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A B S T R A C T

Access to electricity remains a significant developmental challenge in Sub-Saharan Africa. To address this, na
tional electrification planning must account for both the temporal evolution and spatial heterogeneity of elec
tricity demand, reflecting local socioeconomic realities and climatic conditions. This study aims to project long- 
term, spatially explicit electricity demand for households, productive users, and community institutions in 
Ethiopia. It also assesses the potential impact of rising temperatures on future electricity demand. Regression 
models are used to predict temporal changes in electricity demand, while the Open-Source Spatial Electrification 
Tool (OnSSET) is used to examine the spatial demand dynamics across population settlements. Three scenar
ios—Business-as-Usual (BAU), High Economic Growth (HEG), and Rapid Urbanization (RU)—are developed to 
explore different development pathways from 2021 to 2050. The results show that, compared to the base year 
(2021), national electricity demand could increase by 176 % under the BAU, 219 % under the HEG, and 285 % 
under the RU by 2050. The most substantial increase in electricity demand is projected to come from households, 
followed by productive users. Significant spatial variations are evident, with household demand ranging from 
Tier 1 to Tier 4. Moreover, while projected temperature increases total national demand by only 0.53 % at 
national level, it can increase local demand by up to 22.6 %. These findings highlight that national averages or 
household-only models fail to capture the significant spatial and sector-specific variations in electricity demand. 
Therefore, high-resolution, multi-sector demand projections are essential for designing cost-effective and equi
table electrification pathways.

1. Introduction

Access to reliable and affordable electricity is a fundamental pre
requisite for socioeconomic development. However, many developing 
countries in the Global South struggle to provide universal electricity 
access [1]. The International Energy Agency (IEA) projects that 
approximately 660 million people globally will still lack electricity ac
cess by 2030 [2]. Addressing this gap in a cost-effective manner requires 
electrification strategies tailored to the socioeconomic, geographic, and 
demographic realities of unelectrified areas [3].

A key component of such planning is the projection of future elec
tricity demand at appropriate spatial and temporal scales. For devel
oping countries experiencing rapid rural development, infrastructure 
expansion, and population growth, long-term, spatially explicit demand 
projections are essential to ensure electrification solutions are cost- 

effective and responsive to local needs [4]. In particular, 
settlement-level projections enable planners to design solutions that 
reflect the diverse energy requirements of different communities [5].

Historically, nationwide electrification studies have employed 
simplified approaches to project electricity demand. These studies 
classify settlements into broad rural and urban categories and assign 
typical consumption levels based on the Multi-Tier Framework (MTF). 
For example, Mentis et al. [6] assigned a Tier 3 demand level (170 
kWh/person/year) for rural populations and a Tier 4 demand level (350 
kWh/person/year) for urban areas in Nigeria by 2030. Similarly, Mentis 
et al. [7] projected that rural and urban demand in Ethiopia would reach 
Tier 3 (150 kWh/person/year) and Tier 4 (300 kWh/person/year), 
respectively, by 2030. Ouedraogo [8] also projected that the urban 
population in Cameroon would reach Tier 5 and the rural population 
Tier 3 by 2035. Bissiri et al. [9] applied weighted average tier 
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allocations. They assigned Tier 4 and Tier 5 to the urban population and 
Tier 2 and Tier 3 to the rural population under different demand sce
narios in Burkina Faso and Côte d’Ivoire. These studies oversimplify the 
spatial heterogeneity in electricity demand across urban, peri-urban, 
and rural settlements,1 potentially leading to misaligned electrification 
strategies. This simplification arises from a predominant focus on 
supply-side optimization, with relatively little emphasis on formulating 
demand projections.

Efforts to address this limitation have led to the development of more 
disaggregated modeling approaches. Dagnachew et al. [10] have dis
aggregated household (HH) electricity demand across Sub-Saharan Af
rica (SSA) into five income-based tiers using the MTF in both rural and 
urban areas. In addition, Korkovelos et al. [11] introduced a highly 
spatially disaggregated HH demand methodology for Malawi. They 
differentiated MTF-based HH demand into nine categories by inte
grating gridded GDP and poverty level data. These advances enable 
electrification strategies to be tailored to the unique geographic and 
economic contexts of different regions.

Rural electrification planning should also incorporate the electricity 
needs of productive users (PUs) and community institutions (CIs), 
including health centers, education facilities, places of worship (POWs), 
and government offices [12–14]. These non-household consumers can 
have electricity demands comparable to those of HHs at the local level. 
For example, Hartvigsson et al. [13] reported that PUs accounted for 
approximately 25 % of the customer base in off-grid mini-grids. Simi
larly, Wassie and Ahlgren [14] noted that HHs and CIs together 
contribute to around 60 % of the load supplied by a mini-grid and 
recognized that PUs drive rural electrification benefits. Dagnachew et al. 
[15] further highlighted that demand from home-based small businesses 
in SSA could increase HH electricity consumption by up to 50 %. 
Including PUs and CIs is therefore essential to capture the diversity of 
electricity needs and support the design of electrification solutions 
capable of driving broader socioeconomic development.

However, identified studies relevant to nationwide or regional 
electrification planning in SSA have primarily focused on HHs electricity 
demand, with less attention given to PUs and CIs [6,7,10,11,16]. Most 
recently, Sahlberg et al. [17] conducted a nationwide least-cost geo
spatial electrification planning study for Ethiopia. While their study 
modeled long-term spatially explicit electricity demand projections from 
2018 to 2070, it only considered HH demand. Conversely, national en
ergy planning studies typically provide long-term aggregated pro
jections for multiple sectors. These include HHs, industrial, commercial, 
agriculture, and public services [18–21]. However, these projections 
lack the necessary spatial detail required for effective settlement level 
electrification strategies [11].

Furthermore, rising ambient temperatures due to climate change are 
expected to increase future electricity demand, particularly in tropical 
regions [22,23]. As temperatures rise, residential cooling energy de
mand for air conditioning is projected to increase by up to 150 % by 
2050 [24]. Many regions across Africa experience between 4000 and 
5000 cooling degree days (CDDs2) annually. This exceeds the levels 
experienced in major cooling demand centers such as the United States 
(3,150) and China (1,100) [25]. Currently, approximately 700 million 
people in Africa live in climates requiring substantial cooling. This figure 
is expected to rise to approximately 1.5 billion by 2050 [26]. The 
Intergovernmental Panel on Climate Change (IPCC) reported that global 
temperatures are rising by about 0.2 ◦C per decade. This trend is ex
pected to further intensify cooling-related electricity demand [27]. 
Despite these clear indicators, most existing electrification planning 
studies have not incorporated the influence of spatially varying and 

temporally rising temperatures into demand projections.
However, none of the aforementioned studies have provided long- 

term spatially explicit electricity demand projections that encompass 
HHs, PUs, and CIs while also factoring in the influence of ambient 
temperatures [6,7,10,11]. The confluence of these identified methodo
logical gaps limits the ability of policymakers and planners to develop 
cost-effective electrification strategies. Thus, this study aims to develop 
and apply a long-term spatially explicit electricity demand projection 
model to investigate sectoral and geographic variations in demand 
under different future development scenarios. It also investigates the 
influence of rising and spatially varying ambient temperatures on future 
electricity demand evolution. By doing so, the study seeks to support the 
development of nationwide least-cost electrification pathways that 
ensure equitable and sustainable electricity access for all. Specifically, 
the following research questions are addressed. 

• How will future demand for electricity differ across development 
pathways and consumer groups?

• How does electricity demand evolve across different geographical 
settlements?

• How and to what extent does a rise in temperature influence the 
evolution of the electricity demand?

1.1. Novelty of the research

This study makes three key contributions to nationwide electrifica
tion planning in developing countries. First, it provides long-term elec
tricity demand projections for key consumer groups in rural areas, 
including HHs, PUs, and CIs. Unlike previous studies, which relied on 
HH demand and broad rural–urban classifications, this research projects 
the electricity demand of these user types at national and high- 
resolution settlement levels [6–8]. This enables a detailed understand
ing of demand heterogeneity, which is essential for designing tailored 
and inclusive electrification strategies. Second, different development 
pathways and socioeconomic variables, such as urbanization, GDP 
growth, and electricity access, are incorporated into the demand 
modeling. By doing so, it captures a broader and more realistic range of 
plausible future scenarios. This enables policymakers and planners to 
evaluate various feasible development trajectories and design flexible, 
adaptive electrification plans. Third, this study incorporates spatial 
temperature variation and projected ambient temperature rise into 
electricity demand projections. This is particularly relevant for SSA, 
where rising ambient temperatures are expected to increase electricity 
demand in many climate-vulnerable settlements. This factor has often 
been overlooked in earlier demand studies. By simultaneously consid
ering diverse consumer groups, different development pathways, and 
climatic influences, the study enables the design of cost-effective and 
locally tailored electrification strategies, thereby supporting actionable 
strategic planning.

2. Methodology

2.1. Study approach

An integrated approach, incorporating both spatial and temporal 
demand analysis, is adopted to investigate long-term electricity demand 
development pathways. The analysis covers three key demand sectors: 
households (HHs), productive users (PUs), and community institutions 
(CIs), which together represent the primary drivers of rural electricity 
demand. Temporal projections are developed using historical electricity 
consumption data, enabling the study to capture long-term trends and 
patterns over time. The spatial dimension is analyzed using georefer
enced locations of individual consumers and settlements, enabling a 
detailed assessment of how electricity demand varies across different 
communities and local contexts. To explore a range of plausible futures 

1 The term ‘settlement’, also known as cluster, is used to describe a range of 
inhabited places, from a small group of homes to a village or entire urban area.

2 CDD is an indicator of how warm a location is, and calculated by comparing 
daily temperatures against a base temperature, typically set at 18 ◦C.
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and capture uncertainties in future demand, three scenarios are devel
oped: Business-as-Usual (BAU), High Economic Growth (HEG), and 
Rapid Urbanization (RU). Each scenario incorporates projections of key 
demand drivers, including population growth, GDP growth, urbaniza
tion, and rural electrification rate. These drivers are selected based on 
their empirical relevance in energy demand projections for developing 
countries [4,28].

The study further evaluates the potential influence of rising tem
peratures on future electricity demand. To quantify its effect, spatial 
temperature data, along with global warming projections, are incorpo
rated into the demand projection model [27,29]. The model provides 
total national, and sector-wise spatially explicit projections of electricity 
demand. The latter can be used as an input to inform nationwide 
least-cost electrification planning. An overview of the research frame
work for developing long-term spatial demand scenarios, including data 
inputs, modeling steps, and expected outputs, is provided in Fig. 1. The 
subsequent subsections describe the methodological components in 
greater detail.

2.2. Model selection

To analyze both the temporal and spatial dynamics of electricity 
demand, this study employs a combined modeling framework. This in
tegrated approach is applied over a multi-period horizon from 2021 to 
2050, offering a long-term perspective. Models were selected based on 
their strengths and suitability for addressing the challenges of projecting 
electricity demand in developing countries.

For temporal projections, a multiple linear regression (MLR) model is 
utilized. The MLR model is selected for its ability to link electricity de
mand to multiple socioeconomic and demographic factors [30]. This 
enables the development of scenario-based and sector-specific forecasts, 
which are essential for understanding the impact of different policy or 
economic pathways on future demand. The MLR model is widely used in 
developing countries, where historical data may be limited [31]. 

Suganthia and Samuel [32] conclude in their review of 12 energy de
mand forecasting models that regression analysis is preferable for elec
tricity demand forecasting in these contexts due to its effectiveness with 
limited data and interpretability. These models have been successfully 
applied in various countries for both short-term and long-term elec
tricity demand forecasting [33]. It systematically establishes a statistical 
relationship between electricity demand and its key drivers in a trans
parent and reproducible manner [21,34]. Scenario analysis is used to 
outline possible pathways for demand evolution and to project each 
demand driver, while regression analysis enables the systematic inte
gration of these drivers into the demand projection.

For the spatial analysis, the Open-Source Spatial Electrification Tool 
(OnSSET) is employed. OnSSET was chosen for its proven capability to 
support nationwide high-resolution, settlement level demand modeling 
and analysis [11,35]. It integrates population data with georeferenced 
information on PUs and CIs, enabling detailed spatial mapping of elec
tricity needs. Furthermore, it supports scenario-based analysis, enabling 
evaluation of alternative development pathways [17]. The open-source 
nature of OnSSET also ensures transparency, reproducibility, and flexi
bility, making it suitable for nationwide electrification studies [36]. The 
methodology combines the MLR model for temporal projections with 
OnSSET for spatial analysis. This produces both aggregate national 
electricity demand projections and spatially explicit, sector-wise de
mand at the settlement level.

2.3. Case study area description

This paper uses Ethiopia as a case for the study. Ethiopia was chosen 
due to its unique demographic, economic, and energy sector charac
teristics. The country has a large and rapidly growing population, 
exceeding 120 million people, with more than 78 % residing in rural 
areas [37]. This demographic reality contributes to Ethiopia having one 
of the world’s largest electricity access deficits in absolute terms, with 
about 55 million people lacking electricity access as of 2021. This figure 

Fig. 1. Flowchart of the study approach, where colors indicate the input data (green), processing steps (grey), and outputs (red).
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ranks Ethiopia third globally after Nigeria and the Democratic Republic 
of Congo [35,38]. Furthermore, the country’s per capita electricity 
consumption is below 100 kWh/year, which places it among the lowest 
worldwide [39,40]. There are also pronounced regional disparities in 
access, ranging from nearly 99.9 % in Addis Ababa and surrounding 
areas to less than 20 % in pastoral regions such as Somali and Afar 
[41–43]. The government of Ethiopia launched the National Electrifi
cation Program II (NEP II) in 2019, aiming for universal access by 2025 
[44]. However, the latest reports show that national access is still below 
55 % [45], indicating a significant gap between policy targets and cur
rent conditions.

Furthermore, the country’s rapid economic growth, urbanization, 
and industrialization have led to notable increases in electricity demand 
across key sectors. For instance, consumption in the residential sector 
increased by 662 % from 2005 to 2021, with average annual growth rate 
(AAGR) of 13.54 %. The commercial and public service sector saw a 347 
% increase (with an AAGR of 9.8 %) over the same period [46]. Fig. 2
shows the growth in electricity demand and electricity access in Ethiopia 
from 2005 to 2021. The aforementioned factors combined make 
Ethiopia an exemplary case for this study. Insights from this case study 
are transferable to other SSA countries facing similar electrification 
challenges.

2.4. Demand profiling at settlement level

The high-resolution electricity demand analysis builds on the pop
ulation settlements of the study area delineated previously by Ref. [47]. 
These settlements are identified using a methodology that converts 
high-resolution raster population data into vector-based population 
clusters/settlements [48]. Each cluster is characterized by several at
tributes, including the total population count, classification as urban, or 
rural, and an electrification status determined by the presence of 
night-time lights as a proxy for electricity access.

To understand how electricity demand varies across settlements, this 
study employs a spatial stratification approach. The stratification is 
based on the relative economic status of each settlement. In this context, 
economic status refers to the wealth of residents in a settlement 
compared to others in the country. Electricity use and access are closely 
linked to economic development. Thus, the analysis relates electricity 
consumption to relative settlement economic status [49], with wealthier 
settlements expected to have higher electricity demand than those with 
lower economic status [11]. This economic stratification approach ad
dresses a key limitation in current electrification planning. Existing 
studies often use a simple rural-urban classification, which does not 
capture economic differences within regions. By contrast, this approach 
accounts for intra-regional economic heterogeneity. Two complemen
tary geospatial datasets, average Gross Domestic Product and the 

International Wealth Index, are used to quantify the relative economic 
status of each settlement. 

• Gross Domestic Product (GDP): The mean GDP values for each 
population settlement were derived from the high-resolution GDP 
data developed by Kummu et al. [50]. These datasets provide global, 
gridded GDP estimates for selected years (1990, 2000, and 2015). 
The authors combined available subnational GDP values with 
spatially interpolated GDP values and national average GDP to 
derive GDP estimates for the whole world at a spatial resolution of 30 
arcseconds (approximately 1 km2 at the equator). This fine-grained 
representation allows for detailed analysis of economic disparities 
at the sub-national level. The spatial GDP data for the study country 
is shown in Fig. 3 a).

• International Wealth Index (IWI): The IWI serves as a strictly 
comparable asset-based measure of household wealth, and mean 
values for each population settlement are calculated using high- 
resolution village-level poverty maps developed by Lee and 
Braithwaite [51]. The index takes into account ten assets and living 
conditions, including five consumer durables (television, refriger
ator, phone, bicycle, and car), access to two public services (water 
and electricity), and three housing characteristics (number of bed
rooms, floor material quality, and toilet type). Machine learning al
gorithms are employed, integrating geospatial data sources such as 
OpenStreetMap features, day-time satellite imagery, nighttime lu
minosity, and High-Resolution Settlement Layer population data. 
This approach enables the estimation of wealth levels at the village 
level (1 square mile or 1.6 × 1.6 km2 spatial resolution) for 25 SSA 
countries. The IWI for the case study country is shown in Fig. 3 b).

Economic stratification of settlements is achieved by applying the 
Jenks natural breaks method to both GDP and IWI values, as outlined by 
Khavari et al. [49]. Using this method, GDP and IWI values are each 
categorized into five classes. Such a classification method is well-suited 
for data with clear clusters, where the values within each group are more 
similar to each other than to the values in other groups. Table 1 presents 
the classification scheme applied to the GDP and IWI values.

After classifying the gridded GDP and IWI data into five classes, these 
two economic status indicators are combined into a single composite 
value (Equation (1)). 

Ci =0.5*GDPi + 0.5*IWIi (1) 

Where Ci is the combined value of GDP and IWI for settlement i. This 
composite value captures the economic status of each settlement and is 
subsequently used to correlate economic status and electricity demand 
at the settlement level (see details in sections 2.5.1 and 2.5.3).

2.5. Electricity consumer groups

2.5.1. Household
The World Bank’s Energy Sector Management Assistance Program 

(ESMAP) Multi-Tier Framework (MTF) categorizes households into tiers 
based on their minimum daily electricity consumption and service 
quality attributes. Access to energy is measured across a spectrum of 
levels, from level 0 (Tier 0) (without access) to level 5 (Tier 5) (the 
highest level of access). The tiers for daily consumption start at Tier 1 
(12 Wh) and go up to Tier 5 (more than 8219 Wh) [52] (see Appendix 
Table B 1). The annual electricity demand for HHs is then calculated by 
aggregating the daily demand over 365 days.

The study correlates HH demand categorization by MTF (Tiers 1 to 5) 
with settlement economic status, as determined by the C values (ranging 
from 1 to 5) obtained using Equation (1) [11]. The spatial HH electricity 
demand is estimated by assuming that all HHs within a given settlement 
have the same electricity demand. Households in settlements with a C 
value of 5 are assigned Tier 5, indicating that higher electricity demand 

Fig. 2. Trends in electricity access and consumption across residential, and 
commercial and public service sectors in Ethiopia (2005–2021) (data source: 
World Bank [45] and the IEA [46]).

A.L. Temesgen et al.                                                                                                                                                                                                                            Energy Strategy Reviews 62 (2025) 101931 

4 



is associated with a relatively better economic status. Conversely, HHs in 
settlements with a C value of 1 are assigned to Tier 1, reflecting lower 
electricity demand linked to relatively poorer economic status. For HHs 
in settlements with C values between 1 and 5, a linear interpolation is 
applied between Tier 1 (38.7 kWh/HH/year) and Tier 5 (3000 
kWh/HH/year), as shown in Equation (2). 

EHH
i =

E T5 − E T1

4
x (Ci − 5) + E T5 (2) 

Where EHH
i represents the annual electricity demand per HH for HHs in 

settlement i, and E T1 and E T5 represent the annual electricity demand 
per HH of Tier 1 and Tier 5, respectively. To determine the total HH 
electricity demand for each settlement, the MTF-based HH consumption 
is first converted into per capita terms by factoring in the national 
average HH size, as shown in Equation (3). The projected HH size for 
each year is provided in Table 2. The total annual HH electricity demand 
for each settlement is then determined using Equation (4). 

EPC
i =

EHH
i

HH size
(3) 

Etotal
i =Popi xEPC

i (4) 

Where EPC
i is the annual electricity demand per capita for settlement i. 

Etotal
i represents the total annual HH electricity demand for settlement i, 

and Popi is the total population for settlement i.

2.5.2. Household-based productive use
This study also considers household-based small businesses as a 

proxy for productive use (PU). In rural areas, most PUs are informal and 
home-based or closely tied to residential activities. Given that the focus 
of this study is rural areas, PUs are grouped under the HH category. This 

grouping enables the model to better reflect the socioeconomic and 
spatial realities of rural electricity consumption. In addition, there is a 
lack of georeferenced data for identifying the locations of PUs across the 
study area. Consequently, the electricity demand of PUs is modeled as a 
proportion of HH demand, guided by empirical evidence from prior 
studies. In Tanzania, approximately 25 % of mini-grid customers use 
electricity for PUs [13]. Similarly, in Ethiopia, PUs account for over 50 
% of total annual electricity consumption despite representing only a 
quarter of the customer base [14]. Further regional data from 
Mozambique indicates that PUs contribute over 26 % of daily electricity 
consumption in the grid-connected rural town of 16 de Junho [53]. A 
broader assessment across SSA suggests that PU could potentially in
crease HH electricity demand by up to 45 % in a high-uptake scenario, 
with a more conservative estimate indicating an increase of 25 % [15].

Fig. 3. High resolution spatial economic indicators in Ethiopia. a) The GDP for the year 2015 at a spatial resolution of 1 km2, expressed in constant 2011 inter
national US dollars. GDP values range from 1137.8 USD to 4.3 million USD per grid cell [50]. b) The IWI at a grid size of 1.6 × 1.6 km2, where household-level wealth 
index ranges from 2.9 to 86.1 in 2021 [51].

Table 1 
GDP and IWI classification scheme for settlement stratification.

GDP GDP classification IWI IWI classification

GDPmin(nb1) ≤ GDP < nb2 1 IWImin (nb1) ≤ IWI < nb2 1
nb2 ≤ GDP < nb3 2 nb2 ≤ IWI < nb3 2
nb3 ≤ GDP < nb4 3 nb3 ≤ IWI < nb4 3
nb4 ≤ GDP < nb5 4 nb4 ≤ IWI < nb5 4
GDP ≥ nb5 5 IWI ≥ nb5 5

*nb-natural breaks.

Table 2 
Growth rates and projected values of key electricity demand drivers for each 
scenario.

Scenarios Drivers (%) Growth rates and projected values

2030 2040 2050

BAU GDP growth rate 6 5 4
Population growth rate 2.1 1.9 1.8
Urban population 26.9 32.7 39.1
Rural electricity access 61.2 85.5 100

HEG GDP growth rate 11 8 6
Population growth rate 2.1 1.9 1.8
Urban population 26.9 32.7 39.1
Rural electricity access 61.2 85.5 100

RU GDP growth rate 6 5 4
Population growth rate 2.1 1.9 1.8
Urban population 29.2 40.1 56.9
Rural electricity access 61.2 85.5 100

Average national HH size (people/HH) 4.7 4.6 4.5
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In light of this, the present study presumes that HHs with electricity 
demand at or above Tier 2 (73–365 kWh/HH/year) are more likely to 
engage in PU activities. Therefore, the study conservatively estimates 
that PU demand equals 25 % of HH demand for HHs in Tier 2 or higher 
[15,53]. Fig. 4 shows HHs identified with electricity demand above Tier 
2, which serves as the basis for estimating the demand of PUs in the 
study area.

2.5.3. Community institutions
In this consumer group, the annual electricity demand is estimated 

for four community institutions (CIs), namely health and education fa
cilities, places of worship (POWs), and government offices [5]. These 
institutions have different electricity demands depending on their 
location, whether in rural or urban areas. Urban institutions serve larger 
populations and are thus equipped with a greater number of electrical 
appliances, resulting in higher electricity consumption. Therefore, 
separate demand estimations are conducted for rural and urban CIs 
using the Remote-Areas Multi-energy systems load Profiles (RAMP) 
model [54]. It is an open-source, bottom-up stochastic tool designed to 
generate high-resolution load profiles for remote and off-grid areas 
based on appliance-level data. RAMP requires a relatively small set of 
input parameters, including rated power, number of units, availability 
windows, duty cycles, and random variation factors, to produce 
per-minute load profiles [55]. It is particularly effective for modeling 
diverse energy needs (e.g., lighting, appliances, water heating, cooking) 
using limited, interview-based data, which is often characterized by 
high uncertainty [55]. Its flexibility in handling appliance-level char
acteristics makes RAMP especially suitable for estimating the electricity 
demand of CIs. The appliance-specific parameters used for this analysis 
were adapted from previous studies conducted in Mozambique, where 
data were collected through direct field-based surveys [12] (see Ap
pendix Table B 2-Table B 5).

A key methodological challenge in spatial demand estimation of CIs 
was the limited availability of georeferenced data on their locations. 
Georeferenced locations for health facilities were obtained from the 
Humanitarian Data Exchange (HDX) website [56], and for education 
facilities from the Ethiopian Ministry of Education (MOE3) [57]. How
ever, the georeferenced locations of POWs obtained from HDX and 

OpenStreetMap (OSM) were limited and did not represent the full 
coverage of these institutions. Additionally, georeferenced data on 
government offices were not accessible through any public dataset 
provider. Due to this lack of georeferenced data, it is assumed that each 
village and town in Ethiopia has at least one POW and one government 
office. Georeferenced information from Ref. [58] shows 23,957 villages 
and towns across the country. This approach may underestimate counts 
in denser settlements and overestimation in sparsely populated areas. 
For CIs located outside the population settlements delineated by 
Ref. [47], a proximity-based method was used to assign them into the 
nearest population settlement [59]. This approach ensures that all CIs 
are included in the spatial analysis of electricity demand.

The spatial electricity demand of CIs was estimated by linearly 
interpolating between rural and urban demand levels using the com
posite C value calculated in Equation (1). CIs located in settlements with 
a C value of 5 were assigned the highest (urban) CI electricity demand, 
while those in settlements with a C value of 1 were assigned the lowest 
(rural) demand. For settlements with C values between 1 and 5, a linear 
interpolation was applied, as shown in Equation (5). The spatial distri
bution of CIs’ electricity demand across the study country is illustrated 
in Fig. 5. 

ECI
i =

Eurban
CI − Erural

CI
4

x( Ci − 5) + Eurban
CI (5) 

Where ECI
i is the annual electricity demand of a CI in settlement i, Eurban

CI 

and Erural
CI are the annual electricity demands of CIs in urban and rural 

areas, respectively.

2.6. Scenarios

Three scenarios are developed to explore various potential future 
development pathways and their respective impacts on electricity de
mand. The BAU scenario serves as a baseline and assumes current trends 
in key drivers of electricity consumption remain unchanged. Conversely, 
the HEG and RU scenarios explore alternative pathways by applying 
different growth rates to key drivers. Each scenario incorporates pro
jections of four key demand drivers: annual population growth rate, 
percentage of the population living in urban areas, annual GDP growth 
rate, and the level of rural electricity access. Historical data for these 
drivers, sourced from the World Bank, are available up to 2021 [60]. 
Therefore, 2021 is used as the base year for projecting electricity de
mand up to 2050, with all growth rates calculated relative to the 2021 
values. Historical electricity consumption data is obtained from the IEA 
[46]. Table 2 summarizes the assumed growth rates and projected 
values for each scenario.

2.6.1. Business as usual scenario
The BAU scenario assumes that key drivers (population growth rate 

and percentage of urban population) follow United Nations projections. 
For rural electricity access, the scenario extrapolates historical trends 
observed between 2005 and 2021, projecting 100 % rural access by 
2046 [45]. Projections of future GDP growth rates are based on the most 
up-to-date available data, including historical trends from the World 
Bank, IMF predictions up to 2028 and a recent study [19]. Consequently, 
GDP growth rates of 6 %, 5 %, and 4 % are projected to 2030, 2040, and 
2050, respectively. This gradual decline in GDP growth rate accounts for 
the expected decreasing tendency of the GDP growth as the economy 
matures [61].

2.6.2. High Economic Growth scenario
The HEG scenario envisages a GDP growth rate faster than the 

baseline. This assumption draws on Ethiopia’s strong economic perfor
mance, which has seen an average growth rate of nearly 11 % per year 
since 2004, alongside a reduction in extreme poverty—from 55 % in 
2000 to 34 % in 2011 [62]. Over the past 15 years, the country has 

Fig. 4. Methodological basis for identifying settlements with potential for PU. 
Spatial distribution of HHs with electricity demand at or above Tier 2, which 
serves as the threshold for estimating PU electricity demand in the study 
methodology. The horizontal and vertical axes represent longitude and latitude, 
respectively, and the color bar indicates tier levels from tier 2 to 5.

3 MOE stands for Ethiopian Ministry of Education, responsible for the 
governance and policies of education.
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experienced an AAGR of nearly 10 %, mainly driven by public infra
structure investments [63]. The HEG scenario is grounded in the gov
ernment’s economic policies and reforms, such as the 2019 
Home-Grown Economic Reform Agenda which runs from 2020/21 to 
2029/30 and aims to transition the economy to a market-oriented sys
tem, attract foreign direct investment (FDI) and boost private sector 
growth. Building on the country’s development goals, the HEG scenario 
projects average annual GDP growth rates of 11 %, 8 %, and 6 % for the 
years up to 2030, 2040, and 2050, respectively [19].

2.6.3. Rapid urbanization scenario
The RU scenario assumes a faster pace of urbanization than the BAU 

scenario. Ethiopia’s recent history shows an urbanization rate above the 
SSA average of 4.8 % in 2021, with annual rates ranging between 4.09 % 
and 5.25 % from 2005 to 2021 [37]. This scenario is based on the 
assumption that ongoing and future policy interventions will further 
increase the pace of urbanization.

Several key factors contribute to this scenario. First, the govern
ment’s Growth and Transformation Plan (GTP II) includes targeted in
vestments in urban infrastructure, housing, and job creation, all of 
which are expected to stimulate rural-to-urban migration. This migra
tion is driven by the pursuit of better employment opportunities, 
improved living conditions, and greater access to services such as edu
cation and healthcare [64]. Second, Ethiopia’s demographic profi
le—characterized by a rapidly expanding and youthful population, will 
further contribute to urban growth. The increasing demand for housing, 
jobs, and urban services is projected to stimulate the expansion of urban 

centers. Given these dynamics, the RU scenario assumes an average 
annual urbanization growth rate of 5 % throughout the projection 
period (2021–2050).

2.7. Electricity demand projection model

The MLR model projects future national electricity demand on the 
basis of historical relationships between the dependent variable (elec
tricity demand) and a set of independent variables (demand drivers). 
The general mathematical form of the MLR model is expressed in 
Equation (6). 

D= β0 + β1X1 + β2X2 + ...+ βnXn + ε (6) 

• Where, D is the dependent variable (representing electricity de
mand), β0 is the y-intercept of the regression line, β1, β2, …, βn are the 
coefficients for the independent variables X1, X2, …, Xn (the demand 
drivers), ε is the error term.

The model is applied to project the national electricity demand of 
each consumer group by incorporating the growth rates of key demand 
drivers (rural electricity access levels, GDP per capita and urbanization) 
specific to each scenario, as outlined in Table 2. To build the model, 
historical national consumption data for households, as well as com
mercial and public services (from 2005 to 2021) were obtained from the 
IEA [46], as illustrated in Fig. 2. To project the electricity demand of 
HHs, the model establishes a correlation between the historical national 

Fig. 5. Methodological demonstration of the base year electricity demand for key CIs in Ethiopia: (a) Education facilities (top left), (b) Health facilities (top right), (c) 
Places of worship (bottom left), and (d) Government offices (bottom right). The spatial distribution illustrates how CI demand is allocated based on settlement 
economic status (C values), with demand interpolated between rural and urban CI consumption levels established through RAMP modeling.
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consumption of HHs and the key drivers under each scenario. Addi
tionally, the model is validated by cross-referencing the base-year pro
jection for HHs with actual historical electricity consumption data. PU 
electricity demand projections are derived from HH projections, as 
described in s.ection 2.3.2.

CIs, such as health centers, schools, churches, and government 
buildings, which are considered in this study, are categorized as part of 
the public services group within IEA statistical data [46]. However, the 
IEA does not report electricity consumption for public services sepa
rately from commercial activities; instead, both are combined under the 
“commercial and public services” category, making it difficult to derive 
distinct growth trends for this sub-category. In the absence of a historical 
growth trend for public services alone, the growth rate for the aggre
gated commercial and public services sector is adopted as the most 
appropriate proxy for projecting CI demand. This assumption is made 
under the premise that, in a developing country, particularly in rural 
areas, commercial activity and public services tend to grow alongside 
overall economic development, urbanization, and population growth, 
thereby exhibiting broadly similar energy demand trends. Nevertheless, 
it is acknowledged that the actual growth rate for CIs may differ from 
that of the combined commercial and public services sector, which 
represents a limitation given the constraints on available data. The MLR 
equation used in the demand projection is represented by Equation (7). 

D= β0 + β1(Rural electricityaccess)+ β2
(
GDPpercapita

)

+ β3
(
Urban populationpercentage

)
+ ε

(7) 

2.8. Influence of temperature variation on electricity demand

This paper further examines the effects of spatial temperature vari
ation and projected temperature rise due to climate change on future 
electricity demand. Due to its diverse geography, Ethiopia has a wide 
range of local climates, from cooler highlands to hotter lowland areas. 
The long-term average temperature ranges from 8.8 ◦C in the highlands 
to 33.8 ◦C in the lowlands [29]. Empirical evidence from various con
texts indicates a strong positive correlation between ambient tempera
ture and electricity demand. For example, in Jordan, average electricity 
demand increased by approximately 11 % due to elevated temperatures 
between 2007 and 2016 [65]. Similarly, studies in India and Texas have 
shown that a 1 ◦C increase in ambient temperature above a 24 ◦C 
baseline results in a 2 % and 4 % increase in electricity demand, 
respectively [23].

To assess the potential effect of this in Ethiopia, the study used 
spatial temperature data from the Global Solar Atlas [29], as depicted in 
Fig. 6. The model incorporates a temperature sensitivity factor that in
creases total electricity demand by 2 % for every 1 ◦C rise above a 24 ◦C 
baseline (Equation (8)). 

Etotal(T)=
{

Etotal,T < 24◦C
Etotal*(1 + 0.02*(T − 24)),T ≥ 24◦C (8) 

Where Etotal(T) represents total electricity demand considering the effect 
of spatial temperatures, Etotal is the baseline total demand without 
considering the effect of temperature, and T is annual mean daily tem
perature at 2 m.

Furthermore, to provide a forward-looking perspective on 
temperature-driven demand, the analysis incorporates temperature rise 
projections over the study horizon. These projections are sourced from 
the IPCC reports, which predict an average global temperature rise of 
about 0.2 ◦C per decade [27]. For each projection year and settlement, 
the mean daily temperature is incremented by this decadal change 
before applying the sensitivity factor. Incorporating both spatial and 
temporal temperature variation in this way enables the identification of 
settlements most vulnerable to warming-driven demand growth and 
quantifies the incremental demand attributable to climate change over 
time.

3. Results and analysis

3.1. Total electricity demand projections under different scenarios

The three scenarios were applied to generate long-term electricity 
demand projections. The total national projections show substantial 
electricity demand growth under all scenarios: by 2050 compared to the 
base year (2021), electricity demand increases to 20,400 GWh (a 176 % 
increase) under BAU, to 23,600 GWh (219 %) under HEG, and to 28,500 
GWh (285 %) under RU. This represents a 40 % increase under RU 
compared to BAU, and a 16 % increase compared to HEG. The total 
national projections result in an AAGR of 3.6 %, 4.1 %, and 4.8 % over 
2021–2050 for BAU, HEG, and RU, respectively.

In terms of per capita electricity consumption at national level, BAU 
shows an increase from 70 kWh in 2014 to 106 kWh by 2050, while HEG 
and RU increases to 122 kWh and 148 kWh, respectively. These results 
indicate that Ethiopia will experience an increase in both total and per 
capita electricity demand over the projection period. Fig. 7, shows the 
demand growth trends under each scenario.

3.2. Electricity demand by consumer group

The analysis of total national electricity demand projections by 
consumer group (HHs, PUs, and CIs) reveals disparities in total demand 

Fig. 6. Long-term average of daily air temperatures in Ethiopia (1994–2018), 
measured at a height of 2 m above the ground with a resolution of 30 arc
seconds [29].

Fig. 7. Projected total electricity demand in Ethiopia (2021–2050) under 
three scenarios.
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and growth rates across sectors. HHs represent the largest share of total 
electricity demand throughout the projection period. However, its 
AAGR is slightly lower than CIs. Under the BAU, the projected AAGRs 
are 3.6 % for both HHs and PUs, while CIs show a higher growth rate of 
4.3 %. The HEG scenario predicts AAGRs of 4.1 % for HHs and PUs, and 
4.3 % for CIs over the same period. The RU scenario exhibits the highest 
demand growth among the three scenarios, with AAGRs of 4.8 % for 
HHs and PUs, and 5.8 % for CIs. The higher growth rate for CIs is due to 
their low electrification levels in the base year. As electrification ex
pands, CIs electricity demand increases, resulting in higher AAGRs 
compared to HHs. To validate the model for the base year, the projected 
result was compared with the actual historical consumption for HHs. 
The model predicts a demand that is 1.5 % higher than the actual his
torical consumption in the base year, as shown in Fig. 8. The coefficient 
of determination (R2) values for the MLR models exceed 0.97, indicating 
strong explanatory power of the selected demand drivers. Table 3
summarizes the projected electricity demand by consumer groups across 
these scenarios.

3.3. Spatial demand analysis

3.3.1. Households
A spatial analysis of HH electricity demand shows an increase in 

consumption tiers between 2021 and 2050. In 2021, only 54.2 % of HHs 
had electricity access, leaving approximately 11.4 million HHs without 
access. Of those electrified HHs, around 11 % were in Tier 1 (basic 
electricity access). This proportion is expected to increase to approxi
mately 17 % by 2030 and further increase to 25 % by 2050 due to the 
electrification of unelectrified HHs. The share of HHs with Tier 2 was 
around 27 % in 2021 and is projected to reach about 23–39 % by 2050. 
Conversely, HHs in Tier 3, which represented the majority (61 %) of 
electrified HHs in 2021, are expected to decline to 37–47 % by 2050. 
This decline is due to newly electrified HHs entering lower consumption 
tiers (Tiers 1 and 2). It is worth noting that HHs with Tier 4 and above 
were entirely absent in 2021. However, Tier 4 begins to emerge by 2030 
in the HEG and RU scenarios, and by 2040 in the BAU scenario, reaching 
between 0.08 % and 11 % by 2050.

Fig. 9 illustrates the evolution of HHs electricity demand under the 
three scenarios. In the BAU scenario, there is a considerable increase in 
the proportion of HHs falling within Tiers 1 and 2, accompanied by a 
decline in the proportion of Tier 3. This contrasts with the HEG and RU 
scenarios, where the rise in the share of HHs in Tiers 1 and 2 is less 
compared to the BAU scenario, and the share of Tier 3 is relatively 
higher. In the HEG scenario, the share of Tier 4 HHs grows from 
nonexistent in 2021 to 5.06 % by 2050. The RU scenario exhibits the 
largest increase in Tier 4 HHs, with 11.31 % of HHs falling into this 
category by 2050.

Given that the RU scenario represents the highest increase in 

electricity demand by 2050, the spatial analysis of demand focuses on 
this scenario. The spatiotemporal analysis reveals three key findings as 
shown in Fig. 10. First, the analysis highlights the progressive electri
fication of HHs that previously lacked electricity access. As rural elec
tricity access expands, projected to reach 100 % by 2046, many 
settlements transition to higher demand levels. This leads to an increase 
in total electricity demand. Second, for HHs that were already electri
fied, there is also a shift toward higher demand tiers over time. As can be 
seen from the zoomed sample inset, HHs in settlements with lower de
mand tiers in 2021 are likely to move toward higher tiers by 2050.

Third, a closer examination of Fig. 10 reveals a large number of HHs 
in the north-central, central, and south-central regions are expected to 
transition from Tier 1 consumption levels to higher consumption tiers 
(Tiers 2 and 3) between 2021 and 2050. In contrast, many HHs in pe
ripheral areas, particularly in the Northeast and Southeast regions, are 
projected to remain in Tier 1 or shift modestly to Tier 2 during the same 
period. This regional disparity demonstrates how HH electricity demand 
varies across the country, depending on local population dynamics, 
economic factors, and urbanization development.

3.3.2. Productive use
The electricity demand projections for PU at the settlement level 

show distinct spatial patterns over the projection period (2021–2050), 
with higher growth in the RU scenario. The percentage provided in this 
analysis is based solely on settlements with PUs. In 2021, most of these 
settlements (96.16 %) had a demand of less than 1 GWh, indicating 
limited energy use in many areas. A smaller proportion of settlements 
(3.2 %) fell within the demand range of 1–10 GWh, while only a minimal 
0.1 % of settlements exceeded 100 GWh in demand. By 2050, the pro
portion of settlements with demand below 1 GWh is expected to 
decrease to 90.72 %, while those in the 1–10 GWh range is expected to 
increase to 8.54 %. Higher demand categories, such as 10–25 GWh, 
25–50 GWh, and over 100 GWh, are also expected to see slight increases. 
Fig. 11 shows the spatial variation and changes in PU electricity demand 
over time between 2021 and 2050. Settlements labeled as "No PU" 
correspond to HHs with Tier 1 electricity demand that do not contribute 
to PU. In contrast, settlements with higher electricity access, GDP, and 
IWI scores show greater PU electricity demand.

3.3.3. Community institutions
The electricity demand for CIs under the RU scenario also shows 

higher demand growth across settlements with CIs. Thus, the spatial 
analysis of CIs demand focuses on this scenario. As with the PUs, the 
percentages in this analysis are based only on settlements with CIs. In 
2030, 63 % of the settlements with CIs have total demand below 1000 
kWh. However, by 2050, this proportion is expected to fall to 38 % as 
more settlements move into higher demand categories. The proportion 
of settlements with moderate electricity demand (1000–3000 kWh) is 
projected to grow from 27 % to 46 %, while those with high demand 
(over 5000 kWh) are expected to rise from 5 % in 2030 to 9 %.

By 2030, electricity demand from CIs may contribute, on average, a Fig. 8. Regression model validation – actual vs. predicted HH consumption for 
the years 2005–2021.

Table 3 
Projected electricity demand by consumer group and scenario.

Scenarios Consumer 
groups

Electricity demand (GWh/year) AAGR 
2021–2050 
(%)2021 2030 2040 2050

BAU HH 5863 9221 13070 16196 3.6
PU 1465 2304 3264 4044 3.6
CI 39 71 102 131 4.3

HEG HH 5863 10557 15389 18738 4.1
PU 1465 2637 3843 4679 4.1
CI 39 73 105 134 4.3

RU HH 5863 10054 15751 22645 4.8
PU 1465 2512 3933 5654 4.8
CI 39 80 130 201 5.8
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31 % increase in settlement level electricity demand in settlements 
where these institutions are located. This contribution is projected to 
rise to 46 % by 2050. This high contribution is primarily attributed to 
the assumption that every village and/or town includes at least one POW 

and one government office. The distribution of HHs across population 
settlements varies widely, with a larger proportion of CIs located in 
settlements with smaller populations. This distribution explains their 
disproportionately higher contribution of CIs to the electricity demand 

Fig. 9. Evolution of HH electricity demand tiers under three scenarios for the years 2021, 2030, and 2050. Access to electricity is projected to be fully achieved after 
2040, which is displayed in the figure as unelectrified in grey.

Fig. 10. Spatial variations in HH electricity demand under the RU scenario, comparing the base year (2021) with projections for 2050. In the base year, HH demand 
ranges from Tier 1 to Tier 3, while by 2050 demand is projected to increase with some settlements reaching Tier 4.
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in these settlements. The spatial distribution of CIs electricity demand, 
as shown in Fig. 12, aligns with the patterns observed for HHs electricity 
demand in Fig. 10. Settlements with higher HHs demand tend to have 
greater CIs electricity demand, while settlements with lower HHs de
mand show relatively lower or no CIs demand.

3.4. Electricity demand due to rising temperature

The analysis on the effect of rising ambient temperature on elec
tricity demand indicates a gradual increase in additional electricity 
demand over time. Nationally, temperature-driven additional demand is 
expected to be approximately 0.49 % by 2030 and 0.53 % by 2050 
across the three scenarios.

Although the national impact remains relatively small, certain re
gions are expected to experience more significant increases in electricity 
demand due to higher temperatures. Regions with yearly average daily 
temperatures exceeding 24◦C—such as the arid and semi-arid lowlands 
of Afar (Northeast) and Somali (Southeast), parts of Amhara (North
west), and Benishangul-Gumuz (West), and the peripheral areas—are 
projected to see higher electricity demand driven by rising tempera
tures. Using the population growth rates presented in Table 2, the study 
projects that the population residing in these hotter regions will reach 13 
million by 2030 and 20.2 million by 2050. In settlements of these re
gions, electricity demand is projected to rise by up to 21.8 %–22.6 % 
between 2030 and 2050 as a result of temperature increases. These 

projections are illustrated in Fig. 13, which highlights the settlements 
expected to be most affected by rising temperatures.

4. Discussion

This study projects Ethiopia’s long-term electricity demand from 
2021 to 2050 under three scenarios (BAU, HEG, and RU). All scenarios 
show significant growth, with the RU scenario displaying the highest 
increase, 40 % above BAU by 2050. This large increase in demand can be 
attributed to rapid urbanization of previously rural areas, population 
growth, an increase in electricity-intensive economic activities, expan
sion of urban infrastructure, and adoption of energy-intensive appli
ances such as cooking stoves, air conditioners, and refrigerators [66]. 
These findings are consistent with previous studies, which showed that 
rapid urbanization of rural areas leads to a substantial increase in energy 
consumption [67–69]. The RU scenario’s higher demand growth high
lights the importance of urbanization in electrification planning.

Compared to previous studies carried out for Ethiopia, the results of 
this study show both alignment and divergence in terms of growth rates. 
These differences can be attributed to differences in the socioeconomic 
assumptions, time-horizon, sectoral coverage, and the methods of pro
jections (e.g. regression [4], Low Emissions Analysis Platform (LEAP) 
[19,20,70]). Table 4 provides a comparative overview of the relatively 
limited set of long-term electricity demand projections available for 
Ethiopia.

Fig. 11. Spatial variations in electricity demand for PUs under the RU scenario, comparing the base year (2021) demand with projections for 2050. Areas shaded in 
grey represent settlements where the electricity demand of HHs remains below Tier 2, indicating that there are no PUs in these settlements.

Fig. 12. Spatial variations of electricity demand for CIs under the RU scenario, comparing the base year (2021) with 2050 projections. The highest demand for CIs is 
observed in areas that align with roads, cities, and densely populated regions.
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The AAGR projected for HH electricity demand in this study closely 
matches the projections reported by Pappis et al. [4]. This is likely due to 
their use of similar methodological approaches, including the use of the 
OnSSET model for spatial demand estimation and comparable assump
tions regarding population growth and electricity access levels. The 
AAGR for HHs projected by Mondal et al. [20] until 2030 aligns with this 
study’s projection of 5.1–6.8 % for the same period. In contrast, 
Gebremeskel et al. [19] reported higher AAGRs for the HH sector up to 
2050. This is likely due to their optimistic assumptions regarding elec
trification and appliance uptake, as well as urbanization targets (60–80 
% by 2050 compared to the more conservative range of 39.1–56.9 % in 
this study).

The total electricity demand AAGR projected in this study (5.2 %– 
6.8 %) closely aligns with the findings of Pappis et al. and, to a lesser 
extent, with Senshaw [70]. Again, Gebremeskel et al. [19] report higher 
growth rates for total demand through 2050. The highest total electricity 
demand growth rates reported in previous studies are predominantly 
attributable to sectors such as industry, agriculture, transport, and ser
vices, and in some cases also account for exports and technical losses [4,
19,20,70]. These sectors are not the primary focus of the present study, 
which is limited to HHs, PUs, and CIs—sectors most relevant for rural 
electrification planning. As such, the projections herein do not capture 
the full scope of national demand growth with broader sectoral 
coverage. This distinction is important for interpreting differences in 
projected growth rates and absolute demand levels.

Compared to other developing countries, the demand projection for 
Ethiopia in this study appears relatively moderate. The electricity de
mand in Pakistan grows at 8.35 % AAGR until 2050 [21], considerably 
higher than Ethiopia’s 3.6 %–4.8 % AAGRs. Similarly, studies in Kenya 
projects AAGR of 1.8 %–10 % until 2040, exhibits a broader range 
compared to Ethiopia [71,72]. Rwanda’s AAGR of 6.6 %–7.2 % exceeds 
this study’s AAGR, despite a smaller absolute demand [73]. In contrast, 
Sierra Leone’s projected AAGR from 2019 to 2040, ranging between 3.9 
% and 5.7 % [74], aligns closely with Ethiopia’s, a more comparable 
electricity demand growth between these two countries. Such 
cross-country comparisons illustrate the diverse electricity demand 

growth across different nations, driven by their unique economic, de
mographic, and policy contexts. Furthermore, this study’s projection for 
total electricity demand growth in Ethiopia, ranging from 4.3 % to 5.3 % 
AAGR until 2040, aligns consistently with the IEA’s estimated 4.6 % 
AAGR for SSA for the 2012–2040 period [75].

Findings from the sectoral demand projections indicate that HH 
electricity demand remains the primary source of energy consumption. 
This is in agreement with previous studies, which reported that the HH 
sector accounted for 88 % of Ethiopia’s total energy consumption in 
2018 [39]. However, Yalew’s [39] estimate includes more energy 
sources, including biomass, the main energy source in rural areas. 
Therefore, the HH sector’s share of electricity consumption may be 
lower than both Yalew’s estimate and this study’s projections. The 
dominance of HH electricity demand in this paper is due to the meth
odological approach, where PUs are considered direct derivatives of HH 
demand. CIs contribute a smaller share to overall electricity demand. 
This may be due to the assumption that each town or village has only one 
CI facility, which could result in an underestimation of the actual 
number of such facilities, particularly in densely populated areas.

A key finding of this research is the spatial variations in electricity 
demand. Central regions, characterized by higher population densities, 
relatively higher local economies, and lower poverty rates, are projected 
to see higher electricity demand growth. Most settlements in these re
gions are already electrified, which may further increase demand 
growth by facilitating the adoption of electricity-dependent appliances 
and economic activities. In contrast, peripheral regions, particularly in 
the Northeast and Southeast, where poverty rates are higher and local 
GDP is relatively low, are expected to experience slower electricity de
mand growth. Limited access to electricity, and sparse populations in 
these areas are likely to keep demand low over the coming decades. The 
lower household wealth and less diversified local economies in these 
regions may hinder their ability to adopt electricity-intensive activities, 
further limiting demand growth. While the study considers important 
socioeconomic factors, such as local GDP and poverty levels, it does not 
explore other variables that may influence spatial demand, such as 
household income.

The analysis of HH electricity demand reveals a trend towards higher 
demand tiers (Tiers 3 and 4) over time. This accords with the findings of 
Sahlberg et al. [17]. While their study anticipates a higher population 
share in Tiers 1 and 2 until 2030 (Ambition and Big Business scenarios) 
and up to 2050 (Slow Down), this study shows that Tier 3 demand will 
continue to dominate until 2050, with a growing share of Tier 2 and Tier 
4 demand. The results showing varied demand (Tiers 1 to 4) across re
gions differ from projections by Mentis et al. [6,7], who anticipated that 
all rural areas would reach Tier 3 (150 and 170 kWh/person/year in 
Ethiopia and Nigeria, respectively) and all urban areas would reach Tier 
4 (300 and 350 kWh/person/year in Ethiopia and Nigeria respectively) 

Fig. 13. Additional electricity demand due to projected temperature rise in the RU scenario for the years 2030 and 2050. By 2050, the impact of rising temperatures 
is expected to extend into central northern regions, indicating a broader geographical spread of temperature-driven demand.

Table 4 
Comparison of electricity demand projections for Ethiopia.

Studies Time-horizon AAGR (%) Source

Household 2018–2065 4.2 Pappis et al. [4]
Household 2012–2030 7.6 Mondal et al. [20]
Household 2018–2050 8.5 Gebremeskel et al. [19]
Total demand 2018–2065 4.9 Pappis et al. [4]
Total demand 2018–2050 6.0–8.4 Senshaw [70]
Total demand 2018–2050 7.2 Gebremeskel et al. [19]
Total demand 2012–2030 9.7 Mondal et al. [20]
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by 2030. Similarly, Ouedraogo [8] projected that urban settlements in 
Cameroon would reach Tier 5 consumption (1796 kWh/household/
year) by 2035, while rural settlements would reach Tier 3 (530 
kWh/household/year). However, the results indicate that a significant 
proportion of the population, particularly in rural areas, will likely 
remain in the lower tiers (Tiers 1 and 2) even beyond 2030.

Although PUs and CIs represent a smaller portion of national elec
tricity demand, their contribution is expected to grow, particularly at 
local levels. The demand for PUs, which is tied to HH electricity demand, 
is projected to increase alongside the growth of HH demand. CIs demand 
is projected to grow at a higher AAGR, due to the low levels of electricity 
access in the base year. Spatial analysis shows that in settlements where 
CIs are present, their average contribution to local electricity demand is 
expected to reach 46 % by 2050. This high contribution at the local level 
can be attributed to many CIs being located in settlements with rela
tively few HHs among the 809,087 total settlements in Ethiopia delin
eated by Ref. [47]. In such areas, the smaller number of HHs amplifies 
the share of electricity demand from CIs. This is supported by studies in 
Benin, where health and education facilities alone are projected to in
crease national residential demand by up to 23 % by 2030 [76].

The analysis of electricity demand due to temperature variations 
across regions and projected temperature rise reveals that, while the 
impact at national level remains relatively small, the effect at local level 
is considerable, particularly in lowland regions such as Afar and Somali. 
In these regions, electricity demand is projected to rise by 21.8 %–22.6 
% between 2030 and 2050 due to rising temperatures. These findings 
are strengthened by a previous study in Ethiopia [77], which reported a 
22 % increase in electricity consumption during the hotter, dry season. 
As highlighted in Ref. [22], such temperature-driven demand growth 
shows the need to incorporate the effect of temperature into long-term 
energy planning, at least at local levels.

This study makes several methodological and analytical contribu
tions to nationwide geospatial rural electrification planning. Firstly, 
many energy modeling studies primarily focus on supply-side optimi
zation or simulation while giving relatively little attention to demand 
projection formulation, often relying on oversimplified assumptions. In 
contrast, this study focuses on electricity demand and provides elec
tricity demand projections at settlement level using high-resolution 
gridded GDP and International Wealth Index data. This granular 
approach represents a substantial improvement over previous nation
wide electrification planning studies that relied on oversimplified rural- 
urban binary classifications [6–9]. This approach is crucial for capturing 
spatial heterogeneity in electricity demand, preventing supply-demand 
mismatches, and supporting cost-optimal resource allocation. The 
study’s findings of significant spatial heterogeneity in electricity de
mand, with HH demand ranging from Tier 1 to Tier 4 across settlements, 
directly validate its argument against uniform rural-urban electrifica
tion approaches. Secondly, this paper integrates electricity demand from 
three key sectors, including HHs, PUs, and CIs. This offers a more real
istic representation of electricity needs in rural and peri-urban areas, 
contrasting with prior nationwide electrification planning studies that 
focused solely on residential demand [6,7,10,11,17]. The inclusion of 
PU and CI demand is particularly important for developing economically 
sustainable rural electrification solutions. These demands often drive 
local economic development and can improve the financial viability of 
electricity infrastructure investments through higher load factors and 
revenue generation potential.

The incorporation of spatially explicit ambient temperature data and 
IPCC-based temperature prediction into the electricity demand pro
jections is another unique methodological contribution. By identifying 
the specific vulnerable regions and quantifying the expected demand 
increase, the study provides a clear imperative for capacity planning to 
include additional generation capacity. However, this factor has been 
overlooked in previous electrification planning studies despite its crit
ical relevance for SSA, where many regions experience substantial CDDs 
annually and face increasing temperature extremes due to climate 

change.
Despite these significant contributions, there are several limitations 

which are noteworthy. First, the study’s scope is limited to HHs, PUs, 
and CIs, which are deemed most relevant for rural electrification plan
ning. However, this focus means the study excludes other significant 
demand sectors that contribute substantially to national electricity 
consumption, such as large-scale industry, mining, and agricultural 
processing. Consequently, the total national demand projections do not 
capture the full scope of national demand growth and are not compa
rable to comprehensive energy demand projections. Second, while the 
inclusion of PUs is a strength, the method of estimation introduces un
certainty. The estimation of PU electricity demand relies on a fixed 
proportional relationship with HH demand, assuming PU demand equals 
25 % of household demand for households at or above Tier 2 access 
levels. While this proxy is based on empirical evidence from a study in 
Ethiopia and SSA countries, this approach may not adequately capture 
the heterogeneous nature of productive activities across different set
tlements. Consequently, this proxy could underestimate demand in 
urban and peri-urban areas where more energy-intensive enterprises or 
diverse productive activities are prevalent.

Third, the modeling of CIs faces dual limitations related to both 
baseline demand estimation and growth rate projections. The base-year 
demand estimates rely on appliance usage parameters adapted from 
field surveys conducted in Mozambique [12]. However, the actual 
appliance usage patterns, economic conditions, service delivery stan
dards, and institutional capacity in Ethiopia may differ from those in 
Mozambique despite both countries face similar low access and GDP per 
capita among other things. This could potentially introduce biases in the 
demand estimates for CIs in Ethiopia. Moreover, the growth rate pro
jections for CIs are derived from the projection of "commercial and 
public services" sector data, due to the absence of historical CI-specific 
consumption data. However, the aggregated growth rate derived from 
the combined "commercial and public services" sector may not reflect 
the electricity demand evolution of CIs. This is because public services 
may have different growth rates compared to commercial subsectors, as 
different sub-sectors within a broad category often exhibit distinct 
growth dynamics.

Fourth, the use of the MLR model for demand projection also pre
sents limitations. While this model provides interpretability and 
computational efficiency, it may oversimplify the complex, often 
nonlinear relationships between electricity demand and its socioeco
nomic drivers such as GDP, urbanization, and electricity access. The 
long-term projection horizon (2021–2050) further compounds these 
uncertainties, as future economic, political, and technological de
velopments could fundamentally alter demand patterns in ways not 
captured by historical relationships used in the model. Fifth, the spatial 
demand estimates depend on the quality and resolution of the under
lying input datasets, including gridded GDP, IWI, and temperature data. 
In areas where these datasets are outdated, incomplete, or interpolated, 
the reliability of projections may be reduced.

Finally, the modeling of temperature-induced demand is based on a 
linear relationship that assumes a 2 % increase in electricity consump
tion for every 1 ◦C rise above a 24 ◦C baseline. This linear assumption 
may oversimplify the actual demand response, as it does not account for 
potential non-linear peaks. The model also does not consider variations 
in appliance ownership, such as the presence or absence of air condi
tioning units, which can substantially influence temperature-sensitive 
demand. These limitations collectively suggest that while the study 
provides valuable insights for electrification planning, the results should 
be interpreted as indicative rather than precise projections.

5. Conclusion

This study presents long-term, spatial projections of Ethiopia’s 
electricity demand from 2021 to 2050. It provides both total national 
and high-resolution spatial electricity demand for three key sectors 
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relevant to rural electrification planning, under three alternative 
development scenarios. The study also integrates spatially explicit 
ambient temperature data and projected temperature rise into the 
electricity demand projections.

The results show significant growth in demand in all considered 
scenarios. The RU scenario results in the highest increase, up to 285 % 
by 2050 compared to the 2021 baseline. This is a 40 % increase over the 
BAU scenario. This highlights the influence of urbanization on Ethio
pia’s electricity future. The HEG scenario also projects a large increase in 
demand (219 %), driven by accelerated economic development. Sec
torally, HHs remain the dominant consumer group, but CIs can 
contribute up to 46 % of local demand where present by 2050.

The spatial analysis uncovers significant geographic disparities in 
electricity demand evolution. Central regions of Ethiopia, with higher 
economic status and population density, are projected to transition to
ward higher consumption tiers (Tiers 3 and 4), while peripheral areas in 
the Northeast and Southeast are expected to remain at lower demand 
levels (Tiers 1 and 2). This spatial heterogeneity underscores the limi
tation of traditional, uniform rural-urban demand classifications. 
Furthermore, the study uniquely quantifies the impact of rising ambient 
temperatures on electricity demand. While projected temperature in
creases contribute only 0.53 % to total national demand, they may in
crease local demand by up to 22.6 % between 2030 and 2050, thereby 
validating the necessity of spatially explicit modeling.

Three key policy implications can be drawn from the findings of this 
study. First, since household electricity demand is projected to range 
from Tier 1 to Tier 4 across different settlements, and community in
stitutions are expected to contribute up to 46 % of local demand by 
2050, Ethiopia’s National Electrification Program should be guided by 
settlement-level, multi-sector demand projections. This approach will be 
crucial for selecting appropriate electrification solutions, correctly 
sizing generation capacity, and ensuring investments are aligned with 
the diverse consumption realities of each region. Second, the RU sce
nario projects demand in 2050 to be 40 % higher than under the BAU. 
This underscores the critical need to prioritize early infrastructure, 
generation, and productive-use support in fast-growing towns and peri- 
urban areas to meet rising electricity needs. Third, substantial 

temperature-driven demand is projected in hot lowland areas (such as 
Afar, Somali, and Benishangul-Gumuz), potentially reaching up to 22.6 
% by 2050. Therefore, electrification planning must integrate local 
climate differences when designing networks and selecting supply 
technologies for these regions.

Future research should focus on conducting primary field surveys to 
better characterize productive use of electricity and community in
stitutions, including sector-specific consumption profiles and growth 
patterns across different settlement types. Future research should also 
extend spatial electricity demand projections to include the agricultural 
sector, which represents a substantial yet underexplored component of 
rural energy demand in developing countries. Additionally, nationwide 
least-cost electrification planning should be based on multi-sectoral, 
spatially differentiated demand as it enables technology selection and 
sizing decisions based on realistic electricity demand projections.
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Appendix A. Geospatial datasets used in the analysis

Dataset Type Source

Population settlements Vector Temesgen et al. [47]
Administrative boundaries Vector GADM [78]
Villages and towns Vector Geofabrik [58]
Health facilities Vector HDX [56]
GDP Raster Kummu et al. [50]
IWI Raster Lee and Braithwaite [51]
Temperature Raster Global Solar Atlas [29]

Appendix B. Electricity demand estimation basis

Table B 1 
Multi-tier household electricity demand [52].

MTF daily consumption levels (Wh per HH) Adapted annual electricity demand (kWh per HH)

12 ≤ Tier 1 < 200 38.7
200 ≤ Tier 2 < 1000 219
1000 ≤ Tier 3 < 3425 807.5
3425 ≤ Tier 4 < 8219 2125
Tier 5 ≥ 8219 3000

A.L. Temesgen et al.                                                                                                                                                                                                                            Energy Strategy Reviews 62 (2025) 101931 

14 



Table B 2 
RAMP configuration parameters for health facilities in urban and rural areas [12].

Urban

Appliances Quantity Power 
(W)

Operating time range 
[h]

Random window variation 
(%)

Functioning cycle 
[h]

Total operating hours 
[h]

Random time variation 
(%)

External light 15 25 16–24 20 3 3 20
Internal light 36 20 8-12,14-24 20 3 12 20
Phone 

charger
10 5 0–24 20 0.5 5 20

Sterilizer 2 1500 6–22 20 0.5 1 20
TV ​ ​ ​ ​ ​ ​ ​
PC ​ ​ ​ ​ ​ ​ ​
Fridge 2 250 0–24 20 0.5 – 20
Rural
External light 3 25 16–24 20 3 3 20
Internal light 7 20 8-12,14-24 20 3 12 20
Phone 

charger
10 5 0–24 20 0.5 5 20

Sterilizer 2 1500 6–22 20 0.5 1 20
Fridge 2 250 0–24 20 0.5 – 20

Table B 3 
RAMP configuration parameters for rural and urban school [12].

Urban

Appliances Quantity Power (W) Operating time range [h] Functioning cycle [h] Total operating hours [h]

External light 4 25 17–06 1 12
Internal light 18 20 7–17 0.5 4
PC 13 50 7–17 0.5 4
TV 3 60 7–17 0.5 2
Rural
External light 2 25 17–06 1 12
Internal light 4 20 7–17 0.5 4

Table B 4 
RAMP configuration parameters for government offices [12].

Urban

Appliances Quantity Power 
(W)

Operating time range 
[h]

Random window variation 
(%)

Functioning cycle 
[h]

Total operating hours 
[h]

Random time variation 
(%)

External light 5 20 16–18 0 1 1 30
Internal light 9 15 16–18 0 1 1 30
Phone 

charger
4 5 8–18 0 1 5 20

Fridge 2 70 8–18 0 1 3 0
Electronics 5 100 8–18 0 1 5 20
Rural
External light 2 20 16–18 0 1 1 30
Internal light 3 15 16–18 0 1 1 30
Phone 

charger
2 5 8–18 0 1 5 20

Table B 5 
RAMP configuration parameters for places of worship in urban and rural areas [12].

Urban

Appliances Quantity Power 
(W)

Operating time range 
[h]

Random window variation 
(%)

Functioning cycle 
[h]

Total operating hours 
[h]

Random time variation 
(%)

External 
light

5 25 17–06 0 1 12 0

Internal light 20 25 18–22 0 1 4 0
TV 1 100 16–21 0 1 4 0.2
PC 3 50 16–21 0 0.5 3 0.2
Rural

(continued on next page)
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Table B 5 (continued )

Urban

Appliances Quantity Power 
(W) 

Operating time range 
[h] 

Random window variation 
(%) 

Functioning cycle 
[h] 

Total operating hours 
[h] 

Random time variation 
(%)

External 
light

2 25 17–06 0 1 12 0

Internal light 4 25 18–22 0 1 4 0

Data availability

Data will be made available on request.
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