ωr − iγ
2 J

. . . 0 0
0 J ′ J

. . . . . . J ′ 0
... . . . . . . . . . ωr − iγ

2 J J ′

0 · · · 0 J ′ J ωr − iγ
2 J

0 0 0 0 J ′ J ωr − i
(

γ
2 + κ

)


(4.6)

In this Hamiltonian, we include a parasitic next-to-nearest neighbor coupling, J ′/2π,
to improve the fittings. γ is the non-radiative decay of each resonator, which we
assume to be 0, and κ is the coupling of the first and last resonators to the input
and output ports. We assume the coupling to the ports is the same on both sides,
and the non-radiative decay rates are the same for all resonators.

Combining equations 4.4, 4.5, and 4.6 and assuming that the excitation only
occurs at the first resonator, the transmission coefficient, S21, is

S21(ω) = −iκG21,1(ω) (4.7)

4.2.4 Transmission band
We study the transmission band of our metamaterial by measuring the scattering
parameter, S21, through the metamaterial input and output ports with a VNA. For
this measurement, we keep the two transmons almost 2 GHz detuned from the band
edge, so they do not participate in the measurement.

We extract from the transmission band’s bandwidth the resonator-resonator
coupling, J/2π = 220MHz, and from the center frequency of the band the resonator
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Figure 4.2: Dispersion relation and transmission of the metamaterial
using tight-binding model. (a) Dispersion relation of the measured data
(circles) compared to that obtained from tight-binding model (dashed curve). (b)
Transmission through the resonator array from both experiment (black curve)
and theory (red curve).

frequency, ωr/2π = 5.5075 GHz. These values are in good agreement with the ones
extracted from the microwave simulations.

We model the system with the tight-binding model using these values and with
the best-fit next-nearest-neighbor coupling rates[Fig. 4.2]. The best-fit transmission
curve show that the mode distribution in our measured transmission curve does
not perfectly match that predicted from the tight-binding model. We attribute this
deviation to the disorder that exists in our system, mainly arising from the Josephson
junctions in the resonators. Variations in the fabrication of these junctions lead
to shifts in the resonator frequencies, causing deviations from the ideal conditions
assumed in the tight-binding model. To account for this, we adopt a different
modelling approach, which we describe in Section 4.3.3

4.3 Atom-photon bound states
Coupling an emitter to a metamaterial leads to the formation of an atom-photon
bound state. Close to the band-edge of the metamaterial, the group velocity of
photons is significantly reduced, enhancing the light-matter interaction. As a result,
the photonic field becomes spatially localized around the emitter, leading to the
emergence of a bound state between the emitter and the photonic mode.

The atom-photon bound state is a hybridized state between an atom and a
photon. In this state, the atomic excitation of the emitter becomes entangled with
the photonic modes of the metamaterial. Unlike extended photonic states that
propagate through the metamaterial, the bound state’s photonic part exhibits an
exponentially decaying spatial profile centered on the site to which the emitter is
coupled. This exponential localization is controlled by the frequency detuning of the
atom from the band edge, and can mediate long-distance interactions with tunable
range between emitters [18, 19, 40, 97, 101, 120].
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This state is mathematically expressed as

|ΨAPBS⟩ = cEσ+|g, 0⟩ +
N∑

i=1
cia

†
i |g, 0⟩ (4.8)

In this expression, cE (ci) is the amplitude coefficient of the emitter-like (ith photon-
like) state, |g, 0⟩ is the ground state of the composite system, σ+ is the ladder
operator, and a†

i is the creation operator [101]. The probability coefficients depend
on the detuning between the emitter and the transmission band of the metamaterial.

4.3.1 Experimental implementation
In our case, we use two frequency-tunable transmon qubits as emitters. These trans-
mons are formed by a circular-like shape superconducting island as a capacitor and
an asymmetric SQUID as a non-linear inductor. The two emitters are independently,
fully controllable through both their charge (XY-control) and flux lines (Z-control).
They are coupled to the metamaterial at sites 10 and 13, respectively, and we include
two readout resonators to measure their states.

In Fig. 4.3, we show the complete false-colored optical micrograph of our device,
including its external connections and its installation in the dilution refrigerator
(More details on the experimental setup in Section 7). We have kept the left transmon
uncolored because it is kept at its lowest frequency and does not take part in the
following experiments.

Because of the asymmetry in the SQUID, the frequency tunability of the transmons
shows two flux-insensitive operating points (sweet spots). One of them is more than
2 GHz detuned from the transmission band of the metamaterial and the other one
is deep inside the metamaterial transmission band. This large frequency tunability
allows good control of the atom-photon bound state’s exponential localization, and
transitions between a point far away from the transmission band – in which the
emitter acts as a standard transmon and the atom-photon bound state has not been
formed – and at the band edge, in which the atom-photon bound state is completely
formed.

4.3.2 Tight-binding model Hamiltonian
The Hamiltonian of the complete system using the tight-binding model for the
metamaterial is,

H =
N∑

n=1
ωra

†
nan +J

N−1∑
n=1

(
a†

nan+1 + a†
n+1an

)
+ωqb

†b+ α

2 b†b†bb+g
(
a†

13b + b†a13
)

(4.9)

In this equation, we use the same terms as in Equation 4.2, adding the terms
corresponding to the emitter. b† (b) is the creation (annihilation) operator of the
transmon, ωq is its bare frequency, and α is its anharmonicity. The tight-binding
model is defined in real space; therefore, since the transmon is physically coupled
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Figure 4.3: False-colored optical micrograph of the device and its experi-
mental setup. The metamaterial device is colored in red, the used transmon is
colored in blue and the readout resonator in green. The charge line is also colored
in blue and the flux line in orange. The external connections include a Presto from
Intermodulation Products to down-convert and up-convert the signals, drive the
transmon and capture the emission from the metamaterial. The AWG controls
the frequency of the transmon to form and melt the atom-photon bound state.

only to the 13th resonator (from left), the coupling strength, g, is exclusively between
this resonator and the transmon.

4.3.3 Effective model Hamiltonian
We consider the effect of the metamaterial modes’ disorder in our system, already
reported in Section 4.2.3, by using an effective model derived from the measured
modes in the metamaterial. The Hamiltonian becomes

H =
N∑

n=1
ωna†

nan + ωqb
†b + α

2 b†b†bb +
N∑

n=1
gn

(
a†

nb + b†an

)
(4.10)

Using directly the dressed modes of the system is effectively a diagonalization
of the tight-binding Hamiltonian, with a change of basis from the spatial basis to
the energy basis of the system. The effect on the coupling of the transmon to the
system is that it is coupled to all the modes with which it interacts.

4.4 Characterization of the device
When the atom-photon bound state forms, the bare frequency of the transmon is
affected by its interaction with the metamaterial, and the resulting frequency is
shifted. In addition, the frequencies of the metamaterial’s modes are also affected
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Figure 4.4: Characterization of the formation of the atom-photon bound
state. (a) Frequency response of the emitter obtained from two-tone spectroscopy.
Measured: Light blue, bare: Dark blue. Dashed: Extracted from the Hamiltonian
in Eq. 4.9. (b) Measurement of the transmission and the metamaterial modes
deviation when the qubit frequency is swept. (c) Comparison between measure-
ment and prediction from the tight-binding model (dashed lines). (d) Comparison
between measurement and the effective model (dashed line).

by the creation of the atom-photon bound state. We measure this interaction both
from the transmon and from the transmission band side [in Fig. 4.4].

We measure the effect on the emitter [in Fig. 4.4 (a)] with a two-tone spectroscopy
measurement determining the transmon frequency while tuning the magnetic flux
in its asymmetric SQUID. Far detuned from the transmission band, the emitter’s
measured frequency follows the expected trend for an isolated transmon given by
Eq. 2.8. However, when the emitter frequency approaches the transmission band,
its frequency deviates from this expected frequency response and is prevented from
entering the transmission band. This is a clear feature of the creation of the atom-
photon bound state.

To measure the effect in the metamaterial modes, we measure the transmis-
sion band while changing the emitter frequency. The interaction with the emitter
[Fig. 4.4 (b)] affects the 9 lowest-energy modes, which shift in frequency and exhibit
avoided crossings.



Chapter 4. Qubits coupled to metamaterials based on Josephson-junction arrays 41

We model the creation of the atom-photon bound state using both models
[Fig. 4.4 (a),(c-d)]. In the tight-binding model [Fig. 4.4 (c)], the positions of the
metamaterial modes, especially those near the band-edge, are not accurately repro-
duced. This discrepancy is expected, as these modes are more sensitive to disorder
within the metamaterial. Nevertheless, the model successfully captures the frequency
of the atom-photon bound state. In contrast, the effective model [Fig. 4.4 (d)] repro-
duces both the atom-photon bound state and the metamaterial modes frequencies.
For this reason, we use the effective model to analyze subsequent measurements.

4.5 Dynamics in the formation and melting of an
atom-photon bound state

In our case, we form the atom-photon bound state by exciting the qubit far detuned
from the transmission band and bringing it close to the band-edge. We call the
reverse process melting.

To study the dynamics in the formation and melting of an atom-photon bound
state, we vary the flux Φ to transition between the flux value Φi at which the emitter’s
frequency is far away from the transmission band, and the flux value Φf , at which
emitter’s frequency is close to the band edge. Importantly, we vary the flux at
different rates. When the emitter is at Φi, it does not interact with the metamaterial
and acts as a standard transmon. However, when the emitter is at Φf , it interacts
with the metamaterial, and their excitation is completely hybridized, forming the
atom-photon bound state.

We measure how the excitation of the transmon is affected when we form and
melt the atom-photon bound state between ωq(Φi) ≈ 4.2 GHz and ωq(Φf) ≈ 5.2 GHz,
applying a trapezoidal flux pulse with a varying rise time, τr, ranging from 10 to
200 ns, a hold time, τhold, between 0 and 400 ns, and a fall time, τf , from 10 to
200 ns. The hold time controls the duration for which the atom-photon bound state
exists, while the rise and fall times control the dynamics of formation and melting,
respectively.

The complete pulse sequence [Fig. 4.5(a)] includes a π-pulse which excites the
transmon, the trapezoidal flux pulse described above, and a square pulse to the
readout resonator to measure the state of the transmon according to the dispersive
shift. The time between the end of the π-pulse and the readout pulse is kept constant
to remove the effect of decay in the system. In addition, we normalize the total
recovered population, P|1⟩, to a reference taken without the flux pulse.

The recovered population depends on both the hold time and the rise and fall
times, and exhibits two main trends [Fig. 4.5(b)]. The first one is that the averaged
P|1⟩ is reduced for shorter τr and τf . The second one is that there are oscillations in
the population depending on the hold time.

We study the frequency of these oscillations by doing a Fourier transform (FFT)
of the data [Fig. 4.5(c)]. Thereby, we identify that the frequency components of
the oscillations correspond to the distance between the modes in our system.This
result shows that when the rise and fall times of our system are below 200 ns, the
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Figure 4.5: Dynamics in the formation of an atom-photon bound state.
(a) Pulse sequence. (b) Measured recovered population in the excited mode. (c)
FFT of (b). (d) Model result of (b). (c) FFT of (d).

excitation in our transmon is transmitted to the metamaterial modes when forming
the atom-photon bound state. This is known as the non-adiabatic regime [126–129].
In this regime, there is a non-zero probability of population transitions from one mode
to the other, by Landau-Zenner tunneling. On the other hand, when the rise and
fall times of our system are 200 ns or higher, the excitation is almost fully recovered,
and no visible oscillations appear, proving that our system is in the adiabatic regime.

We study the Landau-Zenner dynamics in our system using the single-mode
equation

PLZ = exp(−2πΓ) (4.11)

which gives the probability that a quantum system will not make a transition between
two energy levels when they are swept through an avoided crossing. In this expression,
Γ = g2∆t/∆E with ∆E the energy difference between emitter’s initial and final
states, ∆t the τr, and g the coupling between the emitter and each metamaterial
mode. From this equation, we expect to cross over between two regimes at times
between 200-300 ns, which is compatible with our observations.
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We model these results with our effective model solving the Shrödinger equation
[Fig. 4.5(d-e)], which reproduces the qualitative behavior of our measurements but
with some quantitative differences. The difference in the recovered population for
τr=τf = 200 ns between our model and our experimental results arises likely from a
two-level system (TLS) near the metamaterial that reduces the recovered population
to P|1⟩ = 0.9. There are also differences in the FFT peak positions and intensities,
which we attribute to an incorrect model parameter estimate from the spectroscopy
data or the uncorrected flux-line transfer function causing distortions in the flux
pulses.

4.6 Emission of an atom-photon bound state
After identifying the threshold for the adiabatic and non-adiabatic regimes, we are
able to transfer the population from our atom-photon bound state to the metamaterial
by quenching the atom-photon bound state with a flux pulse with a τf = 10ns.

For this measurement, we adiabatically form the atom-photon bound state with
a τr = 300 ns and melt it with a τf = 10 ns. From the results we obtained before,
we expect this fast quench to transmit all the population of our atom-photon bound
state to the metamaterial modes. This population is then transmitted through the
metamaterial and collected at the metamaterial output.

Our measurement uses a 1 GHz bandwidth centered at 5 GHz. We choose this
center frequency to be able to both excite the transmon and measure the emission
up to the first nine modes of the metamaterial. We record the coherent emitted field,
⟨Ψ|a|Ψ⟩, of the metamaterial. Because the expectation value of the field amplitude of
a Fock state |n⟩ is equals 0, ⟨n|a|n⟩ = 0, we bring our transmon into a superposition
state with a π/2 pulse. We create the atom-photon bound state, let it stabilize for
40 ns, and finally, quench it quickly.

We measure the coherent component, ⟨aout⟩, of the outgoing field from the output
port of the metamaterial for 20 µs [Fig. 4.6(b)]. The FFT of the emitted field shows
peaks at the lowest frequency first nine modes of the metamaterial [Fig. 4.6(c)].

We demodulate the emitted field to extract the corresponding emission from
each of the metamaterial modes [Fig. 4.6(d) for modes 1, 4, and 7]. From this
measurement we observe that the decay time for the modes closer to the band-edge
is longer than for those closer to the center of the band. This result is expected from
the dispersion relation in our system. The modes at the band-edge, with a group
velocity approaching 0, interact less with the ports, and they decay more slowly
compared to those at the middle of the band.

We model the decay as an exponential function, Ae−t/τn and κn = 2π/τn and
compare the extracted decay rates, κ to the expected trend from tight-binding model
in Eq. 4.12 [Fig. 4.6(e)]. There is a correspondence between the two of them. We
attribute the deviations to a small SNR in the least-participant modes.

κn = κ sin2
(

π(n + 1)
N + 1

)
, n = 0, 1, . . . , N − 1 (4.12)
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Figure 4.6: Emission of an atom-photon bound state. (a) Pulse sequence
of the measurement. (b) Time trace of the emitted field over 20 µs. (c) FFT of
the emitted field. (d) Demodulated data for modes 1, 4, 7. (e) Decay rate of the
emitted signal compared to the expected one from the tight-binding model. (f)
Proportion of the emitted photons from each mode.

In this expression, κ is the decay rate of the center mode, n is the mode number, and
N + 1 is the total number of modes. Since we cannot estimate the value of κ directly
from our measurements, we use it as a fitting parameter. Finally, by integrating the
demodulated traces and then taking the results’ complex conjugate, we extract the
relative number of photons emitted, ⟨a†

outaout⟩, at each mode [Fig. 4.6(f)].
A quench in the emitter frequency effectively “freezes” the system, trapping the

populations in the instantaneous eigenstates that existed just before the quench.
As a result, the photonic component of these pre-quench states is released into the
metamaterial as propagating modes, which eventually decay into the output port
and then detected at the output port, with a linear-amplification measurement chain.

We interpret the measured ⟨a†
outaout⟩ as a decomposition of the photonic part of

the APBS, allowing us to extract a quantitative measure of the relative probability
densities described by Eq. 4.8. Since the emission originates from a single excitation
initially localized in the APBS, the resulting photonic modes are expected to be
quantum mechanically entangled. However, a detailed analysis of the correlations
between these modes, necessary to confirm and characterize their entanglement, is
beyond the scope of this work and left for future investigations.
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4.7 Control of the emission of an atom-photon
bound state

We explore the conditions for the formation of the atom-photon bound state and
their effect on the final mode composition by changing the final frequency of the
atom-photon bound state through Φf ; we study the dynamics of the formation
through τr. The pulse sequence of our measurement is similar to that in Fig. 4.6 but
includes the two tuning parameters in the flux pulse [Fig. 4.7 (a)]. Therefore, we
drive the transmon into a superposition state with a π/2 pulse, apply the flux pulse
with variable Φf or τr, and quench the APBS. We finally measure the emission of the
photonic populations of the APBS.

We create the APBS adiabatically with a variable final emitter frequency [Fig. 4.7
(a), (d)]. When the emitter is far away from the transmission band, there is no
emission, as the APBS is not formed yet. As the emitter approaches the band edge,
the emission from the lowest energy mode increases until it saturates close to the
band edge. This trend is interpreted as the full hybridization of the transmon with
the metamaterial and the formation of the APBS, with an increase in its photonic
component as the emitter and metamaterial hybridize. This trend is captured by
our model with some quantitative difference in the detuning from the band-edge.

In addition, we have a non-monotonic participation of the rest of the modes with
an exponential increase within the transmission band. This participation depends
mainly on the specific coupling of the emitter to the metamaterial modes. Our
effective model does not capture this trend.

The effect of the dynamics in the creation of the APBS [Fig. 4.7(c),(e)] from
adiabatic to non-adiabatic regime shows a transition from single to multimode
emission with exponential increase in the participation of modes closer to the band
center. Our model captures this trend, albeit with a deviation of approximately
100 ns.

4.8 Discrepancies between experimental results
and the effective model

We attribute these deviations between experimental results and effective model to a
combination of following factors:

1. Incorrect estimation of the coupling parameters between the emitter and the
transmission modes in the metamaterial:
We extract coupling values by fitting the spectroscopy data. This method can
introduce errors, especially for band-edge modes. These modes interact less
with the environment and need stronger driving, which can shift their frequency
response due to their nonlinearity.
We attribute to this factor the deviations in the peaks and frequency components
in Fig. 4.5(c),(e), and the non-monotonic participation of the modes close to
the band-edge in Fig. 4.7(b),(d).
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Figure 4.7: Control and modelling of the emission. (a) Pulse sequence. (b)
Recorded emitted photon number for an adiabatic formation of the atom-photon
bound state with different final frequencies. (c) Recorded emitted photons number
depending on the dynamics in the formation of the atom-photon bound state
close to the band-edge. (d) Effective model prediction of (b). (e) Effective model
prediction of (c).

2. Uncorrected flux line:

Flux pulses experience distortions in its profile as they propagate through
various microwave components in the flux line. A dominant distortion arises
from low-pass filters causing square pulses to be smeared into a smoother shape,
thereby altering their effect on the device [130, 131] and changing the dynamics.

This effect could explain the deviations in the peaks and frequency compo-
nents in Fig. 4.5(c),(e), and the exponential increase in the emission within
Fig. 4.7(b),(d), and the discrepancy in the transition between the adiabatic
and non-adiabatic regimes in Fig. 4.7(c),(e).

3. Uneven coupling to the measurement ports:

The disorder in our system can also affect the way that the different modes
couple to the ports. In this work, we only capture the emission from the output
port and lose the information at the input port.

This effect affects the relative proportion of the emission into the different
modes, and it is reproducible over repetitions of the experiment.
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4.9 Conclusion
In this experiment, we used a metamaterial, with transmission bands and band-gaps.
By coupling an emitter to this engineered environment, an atom-photon bound
state is formed. In this atom-photon bound state, the photonic component becomes
spatially localized around the emitter as a result of the metamaterial’s photonic
band-structure, particularly near the edges of a band gap.

Our experiment studies the dynamics of the formation and melting of an atom-
photon bound state. We identify the adiabatic and non-adiabatic regime and the
threshold between them. In addition, we directly measure the melting of an atom-
photon bound state following the quench of the emitter’s frequency, by detecting
its emitted radiation of its photonic component. Our study of this emission yields
a direct measure of the relative photonic probability densities in the atom-photon
bound state, a study not reported before. We expect our work to be used as a new
methodology for studying more exhotic bound states.





Chapter 5

Dissipation engineering and
emergent dynamics in a
metamaterial

5.1 Introduction
In this chapter, we study a first-order dissipative phase-transition that occurs in
a Bose-Hubbard metamaterial. Unlike closed systems, which evolve with purely
unitary dynamics, open quantum systems exchange energy and information with
their environment. By engineering dissipation channels and tuning a coherent drive,
it is possible to stabilize well-defined non-equilibrium steady states that lack an
equilibrium analogue [132–143].

Dissipative phase transitions occur when a steady state undergoes a qualitative
change as an external control parameter, such as drive amplitude or frequency detun-
ing, is varied. In first-order transitions, the system exhibits bistability, characterized
by the coexistence of two distinct steady states connected by a discontinuous jump.
Near the transition line, the relaxation dynamics slow down markedly, with timescales
that can exceed the system’s intrinsic rates by orders of magnitude. Such transitions
have been extensively studied theoretically [132–143], and observed experimentally
across a variety of platforms, including cold atomic gases [144–147], semiconduc-
tor quantum dots [148–151], and superconducting circuits [7, 152–163]. To date,
however, dissipative phase transitions had not yet been experimentally explored in
Bose–Hubbard metamaterials, which we address in Paper 2.

In this work, we study the driven-dissipative dynamics in a 1-D superconducting
metamaterial implementing a Bose-Hubbard lattice. In our experiments, we observe
signatures of a multimode first-order phase transition with record coherence times, as
high as 143 s. In addition, this work proves the existence of this type of transitions
in a Bose-Hubbard lattice, that was theoretically dismissed earlier [164].

This chapter is structured as follows: Section 5.2 introduces a standard theoretical
framework used to describe and understand first-order dissipative phase transitions.
In Section 5.3, we present the experimental implementation of our platform. In
Section 5.4, we present the theoretical framework we use to model our experiments.

49
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In Section 5.5, we explain our spectroscopy measurements showing the multimode
nature of the transition. In Section 5.6, we reconstruct the emission characteristics
and map the phase diagram of the transition. In Section 5.7, we analyze the system’s
dynamical response and validate the phase diagram. Finally, in Section 5.8, we
conclude our findings.

5.2 Liouvillian interpretation of first-order dissi-
pative phase transitions

An intuitive way to understand the emergence of dissipative phase transitions is
through the Liouvillian formalism [136]. In what follows, we use this framework to
illustrate the concept of dissipative phase transitions, even though our experimental
results are not explicitly modeled within this formalism.

5.2.1 Liouvillian

We describe our open quantum system using the Lindblad master equation (Sec. 2.7,
Eq. 2.18),

ρ̇(t) = Lρ(t), (5.1)

where the Liovillian superoperator, L, describes the dynamics of the system. In
practice, this means that the time evolution of the density matrix is always physical:
it preserves probabilities (trace preserving) and does not produce unphysical states
(completely positive).

For a time-independent Liouvillian, there is always at least one steady state, ρss,
defined by

Lρss = 0 (5.2)

This steady state is the long-time limit of the dynamics and, under general
conditions, is unique.

To understand not just the final state but the entire relaxation process, we look
at eigenvalue spectrum of the Liouvillian. Its eigenvalues describe how different
modes of the system decay or oscillate in time. The zero eigenvalue corresponds to
the steady state, while all others have negative real parts, which set the rates at
which excitations decay away. Imaginary parts, if present, mean oscillatory response.

The slowest of these decays is of particular importance. We call this the Liouvillian
gap, defined as the smallest (in magnitude) nonzero decay rate. It sets the timescale
over which the system relaxes to its steady state. If the Liouvillian gap is large, the
system relaxes quickly; if the gap is small, relaxation is slow.
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5.2.2 Dissipative phase transitions

Dissipative phase transitions occur in driven open quantum systems when their
steady-state behavior changes abruptly as a control parameter (for example, pump
power or detuning) is varied. Instead of relaxing to a single steady configuration,
the system can support multiple steady states [136].

From an experimental point of view, these transitions show up as sudden changes
in a measurable quantity: the system may abruptly switch between distinct states
of light intensity, resonance frequency, or qubit population. The underlying reason
comes from the spectral properties of the Liouvillian. At the transition point, the
so-called Liouvillian gap closes. Physically, this means the system takes longer and
longer to relax, a phenomenon known as critical slowing down. Near the transition,
switching between states becomes rare and slow, which is a direct signature in
time-trace measurements.

5.2.3 First-order dissipative phase transition
A first-order dissipative phase transition is the non-equilibrium analog of a first-order
transition in thermodynamics, such as liquid–gas condensation. At the transition
point, the system does not gradually change from one phase to another—instead, the
steady state jumps from one solution to a different one. Concretely, when the control
parameter is below the transition threshold, the system relaxes into one steady state,
while above the threshold it stabilizes in a completely different state. Exactly at
the transition point, both states can coexist, and the system may randomly switch
between them. In experiments, this manifests as bistability: the system can remain
in either a dim or a bright state, depending on fluctuations, history, and noise.

Near the transition point, the system often spends long times trapped in one
of two metastable states before eventually hopping to the other. This leads to
phenomena such as hysteresis (the observed state depending on the direction of
the parameter sweep), metastability (long-lived but not permanent states), and
extremely slow relaxation times—sometimes orders of magnitude longer than the
system’s natural timescales. These are the hallmarks of first-order dissipative phase
transitions.

5.3 Experimental implementation
We consider the one-dimensional Bose–Hubbard chain shown in Fig. 5.1 and simulate
its dynamics using the metamaterial introduced in Section 4.2. In Section 4.2, we
modeled the system as an array of linear resonators, which was sufficient when
restricting ourselves to the single-excitation manifold. However, in the present case,
the number of injected photons is large enough that the system’s intrinsic nonlinearity,
U , must be taken into account. The Hamiltonian that describes the system is given
by
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Figure 5.1: Schematic of a one-dimensional Bose-Hubbard chain. We
include the intracavity coupling J , a pump with power ϵ and frequency ωp,
dissipation γ, and non-linearity U . The equivalent circuit diagram is also included.
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(5.3)

In this model, ai and a†
i denote the annihilation and creation operators for the

i-th cavity, while ω0 specifies the common resonant frequency of all cavities. The
parameter Ui characterizes the strength of the on-site Kerr nonlinearity, J sets the
hopping rate between neighboring sites, ϵ is the normalized drive amplitude, and
ωp is the frequency of the external pump. Each cavity is subject to photon loss,
described by a Lindblad dissipator with decay rate γ in the Linblad master equation.

The Hamiltonian terms have clear physical interpretations: the first represents
the energy of the cavity modes (assuming identical resonators), the second accounts
for photon tunneling between adjacent sites, the third introduces the nonlinear
interaction that penalizes multiple excitations within a single cavity, and finally, the
fourth term drives the system by coherently injecting photons into the first site.
Dissipation into the environment is captured by the Lindblad term.

The behavior of the system at low power without adding any pump can be
modeled using a tight-binding model, already used in Section 4.4, from which we
extract ωr/2π ≈ 5.43 GHz and J/2π ≈ 209 MHz. In addition, we obtain the total
loss of the center resonator by fitting the expression S21(ω) = 2 κ

γ+2i(ω−ω0) [165]. In
this expression, κ is the total radiative decay to both the input and output ports,
and γ is the total decay. We obtain γ/2π ≈ 1 MHz with a non-radiative decay
γnr/2π = 10.25 KHz for mode thirteen, the pumped one in the following experiments.
Deviations from the previous numbers reported in Section 4.4 arise from the aging
of the Josephson junctions in our metamaterial, which changes the frequency of the
modes [166].
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5.4 Theoretical model
We model our system using the Hamiltonian in Eq. 5.3, but expressed in terms of
the modes in the system as

H/ℏ =
N∑

k=1
ωka†

kak − Ur

2N

N∑
k,p,q=1

a†
p+ka†

q−kapaq, (5.4)

with ωk the frequency of mode k. The second term sum contains self-Kerr terms
∝ a†2

k a2
k, cross-Kerr terms ∝ a†

qaqa
†
pap, and finally photon conversion terms that we

neglect on the basis that they are not energy-conserving (RWA).
Since the external pump is nearly resonant with a single mode of the array,

we assume that only this mode is populated. The other modes are affected only
indirectly, through frequency renormalization caused by the cross-Kerr effect. With
this approximation, the multimode dynamics reduce to an effective single-mode
description.

In the rotating frame of the pump, the Hamiltonian becomes

H = −∆a†a − U

2N
a†2a2 +

√
U

γN
ϵ (a† + a), (5.5)

with ∆ = ωp − ω0 the detuning between the pump frequency and the bare resonance,
and ϵ the effective pump strength normalized by the interaction energy. Dissipation
is included through the Lindblad operator

L =
√

2γa, (5.6)

with γ the photon decay rate.
This driven-dissipative Kerr oscillator provides the textbook example of optical

bistability [167]. Depending on the detuning, ∆, and drive strength, ϵ, the system
settles into two distinct semiclassical steady states: a low-photon “dim” state or a
high-photon “brigh” state. Although it is guaranteed theoretically that the quantum
steady state is strictly unique [168], in practice the system exhibits rapid switching
between the two classical solutions, giving rise to hysteresis in response to slow
parameter sweeps. These features mirror the general discussion of dissipative phase
transitions introduced earlier. As the system approaches the transition, relaxation
becomes increasingly slow, and fluctuations can drive rare jumps between competing
states.

As the effective nonlinearity, quantified by U/(γN), decreases, the photon pop-
ulation grows to macroscopic values. In this regime, quantum fluctuations are
suppressed and mean-field description becomes increasingly accurate. This behavior
can be interpreted as approaching a thermodynamic limit, due to the large number of
particles in interaction; this connection to a thermodynamic limit can be formalized
via a path-integral treatment [169].

In our platform, nonlinearity is further reduced by the presence of NJJ Josephson
junctions in the unit cell, which leads to an effective scaling:
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U ′ = U

γNN2
JJ

. (5.7)

With the experimental parameter, U/(γNN2
JJ) = 0.123, placing the system well

within the regime where the mean-field description accurately captures the observed
dissipative phase transitions.

From mean-field theory, we extract the nonlinear steady-state equation1 +
(

∆
γ

+ |α|2
)2
 |α|2 = ϵ2

γ2 (5.8)

In this equation, α =
√

U/γN⟨a⟩ss defines the mean field value of the photon
annihilation operator, and ⟨a⟩ss the quantum steady state expectation value of the
photon annihilation operator. The solutions of this expression give two bistable
solutions.

5.5 Observation of multimode phase transitions
We measure the transmission parameter through our metamaterial, similar to what
is shown in Fig. 4.2. In this experiment, however, we introduce an additional pump
signal, which we vary in both frequency and power [Fig. 5.2]. To make the results
comparable, the input power is normalized by the total decay rate of the system,
γ. At low input power, ϵ/γ = 0.14, the transmission spectrum is unaffected, and
we clearly resolve 21 peaks corresponding to the 21 modes of the metamaterial
array. As we increase the input power to ϵ/γ = 14.07, the spectrum is altered
qualitatively: the transmission becomes pump-dependent, and the metamaterial
modes shift in frequency along with the pump. This is the regime we focus on
in detail, as the frequency jumps observed here are the hallmark of a first-order
dissipative phase transition. When the power is increased further, to ϵ/γ = 28.08,
the metamaterial’s state has crossed this transition. In this high-power regime, we
observe the disappearance of certain transmission modes—a signature of chaos.

We examine in more detail the pump power at which the system enters the regime
of dissipative phase transitions [Fig. 5.3]. When the pump frequency approaches any
of the resonant frequencies of the metamaterial array, all modes undergo a collective
frequency shift of a few tens of MHz, a clear experimental signature of the dissipative
phase transition.

We perform spectroscopy measurements focusing on two modes of the array, with
the pump frequency swept faster than the system’s relaxation rate near the transition
[Fig. 5.4]. Under these conditions, the system cannot fully stabilize, and the frequency
at which the system undergoes a shift depends on its prior state. Specifically, when
sweeping the pump frequency downward, the jump occurs at ωp/2π = 5.3463 GHz,
whereas when sweeping upward, the jump occurs at ωp/2π = 5.3493 GHz. This
hysteresis is a hallmark of bistability, arising at the phase transition between the
bright (high-population) and dim (low-population) states. Therefore, the sharp
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Figure 5.2: Transmission spectrum as a function of pump frequency and
pump power. (a) Low pump power ϵ/γ = 0.14. The transmission response is
not affected by the pump. (b) At intermediate powers, ϵ/γ = 14.07, first-order
transitions emerge. (c) At high pump power ϵ/γ = 28.08, some modes disappear.
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Figure 5.3: Spectroscopic evidence of the phase transition. Magnitude
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corresponds to the resonant frequency of a mode of the chain. When the pump
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Figure 5.4: Measurement of the hysteresis of the system. (a) Transmission
when the pump frequency is decreased from ωp/2π ≈ 5.368 GHz to ωp/2π ≈ 5.343
GHz. The system jumps at ωp/2π = 5.3463 GHz. (b) Same as (a) but with
the pump frequency increases from ωp/2π ≈ 5.343 GHz to ωp/2π ≈ 5.368. The
system jumps at ωp/2π = 5.3493 GHz.

jumps arise at the limits of the bistable region, where the metastable configuration
collapses and the system reverts to its ground state.

Solving the mean-field equation for the quasi-resonant mode 5.4 gives the pole of
the response function, whose real part defines the renormalized mode frequency

ω∗ =
√

(∆ + 2γ|α|2)2 − γ2|α|4 + ωp, (5.9)

The amplitude α is obtained from solving the mean-field equation 5.8. To test
the theory, we compare the experimental normalized frequency shift of the pumped
mode, (ω∗ −ω0)/γ, with the theoretical prediction, as a function of the applied pump
amplitude ϵ. for the pumped mode with the theoretical prediction as a function of
the drive power ϵ. A single global scaling factor is used as the only fit parameter
[Fig. 5.5(a)]. Remarkably, this single parameter accurately captures the behavior
over the full range of pump powers, across both sides of the transition. The excellent
agreement demonstrates the validity of our theoretical model.

In addition, we require to model the effect on the other modes due to the cross-
Kerr term. From our Bose-Hubbard model, we can extract the value of the self- and
cross-kerr by diagonalizing the site-equation 5.3 and re-expressing the Kerr term in
the mode basis. We find that the photon population in the quasi-resonant mode
induces a frequency shift in all other modes of magnitude 4U/3⟨a†

0a0⟩ ≃ 4γ|α|2/3.
When normalized to the scaled shift (ωi − ω0)/γ|α|2, we obtain the global shift for all
of the modes of 4/3. Experimentally, we confirm this prediction by measuring the shift
of the 6 center modes while pumping the center one. Despite the presence of disorder,
the extracted values agree well with the expected factor of 4/3 4.2 [Fig.5.5(b)]. By
contrast, the pumped mode itself exhibits a shift given by 5.5.
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5.6 Emission from the phase transition and phase
diagram

As discussed earlier, the transmission through the metamaterial is hysteretical and
cannot be used to directly determine the transition line between the “bright” and
“dim” states. To extract this transition more reliably, we instead analyze the system’s
emission at the phase boundary using the power spectral density (PSD) as a function
of the pump frequency and amplitude [Fig.5.6(a),(b),(c)].

This approach does not require a probe tone to track the mode frequency,
unlike in the spectroscopic measurement, so the probe is inactive during these
measurements. In addition, to reduce unwanted thermal noise and fluctuations, we
perform the measurements in an interleaved fashion: alternating between the pump
active (ON) and the pump inactive (OFF) conditions and taking the difference of
the corresponding spectra. This interleaving scheme ensures that the measurement
is robust against signal drifts originating, for example, from the amplification chain.
The PSD is collected over a 450-MHz bandwidth centered on the pumped mode. The
pump is varied in frequency and amplitude, and its direct contribution is eliminated
from the recorded spectra in post-processing by filtering around the pump frequency.

Depending on the pump power, we observe two regimes [Fig. 5.6(a-b)]. When
the input power is moderate, ϵ/γ = 1.5, the emission occurs around the frequency
of the pumped mode. However, at higher powers, ϵ/γ = 9.5, the emission becomes
multimode, signaling the onset of a collective behavior. Our model, based on a
single-mode transition, can only capture the behavior at moderate powers.

We take a closer look at the transition at moderate power to further investigate
this regime [Fig. 5.6(c)] and use our model to reproduce this behavior [Fig. 5.6(d)].
The spectrum is obtained from the Keldysh formalism and is given by [170].

Sincoh(ω) = 2|α|4(
1 +

(
ω−ω∗

γ

)2
)(

1 +
(

ω+ω∗
γ

)2
) (5.10)
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Figure 5.6: Photon emission from the metamaterial. (a) Power spectral
density (PSD) as a function of pump detuning at ϵ/γ = 1.5. In this regime,
only the quasi-resonant mode emits. (b) PSD versus detuning at ϵ/γ = 9.5.
Additional modes of the chain emit. (c) Zoomed-in view of the emission spectrum
of the resonant mode in (a). (d) Theoretical prediction for the emission spectrum
shown in (c). (e) Integrated PSD as a function of detuning and pump amplitude.
Regions of high emission correspond to large photon occupation in the mode,
revealing a phase boundary between dim and bright states. The numerically
computed transition line is shown as a black curve.

When the system is in the dim state, |α| is very small, and no emission is observed.
At the transition, a single emission peak appears, and at the bright state, there are
two peaks symmetric to the pump frequency at ωp − ω∗ and ωp + ω∗. Therefore, from
this measurement, we can extract the point of transition for each pump frequency
and amplitude, forming the transition line.

Integrating the PSD yields an estimate of the number of photons emitted by the
metamaterial [Fig.5.6(e)]. If we, therefore, integrate the PSD for different normalized
pump detunings, ∆, and amplitudes, ϵ/γ, we can extract the phase diagram of
the transition. The fitted amplitude shows a difference of 4 dBm between the
spectroscopy and PSD measurements. We attribute this difference to the power
injected by the probe tone in the spectroscopy measurements.

5.7 Dynamics of the transition
We measure the dynamics of our system by tracking the system at the dim-state
frequency, which is signaled as a peak in transmission parameter while applying
the pump. Therefore, whenever the system evolves from this state, there will be
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Figure 5.7: Multimode dynamcs of the system. (a) Time-traces for three
selected modes, showing that the system switches between the two states collec-
tively. The pumped mode is colored and adjacent modes are left in black. The
bright dwell times are colored in purple, the dim dwell times in blue. (b) and
(c) Selected histograms of the dwell times showing an exponential distribution.
Modelled exponential density probability functions as dashed lines, providing the
characteristic dwell times.

a dip in the signal. We acquire the time-resolved traces for three selected modes
with an integration time of 0.01 s [Fig.5.7(a)]. We observe that all modes switch
simultaneously between the two states.

We study the dynamics by extracting the average dwell times in the bright state,
t↓, and in the dim state, t↑. The transitions are expected to follow Poissonian
statistics, with probability distribution P (t) = 1

τ
exp(−t/τ) and characteristic dwell

times τ↑ and τ↓, respectively. Our experimental data confirms this expectation: the
dwell-time histograms are well described by exponential decay [Fig. 5.7(b)].

In addition, we verify that our results were not contaminated by other sources of
errors by applying an Anderson-Darling test [171] and rejecting time traces failing at
15%.

We study the dynamics across the bistable region by varying the detuning of
the pump frequency [Fig. 5.8]. These rates are expected to obey a generalized
Boltzmann form 1/τ ∝ exp(−E(∆, ϵ)/U), where E represents an activation barrier
and U measures the strength of the quantum fluctuations triggering the jumps [169].
Assuming that the activation barrier is constant through the bistable region, the
rates vary exponentially around in the region, with the dim rates reducing and the
bright rates increasing. At the crossing point, the system has an equal probability of
being in either of the two states. This crossing corresponds to the transition point.
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We measure the dwell times for different pump amplitudes and extract the dwell
times at the transition points τ↓,↑ [Fig.5.8(b)]. The dwell times cover three orders of
magnitude. Therefore, we require to adjust accordingly both the integration time
and the total measurement time accordingly. We impose, for the measurements, that
at least 100 jumps should be recorded. We measure with integration times from
1 ms to 0.1 s and record dwell times from a few ms up to 143 s.

The statistical analysis of dwell times reveals a clear separation between two
dynamical regimes. At small pump amplitudes, specifically for ϵ/γ < 9.5, the
residence times follow an exponential law, scaling as e1.33 ϵ/γ. This scaling behavior
is a hallmark of first-order transitions activated through tunneling processes, in
agreement with established theoretical expectations [132]. In contrast, for amplitudes
above this threshold, the exponential growth no longer persists: the dwell times
saturate. Such a plateau suggests either a change in the underlying escape mechanism
or the onset of systematic errors that become relevant at very long observation
windows. The maximum dwell time observed in this regime reaches 143 s, which
exceeds the longest values previously reported in comparable experiments [162].

To place these observations in the context of the rest of our experiments, we
map the extracted transition points onto the phase diagram spanned by (∆/γ, ϵ/γ)
[Fig. 5.8(c)]. A key feature of this analysis is that no adjustable parameters are
required: the pump amplitude has already been calibrated for both probed and non-
probed measurements. The comparison demonstrates striking consistency between
the experimentally determined boundaries, obtained from jump-rate statistics, and
the theoretical phase lines. Furthermore, this approach extends the reach of transition-
line measurements well beyond the values extracted using power spectral density
(PSD) data alone, covering larger detunings and stronger pump amplitudes. In doing
so, it provides an independent and robust confirmation of the theoretical predictions
while simultaneously broadening the experimentally accessible parameter space.

A systematic offset of approximately 4 dBm is consistently observed between
transition frequencies obtained via power spectral density (PSD) measurements and
those extracted from jump-rate analysis or direct spectroscopy. This discrepancy is
explicitly incorporated into the fitting procedure in Fig. 5.8(c).

To uncover the physical origin of this offset, we investigated the influence of the
probe on the system dynamics [Fig. 5.9]. Both the probe power and the number of
simultaneously probed modes were found to strongly affect the observed rates, in
line with earlier reports [157]. Interestingly, even small adjustments in probe power
were sufficient to produce significant modifications.

Closer inspection reveals that increasing the probe amplitude at fixed pump
parameters [Fig. 5.9(a)] effectively drives the system through the transition sequence:
from the dim state, to the critical point, and finally into the bright state. This
behavior mimics the effect of raising the pump strength directly. A parallel outcome
arises when additional modes are probed [Fig. 5.9(b)]. Each added probe (0.2 a.u.)
produces an apparent pump-power shift of roughly 4 dBm, which coincides with the
systematic offset observed under standard single-probe conditions.
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5.8 Conclusion
In this measurement, we have investigated the driven-dissipative dynamics of a
one-dimensional superconducting Bose-Hubbard lattice. In this system, we identified
and characterized a multimode first-order phase transition, directly confirming its
existence where theory had previously ruled it out.

By combining power spectral density analysis with switching-rate statistics, we
reconstructed the phase diagram and found excellent agreement with theoretical
predictions, achieved without additional fitting parameters. Our measurements
revealed dwell times as long as 143 s, the longest reported to date in such a platform,
highlighting the remarkable stability of these non-equilibrium phases. Furthermore,
building on previous proposals and based on the pronounced sensitivity of the
transition to weak perturbations, we suggest this platform as a great candidate for
quantum metrology and sensing.
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Chapter 6

Conclusion and outlook

In this thesis, we have studied a variety of superconducting quantum circuits imple-
menting light–matter interactions between microwave modes and artificial atoms,
unified by the themes of Structured environments and engineered dissipation. Our
objective has been to understand and control how tuning the coupling to the en-
vironment, and the environment itself, influences the behavior of our quantum
systems.

We implemented these ideas using a metamaterial platform composed of lumped-
element resonators with inductances provided by arrays of Josephson junctions. This
arrangement enabled fine control over the photonic environment and served as a
versatile system for studying different regimes of light–matter coupling. Within this
framework, we performed two main experimental investigations.

In the first study, we coupled a quantum emitter to the structured metamaterial,
forming a hybridized state known as an atom–photon bound state (APBS). Our
experiments focused on the formation dynamics of this state, identifying the threshold
between adiabatic and non-adiabatic regimes and characterizing the transfer of the
emitter’s population into the metamaterial modes. Once this effect was established,
we studied the photonic composition of the APBS by preparing it adiabatically and
subsequently quenching it. This approach allowed us to resolve the relative photonic
populations in the metamaterial constituting the bound state. These results open
new directions for investigating exotic emission processes from APBSs and provide
valuable insight into their spectral structure.

The second study investigated collective phenomena arising in a weakly nonlinear
metamaterial, where dissipation and photon injection act as competing processes. By
continuously driving the system with a coherent pump, we uncovered a dissipative
phase transition at the boundary between quantum and classical behavior in a Bose-
Hubbard model, an effect not previously observed experimentally. Remarkably, all
modes of the metamaterial transitioned synchronously between “dim” and “bright”
states on exceptionally long timescales, far exceeding those reported in comparable
systems. This observation provides new experimental evidence of critical behavior
in driven–dissipative systems close to the thermodynamic limit and establishes the
platform as a promising candidate for realizing quantum switches, and for quantum
metrology and sensing.

65



66 6.1. Outlook

Furthermore, with two different setups and studies, we explored how the decay
of an atom into a waveguide can be deliberately controlled.

In the first, we coupled two interacting atoms to two separate waveguides. The
interaction between the atoms led to the formation of hybridized molecular-like
modes. By carefully designing the coupling geometry, we achieved selective decay of
each molecular mode into a specific waveguide, reaching a selectivity ratio of 50. This
high degree of control opens new experimental possibilities in waveguide quantum
electrodynamics (wQED), including deterministic Bell-state emission, photodetection,
and applications in quantum thermodynamics.

In the second study, we engineered the decay of a qubit coupled to a readout
resonator by incorporating a Purcell filter, designed to suppress unwanted relaxation
while preserving fast dispersive readout. Our setup, made of lumped resonators
with Josephson junctions arrays, has the advantage of being very compact. In our
design, we kept a dispersive coupling between the readout mode and the qubit, 2χ
and a coupling of the readout mode to the waveguide, κ, in the order of a few MHz.
These couplings allow for fast, quantum non-demolition readout. In addition, we
characterized the Purcell decay using an auxiliary transmon directly coupled to the
waveguide as a power sensor. We obtained a single-shot fidelity between |g⟩ and |e⟩
and between |g⟩ and |f⟩ as high as 94.73 % and 89.50 %, respectively, in 1.9 µs with
17 noise photons in the gain chain and a Purcell lifetime above 3 ms. This setup
allowed for fast-readout with a good Purcell protection while keeping the system
very compact, and opens new possibilities for scalable quantum computing.

Across these studies, a unifying theme emerges: structured electromagnetic
environments and controlled dissipation are powerful resources for quantum electro-
dynamics. By engineering the spectral and spatial properties of the environment, it
is possible to modify both the coherent and incoherent components of light–matter
interactions. This level of control enables the realization of atom–photon bound
states, the observation of collective nonlinear phenomena, and the implementation
of selective and Purcell-protected decay channels. Together, these findings advance
our understanding of open quantum systems and demonstrate practical strategies
for controlling environmental effects in quantum technologies.

6.1 Outlook
The work presented here opens several promising directions:

The controlled formation and quenching of atom–photon bound states can be
extended to explore more complex regimes, including directional emission, strongly
correlated multi-emitter configurations, and the manifestation of non-Markovian
dynamics in structured reservoirs. These extensions would deepen our understanding
of light-matter interactions.

The slow, multimode transition and emission observed in the driven nonlinear
metamaterial suggest the presence of collectivity at the Bose-Hubbard metamaterial,
which is left for further studies. Beyond fundamental interest, this transition can be
used for quantum metrology and quantum sensing.
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The demonstrated control of selective decay and Purcell-protected readout offers
a modular approach to building large-scale quantum systems with engineered con-
nectivity and dissipation. Future efforts should aim to increase readout fidelity while
maintaining high speed. A natural next step is to target a coupling regime κ/2χ = 1,
and further detune the readout and the qubit frequencies to suppress cross-coupling.

The engineered decay pathways and controllable photon emission in coupled-
waveguide systems could be exploited for energy-conversion experiments, quantum
sensors, and fundamental tests of fluctuation theorems in quantum thermodynamics.

Ultimately, the results of this thesis demonstrate that dissipation is not merely a
source of decoherence but a powerful design element in quantum engineering. By
mastering the structure of the electromagnetic environment, we gain new means to
manipulate, protect, and harness quantum information, paving the way toward a
more robust and scalable quantum technology.
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Chapter 7

Methods

7.1 Introduction

In this chapter, we describe the experimental methods used to fabricate and measure
our devices. The chapter is organized as follows. Section 7.2 presents the low-
temperature setup, which enables control over the excitations in our devices. Section
7.3 details the room-temperature connections required for device measurements.
Finally, Section 7.4 outlines the fabrication process.

7.2 Low-temperature setup

Superconducting quantum devices require cryogenic temperatures to maintain super-
conductivity and minimize thermal excitations. Superconductivity ensures minimal
dissipative losses (zero electrical resistance) and enables the proper behavior of
Josephson Junctions (JJs) through the formation of Cooper pairs. Minimizing ther-
mal excitations is crucial for keeping the system in its ground state, allowing precise
control.

In our samples, we use aluminium as the superconducting material, which becomes
superconducting at temperatures below 1.2 K. To reduce thermal excitations, the
resonant energy of our resonators must be significantly greater than the system’s
thermal energy, following the condition ℏω ≫ kBT . In this expression, ℏ is the
reduced Planck’s constant, ω is the angular frequency, kB is the Boltzmann’s constant,
and T is the temperature. For example, to keep a readout resonator at 5 GHz with
less than 1 % thermal population, the temperature must be below roughly 50 mK.

Such low temperatures are achieved with a dilution refrigerator, which includes
different cooling stages, each thermally shielded. At their last stage, the temperature
is below 10 mK by exploiting the properties of a mixture of helium-3 / helium-4
(He-3/He-4). At very low temperatures, the mixture separates into two phases: A
He-3 concentrated phase and a He-3 diluted phase. He-3 atoms moving from the
concentrated to the diluted phase require energy, which is drawn from the system,
effectively cooling it.
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In addition, to protect our devices from electromagnetic interference, we use
RF-tight copper shields, and from static magnetic fields, we use two Cryoperm shields
and a superconducting shield. We use coaxial cables to transmit signals to and from
the samples. The low-temperature experimental setup is shown in Fig. 7.1.

Our wiring setup consists of three distinct types of lines, each serving a specific
function: input-output lines, charge lines, and flux lines. Input-output lines are
connected to the transmission line coupled to one (or more) resonator(s) and serve to
characterize both the resonator(s) and qubits. We drive the qubits with the charge
lines and apply current to the flux lines to change the tunable-qubits’ frequencies.
Our input signals pass through multiple attenuation stages to minimize thermal noise.
Additionally, we use 0 dBm attenuators as thermal anchoring points to dissipate heat
along the coaxial cables. Stray radiation at frequencies outside the desired band is
suppressed using filters. On the output line, signals from the device are amplified by
a low-noise cryogenic amplifier based on a high-electron-mobility transistor (HEMT).
To prevent unwanted signal and noise from propagating back to the sample, isolators
and low-pass filters are strategically placed, to prevent unwanted effects on the
device.
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Figure 7.1: Cryo-setup. (a) Example of a standard wiring diagram in the
dilution refrigerator for measurements done in transmission. Cooling stages are
colored from room temperature, in red, to 9 mK, in blue. (b) Image of the
cryo-setup, showing the different cooling stages and electrical components. At the
lowest stage is the connected device.
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7.3 Room-temperature setup

To characterize and perform the desired measurements on our samples, we perform
two main different sets of measurements, each requiring different equipments.

For continuous wave (CW) spectroscopy measurements, we use a vector network
analyzer (VNA) along with one or more local oscillators (LOs) and a source measure
unit (SMU). The VNA is used to extract the scattering parameters of our system.
Since our devices are measured in transmission (with separate input and output
ports), we specifically extract the S21 parameter. The scattering parameters provide
information about the resonant frequencies of our resonators. The LO is used to
drive an extra element, such as the resonators in Paper 2, while the SMU supplies
current to the flux lines [Fig. 7.2(a)].

For time-domain measurements, whether involving pulsed signals (as in Paper
1 and Paper 3) or analyzing the time response to a continuous drive (as in Paper
2), we track the time-dependent response of our system. A standard setup requires
an arbitrary wave generator (AWG) to synthesize pulses with a carrier frequency of
a few hundred MHz. These pulses are up-converted to the target frequency using
an analog mixer and a LO source. Finally, they are routed to the device via the
coaxial cables inside the dilution refrigerator. After interacting with the sample, the
output signal is down-converted using another analog mixer and the same LO source
frequency as for the up-conversion. Then, the analog signal is digitized.

An alternative approach is to use an equipment that integrates the AWG, LO,
and mixers and digitally up- and down-converts the signal. In our case, we used a
microwave transceiver, Presto from Intermodulation Products. The main advantage
of this setup over the first one is that the mixing does not produce spurious tones,
as is the case with analog mixers. However, the digital output is limited to 1 V.
Therefore, in our case, we required an extra SMU or AWG with a larger voltage
range to drive our flux lines [Fig. 7.2(b)].

VNA PrestoLO SMU SMU/AWG

(a) (b)

Cryo electronics

Device

Input Output

Charge Flux

Cryo electronics Cryo electronics

Device

Input Output

Charge Flux
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Figure 7.2: Standard room-temperature setup. The device includes input
and output ports, a charge line, and a flux line. Color-coded: Temper-
ature. (a) Setup when doing continuous wave or spectroscopy measurements.
VNA is used to track the response of the device, charge line to excite the qubit
with a LO and flux line to change its frequency with an applied current through
an SMU. (b) Setup for time domain measurements.
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7.4 Fabrication

Our devices, made out of aluminum on silicon, are fabricated inside a class 100
cleanroom, MyFab Chalmers. This environment ensures minimal contaminants and
particle presence, required for fabricating high-coherence qubits.

The fabrication process consists of four lithographic steps for: The ground plane,
the Josephson junctions, the patches and the air bridges.

7.4.1 Ground plane

Before fabricating the ground plane, the sample undergoes a cleaning process. This
involves an SC1 clean followed by a one-minute HF dip to remove the native oxide
layer. To minimize oxide regrowth, the sample is immediately loaded into a high-
vacuum chamber. In the same chamber, an aluminum layer is deposited under
ultra-high vacuum using evaporation, a physical vapor deposition (PVD) technique.
Because the development is carried out using MF312, which etches the aluminum,
a two-layer photoresist stack is spin-coated. The first layer, PMMA A2, is the
aluminum-protective barrier. The second layer, S1805, undergoes photolithography.
The exposed regions are then ashed to remove the S1805 layer, and the aluminum is
wet etched in Transene.

7.4.2 Josephson junctions

The second lithography step is dedicated to the fabrication of the Josephson junctions.
The JJ sizes in our lab range from 100 nm to 2.5 µm. These small sizes, way below the
resolution limit of the photolithography, require the use of electron-beam lithography
(EBL). In addition, a lift-off step is done instead of an etching step to avoid damaging
the already deposited aluminum. Our junctions are bridge-less Manhattan style
[172–175], and as so, they require a thick resist stack to guarantee a good shadowing
between deposition steps. The stack is composed of EL12 and PMMA A6. Once the
resist is exposed in the EBL and developed in MIBK:IPA, two angled depositions
are made with 50 and 110 nm thicknesses and an oxidation step in between. Then,
the layer is lifted-off in a resist remover, in our case, remover 1165.

7.4.3 Patches

The third lithography step corresponds to the deposition of patches that connect
the Josephson junctions to both the transmon and the ground plane. To avoid any
damage to the ground plane or josephson junctions, this step again relies on a lift-off
process. The same resist stack is used as in the previous step and previous to the
deposition, the native oxide of the previous deposited aluminium layers is removed
with an ion argon milling.
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7.4.4 Air-bridges
The final lithography step consists of adding air-bridges, which are metallic bridges
that connect separated ground planes across the device. Although all grounds are
nominally at the same potential, at high frequencies, parasitic inductance, finite
conductivity, and geometric separation can lead to non-negligible voltage differences
between ground regions. These differences give rise to electric fields across the ground
slot, which can support the propagation of unwanted slotline modes.

To fabricate the air-bridges, we perform a lithography step similar to that one
in [176]. We spin-coat SPR220 resist and do the lithography of the base layer of
the airbridge. After a reflow step, the edges of our resist become less stiff. We
deposit aluminum through the whole wafer area and, with a second lithographic step
of AZ1512, we develop all the wafer region except for the second air-bridge region.
Then, this area is etched.





Bibliography

[1] S. Haroche and J.-M. Raimond. Exploring the Quantum: Atoms, Cavities,
and Photons. 1st. New York, USA: Oxford University Press, 2006 (cit. on
p. 3).

[2] J. M. Raimond, M. Brune, and S. Haroche. “Manipulating quantum entangle-
ment with atoms and photons in a cavity”. In: Rev. Mod. Phys. 73, Publisher:
American Physical Society, pp. 565–582 (cit. on p. 3).

[3] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf.
“Cavity quantum electrodynamics for superconducting electrical circuits: An
architecture for quantum computation”. In: Phys. Rev. A. 69, Publisher:
American Physical Society, p. 062320 (cit. on pp. 3, 7).

[4] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S.
Kumar, S. M. Girvin, and R. J. Schoelkopf. “Strong coupling of a single
photon to a superconducting qubit using circuit quantum electrodynamics”.
In: Nature. 431, pp. 162–167 (cit. on p. 3).

[5] A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff. “Circuit quantum
electrodynamics”. In: Reviews of Modern Physics. 93, Publisher: American
Physical Society, p. 025005 (cit. on pp. 3, 8, 9, 23, 26, 29).

[6] A. A. Houck, H. E. Türeci, and J. Koch. “On-chip quantum simulation with
superconducting circuits”. In: Nat. Phys. 8, Publisher: Nature Publishing
Group, pp. 292–299. issn: 1745-2473 (cit. on p. 3).

[7] M. Fitzpatrick, N. M. Sundaresan, A. C. Li, J. Koch, and A. A. Houck.
“Observation of a Dissipative Phase Transition in a One-Dimensional Circuit
QED Lattice”. In: Physical Review X. 7, Publisher: American Physical Society
(APS), p. 011016. issn: 2160-3308 (cit. on pp. 3, 49).

[8] D. L. Underwood, W. E. Shanks, J. Koch, and A. A. Houck. “Low-disorder
microwave cavity lattices for quantum simulation with photons”. In: Phys.
Rev. A. 86, Publisher: American Physical Society, p. 023837 (cit. on p. 3).

[9] X. Gu, A. F. Kockum, A. Miranowicz, Y.-x. Liu, and F. Nori. “Microwave
photonics with superconducting quantum circuits”. In: Physics Reports. 718-
719, pp. 1–102. issn: 0370-1573 (cit. on pp. 3, 9, 18).

77

https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774


78 Bibliography

[10] O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov Jr., Y. A. Pashkin, T. Ya-
mamoto, K. Inomata, Y. Nakamura, and J. S. Tsai. “Resonance Fluorescence
of a Single Artificial Atom”. In: Science. 327, pp. 840–843 (cit. on pp. 3, 19,
22, 30).

[11] P. Forn-Diaz, C. W. Warren, C. W. S. Chang, A. M. Vadiraj, and C. M. Wilson.
“On-Demand Microwave Generator of Shaped Single Photons”. In: Phys. Rev.
Applied. 8, Publisher: American Physical Society, p. 054015 (cit. on p. 3).

[12] M. Mirhosseini, E. Kim, V. S. Ferreira, M. Kalaee, A. Sipahigil, A. J. Keller,
and O. Painter. “Superconducting metamaterials for waveguide quantum
electrodynamics”. In: Nat. Comm. 9, p. 3706 (cit. on pp. 3, 8, 33).

[13] I. Carusotto and C. Ciuti. “Quantum fluids of light”. In: Rev. Mod. Phys. 85,
Publisher: American Physical Society, pp. 299–366 (cit. on p. 3).

[14] M. J. Hartmann. “Quantum Simulation with Interacting Photons”. In: arXiv:1605.00383
[cond-mat, physics:physics, physics:quant-ph] , (cit. on p. 3).

[15] T. Roy, S. Kundu, M. Chand, S. Hazra, N. Nehra, R. Cosmic, A. Ranadive,
M. P. Patankar, K. Damle, and R. Vijay. “Implementation of Pairwise Longi-
tudinal Coupling in a Three-Qubit Superconducting Circuit”. In: Phys. Rev.
Applied. 7, Publisher: American Physical Society, p. 054025 (cit. on pp. 3,
23).

[16] P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss,
J. Volz, H. Pichler, and P. Zoller. “Chiral quantum optics”. In: Nature. 541,
pp. 473–480 (cit. on p. 3).

[17] I.-C. Hoi, C. M. Wilson, G. Johansson, J. Lindkvist, B. Peropadre, T. Palomaki,
and P. Delsing. “Microwave quantum optics with an artificial atom in one-
dimensional open space”. en. In: New Journal of Physics. 15, Publisher: IOP
Publishing, p. 025011. issn: 1367-2630 (cit. on pp. 3, 19, 30).

[18] N. M. Sundaresan, R. Lundgren, G. Zhu, A. V. Gorshkov, and A. A. Houck.
“Interacting Qubit-Photon Bound States with Superconducting Circuits”. In:
Phys. Rev. X. 9, Publisher: American Physical Society, p. 011021 (cit. on
pp. 3, 33, 34, 37).

[19] M. Scigliuzzo, G. Calajò, F. Ciccarello, D. Perez Lozano, A. Bengtsson, P.
Scarlino, A. Wallraff, D. Chang, P. Delsing, and S. Gasparinetti. “Controlling
Atom-Photon Bound States in an Array of Josephson-Junction Resonators”.
In: Physical Review X. 12, Publisher: American Physical Society, p. 031036
(cit. on pp. 3, 33, 34, 36, 37).

[20] R. G. DeVoe and R. G. Brewer. “Observation of Superradiant and Subradi-
ant Spontaneous Emission of Two Trapped Ions”. In: Phys. Rev. Lett. 76,
Publisher: American Physical Society, pp. 2049–2052 (cit. on pp. 3, 18).

[21] W. Guerin, M. O. Araujo, and R. Kaiser. “Subradiance in a Large Cloud of
Cold Atoms”. In: Physical Review Letters. 116, Publisher: American Physical
Society (APS), p. 083601. issn: 1079-7114 (cit. on pp. 3, 18).

https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774


Bibliography 79

[22] P. Solano, P. Barberis-Blostein, F. K. Fatemi, L. A. Orozco, and S. L. Rolston.
“Super-radiance reveals infinite-range dipole interactions through a nanofiber”.
In: Nature Communications. 8, Number: 1 Publisher: Nature Publishing
Group, p. 1857. issn: 2041-1723 (cit. on pp. 3, 18).

[23] N. V. Corzo, J. Raskop, A. Chandra, A. S. Sheremet, B. Gouraud, and J.
Laurat. “Waveguide-coupled single collective excitation of atomic arrays”. In:
Nature. 566, Number: 7744 Publisher: Nature Publishing Group, pp. 359–362.
issn: 1476-4687 (cit. on pp. 3, 18).

[24] K. Lalumière, B. C. Sanders, A. F. van Loo, A. Fedorov, A. Wallraff, and
A. Blais. “Input-output theory for waveguide QED with an ensemble of
inhomogeneous atoms”. In: Phys. Rev. A. 88, Publisher: American Physical
Society, p. 043806 (cit. on pp. 3, 18).

[25] A. van Loo, A. Fedorov, K. Lalumière, B. Sanders, A. Blais, and A. Wallraff.
“Photon-Mediated Interactions Between Distant Artificial Atoms”. In: Science.
342, pp. 1494–1496 (cit. on pp. 3, 18).

[26] M. Mirhosseini, E. Kim, X. Zhang, A. Sipahigil, P. B. Dieterle, A. J. Keller,
A. Asenjo-Garcia, D. E. Chang, and O. Painter. “Cavity quantum electrody-
namics with atom-like mirrors”. In: Nature. 569, Publisher: Springer Science
and Business Media LLC, p. 692 (cit. on pp. 3, 18).

[27] S. J. Masson and A. Asenjo-Garcia. “Atomic-waveguide quantum electro-
dynamics”. In: Physical Review Research. 2, Publisher: American Physical
Society, p. 043213 (cit. on pp. 3, 18).

[28] M. Zanner, T. Orell, C. M. F. Schneider, R. Albert, S. Oleschko, M. L. Juan,
M. Silveri, and G. Kirchmair. “Coherent control of a multi-qubit dark state in
waveguide quantum electrodynamics”. In: Nature Physics , issn: 1745-2473,
1745-2481 (cit. on pp. 3, 18).

[29] G. Andersson, B. Suri, L. Guo, T. Aref, and P. Delsing. “Non-exponential
decay of a giant artificial atom”. In: Nature Physics. 15, pp. 1123–1127. issn:
1745-2481 (cit. on p. 3).

[30] V. S. Ferreira, J. Banker, A. Sipahigil, M. H. Matheny, A. J. Keller, E. Kim,
M. Mirhosseini, and O. Painter. “Collapse and Revival of an Artificial Atom
Coupled to a Structured Photonic Reservoir”. In: Physical Review X. 11,
Publisher: American Physical Society, p. 041043 (cit. on pp. 3, 33).

[31] Y. Liu and A. A. Houck. “Quantum electrodynamics near a photonic bandgap”.
In: Nature Physics. 13, pp. 48–52. issn: 1745-2481 (cit. on pp. 3, 33).

[32] J. D. Brehm, A. N. Poddubny, A. Stehli, T. Wolz, H. Rotzinger, and A. V.
Ustinov. “Waveguide bandgap engineering with an array of superconduct-
ing qubits”. In: npj Quantum Materials. 6, Number: 1 Publisher: Nature
Publishing Group, pp. 1–5. issn: 2397-4648 (cit. on pp. 3, 33).

[33] M. Pechal. “Microwave photonics in superconducting circuits”. PhD Thesis.
ETH Zurich, Aug. 2016 (cit. on p. 5).

https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774


80 Bibliography

[34] D. Gottesman, A. Kitaev, and J. Preskill. “Encoding a qubit in an oscillator”.
In: Phys. Rev. A. 64, Publisher: American Physical Society, p. 012310 (cit. on
p. 7).

[35] H. Wang et al. “Measurement of the Decay of Fock States in a Superconducting
Quantum Circuit”. In: Physical Review Letters. 101, Publisher: American
Physical Society, p. 240401 (cit. on p. 7).

[36] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D.
Oliver. “A quantum engineer’s guide to superconducting qubits”. en. In:
Applied Physics Reviews. 6, p. 021318. issn: 1931-9401 (cit. on pp. 8, 9, 11,
13, 23).

[37] A. Shearrow, G. Koolstra, S. J. Whiteley, N. Earnest, P. S. Barry, F. J.
Heremans, D. D. Awschalom, E. Shirokoff, and D. I. Schuster. “Atomic layer
deposition of titanium nitride for quantum circuits”. In: Applied Physics
Letters. 113, p. 212601. issn: 0003-6951 (cit. on p. 8).

[38] S. Frasca, I. Arabadzhiev, S. B. de Puechredon, F. Oppliger, V. Jouanny,
R. Musio, M. Scigliuzzo, F. Minganti, P. Scarlino, and E. Charbon. “NbN
films with high kinetic inductance for high-quality compact superconducting
resonators”. In: Physical Review Applied. 20, Publisher: American Physical
Society, p. 044021 (cit. on p. 8).

[39] M. Peruzzo, F. Hassani, G. Szep, A. Trioni, E. Redchenko, M. Žemlička,
and J. M. Fink. “Geometric Superinductance Qubits: Controlling Phase
Delocalization across a Single Josephson Junction”. en. In: PRX Quantum. 2,
p. 040341. issn: 2691-3399 (cit. on p. 8).

[40] E. Kim, X. Zhang, V. S. Ferreira, J. Banker, J. K. Iverson, A. Sipahigil,
M. Bello, A. González-Tudela, M. Mirhosseini, and O. Painter. “Quantum
Electrodynamics in a Topological Waveguide”. In: Physical Review X. 11,
Publisher: American Physical Society, p. 011015 (cit. on pp. 8, 33, 34, 37).

[41] N. A. Masluk, I. M. Pop, A. Kamal, Z. K. Minev, and M. H. Devoret.
“Microwave Characterization of Josephson Junction Arrays: Implementing
a Low Loss Superinductance”. In: Physical Review Letters. 109, Publisher:
American Physical Society, p. 137002 (cit. on p. 8).

[42] M. Pechal, J.-C. Besse, M. Mondal, M. Oppliger, S. Gasparinetti, and A.
Wallraff. “Superconducting Switch for Fast On-Chip Routing of Quantum
Microwave Fields”. In: Phys. Rev. Applied. 6, p. 024009 (cit. on pp. 9, 24).

[43] Y. Makhlin, G. Schön, and A. Shnirman. “Quantum-state engineering with
Josephson-junction devices”. en. In: Reviews of Modern Physics. 73, pp. 357–
400. issn: 0034-6861, 1539-0756 (cit. on p. 9).

[44] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A.
Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. “Charge-insensitive
qubit design derived from the Cooper pair box”. In: Phys. Rev. A. 76,
Publisher: APS, p. 042319 (cit. on p. 9).

https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774


Bibliography 81

[45] M. D. Hutchings, J. B. Hertzberg, Y. Liu, N. T. Bronn, G. A. Keefe, M. Brink,
J. M. Chow, and B. L. T. Plourde. “Tunable Superconducting Qubits with
Flux-Independent Coherence”. In: Physical Review Applied. 8, p. 044003
(cit. on p. 10).

[46] S. E. Nigg, H. Paik, B. Vlastakis, G. Kirchmair, S. Shankar, L. Frunzio, M. H.
Devoret, R. J. Schoelkopf, and S. M. Girvin. “Black-Box Superconducting
Circuit Quantization”. In: Phys. Rev. Lett. 108, Publisher: American Physical
Society, p. 240502 (cit. on p. 13).

[47] M. F. Gely and G. A. Steele. “QuCAT: quantum circuit analyzer tool in
Python”. en. In: New Journal of Physics. 22, Publisher: IOP Publishing,
p. 013025. issn: 1367-2630 (cit. on pp. 13, 14, 24).

[48] A. Narla et al. “Robust Concurrent Remote Entanglement Between Two
Superconducting Qubits”. In: Phys. Rev. X. 6, Publisher: American Physical
Society, p. 031036 (cit. on p. 17).

[49] P. Kurpiers et al. “Deterministic quantum state transfer and remote entan-
glement using microwave photons”. In: Nature. 558, pp. 264–267 (cit. on
p. 17).

[50] C. Axline et al. “On-demand quantum state transfer and entanglement between
remote microwave cavity memories”. In: Nature Physics. 14, pp. 705–710
(cit. on p. 17).

[51] P. Campagne-Ibarcq et al. “Deterministic Remote Entanglement of Supercon-
ducting Circuits through Microwave Two-Photon Transitions”. In: Phys. Rev.
Lett. 120, Publisher: American Physical Society, p. 200501 (cit. on p. 17).

[52] B. Kannan et al. “Generating spatially entangled itinerant photons with
waveguide quantum electrodynamics”. In: Science Advances. 6, eabb8780
(cit. on p. 17).

[53] S. Sundelin, M. A. Aamir, V. M. Kulkarni, C. Castillo-Moreno, and S. Gas-
parinetti. Quantum refrigeration powered by noise in a superconducting circuit.
arXiv:2403.03373 [quant-ph]. 2024 (cit. on p. 17).

[54] A. S. Sheremet, M. I. Petrov, I. V. Iorsh, A. V. Poshakinskiy, and A. N.
Poddubny. “Waveguide quantum electrodynamics: collective radiance and
photon-photon correlations”. In: arXiv:2103.06824 [physics, physics:quant-ph]
, arXiv: 2103.06824 (cit. on p. 18).

[55] D. Roy, C. M. Wilson, and O. Firstenberg. “Colloquium: Strongly interacting
photons in one-dimensional continuum”. In: Rev. Mod. Phys. 89, Publisher:
American Physical Society, p. 021001 (cit. on p. 18).

[56] P. Lodahl, S. Mahmoodian, and S. Stobbe. “Interfacing single photons and
single quantum dots with photonic nanostructures”. In: Rev. Mod. Phys. 87,
Publisher: American Physical Society, pp. 347–400 (cit. on p. 18).

[57] E. Wiegand. “Quantum Optics and Waveguide Quantum Electrodynamics in
Superconducting Circuits”. en. PhD thesis (cit. on p. 18).

https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774


82 Bibliography

[58] K. Koshino and Y. Nakamura. “Control of the radiative level shift and
linewidth of a superconducting artificial atom through a variable boundary
condition”. en. In: New Journal of Physics. 14, p. 043005. issn: 1367-2630
(cit. on p. 18).

[59] Y. Lu et al. “Characterizing decoherence rates of a superconducting qubit by
direct microwave scattering”. In: npj Quantum Information. 7, Number: 1
Publisher: Nature Publishing Group, pp. 1–9. issn: 2056-6387 (cit. on pp. 18,
19, 30).

[60] S. Filipp, M. Göppl, J. M. Fink, M. Baur, R. Bianchetti, L. Steffen, and
A. Wallraff. “Multimode mediated qubit-qubit coupling and dark-state sym-
metries in circuit quantum electrodynamics”. In: Phys. Rev. A. 83, Publisher:
American Physical Society, p. 063827 (cit. on p. 20).

[61] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland. “Surface
codes: Towards practical large-scale quantum computation”. In: Phys. Rev.
A. 86, Publisher: American Physical Society, p. 032324 (cit. on p. 23).

[62] Z. Chen et al. “Exponential suppression of bit or phase errors with cyclic
error correction”. en. In: Nature. 595, Publisher: Nature Publishing Group,
pp. 383–387. issn: 1476-4687 (cit. on p. 23).

[63] R. Acharya et al. “Suppressing quantum errors by scaling a surface code
logical qubit”. en. In: Nature. 614, Publisher: Nature Publishing Group,
pp. 676–681. issn: 1476-4687 (cit. on p. 23).

[64] S. Krinner et al. “Realizing repeated quantum error correction in a distance-
three surface code”. en. In: Nature. 605, Publisher: Nature Publishing Group,
pp. 669–674. issn: 1476-4687 (cit. on p. 23).

[65] M. D. Reed, B. R. Johnson, A. A. Houck, L. DiCarlo, J. M. Chow, D. I.
Schuster, L. Frunzio, and R. J. Schoelkopf. “Fast reset and suppressing
spontaneous emission of a superconducting qubit”. In: Applied Physics Letters.
96, Publisher: American Institute of Physics, p. 203110. issn: 0003-6951
(cit. on p. 23).

[66] J. M. Gambetta, A. A. Houck, and A. Blais. “Superconducting Qubit with
Purcell Protection and Tunable Coupling”. In: Phys. Rev. Lett. 106, Publisher:
American Physical Society, p. 030502 (cit. on p. 23).

[67] N. T. Bronn, Y. Liu, J. B. Hertzberg, A. D. Córcoles, A. A. Houck, J. M.
Gambetta, and J. M. Chow. “Broadband filters for abatement of spontaneous
emission in circuit quantum electrodynamics”. In: Applied Physics Letters.
107, pp. – (cit. on p. 23).

[68] N. T. Bronn, E. Magesan, N. A. Masluk, J. M. Chow, J. M. Gambetta, and
M. Steffen. “Reducing Spontaneous Emission in Circuit Quantum Electrody-
namics by a Combined Readout/Filter Technique”. In: IEEE Transactions
on Applied Superconductivity. 25, Conference Name: IEEE Transactions on
Applied Superconductivity, pp. 1–10. issn: 1558-2515 (cit. on p. 23).

https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774


Bibliography 83

[69] A. Y. Cleland, M. Pechal, P. C. Stas, C. J. Sarabalis, and A. H. Safavi-Naeini.
“Mechanical Purcell Filters for Microwave Quantum Machines”. In: Applied
Physics Letters. 115, p. 263504 (cit. on p. 23).

[70] J. Heinsoo et al. “Rapid High-fidelity Multiplexed Readout of Superconducting
Qubits”. In: Phys. Rev. Applied. 10, Publisher: American Physical Society,
p. 034040 (cit. on p. 23).

[71] A. A. Houck et al. “Controlling the Spontaneous Emission of a Superconduct-
ing Transmon Qubit”. In: Phys. Rev. Lett. 101, Publisher: APS, p. 080502
(cit. on p. 23).

[72] E. Jeffrey et al. “Fast Accurate State Measurement with Superconducting
Qubits”. In: Phys. Rev. Lett. 112, Publisher: American Physical Society,
p. 190504 (cit. on p. 23).

[73] S. H. Park, G. Choi, G. Kim, J. Jo, B. Lee, G. Kim, K. Park, Y.-H. Lee,
and S. Hahn. “Characterization of broadband Purcell filters with compact
footprint for fast multiplexed superconducting qubit readout”. In: Applied
Physics Letters. 124, p. 044003. issn: 0003-6951 (cit. on p. 23).

[74] G. Kim, A. Butler, V. S. Ferreira, X. ( Zhang, A. Hadley, E. Kim, and
O. Painter. “Fast unconditional reset and leakage reduction of a tunable
superconducting qubit via an engineered dissipative bath”. In: Physical Review
Applied. 24, Publisher: American Physical Society, p. 014013 (cit. on p. 23).

[75] F. Swiadek et al. “Enhancing Dispersive Readout of Superconducting Qubits
through Dynamic Control of the Dispersive Shift: Experiment and Theory”. In:
PRX Quantum. 5, Publisher: American Physical Society, p. 040326 (cit. on
pp. 23, 29).

[76] T. Walter et al. “Rapid, High-Fidelity, Single-Shot Dispersive Readout of
Superconducting Qubits”. In: Phys. Rev. Applied. 7, p. 054020 (cit. on p. 23).

[77] Y. Sunada, S. Kono, J. Ilves, S. Tamate, T. Sugiyama, Y. Tabuchi, and Y.
Nakamura. “Fast readout and reset of a superconducting qubit coupled to a
resonator with an intrinsic Purcell filter”. In: arXiv:2202.06202 [quant-ph] ,
arXiv: 2202.06202 (cit. on pp. 23, 24, 31).

[78] A. Yen et al. “Interferometric Purcell suppression of spontaneous emission
in a superconducting qubit”. In: Physical Review Applied. 23, Publisher:
American Physical Society, p. 024068 (cit. on p. 23).

[79] P. A. Spring, L. Milanovic, Y. Sunada, S. Wang, A. F. van Loo, S. Tamate,
and Y. Nakamura. “Fast Multiplexed Superconducting-Qubit Readout with
Intrinsic Purcell Filtering Using a Multiconductor Transmission Line”. In:
PRX Quantum. 6, Publisher: American Physical Society, p. 020345 (cit. on
p. 23).

[80] I. Diniz, E. Dumur, O. Buisson, and A. Auffèves. “Ultrafast quantum non-
demolition measurements based on a diamond-shaped artificial atom”. In:
Physical Review A. 87, Publisher: American Physical Society, p. 033837
(cit. on p. 23).

https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774


84 Bibliography

[81] F. Pfeiffer et al. “Efficient Decoupling of a Nonlinear Qubit Mode from Its
Environment”. In: Physical Review X. 14, Publisher: American Physical
Society, p. 041007 (cit. on p. 23).

[82] S. Hazra, W. Dai, T. Connolly, P. D. Kurilovich, Z. Wang, L. Frunzio, and
M. H. Devoret. “Benchmarking the Readout of a Superconducting Qubit
for Repeated Measurements”. In: Physical Review Letters. 134, Publisher:
American Physical Society, p. 100601 (cit. on p. 23).

[83] A. Sah, S. Kundu, H. Suominen, Q. Chen, and M. Möttönen. “Decay-protected
superconducting qubit with fast control enabled by integrated on-chip filters”.
en. In: Communications Physics. 7, Publisher: Nature Publishing Group,
p. 227. issn: 2399-3650 (cit. on p. 23).

[84] J. Gambetta, A. Blais, M. Boissonneault, A. A. Houck, D. I. Schuster, and
S. M. Girvin. “Quantum trajectory approach to circuit QED: Quantum jumps
and the Zeno effect”. In: Phys. Rev. A. 77, p. 012112 (cit. on pp. 24, 29).

[85] D. I. Schuster, A. Wallraff, A. Blais, L. Frunzio, R.-S. Huang, J. Majer,
S. M. Girvin, and R. J. Schoelkopf. “ac Stark Shift and Dephasing of a
Superconducting Qubit Strongly Coupled to a Cavity Field”. In: Physical
Review Letters. 94, Publisher: American Physical Society, p. 123602 (cit. on
p. 25).

[86] C. Eichler and A. Wallraff. “Controlling the dynamic range of a Josephson
parametric amplifier”. en. In: EPJ Quantum Technology. 1, Number: 1
Publisher: SpringerOpen, pp. 1–19. issn: 2196-0763 (cit. on p. 26).

[87] S. Probst, F. B. Song, P. A. Bushev, A. V. Ustinov, and M. Weides. “Efficient
and robust analysis of complex scattering data under noise in microwave
resonators”. In: Review of Scientific Instruments. 86, p. 024706. issn: 0034-
6748 (cit. on p. 26).

[88] S. Krinner et al. “Realizing repeated quantum error correction in a distance-
three surface code”. en. In: Nature. 605, Number: 7911 Publisher: Nature
Publishing Group, pp. 669–674. issn: 1476-4687 (cit. on p. 28).

[89] Y. Zhao et al. “Realization of an Error-Correcting Surface Code with Super-
conducting Qubits”. In: Physical Review Letters. 129, Publisher: American
Physical Society, p. 030501 (cit. on p. 28).

[90] K. Geerlings, Z. Leghtas, I. M. Pop, S. Shankar, L. Frunzio, R. J. Schoelkopf,
M. Mirrahimi, and M. H. Devoret. “Demonstrating a Driven Reset Protocol
for a Superconducting Qubit”. In: Phys. Rev. Lett. 110, Publisher: American
Physical Society, p. 120501 (cit. on p. 29).

[91] C. Macklin, K. O’Brien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang,
W. D. Oliver, and I. Siddiqi. “A near–quantum-limited Josephson traveling-
wave parametric amplifier”. In: Science. 350, Publisher: American Association
for the Advancement of Science, pp. 307–310 (cit. on p. 29).

https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774


Bibliography 85

[92] P. Magnard et al. “Fast and Unconditional All-Microwave Reset of a Super-
conducting Qubit”. In: Phys. Rev. Lett. 121, Publisher: American Physical
Society, p. 060502 (cit. on p. 29).

[93] M. O. Tholén et al. “Measurement and control of a superconducting quantum
processor with a fully integrated radio-frequency system on a chip”. In:
Review of Scientific Instruments. 93, Publisher: American Institute of Physics,
p. 104711. issn: 0034-6748 (cit. on p. 30).

[94] I.-C. Hoi, A. F. Kockum, L. Tornberg, A. Pourkabirian, G. Johansson, P. Dels-
ing, and C. M. Wilson. “Probing the quantum vacuum with an artificial atom
in front of a mirror”. In: Nature Physics. 11, Publisher: Nature Publishing
Group, pp. 1045–1049. issn: 1745-2481 (cit. on p. 30).

[95] M. Scigliuzzo, A. Bengtsson, J.-C. Besse, A. Wallraff, P. Delsing, and S.
Gasparinetti. “Primary Thermometry of Propagating Microwaves in the
Quantum Regime”. In: Physical Review X. 10, Publisher: American Physical
Society, p. 041054 (cit. on p. 30).

[96] K. Kakuyanagi, T. Meno, S. Saito, H. Nakano, K. Semba, H. Takayanagi,
F. Deppe, and A. Shnirman. “Dephasing of a superconducting flux qubit”. In:
Phys. Rev. Lett. 98, p. 047004 (cit. on p. 31).

[97] J. S. Douglas, H. Habibian, C.-L. Hung, A. V. Gorshkov, H. J. Kimble, and
D. E. Chang. “Quantum many-body models with cold atoms coupled to
photonic crystals”. In: Nat Photon. 9, Publisher: Nature Publishing Group,
pp. 326–331. issn: 1749-4885 (cit. on pp. 33, 37).

[98] González-Tudela, V. Paulisch, D. E. Chang, and J. I. Kimble H. J. and. Cirac.
“Deterministic Generation of Arbitrary Photonic States Assisted by Dissipa-
tion”. In: Phys. Rev. Lett. 115, p. 163603 (cit. on p. 33).

[99] A. Biella, L. Mazza, I. Carusotto, D. Rossini, and R. Fazio. “Photon transport
in a dissipative chain of nonlinear cavities”. In: Phys. Rev. A. 91, Publisher:
American Physical Society, p. 053815 (cit. on p. 33).

[100] L. Lu, J. D. Joannopoulos, and M. Soljacic. “Topological states in photonic
systems”. In: Nat Phys. 12, Publisher: Nature Publishing Group, a division
of Macmillan Publishers Limited. All Rights Reserved., pp. 626–629. issn:
1745-2473 (cit. on p. 33).

[101] G. Calajó, F. Ciccarello, D. Chang, and P. Rabl. “Atom-field dressed states
in slow-light waveguide QED”. In: Phys. Rev. A. 93, Publisher: American
Physical Society, p. 033833 (cit. on pp. 33, 37, 38).

[102] V. M. Martinez Alvarez and M. D. Coutinho-Filho. “Edge states in trimer
lattices”. In: Phys. Rev. A. 99, Publisher: American Physical Society, p. 013833
(cit. on p. 33).

[103] R. Belyansky, S. Whitsitt, R. Lundgren, Y. Wang, A. Vrajitoarea, A. A.
Houck, and A. V. Gorshkov. “Frustration-induced anomalous transport and
strong photon decay in waveguide QED”. In: Physical Review Research. 3,
Publisher: American Physical Society, p. L032058 (cit. on p. 33).

https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774


86 Bibliography

[104] G. P. Fedorov et al. “Photon Transport in a Bose-Hubbard Chain of Super-
conducting Artificial Atoms”. In: Physical Review Letters. 126, Publisher:
American Physical Society, p. 180503 (cit. on p. 33).

[105] F. Ciccarello. “Resonant atom-field interaction in large-size coupled-cavity
arrays”. en. In: Physical Review A. 83, p. 043802. issn: 1050-2947, 1094-1622
(cit. on p. 33).

[106] A. S. Sheremet, M. I. Petrov, I. V. Iorsh, A. V. Poshakinskiy, and A. N.
Poddubny. “Waveguide quantum electrodynamics: Collective radiance and
photon-photon correlations”. In: Reviews of Modern Physics. 95, Publisher:
American Physical Society, p. 015002 (cit. on p. 33).

[107] D. Fernández-Fernández and A. González-Tudela. “Tunable Directional Emis-
sion and Collective Dissipation with Quantum Metasurfaces”. In: Physical
Review Letters. 128, Publisher: American Physical Society, p. 113601 (cit. on
p. 33).

[108] J. Romn-Roche, E. Snchez-Burillo, and D. Zueco. “Bound states in ultrastrong
waveguide QED”. In: arXiv:2001.07643 , (cit. on p. 33).

[109] G. Calajó, Y.-L. L. Fang, H. U. Baranger, and F. Ciccarello. “Exciting a
Bound State in the Continuum through Multiphoton Scattering Plus Delayed
Quantum Feedback”. In: Phys. Rev. Lett. 122, Publisher: American Physical
Society, p. 073601 (cit. on p. 33).

[110] C.-L. Hung, A. González-Tudela, J. I. Cirac, and H. J. Kimble. “Quantum spin
dynamics with pairwise-tunable, long-range interactions”. In: Proceedings of
the National Academy of Sciences. 113, _eprint: http://www.pnas.org/content/113/34/E4946.full.pdf,
E4946–E4955 (cit. on p. 33).

[111] D. E. Chang, J. S. Douglas, A. González-Tudela, C.-L. Hung, and H. J. Kimble.
“Colloquium : Quantum matter built from nanoscopic lattices of atoms and
photons”. en. In: Reviews of Modern Physics. 90, p. 031002. issn: 0034-6861,
1539-0756 (cit. on p. 33).

[112] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage. “Trapped-Ion
Quantum Computing: Progress and Challenges”. In: arXiv:1904.04178 ,
(cit. on p. 33).

[113] A. McDonald, T. Pereg-Barnea, and A. A. Clerk. “Phase-Dependent Chi-
ral Transport and Effective Non-Hermitian Dynamics in a Bosonic Kitaev-
Majorana Chain”. In: Physical Review X. 8, Publisher: American Physical
Society, p. 041031 (cit. on p. 33).

[114] T. Manovitz, Y. Shapira, N. Akerman, A. Stern, and R. Ozeri. “Quantum
Simulations with Complex Geometries and Synthetic Gauge Fields in a
Trapped Ion Chain”. In: PRX Quantum. 1, Publisher: American Physical
Society, p. 020303 (cit. on p. 33).

https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774


Bibliography 87

[115] M. K. Joshi, A. Elben, B. Vermersch, T. Brydges, C. Maier, P. Zoller, R. Blatt,
and C. F. Roos. “Quantum information scrambling in a trapped-ion quantum
simulator with tunable range interactions”. In: arXiv:2001.02176 , (cit. on
p. 33).

[116] I. Carusotto, A. A. Houck, A. J. Kollár, P. Roushan, D. I. Schuster, and
J. Simon. “Photonic materials in circuit quantum electrodynamics”. en. In:
Nature Physics. 16, Number: 3 Publisher: Nature Publishing Group, pp. 268–
279. issn: 1745-2481 (cit. on p. 33).

[117] A. Vrajitoarea, R. Belyansky, R. Lundgren, S. Whitsitt, A. V. Gorshkov, and
A. A. Houck. Ultrastrong light-matter interaction in a multimode photonic
crystal. arXiv:2209.14972 [cond-mat, physics:quant-ph]. Feb. 2024 (cit. on
p. 33).

[118] A. Morvan et al. “Formation of robust bound states of interacting microwave
photons”. en. In: Nature. 612, Number: 7939 Publisher: Nature Publishing
Group, pp. 240–245. issn: 1476-4687 (cit. on p. 33).

[119] M. Bello, G. Platero, and A. González-Tudela. “Spin Many-Body Phases
in Standard- and Topological-Waveguide QED Simulators”. en. In: PRX
Quantum. 3, p. 010336. issn: 2691-3399 (cit. on p. 33).

[120] X. Zhang, E. Kim, D. K. Mark, S. Choi, and O. Painter. “A scalable su-
perconducting quantum simulator with long-range connectivity based on a
photonic bandgap metamaterial”. In: Science. 379, arXiv:2206.12803 [quant-
ph], pp. 278–283. issn: 0036-8075, 1095-9203 (cit. on pp. 33, 34, 37).

[121] C. Tabares, A. Muñoz de las Heras, L. Tagliacozzo, D. Porras, and A. González-
Tudela. “Variational Quantum Simulators Based on Waveguide QED”. In:
Physical Review Letters. 131, Publisher: American Physical Society, p. 073602
(cit. on p. 33).

[122] T. McBroom-Carroll, A. Schlabes, X. Xu, J. Ku, B. Cole, S. Indrajeet, M. D.
LaHaye, M. H. Ansari, and B. L. T. Plourde. Entangling interactions between
artificial atoms mediated by a multimode left-handed superconducting ring
resonator. arXiv:2307.15695 [cond-mat, physics:quant-ph]. July 2023 (cit. on
p. 33).

[123] V. S. Ferreira, G. Kim, A. Butler, H. Pichler, and O. Painter. “Deterministic
generation of multidimensional photonic cluster states with a single quantum
emitter”. en. In: Nature Physics , Publisher: Nature Publishing Group, pp. 1–
6. issn: 1745-2481 (cit. on p. 33).

[124] V. D. Vaidya, Y. Guo, R. M. Kroeze, K. E. Ballantine, A. J. Kollár, J. Keeling,
and B. L. Lev. “Tunable-Range, Photon-Mediated Atomic Interactions in
Multimode Cavity QED”. In: Physical Review X. 8, Publisher: American
Physical Society, p. 011002 (cit. on p. 33).

[125] A. J. Kollár, M. Fitzpatrick, P. Sarnak, and A. A. Houck. “Line-Graph Lattices:
Euclidean and Non-Euclidean Flat Bands, and Implementations in Circuit
Quantum Electrodynamics”. In: arXiv:1902.02794 , (cit. on p. 34).

https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774


88 Bibliography

[126] A. V. Shytov. “Landau-Zener transitions in a multilevel system: An exact
result”. In: Physical Review A. 70, Publisher: American Physical Society,
p. 052708 (cit. on p. 42).

[127] M. Wubs, K. Saito, S. Kohler, P. Hänggi, and Y. Kayanuma. “Gauging a
Quantum Heat Bath with Dissipative Landau-Zener Transitions”. en. In:
Physical Review Letters. 97, p. 200404. issn: 0031-9007, 1079-7114 (cit. on
p. 42).

[128] K. Saito, M. Wubs, S. Kohler, Y. Kayanuma, and P. Hänggi. “Dissipative
Landau-Zener transitions of a qubit: Bath-specific and universal behavior”.
en. In: Physical Review B. 75, p. 214308. issn: 1098-0121, 1550-235X (cit. on
p. 42).

[129] A. Stehli, J. D. Brehm, T. Wolz, A. Schneider, H. Rotzinger, M. Weides, and
A. V. Ustinov. “Quantum emulation of the transient dynamics in the multistate
Landau-Zener model”. en. In: npj Quantum Information. 9, Number: 1
Publisher: Nature Publishing Group, pp. 1–5. issn: 2056-6387 (cit. on p. 42).

[130] M. A. Rol et al. “Fast, High-Fidelity Conditional-Phase Gate Exploiting
Leakage Interference in Weakly Anharmonic Superconducting Qubits”. In:
Phys. Rev. Lett. 123, Publisher: American Physical Society, p. 120502 (cit. on
p. 46).

[131] M. A. Rol, L. Ciorciaro, F. K. Malinowski, B. M. Tarasinski, R. E. Sagastizabal,
C. C. Bultink, Y. Salathe, N. Haandbaek, J. Sedivy, and L. DiCarlo. “Time-
domain characterization and correction of on-chip distortion of control pulses
in a quantum processor”. In: Appl. Phys. Lett. , (cit. on p. 46).

[132] H. Risken, C. Savage, F. Haake, and D. F. Walls. “Quantum tunneling in
dispersive optical bistability”. In: Physical Review A. 35, Publisher: American
Physical Society, pp. 1729–1739 (cit. on pp. 49, 60).

[133] O. V. Zhirov and D. L. Shepelyansky. “Synchronization and Bistability of
a Qubit Coupled to a Driven Dissipative Oscillator”. In: Physical Review
Letters. 100, Publisher: American Physical Society, p. 014101 (cit. on p. 49).

[134] K. C. Stitely, S. J. Masson, A. Giraldo, B. Krauskopf, and S. Parkins. “Super-
radiant switching, quantum hysteresis, and oscillations in a generalized Dicke
model”. In: Physical Review A. 102, Publisher: American Physical Society,
p. 063702 (cit. on p. 49).

[135] F. Caleffi, M. Capone, and I. Carusotto. “Collective Excitations of a Strongly
Correlated Nonequilibrium Photon Fluid across the Insulator-Superfluid Phase
Transition”. In: Physical Review Letters. 131, Publisher: American Physical
Society, p. 193604 (cit. on p. 49).

[136] F. Minganti, A. Biella, N. Bartolo, and C. Ciuti. “Spectral theory of Liou-
villians for dissipative phase transitions”. en. In: Physical Review A. 98,
p. 042118. issn: 2469-9926, 2469-9934 (cit. on pp. 49–51).

https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774


Bibliography 89

[137] W. H. Zurek, U. Dorner, and P. Zoller. “Dynamics of a Quantum Phase
Transition”. In: Physical Review Letters. 95, Publisher: American Physical
Society, p. 105701 (cit. on p. 49).

[138] F. Minganti, I. I. Arkhipov, A. Miranowicz, and F. Nori. “Liouvillian spectral
collapse in the Scully-Lamb laser model”. In: Physical Review Research. 3,
Publisher: American Physical Society, p. 043197 (cit. on p. 49).

[139] F. Minganti, V. Savona, and A. Biella. “Dissipative phase transitions in
$n$-photon driven quantum nonlinear resonators”. en-GB. In: Quantum.
7, Publisher: Verein zur Förderung des Open Access Publizierens in den
Quantenwissenschaften, p. 1170 (cit. on p. 49).

[140] D. Goncalves, L. Bombieri, G. Ferioli, S. Pancaldi, I. Ferrier-Barbut, A.
Browaeys, E. Shahmoon, and D. Chang. “Driven-Dissipative Phase Separation
in Free-Space Atomic Ensembles”. In: PRX Quantum. 6, Publisher: American
Physical Society, p. 020303 (cit. on p. 49).

[141] M. Soriente, T. Donner, R. Chitra, and O. Zilberberg. “Dissipation-Induced
Anomalous Multicritical Phenomena”. In: Physical Review Letters. 120,
Publisher: American Physical Society, p. 183603 (cit. on p. 49).

[142] M. Soriente, T. L. Heugel, K. Omiya, R. Chitra, and O. Zilberberg. “Distinctive
class of dissipation-induced phase transitions and their universal characteris-
tics”. In: Physical Review Research. 3, Publisher: American Physical Society,
p. 023100 (cit. on p. 49).

[143] L. Pausch, F. Damanet, T. Bastin, and J. Martin. “Dissipative phase transition:
From qubits to qudits”. en. In: Physical Review A. 110, p. 062208. issn:
2469-9926, 2469-9934 (cit. on p. 49).

[144] K. Baumann, G. Guerlin, F. Brennecke, and T. Esslinger. “The Dicke Quantum
Phase Transition in a Superfluid Gas Coupled to an Optical Cavity”. In: Nature.
464, p. 1301 (cit. on p. 49).

[145] M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch. “Quantum
phase transition from a superfluid to a Mott insulator in a gas of ultracold
atoms”. In: Nature. 415, pp. 39–44. issn: 0028-0836 (cit. on p. 49).

[146] F. Ferri, R. Rosa-Medina, F. Finger, N. Dogra, M. Soriente, O. Zilberberg,
T. Donner, and T. Esslinger. “Emerging Dissipative Phases in a Superradiant
Quantum Gas with Tunable Decay”. In: Physical Review X. 11, Publisher:
American Physical Society, p. 041046 (cit. on p. 49).

[147] R. Labouvie, B. Santra, S. Heun, and H. Ott. “Bistability in a Driven-
Dissipative Superfluid”. In: Physical Review Letters. 116, Publisher: American
Physical Society, p. 235302 (cit. on p. 49).

[148] J. Schliemann, A. Khaetskii, and D. Loss. “Electron spin dynamics in quantum
dots and related nanostructures due to hyperfine interaction with nuclei”.
en. In: Journal of Physics: Condensed Matter. 15, R1809. issn: 0953-8984
(cit. on p. 49).

https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774


90 Bibliography

[149] A. Russell, V. I. Fal’ko, A. I. Tartakovskii, and M. S. Skolnick. “Bistability
of optically induced nuclear spin orientation in quantum dots”. In: Physical
Review B. 76, Publisher: American Physical Society, p. 195310 (cit. on p. 49).

[150] O. Krebs, P. Maletinsky, T. Amand, B. Urbaszek, A. Lemaître, P. Voisin, X.
Marie, and A. Imamoglu. “Anomalous Hanle Effect due to Optically Created
Transverse Overhauser Field in Single $\mathrm{InAs}/\mathrm{GaAs}$
Quantum Dots”. In: Physical Review Letters. 104, Publisher: American
Physical Society, p. 056603 (cit. on p. 49).

[151] E. M. Kessler, G. Giedke, A. Imamoglu, S. F. Yelin, M. D. Lukin, and J. I.
Cirac. “Dissipative phase transition in a central spin system”. en. In: Physical
Review A. 86, p. 012116. issn: 1050-2947, 1094-1622 (cit. on p. 49).

[152] I. Siddiqi et al. “Direct observation of dynamical bifurcation between two
driven oscillation states of a Josephson junction”. In: Phys. Rev. Lett. 94,
Place: ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Publisher: AMERICAN PHYSICAL SOC Type: Article. issn: 0031-9007
(cit. on p. 49).

[153] P. Krantz, Y. Reshitnyk, W. Wustmann, J. Bylander, S. Gustavsson, W. D.
Oliver, T. Duty, V. Shumeiko, and P. Delsing. “Investigation of nonlinear
effects in Josephson parametric oscillators used in circuit quantum electrody-
namics”. In: New J. Phys. 15, p. 105002 (cit. on p. 49).

[154] T. Weißl, B. Küng, E. Dumur, A. K. Feofanov, I. Matei, C. Naud, O. Buisson,
F. W. J. Hekking, and W. Guichard. “Kerr coefficients of plasma resonances
in Josephson junction chains”. In: Phys. Rev. B. 92, Publisher: American
Physical Society, p. 104508 (cit. on p. 49).

[155] J. M. Fink, A. Dombi, A. Vukics, A. Wallraff, and P. Domokos. “Observation
of the photon-blockade breakdown phase transition”. In: Phys. Rev. X. 7,
p. 011012 (cit. on p. 49).

[156] T. K. Mavrogordatos, G. Tancredi, M. Elliott, M. J. Peterer, A. Patterson,
J. Rahamim, P. J. Leek, E. Ginossar, and M. H. Szymańska. “Simultaneous
Bistability of a Qubit and Resonator in Circuit Quantum Electrodynamics”.
In: Phys. Rev. Lett. 118, Publisher: American Physical Society, p. 040402
(cit. on p. 49).

[157] P. R. Muppalla, O. Gargiulo, S. I. Mirzaei, B. P. Venkatesh, M. L. Juan, L.
Grünhaupt, I. M. Pop, and G. Kirchmair. “Bistability in a mesoscopic Joseph-
son junction array resonator”. In: Phys. Rev. B. 97, Publisher: American
Physical Society, p. 024518 (cit. on pp. 49, 60).

[158] Y. Chen, K. N. Nesterov, H. Churchill, J. Shabani, V. E. Manucharyan, and
M. G. Vavilov. Voltage Activated Parametric Entangling Gates on Gatemons.
arXiv:2304.08469 [cond-mat, physics:quant-ph]. Apr. 2023 (cit. on p. 49).

https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774


Bibliography 91

[159] R. Sett, F. Hassani, D. Phan, S. Barzanjeh, A. Vukics, and J. M. Fink.
“Emergent Macroscopic Bistability Induced by a Single Superconducting
Qubit”. In: PRX Quantum. 5, Publisher: American Physical Society, p. 010327
(cit. on p. 49).

[160] G. Beaulieu, F. Minganti, S. Frasca, V. Savona, S. Felicetti, R. Di Candia,
and P. Scarlino. “Observation of first- and second-order dissipative phase
transitions in a two-photon driven Kerr resonator”. en. In: Nature Communi-
cations. 16, Publisher: Nature Publishing Group, p. 1954. issn: 2041-1723
(cit. on p. 49).

[161] G. Beaulieu, F. Minganti, S. Frasca, M. Scigliuzzo, S. Felicetti, R. Di Candia,
and P. Scarlino. “Criticality-Enhanced Quantum Sensing with a Parametric
Superconducting Resonator”. en. In: PRX Quantum. 6, p. 020301. issn:
2691-3399 (cit. on p. 49).

[162] C. Berdou et al. “One Hundred Second Bit-Flip Time in a Two-Photon
Dissipative Oscillator”. In: PRX Quantum. 4, Publisher: American Physical
Society, p. 020350 (cit. on pp. 49, 60).

[163] P. Brookes, G. Tancredi, A. D. Patterson, J. Rahamim, M. Esposito, T. K.
Mavrogordatos, P. J. Leek, E. Ginossar, and M. H. Szymanska. “Critical
slowing down in circuit quantum electrodynamics”. In: Science Advances. 7,
Publisher: American Association for the Advancement of Science, eabe9492
(cit. on p. 49).

[164] F. Vicentini, F. Minganti, R. Rota, G. Orso, and C. Ciuti. “Critical slowing
down in driven-dissipative Bose-Hubbard lattices”. en. In: Physical Review A.
97, p. 013853. issn: 2469-9926, 2469-9934 (cit. on p. 49).

[165] C. Eichler and A. Wallraff. “Controlling the dynamic range of a Josephson
parametric amplifier”. In: EPJ Quantum Technology. 1, p. 2. issn: 2196-0763
(cit. on p. 52).

[166] P. J. Koppinen, L. M. Vaisto, and I. J. Maasilta. “Complete stabilization and
improvement of the characteristics of tunnel junctions by thermal annealing”.
In: Appl. Phys. Lett. 90, Publisher: AIP, pp. 053503–3 (cit. on p. 52).

[167] P. D. Drummond and D. F. Walls. “Quantum theory of optical bistability. I.
Nonlinear polarisability model”. In: Journal of Physics A: Mathematical and
General. 13, pp. 725–741 (cit. on p. 53).

[168] D. Nigro. “On the uniqueness of the steady-state solution of the Lind-
blad–Gorini–Kossakowski–Sudarshan equation”. en. In: Journal of Statistical
Mechanics: Theory and Experiment. 2019, Publisher: IOP Publishing and
SISSA, p. 043202. issn: 1742-5468 (cit. on p. 53).

[169] T. Sépulcre. Analytical phase boundary of a quantum driven-dissipative Kerr
oscillator from classical stochastic instantons. arXiv:2508.13925 [quant-ph].
Sept. 2025 (cit. on pp. 53, 59).

https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774


92 Bibliography

[170] Y. Zhang, J. C. Curtis, C. S. Wang, R. J. Schoelkopf, and S. M. Girvin.
“Drive-induced nonlinearities of cavity modes coupled to a transmon ancilla”.
In: arXiv:2106.09112 [cond-mat, physics:quant-ph] , arXiv: 2106.09112 (cit.
on p. 57).

[171] T. W. Anderson and D. A. Darling. “Asymptotic Theory of Certain "Goodness
of Fit" Criteria Based on Stochastic Processes”. In: The Annals of Mathemati-
cal Statistics. 23, Publisher: Institute of Mathematical Statistics, pp. 193–212.
issn: 0003-4851, 2168-8990 (cit. on p. 59).

[172] A. Potts, P. R. Routley, G. J. Parker, J. J. Baumberg, and P. A. J. de Groot.
“Novel fabrication methods for submicrometer Josephson junction qubits”. en.
In: Journal of Materials Science: Materials in Electronics. 12, pp. 289–293.
issn: 1573-482X (cit. on p. 74).

[173] F. Lecocq, I. M. Pop, Z. Peng, I. Matei, T. Crozes, T. Fournier, C. Naud,
W. Guichard, and O. Buisson. “Junction fabrication by shadow evaporation
without a suspended bridge”. In: Nanotechnology. 22, p. 315302 (cit. on
p. 74).

[174] K. Zhang, M.-M. Li, Q. Liu, H.-F. Yu, and Y. Yu. “Bridge-free fabrication
process for Al/AlO x /Al Josephson junctions”. en. In: Chinese Physics B.
26, Publisher: IOP Publishing, p. 078501. issn: 1674-1056 (cit. on p. 74).

[175] J. J. Raftery. “Nonequilibrium Quantum Simulation in Circuit QED”. en.
PhD thesis. Princeton University, 2017 (cit. on p. 74).

[176] Y. Sun, J. Ding, X. Xia, X. Wang, J. Xu, S. Song, D. Lan, J. Zhao, and Y. Yu.
“Fabrication of airbridges with gradient exposure”. In: Applied Physics Letters.
121, Publisher: American Institute of Physics, p. 074001. issn: 0003-6951
(cit. on p. 75).

https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774
https://doi.org/10.63959/chalmers.dt/5774

