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ARTICLE INFO ABSTRACT

Handling Editor: Mark Howells Access to electricity remains a significant developmental challenge in Sub-Saharan Africa. To address this, na-

tional electrification planning must account for both the temporal evolution and spatial heterogeneity of elec-

Keywords: tricity demand, reflecting local socioeconomic realities and climatic conditions. This study aims to project long-
Electricity demand term, spatially explicit electricity demand for households, productive users, and community institutions in
Househt.)ld Ethiopia. It also assesses the potential impact of rising temperatures on future electricity demand. Regression
Productive user . . .. . . e .

Projection models are used to predict temporal changes in electricity demand, while the Open-Source Spatial Electrification

Tool (OnSSET) is used to examine the spatial demand dynamics across population settlements. Three scenar-
ios—Business-as-Usual (BAU), High Economic Growth (HEG), and Rapid Urbanization (RU)—are developed to
explore different development pathways from 2021 to 2050. The results show that, compared to the base year
(2021), national electricity demand could increase by 176 % under the BAU, 219 % under the HEG, and 285 %
under the RU by 2050. The most substantial increase in electricity demand is projected to come from households,
followed by productive users. Significant spatial variations are evident, with household demand ranging from
Tier 1 to Tier 4. Moreover, while projected temperature increases total national demand by only 0.53 % at
national level, it can increase local demand by up to 22.6 %. These findings highlight that national averages or
household-only models fail to capture the significant spatial and sector-specific variations in electricity demand.
Therefore, high-resolution, multi-sector demand projections are essential for designing cost-effective and equi-
table electrification pathways.

Spatial modeling

1. Introduction effective and responsive to local needs [4]. In particular,

settlement-level projections enable planners to design solutions that

Access to reliable and affordable electricity is a fundamental pre-
requisite for socioeconomic development. However, many developing
countries in the Global South struggle to provide universal electricity
access [1]. The International Energy Agency (IEA) projects that
approximately 660 million people globally will still lack electricity ac-
cess by 2030 [2]. Addressing this gap in a cost-effective manner requires
electrification strategies tailored to the socioeconomic, geographic, and
demographic realities of unelectrified areas [3].

A key component of such planning is the projection of future elec-
tricity demand at appropriate spatial and temporal scales. For devel-
oping countries experiencing rapid rural development, infrastructure
expansion, and population growth, long-term, spatially explicit demand
projections are essential to ensure electrification solutions are cost-
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reflect the diverse energy requirements of different communities [5].
Historically, nationwide electrification studies have employed
simplified approaches to project electricity demand. These studies
classify settlements into broad rural and urban categories and assign
typical consumption levels based on the Multi-Tier Framework (MTF).
For example, Mentis et al. [6] assigned a Tier 3 demand level (170
kWh/person/year) for rural populations and a Tier 4 demand level (350
kWh/person/year) for urban areas in Nigeria by 2030. Similarly, Mentis
et al. [7] projected that rural and urban demand in Ethiopia would reach
Tier 3 (150 kWh/person/year) and Tier 4 (300 kWh/person/year),
respectively, by 2030. Ouedraogo [8] also projected that the urban
population in Cameroon would reach Tier 5 and the rural population
Tier 3 by 2035. Bissiri et al. [9] applied weighted average tier
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allocations. They assigned Tier 4 and Tier 5 to the urban population and
Tier 2 and Tier 3 to the rural population under different demand sce-
narios in Burkina Faso and Cote d’Ivoire. These studies oversimplify the
spatial heterogeneity in electricity demand across urban, peri-urban,
and rural settlements,’ potentially leading to misaligned electrification
strategies. This simplification arises from a predominant focus on
supply-side optimization, with relatively little emphasis on formulating
demand projections.

Efforts to address this limitation have led to the development of more
disaggregated modeling approaches. Dagnachew et al. [10] have dis-
aggregated household (HH) electricity demand across Sub-Saharan Af-
rica (SSA) into five income-based tiers using the MTF in both rural and
urban areas. In addition, Korkovelos et al. [11] introduced a highly
spatially disaggregated HH demand methodology for Malawi. They
differentiated MTF-based HH demand into nine categories by inte-
grating gridded GDP and poverty level data. These advances enable
electrification strategies to be tailored to the unique geographic and
economic contexts of different regions.

Rural electrification planning should also incorporate the electricity
needs of productive users (PUs) and community institutions (CIs),
including health centers, education facilities, places of worship (POWs),
and government offices [12-14]. These non-household consumers can
have electricity demands comparable to those of HHs at the local level.
For example, Hartvigsson et al. [13] reported that PUs accounted for
approximately 25 % of the customer base in off-grid mini-grids. Simi-
larly, Wassie and Ahlgren [14] noted that HHs and CIs together
contribute to around 60 % of the load supplied by a mini-grid and
recognized that PUs drive rural electrification benefits. Dagnachew et al.
[15] further highlighted that demand from home-based small businesses
in SSA could increase HH electricity consumption by up to 50 %.
Including PUs and CIs is therefore essential to capture the diversity of
electricity needs and support the design of electrification solutions
capable of driving broader socioeconomic development.

However, identified studies relevant to nationwide or regional
electrification planning in SSA have primarily focused on HHs electricity
demand, with less attention given to PUs and CIs [6,7,10,11,16]. Most
recently, Sahlberg et al. [17] conducted a nationwide least-cost geo-
spatial electrification planning study for Ethiopia. While their study
modeled long-term spatially explicit electricity demand projections from
2018 to 2070, it only considered HH demand. Conversely, national en-
ergy planning studies typically provide long-term aggregated pro-
jections for multiple sectors. These include HHs, industrial, commercial,
agriculture, and public services [18-21]. However, these projections
lack the necessary spatial detail required for effective settlement level
electrification strategies [11].

Furthermore, rising ambient temperatures due to climate change are
expected to increase future electricity demand, particularly in tropical
regions [22,23]. As temperatures rise, residential cooling energy de-
mand for air conditioning is projected to increase by up to 150 % by
2050 [24]. Many regions across Africa experience between 4000 and
5000 cooling degree days (CDDs”) annually. This exceeds the levels
experienced in major cooling demand centers such as the United States
(3,150) and China (1,100) [25]. Currently, approximately 700 million
people in Africa live in climates requiring substantial cooling. This figure
is expected to rise to approximately 1.5 billion by 2050 [26]. The
Intergovernmental Panel on Climate Change (IPCC) reported that global
temperatures are rising by about 0.2 °C per decade. This trend is ex-
pected to further intensify cooling-related electricity demand [27].
Despite these clear indicators, most existing electrification planning
studies have not incorporated the influence of spatially varying and

! The term ‘settlement’, also known as cluster, is used to describe a range of
inhabited places, from a small group of homes to a village or entire urban area.

2 CDD is an indicator of how warm a location is, and calculated by comparing
daily temperatures against a base temperature, typically set at 18 °C.
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temporally rising temperatures into demand projections.

However, none of the aforementioned studies have provided long-
term spatially explicit electricity demand projections that encompass
HHs, PUs, and CIs while also factoring in the influence of ambient
temperatures [6,7,10,11]. The confluence of these identified methodo-
logical gaps limits the ability of policymakers and planners to develop
cost-effective electrification strategies. Thus, this study aims to develop
and apply a long-term spatially explicit electricity demand projection
model to investigate sectoral and geographic variations in demand
under different future development scenarios. It also investigates the
influence of rising and spatially varying ambient temperatures on future
electricity demand evolution. By doing so, the study seeks to support the
development of nationwide least-cost electrification pathways that
ensure equitable and sustainable electricity access for all. Specifically,
the following research questions are addressed.

e How will future demand for electricity differ across development
pathways and consumer groups?

e How does electricity demand evolve across different geographical
settlements?

e How and to what extent does a rise in temperature influence the
evolution of the electricity demand?

1.1. Novelty of the research

This study makes three key contributions to nationwide electrifica-
tion planning in developing countries. First, it provides long-term elec-
tricity demand projections for key consumer groups in rural areas,
including HHs, PUs, and Cls. Unlike previous studies, which relied on
HH demand and broad rural-urban classifications, this research projects
the electricity demand of these user types at national and high-
resolution settlement levels [6-8]. This enables a detailed understand-
ing of demand heterogeneity, which is essential for designing tailored
and inclusive electrification strategies. Second, different development
pathways and socioeconomic variables, such as urbanization, GDP
growth, and electricity access, are incorporated into the demand
modeling. By doing so, it captures a broader and more realistic range of
plausible future scenarios. This enables policymakers and planners to
evaluate various feasible development trajectories and design flexible,
adaptive electrification plans. Third, this study incorporates spatial
temperature variation and projected ambient temperature rise into
electricity demand projections. This is particularly relevant for SSA,
where rising ambient temperatures are expected to increase electricity
demand in many climate-vulnerable settlements. This factor has often
been overlooked in earlier demand studies. By simultaneously consid-
ering diverse consumer groups, different development pathways, and
climatic influences, the study enables the design of cost-effective and
locally tailored electrification strategies, thereby supporting actionable
strategic planning.

2. Methodology
2.1. Study approach

An integrated approach, incorporating both spatial and temporal
demand analysis, is adopted to investigate long-term electricity demand
development pathways. The analysis covers three key demand sectors:
households (HHs), productive users (PUs), and community institutions
(CIs), which together represent the primary drivers of rural electricity
demand. Temporal projections are developed using historical electricity
consumption data, enabling the study to capture long-term trends and
patterns over time. The spatial dimension is analyzed using georefer-
enced locations of individual consumers and settlements, enabling a
detailed assessment of how electricity demand varies across different
communities and local contexts. To explore a range of plausible futures



A.L. Temesgen et al.

and capture uncertainties in future demand, three scenarios are devel-
oped: Business-as-Usual (BAU), High Economic Growth (HEG), and
Rapid Urbanization (RU). Each scenario incorporates projections of key
demand drivers, including population growth, GDP growth, urbaniza-
tion, and rural electrification rate. These drivers are selected based on
their empirical relevance in energy demand projections for developing
countries [4,28].

The study further evaluates the potential influence of rising tem-
peratures on future electricity demand. To quantify its effect, spatial
temperature data, along with global warming projections, are incorpo-
rated into the demand projection model [27,29]. The model provides
total national, and sector-wise spatially explicit projections of electricity
demand. The latter can be used as an input to inform nationwide
least-cost electrification planning. An overview of the research frame-
work for developing long-term spatial demand scenarios, including data
inputs, modeling steps, and expected outputs, is provided in Fig. 1. The
subsequent subsections describe the methodological components in
greater detail.

2.2. Model selection

To analyze both the temporal and spatial dynamics of electricity
demand, this study employs a combined modeling framework. This in-
tegrated approach is applied over a multi-period horizon from 2021 to
2050, offering a long-term perspective. Models were selected based on
their strengths and suitability for addressing the challenges of projecting
electricity demand in developing countries.

For temporal projections, a multiple linear regression (MLR) model is
utilized. The MLR model is selected for its ability to link electricity de-
mand to multiple socioeconomic and demographic factors [30]. This
enables the development of scenario-based and sector-specific forecasts,
which are essential for understanding the impact of different policy or
economic pathways on future demand. The MLR model is widely used in
developing countries, where historical data may be limited [31].
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Suganthia and Samuel [32] conclude in their review of 12 energy de-
mand forecasting models that regression analysis is preferable for elec-
tricity demand forecasting in these contexts due to its effectiveness with
limited data and interpretability. These models have been successfully
applied in various countries for both short-term and long-term elec-
tricity demand forecasting [33]. It systematically establishes a statistical
relationship between electricity demand and its key drivers in a trans-
parent and reproducible manner [21,34]. Scenario analysis is used to
outline possible pathways for demand evolution and to project each
demand driver, while regression analysis enables the systematic inte-
gration of these drivers into the demand projection.

For the spatial analysis, the Open-Source Spatial Electrification Tool
(OnSSET) is employed. OnSSET was chosen for its proven capability to
support nationwide high-resolution, settlement level demand modeling
and analysis [11,35]. It integrates population data with georeferenced
information on PUs and CIs, enabling detailed spatial mapping of elec-
tricity needs. Furthermore, it supports scenario-based analysis, enabling
evaluation of alternative development pathways [17]. The open-source
nature of OnSSET also ensures transparency, reproducibility, and flexi-
bility, making it suitable for nationwide electrification studies [36]. The
methodology combines the MLR model for temporal projections with
OnSSET for spatial analysis. This produces both aggregate national
electricity demand projections and spatially explicit, sector-wise de-
mand at the settlement level.

2.3. Case study area description

This paper uses Ethiopia as a case for the study. Ethiopia was chosen
due to its unique demographic, economic, and energy sector charac-
teristics. The country has a large and rapidly growing population,
exceeding 120 million people, with more than 78 % residing in rural
areas [37]. This demographic reality contributes to Ethiopia having one
of the world’s largest electricity access deficits in absolute terms, with
about 55 million people lacking electricity access as of 2021. This figure

Population settlement
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Fig. 1. Flowchart of the study approach, where colors indicate the input data (green), processing steps (grey), and outputs (red).
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ranks Ethiopia third globally after Nigeria and the Democratic Republic
of Congo [35,38]. Furthermore, the country’s per capita electricity
consumption is below 100 kWh/year, which places it among the lowest
worldwide [39,40]. There are also pronounced regional disparities in
access, ranging from nearly 99.9 % in Addis Ababa and surrounding
areas to less than 20 % in pastoral regions such as Somali and Afar
[41-43]. The government of Ethiopia launched the National Electrifi-
cation Program II (NEP II) in 2019, aiming for universal access by 2025
[44]. However, the latest reports show that national access is still below
55 % [45], indicating a significant gap between policy targets and cur-
rent conditions.

Furthermore, the country’s rapid economic growth, urbanization,
and industrialization have led to notable increases in electricity demand
across key sectors. For instance, consumption in the residential sector
increased by 662 % from 2005 to 2021, with average annual growth rate
(AAGR) of 13.54 %. The commercial and public service sector saw a 347
% increase (with an AAGR of 9.8 %) over the same period [46]. Fig. 2
shows the growth in electricity demand and electricity access in Ethiopia
from 2005 to 2021. The aforementioned factors combined make
Ethiopia an exemplary case for this study. Insights from this case study
are transferable to other SSA countries facing similar electrification
challenges.

2.4. Demand profiling at settlement level

The high-resolution electricity demand analysis builds on the pop-
ulation settlements of the study area delineated previously by Ref. [47].
These settlements are identified using a methodology that converts
high-resolution raster population data into vector-based population
clusters/settlements [48]. Each cluster is characterized by several at-
tributes, including the total population count, classification as urban, or
rural, and an electrification status determined by the presence of
night-time lights as a proxy for electricity access.

To understand how electricity demand varies across settlements, this
study employs a spatial stratification approach. The stratification is
based on the relative economic status of each settlement. In this context,
economic status refers to the wealth of residents in a settlement
compared to others in the country. Electricity use and access are closely
linked to economic development. Thus, the analysis relates electricity
consumption to relative settlement economic status [49], with wealthier
settlements expected to have higher electricity demand than those with
lower economic status [11]. This economic stratification approach ad-
dresses a key limitation in current electrification planning. Existing
studies often use a simple rural-urban classification, which does not
capture economic differences within regions. By contrast, this approach
accounts for intra-regional economic heterogeneity. Two complemen-
tary geospatial datasets, average Gross Domestic Product and the

—e—Residential Commercial and public service —e—Electricity access
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Fig. 2. Trends in electricity access and consumption across residential, and
commercial and public service sectors in Ethiopia (2005-2021) (data source:
World Bank [45] and the IEA [46]).
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International Wealth Index, are used to quantify the relative economic
status of each settlement.

e Gross Domestic Product (GDP): The mean GDP values for each
population settlement were derived from the high-resolution GDP
data developed by Kummu et al. [50]. These datasets provide global,
gridded GDP estimates for selected years (1990, 2000, and 2015).
The authors combined available subnational GDP values with
spatially interpolated GDP values and national average GDP to
derive GDP estimates for the whole world at a spatial resolution of 30
arcseconds (approximately 1 km? at the equator). This fine-grained
representation allows for detailed analysis of economic disparities
at the sub-national level. The spatial GDP data for the study country
is shown in Fig. 3 a).

International Wealth Index (IWI): The IWI serves as a strictly
comparable asset-based measure of household wealth, and mean
values for each population settlement are calculated using high-
resolution village-level poverty maps developed by Lee and
Braithwaite [51]. The index takes into account ten assets and living
conditions, including five consumer durables (television, refriger-
ator, phone, bicycle, and car), access to two public services (water
and electricity), and three housing characteristics (number of bed-
rooms, floor material quality, and toilet type). Machine learning al-
gorithms are employed, integrating geospatial data sources such as
OpenStreetMap features, day-time satellite imagery, nighttime lu-
minosity, and High-Resolution Settlement Layer population data.
This approach enables the estimation of wealth levels at the village
level (1 square mile or 1.6 x 1.6 km? spatial resolution) for 25 SSA
countries. The IWI for the case study country is shown in Fig. 3 b).

Economic stratification of settlements is achieved by applying the
Jenks natural breaks method to both GDP and IWI values, as outlined by
Khavari et al. [49]. Using this method, GDP and IWI values are each
categorized into five classes. Such a classification method is well-suited
for data with clear clusters, where the values within each group are more
similar to each other than to the values in other groups. Table 1 presents
the classification scheme applied to the GDP and IWI values.

After classifying the gridded GDP and IWI data into five classes, these
two economic status indicators are combined into a single composite
value (Equation (1)).

C; =0.5*GDP; + 0.5*IWI; )

Where C; is the combined value of GDP and IWI for settlement i. This
composite value captures the economic status of each settlement and is
subsequently used to correlate economic status and electricity demand
at the settlement level (see details in sections 2.5.1 and 2.5.3).

2.5. Electricity consumer groups

2.5.1. Household

The World Bank’s Energy Sector Management Assistance Program
(ESMAP) Multi-Tier Framework (MTF) categorizes households into tiers
based on their minimum daily electricity consumption and service
quality attributes. Access to energy is measured across a spectrum of
levels, from level O (Tier 0) (without access) to level 5 (Tier 5) (the
highest level of access). The tiers for daily consumption start at Tier 1
(12 Wh) and go up to Tier 5 (more than 8219 Wh) [52] (see Appendix
Table B 1). The annual electricity demand for HHs is then calculated by
aggregating the daily demand over 365 days.

The study correlates HH demand categorization by MTF (Tiers 1 to 5)
with settlement economic status, as determined by the C values (ranging
from 1 to 5) obtained using Equation (1) [11]. The spatial HH electricity
demand is estimated by assuming that all HHs within a given settlement
have the same electricity demand. Households in settlements with a C
value of 5 are assigned Tier 5, indicating that higher electricity demand
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Fig. 3. High resolution spatial economic indicators in Ethiopia. a) The GDP for the year 2015 at a spatial resolution of 1 km?, expressed in constant 2011 inter-
national US dollars. GDP values range from 1137.8 USD to 4.3 million USD per grid cell [50]. b) The IWI at a grid size of 1.6 x 1.6 km?, where household-level wealth

index ranges from 2.9 to 86.1 in 2021 [51].

Table 1
GDP and IWI classification scheme for settlement stratification.

GDP GDP classification

IWI IWI classification

GDPmin(nb1) < GDP < nb,
nby < GDP < nbs

nbs < GDP < nb4

nby < GDP < nbs

GDP > nbs

g wWwN =

IWImin (nb1) < IWI < nb2
nb2 < IWI < nb3

nb3 < IWI < nb4

nb4 < IWI < nb5

IWI > nb5

a b wN =

*nb-natural breaks.

is associated with a relatively better economic status. Conversely, HHs in
settlements with a C value of 1 are assigned to Tier 1, reflecting lower
electricity demand linked to relatively poorer economic status. For HHs
in settlements with C values between 1 and 5, a linear interpolation is
applied between Tier 1 (38.7 kWh/HH/year) and Tier 5 (3000
kWh/HH/year), as shown in Equation (2).

E Ts—E 1,

EM = 2

x(C;—5)+Eq, )
Where EFH represents the annual electricity demand per HH for HHs in
settlement i, and E 1, and E r, represent the annual electricity demand
per HH of Tier 1 and Tier 5, respectively. To determine the total HH
electricity demand for each settlement, the MTF-based HH consumption
is first converted into per capita terms by factoring in the national
average HH size, as shown in Equation (3). The projected HH size for
each year is provided in Table 2. The total annual HH electricity demand
for each settlement is then determined using Equation (4).

EPC _ E{{H (3)
! " HH size
Elgoml :Pop,- XEIPC (4)

Where EFC is the annual electricity demand per capita for settlement i.
EP! represents the total annual HH electricity demand for settlement i,
and Pop; is the total population for settlement i.

2.5.2. Household-based productive use

This study also considers household-based small businesses as a
proxy for productive use (PU). In rural areas, most PUs are informal and
home-based or closely tied to residential activities. Given that the focus
of this study is rural areas, PUs are grouped under the HH category. This

Table 2
Growth rates and projected values of key electricity demand drivers for each
scenario.

Scenarios Drivers (%) Growth rates and projected values
2030 2040 2050
BAU GDP growth rate 6 5 4
Population growth rate 21 1.9 1.8
Urban population 26.9 32.7 39.1
Rural electricity access 61.2 85.5 100
HEG GDP growth rate 11 8 6
Population growth rate 2.1 1.9 1.8
Urban population 26.9 32.7 39.1
Rural electricity access 61.2 85.5 100
RU GDP growth rate 6 5 4
Population growth rate 2.1 1.9 1.8
Urban population 29.2 40.1 56.9
Rural electricity access 61.2 85.5 100
Average national HH size (people/HH) 4.7 4.6 4.5

grouping enables the model to better reflect the socioeconomic and
spatial realities of rural electricity consumption. In addition, there is a
lack of georeferenced data for identifying the locations of PUs across the
study area. Consequently, the electricity demand of PUs is modeled as a
proportion of HH demand, guided by empirical evidence from prior
studies. In Tanzania, approximately 25 % of mini-grid customers use
electricity for PUs [13]. Similarly, in Ethiopia, PUs account for over 50
% of total annual electricity consumption despite representing only a
quarter of the customer base [14]. Further regional data from
Mozambique indicates that PUs contribute over 26 % of daily electricity
consumption in the grid-connected rural town of 16 de Junho [53]. A
broader assessment across SSA suggests that PU could potentially in-
crease HH electricity demand by up to 45 % in a high-uptake scenario,
with a more conservative estimate indicating an increase of 25 % [15].
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Tier level

34 36 38 40 42 44 46 48

Fig. 4. Methodological basis for identifying settlements with potential for PU.
Spatial distribution of HHs with electricity demand at or above Tier 2, which
serves as the threshold for estimating PU electricity demand in the study
methodology. The horizontal and vertical axes represent longitude and latitude,
respectively, and the color bar indicates tier levels from tier 2 to 5.

In light of this, the present study presumes that HHs with electricity
demand at or above Tier 2 (73-365 kWh/HH/year) are more likely to
engage in PU activities. Therefore, the study conservatively estimates
that PU demand equals 25 % of HH demand for HHs in Tier 2 or higher
[15,53]. Fig. 4 shows HHs identified with electricity demand above Tier
2, which serves as the basis for estimating the demand of PUs in the
study area.

2.5.3. Community institutions

In this consumer group, the annual electricity demand is estimated
for four community institutions (CIs), namely health and education fa-
cilities, places of worship (POWSs), and government offices [5]. These
institutions have different electricity demands depending on their
location, whether in rural or urban areas. Urban institutions serve larger
populations and are thus equipped with a greater number of electrical
appliances, resulting in higher electricity consumption. Therefore,
separate demand estimations are conducted for rural and urban Cls
using the Remote-Areas Multi-energy systems load Profiles (RAMP)
model [54]. It is an open-source, bottom-up stochastic tool designed to
generate high-resolution load profiles for remote and off-grid areas
based on appliance-level data. RAMP requires a relatively small set of
input parameters, including rated power, number of units, availability
windows, duty cycles, and random variation factors, to produce
per-minute load profiles [55]. It is particularly effective for modeling
diverse energy needs (e.g., lighting, appliances, water heating, cooking)
using limited, interview-based data, which is often characterized by
high uncertainty [55]. Its flexibility in handling appliance-level char-
acteristics makes RAMP especially suitable for estimating the electricity
demand of CIs. The appliance-specific parameters used for this analysis
were adapted from previous studies conducted in Mozambique, where
data were collected through direct field-based surveys [12] (see Ap-
pendix Table B 2-Table B 5).

A key methodological challenge in spatial demand estimation of CIs
was the limited availability of georeferenced data on their locations.
Georeferenced locations for health facilities were obtained from the
Humanitarian Data Exchange (HDX) website [56], and for education
facilities from the Ethiopian Ministry of Education (MOE?) [57]. How-
ever, the georeferenced locations of POWs obtained from HDX and

3 MOE stands for Ethiopian Ministry of Education, responsible for the
governance and policies of education.
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OpenStreetMap (OSM) were limited and did not represent the full
coverage of these institutions. Additionally, georeferenced data on
government offices were not accessible through any public dataset
provider. Due to this lack of georeferenced data, it is assumed that each
village and town in Ethiopia has at least one POW and one government
office. Georeferenced information from Ref. [58] shows 23,957 villages
and towns across the country. This approach may underestimate counts
in denser settlements and overestimation in sparsely populated areas.
For CIs located outside the population settlements delineated by
Ref. [47], a proximity-based method was used to assign them into the
nearest population settlement [59]. This approach ensures that all CIs
are included in the spatial analysis of electricity demand.

The spatial electricity demand of CIs was estimated by linearly
interpolating between rural and urban demand levels using the com-
posite C value calculated in Equation (1). CIs located in settlements with
a C value of 5 were assigned the highest (urban) CI electricity demand,
while those in settlements with a C value of 1 were assigned the lowest
(rural) demand. For settlements with C values between 1 and 5, a linear
interpolation was applied, as shown in Equation (5). The spatial distri-
bution of CIs’ electricity demand across the study country is illustrated
in Fig. 5.

Eurban _ Erural
CI CI X( Ci _ 5) + Eé;ban (5)

B -
Where E is the annual electricity demand of a CI in settlement i, E4a"
and EZr® are the annual electricity demands of Cls in urban and rural
areas, respectively.

2.6. Scenarios

Three scenarios are developed to explore various potential future
development pathways and their respective impacts on electricity de-
mand. The BAU scenario serves as a baseline and assumes current trends
in key drivers of electricity consumption remain unchanged. Conversely,
the HEG and RU scenarios explore alternative pathways by applying
different growth rates to key drivers. Each scenario incorporates pro-
jections of four key demand drivers: annual population growth rate,
percentage of the population living in urban areas, annual GDP growth
rate, and the level of rural electricity access. Historical data for these
drivers, sourced from the World Bank, are available up to 2021 [60].
Therefore, 2021 is used as the base year for projecting electricity de-
mand up to 2050, with all growth rates calculated relative to the 2021
values. Historical electricity consumption data is obtained from the IEA
[46]. Table 2 summarizes the assumed growth rates and projected
values for each scenario.

2.6.1. Business as usual scenario

The BAU scenario assumes that key drivers (population growth rate
and percentage of urban population) follow United Nations projections.
For rural electricity access, the scenario extrapolates historical trends
observed between 2005 and 2021, projecting 100 % rural access by
2046 [45]. Projections of future GDP growth rates are based on the most
up-to-date available data, including historical trends from the World
Bank, IMF predictions up to 2028 and a recent study [19]. Consequently,
GDP growth rates of 6 %, 5 %, and 4 % are projected to 2030, 2040, and
2050, respectively. This gradual decline in GDP growth rate accounts for
the expected decreasing tendency of the GDP growth as the economy
matures [61].

2.6.2. High Economic Growth scenario

The HEG scenario envisages a GDP growth rate faster than the
baseline. This assumption draws on Ethiopia’s strong economic perfor-
mance, which has seen an average growth rate of nearly 11 % per year
since 2004, alongside a reduction in extreme poverty—from 55 % in
2000 to 34 % in 2011 [62]. Over the past 15 years, the country has
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Fig. 5. Methodological demonstration of the base year electricity demand for key CIs in Ethiopia: (a) Education facilities (top left), (b) Health facilities (top right), (c)
Places of worship (bottom left), and (d) Government offices (bottom right). The spatial distribution illustrates how CI demand is allocated based on settlement
economic status (C values), with demand interpolated between rural and urban CI consumption levels established through RAMP modeling.

experienced an AAGR of nearly 10 %, mainly driven by public infra-
structure investments [63]. The HEG scenario is grounded in the gov-
ernment’s economic policies and reforms, such as the 2019
Home-Grown Economic Reform Agenda which runs from 2020/21 to
2029/30 and aims to transition the economy to a market-oriented sys-
tem, attract foreign direct investment (FDI) and boost private sector
growth. Building on the country’s development goals, the HEG scenario
projects average annual GDP growth rates of 11 %, 8 %, and 6 % for the
years up to 2030, 2040, and 2050, respectively [19].

2.6.3. Rapid urbanization scenario

The RU scenario assumes a faster pace of urbanization than the BAU
scenario. Ethiopia’s recent history shows an urbanization rate above the
SSA average of 4.8 % in 2021, with annual rates ranging between 4.09 %
and 5.25 % from 2005 to 2021 [37]. This scenario is based on the
assumption that ongoing and future policy interventions will further
increase the pace of urbanization.

Several key factors contribute to this scenario. First, the govern-
ment’s Growth and Transformation Plan (GTP II) includes targeted in-
vestments in urban infrastructure, housing, and job creation, all of
which are expected to stimulate rural-to-urban migration. This migra-
tion is driven by the pursuit of better employment opportunities,
improved living conditions, and greater access to services such as edu-
cation and healthcare [64]. Second, Ethiopia’s demographic profi-
le—characterized by a rapidly expanding and youthful population, will
further contribute to urban growth. The increasing demand for housing,
jobs, and urban services is projected to stimulate the expansion of urban

centers. Given these dynamics, the RU scenario assumes an average
annual urbanization growth rate of 5 % throughout the projection
period (2021-2050).

2.7. Electricity demand projection model

The MLR model projects future national electricity demand on the
basis of historical relationships between the dependent variable (elec-
tricity demand) and a set of independent variables (demand drivers).
The general mathematical form of the MLR model is expressed in
Equation (6).

D=p, + /X1 + B X0+ ... + B Xn+ € (6)

e Where, D is the dependent variable (representing electricity de-
mand), Py is the y-intercept of the regression line, By, B, ..., By are the
coefficients for the independent variables X;, X, ..., X; (the demand
drivers), ¢ is the error term.

The model is applied to project the national electricity demand of
each consumer group by incorporating the growth rates of key demand
drivers (rural electricity access levels, GDP per capita and urbanization)
specific to each scenario, as outlined in Table 2. To build the model,
historical national consumption data for households, as well as com-
mercial and public services (from 2005 to 2021) were obtained from the
IEA [46], as illustrated in Fig. 2. To project the electricity demand of
HHs, the model establishes a correlation between the historical national
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consumption of HHs and the key drivers under each scenario. Addi-
tionally, the model is validated by cross-referencing the base-year pro-
jection for HHs with actual historical electricity consumption data. PU
electricity demand projections are derived from HH projections, as
described in s.ection 2.3.2.

CIs, such as health centers, schools, churches, and government
buildings, which are considered in this study, are categorized as part of
the public services group within IEA statistical data [46]. However, the
IEA does not report electricity consumption for public services sepa-
rately from commercial activities; instead, both are combined under the
“commercial and public services” category, making it difficult to derive
distinct growth trends for this sub-category. In the absence of a historical
growth trend for public services alone, the growth rate for the aggre-
gated commercial and public services sector is adopted as the most
appropriate proxy for projecting CI demand. This assumption is made
under the premise that, in a developing country, particularly in rural
areas, commercial activity and public services tend to grow alongside
overall economic development, urbanization, and population growth,
thereby exhibiting broadly similar energy demand trends. Nevertheless,
it is acknowledged that the actual growth rate for CIs may differ from
that of the combined commercial and public services sector, which
represents a limitation given the constraints on available data. The MLR
equation used in the demand projection is represented by Equation (7).

D =B, + p, (Rural electricityoccess) + B2 (GDPpercapita)

7
+ B5 (Urban populationyercenage) + € 7

2.8. Influence of temperature variation on electricity demand

This paper further examines the effects of spatial temperature vari-
ation and projected temperature rise due to climate change on future
electricity demand. Due to its diverse geography, Ethiopia has a wide
range of local climates, from cooler highlands to hotter lowland areas.
The long-term average temperature ranges from 8.8 °C in the highlands
to 33.8 °C in the lowlands [29]. Empirical evidence from various con-
texts indicates a strong positive correlation between ambient tempera-
ture and electricity demand. For example, in Jordan, average electricity
demand increased by approximately 11 % due to elevated temperatures
between 2007 and 2016 [65]. Similarly, studies in India and Texas have
shown that a 1 °C increase in ambient temperature above a 24 °C
baseline results in a 2 % and 4 % increase in electricity demand,
respectively [23].

To assess the potential effect of this in Ethiopia, the study used
spatial temperature data from the Global Solar Atlas [29], as depicted in
Fig. 6. The model incorporates a temperature sensitivity factor that in-
creases total electricity demand by 2 % for every 1 °C rise above a 24 °C
baseline (Equation (8)).

Eporar, T < 24°C
Eiowa(T) = { Eoa*(1 + o.momzli*(T —24)),T > 24°C ®
Where E;,(T) represents total electricity demand considering the effect
of spatial temperatures, E, is the baseline total demand without
considering the effect of temperature, and T is annual mean daily tem-
perature at 2 m.

Furthermore, to provide a forward-looking perspective on
temperature-driven demand, the analysis incorporates temperature rise
projections over the study horizon. These projections are sourced from
the IPCC reports, which predict an average global temperature rise of
about 0.2 °C per decade [27]. For each projection year and settlement,
the mean daily temperature is incremented by this decadal change
before applying the sensitivity factor. Incorporating both spatial and
temporal temperature variation in this way enables the identification of
settlements most vulnerable to warming-driven demand growth and
quantifies the incremental demand attributable to climate change over
time.
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Fig. 6. Long-term average of daily air temperatures in Ethiopia (1994-2018),
measured at a height of 2 m above the ground with a resolution of 30 arc-
seconds [29].

3. Results and analysis
3.1. Total electricity demand projections under different scenarios

The three scenarios were applied to generate long-term electricity
demand projections. The total national projections show substantial
electricity demand growth under all scenarios: by 2050 compared to the
base year (2021), electricity demand increases to 20,400 GWh (a 176 %
increase) under BAU, to 23,600 GWh (219 %) under HEG, and to 28,500
GWh (285 %) under RU. This represents a 40 % increase under RU
compared to BAU, and a 16 % increase compared to HEG. The total
national projections result in an AAGR of 3.6 %, 4.1 %, and 4.8 % over
2021-2050 for BAU, HEG, and RU, respectively.

In terms of per capita electricity consumption at national level, BAU
shows an increase from 70 kWh in 2014 to 106 kWh by 2050, while HEG
and RU increases to 122 kWh and 148 kWh, respectively. These results
indicate that Ethiopia will experience an increase in both total and per
capita electricity demand over the projection period. Fig. 7, shows the
demand growth trends under each scenario.

3.2. Electricity demand by consumer group

The analysis of total national electricity demand projections by
consumer group (HHs, PUs, and CIs) reveals disparities in total demand
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Fig. 7. Projected total electricity demand in Ethiopia (2021-2050) under
three scenarios.
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and growth rates across sectors. HHs represent the largest share of total
electricity demand throughout the projection period. However, its
AAGR is slightly lower than CIs. Under the BAU, the projected AAGRs
are 3.6 % for both HHs and PUs, while CIs show a higher growth rate of
4.3 %. The HEG scenario predicts AAGRs of 4.1 % for HHs and PUs, and
4.3 % for Cls over the same period. The RU scenario exhibits the highest
demand growth among the three scenarios, with AAGRs of 4.8 % for
HHs and PUs, and 5.8 % for ClIs. The higher growth rate for CIs is due to
their low electrification levels in the base year. As electrification ex-
pands, CIs electricity demand increases, resulting in higher AAGRs
compared to HHs. To validate the model for the base year, the projected
result was compared with the actual historical consumption for HHs.
The model predicts a demand that is 1.5 % higher than the actual his-
torical consumption in the base year, as shown in Fig. 8. The coefficient
of determination (R?) values for the MLR models exceed 0.97, indicating
strong explanatory power of the selected demand drivers. Table 3
summarizes the projected electricity demand by consumer groups across
these scenarios.

3.3. Spatial demand analysis

3.3.1. Households

A spatial analysis of HH electricity demand shows an increase in
consumption tiers between 2021 and 2050. In 2021, only 54.2 % of HHs
had electricity access, leaving approximately 11.4 million HHs without
access. Of those electrified HHs, around 11 % were in Tier 1 (basic
electricity access). This proportion is expected to increase to approxi-
mately 17 % by 2030 and further increase to 25 % by 2050 due to the
electrification of unelectrified HHs. The share of HHs with Tier 2 was
around 27 % in 2021 and is projected to reach about 23-39 % by 2050.
Conversely, HHs in Tier 3, which represented the majority (61 %) of
electrified HHs in 2021, are expected to decline to 37-47 % by 2050.
This decline is due to newly electrified HHs entering lower consumption
tiers (Tiers 1 and 2). It is worth noting that HHs with Tier 4 and above
were entirely absent in 2021. However, Tier 4 begins to emerge by 2030
in the HEG and RU scenarios, and by 2040 in the BAU scenario, reaching
between 0.08 % and 11 % by 2050.

Fig. 9 illustrates the evolution of HHs electricity demand under the
three scenarios. In the BAU scenario, there is a considerable increase in
the proportion of HHs falling within Tiers 1 and 2, accompanied by a
decline in the proportion of Tier 3. This contrasts with the HEG and RU
scenarios, where the rise in the share of HHs in Tiers 1 and 2 is less
compared to the BAU scenario, and the share of Tier 3 is relatively
higher. In the HEG scenario, the share of Tier 4 HHs grows from
nonexistent in 2021 to 5.06 % by 2050. The RU scenario exhibits the
largest increase in Tier 4 HHs, with 11.31 % of HHs falling into this
category by 2050.

Given that the RU scenario represents the highest increase in
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Fig. 8. Regression model validation — actual vs. predicted HH consumption for
the years 2005-2021.
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Table 3
Projected electricity demand by consumer group and scenario.
Scenarios ~ Consumer Electricity demand (GWh/year) AAGR
groups 2021 2030 2040  20s0 202172050
(%)
BAU HH 5863 9221 13070 16196 3.6
PU 1465 2304 3264 4044 3.6
CI 39 71 102 131 4.3
HEG HH 5863 10557 15389 18738 4.1
PU 1465 2637 3843 4679 4.1
CI 39 73 105 134 4.3
RU HH 5863 10054 15751 22645 4.8
PU 1465 2512 3933 5654 4.8
CI 39 80 130 201 5.8

electricity demand by 2050, the spatial analysis of demand focuses on
this scenario. The spatiotemporal analysis reveals three key findings as
shown in Fig. 10. First, the analysis highlights the progressive electri-
fication of HHs that previously lacked electricity access. As rural elec-
tricity access expands, projected to reach 100 % by 2046, many
settlements transition to higher demand levels. This leads to an increase
in total electricity demand. Second, for HHs that were already electri-
fied, there is also a shift toward higher demand tiers over time. As can be
seen from the zoomed sample inset, HHs in settlements with lower de-
mand tiers in 2021 are likely to move toward higher tiers by 2050.

Third, a closer examination of Fig. 10 reveals a large number of HHs
in the north-central, central, and south-central regions are expected to
transition from Tier 1 consumption levels to higher consumption tiers
(Tiers 2 and 3) between 2021 and 2050. In contrast, many HHs in pe-
ripheral areas, particularly in the Northeast and Southeast regions, are
projected to remain in Tier 1 or shift modestly to Tier 2 during the same
period. This regional disparity demonstrates how HH electricity demand
varies across the country, depending on local population dynamics,
economic factors, and urbanization development.

3.3.2. Productive use

The electricity demand projections for PU at the settlement level
show distinct spatial patterns over the projection period (2021-2050),
with higher growth in the RU scenario. The percentage provided in this
analysis is based solely on settlements with PUs. In 2021, most of these
settlements (96.16 %) had a demand of less than 1 GWh, indicating
limited energy use in many areas. A smaller proportion of settlements
(3.2 %) fell within the demand range of 1-10 GWh, while only a minimal
0.1 % of settlements exceeded 100 GWh in demand. By 2050, the pro-
portion of settlements with demand below 1 GWh is expected to
decrease to 90.72 %, while those in the 1-10 GWh range is expected to
increase to 8.54 %. Higher demand categories, such as 10-25 GWh,
25-50 GWh, and over 100 GWh, are also expected to see slight increases.
Fig. 11 shows the spatial variation and changes in PU electricity demand
over time between 2021 and 2050. Settlements labeled as "No PU"
correspond to HHs with Tier 1 electricity demand that do not contribute
to PU. In contrast, settlements with higher electricity access, GDP, and
IWI scores show greater PU electricity demand.

3.3.3. Community institutions

The electricity demand for CIs under the RU scenario also shows
higher demand growth across settlements with CIs. Thus, the spatial
analysis of CIs demand focuses on this scenario. As with the PUs, the
percentages in this analysis are based only on settlements with CIs. In
2030, 63 % of the settlements with CIs have total demand below 1000
kWh. However, by 2050, this proportion is expected to fall to 38 % as
more settlements move into higher demand categories. The proportion
of settlements with moderate electricity demand (1000-3000 kWh) is
projected to grow from 27 % to 46 %, while those with high demand
(over 5000 kWh) are expected to rise from 5 % in 2030 to 9 %.

By 2030, electricity demand from CIs may contribute, on average, a
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Fig. 9. Evolution of HH electricity demand tiers under three scenarios for the years 2021, 2030, and 2050. Access to electricity is projected to be fully achieved after

2040, which is displayed in the figure as unelectrified in grey.
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Fig. 10. Spatial variations in HH electricity demand under the RU scenario, comparing the base year (2021) with projections for 2050. In the base year, HH demand
ranges from Tier 1 to Tier 3, while by 2050 demand is projected to increase with some settlements reaching Tier 4.

31 % increase in settlement level electricity demand in settlements
where these institutions are located. This contribution is projected to
rise to 46 % by 2050. This high contribution is primarily attributed to
the assumption that every village and/or town includes at least one POW

10

and one government office. The distribution of HHs across population
settlements varies widely, with a larger proportion of CIs located in
settlements with smaller populations. This distribution explains their
disproportionately higher contribution of CIs to the electricity demand
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Fig. 11. Spatial variations in electricity demand for PUs under the RU scenario, comparing the base year (2021) demand with projections for 2050. Areas shaded in
grey represent settlements where the electricity demand of HHs remains below Tier 2, indicating that there are no PUs in these settlements.

in these settlements. The spatial distribution of CIs electricity demand,
as shown in Fig. 12, aligns with the patterns observed for HHs electricity
demand in Fig. 10. Settlements with higher HHs demand tend to have
greater Cls electricity demand, while settlements with lower HHs de-
mand show relatively lower or no CIs demand.

3.4. Electricity demand due to rising temperature

The analysis on the effect of rising ambient temperature on elec-
tricity demand indicates a gradual increase in additional electricity
demand over time. Nationally, temperature-driven additional demand is
expected to be approximately 0.49 % by 2030 and 0.53 % by 2050
across the three scenarios.

Although the national impact remains relatively small, certain re-
gions are expected to experience more significant increases in electricity
demand due to higher temperatures. Regions with yearly average daily
temperatures exceeding 24°C—such as the arid and semi-arid lowlands
of Afar (Northeast) and Somali (Southeast), parts of Amhara (North-
west), and Benishangul-Gumuz (West), and the peripheral areas—are
projected to see higher electricity demand driven by rising tempera-
tures. Using the population growth rates presented in Table 2, the study
projects that the population residing in these hotter regions will reach 13
million by 2030 and 20.2 million by 2050. In settlements of these re-
gions, electricity demand is projected to rise by up to 21.8 %-22.6 %
between 2030 and 2050 as a result of temperature increases. These

projections are illustrated in Fig. 13, which highlights the settlements
expected to be most affected by rising temperatures.

4. Discussion

This study projects Ethiopia’s long-term electricity demand from
2021 to 2050 under three scenarios (BAU, HEG, and RU). All scenarios
show significant growth, with the RU scenario displaying the highest
increase, 40 % above BAU by 2050. This large increase in demand can be
attributed to rapid urbanization of previously rural areas, population
growth, an increase in electricity-intensive economic activities, expan-
sion of urban infrastructure, and adoption of energy-intensive appli-
ances such as cooking stoves, air conditioners, and refrigerators [66].
These findings are consistent with previous studies, which showed that
rapid urbanization of rural areas leads to a substantial increase in energy
consumption [67-69]. The RU scenario’s higher demand growth high-
lights the importance of urbanization in electrification planning.

Compared to previous studies carried out for Ethiopia, the results of
this study show both alignment and divergence in terms of growth rates.
These differences can be attributed to differences in the socioeconomic
assumptions, time-horizon, sectoral coverage, and the methods of pro-
jections (e.g. regression [4], Low Emissions Analysis Platform (LEAP)
[19,20,70]). Table 4 provides a comparative overview of the relatively
limited set of long-term electricity demand projections available for
Ethiopia.
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Fig. 12. Spatial variations of electricity demand for CIs under the RU scenario, comparing the base year (2021) with 2050 projections. The highest demand for Cls is

observed in areas that align with roads, cities, and densely populated regions.
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Fig. 13. Additional electricity demand due to projected temperature rise in the RU scenario for the years 2030 and 2050. By 2050, the impact of rising temperatures
is expected to extend into central northern regions, indicating a broader geographical spread of temperature-driven demand.

The AAGR projected for HH electricity demand in this study closely
matches the projections reported by Pappis et al. [4]. This is likely due to
their use of similar methodological approaches, including the use of the
OnSSET model for spatial demand estimation and comparable assump-
tions regarding population growth and electricity access levels. The
AAGR for HHs projected by Mondal et al. [20] until 2030 aligns with this
study’s projection of 5.1-6.8 % for the same period. In contrast,
Gebremeskel et al. [19] reported higher AAGRs for the HH sector up to
2050. This is likely due to their optimistic assumptions regarding elec-
trification and appliance uptake, as well as urbanization targets (60-80
% by 2050 compared to the more conservative range of 39.1-56.9 % in
this study).

The total electricity demand AAGR projected in this study (5.2 %—
6.8 %) closely aligns with the findings of Pappis et al. and, to a lesser
extent, with Senshaw [70]. Again, Gebremeskel et al. [19] report higher
growth rates for total demand through 2050. The highest total electricity
demand growth rates reported in previous studies are predominantly
attributable to sectors such as industry, agriculture, transport, and ser-
vices, and in some cases also account for exports and technical losses [4,
19,20,70]. These sectors are not the primary focus of the present study,
which is limited to HHs, PUs, and CIs—sectors most relevant for rural
electrification planning. As such, the projections herein do not capture
the full scope of national demand growth with broader sectoral
coverage. This distinction is important for interpreting differences in
projected growth rates and absolute demand levels.

Compared to other developing countries, the demand projection for
Ethiopia in this study appears relatively moderate. The electricity de-
mand in Pakistan grows at 8.35 % AAGR until 2050 [21], considerably
higher than Ethiopia’s 3.6 %-4.8 % AAGRs. Similarly, studies in Kenya
projects AAGR of 1.8 %-10 % until 2040, exhibits a broader range
compared to Ethiopia [71,72]. Rwanda’s AAGR of 6.6 %-7.2 % exceeds
this study’s AAGR, despite a smaller absolute demand [73]. In contrast,
Sierra Leone’s projected AAGR from 2019 to 2040, ranging between 3.9
% and 5.7 % [74], aligns closely with Ethiopia’s, a more comparable
electricity demand growth between these two countries. Such
cross-country comparisons illustrate the diverse electricity demand

Table 4

Comparison of electricity demand projections for Ethiopia.
Studies Time-horizon AAGR (%) Source
Household 2018-2065 4.2 Pappis et al. [4]
Household 2012-2030 7.6 Mondal et al. [20]
Household 2018-2050 8.5 Gebremeskel et al. [19]
Total demand 2018-2065 4.9 Pappis et al. [4]
Total demand 2018-2050 6.0-8.4 Senshaw [70]
Total demand 2018-2050 7.2 Gebremeskel et al. [19]
Total demand 2012-2030 9.7 Mondal et al. [20]
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growth across different nations, driven by their unique economic, de-
mographic, and policy contexts. Furthermore, this study’s projection for
total electricity demand growth in Ethiopia, ranging from 4.3 % to 5.3 %
AAGR until 2040, aligns consistently with the IEA’s estimated 4.6 %
AAGR for SSA for the 2012-2040 period [75].

Findings from the sectoral demand projections indicate that HH
electricity demand remains the primary source of energy consumption.
This is in agreement with previous studies, which reported that the HH
sector accounted for 88 % of Ethiopia’s total energy consumption in
2018 [39]. However, Yalew’s [39] estimate includes more energy
sources, including biomass, the main energy source in rural areas.
Therefore, the HH sector’s share of electricity consumption may be
lower than both Yalew’s estimate and this study’s projections. The
dominance of HH electricity demand in this paper is due to the meth-
odological approach, where PUs are considered direct derivatives of HH
demand. CIs contribute a smaller share to overall electricity demand.
This may be due to the assumption that each town or village has only one
CI facility, which could result in an underestimation of the actual
number of such facilities, particularly in densely populated areas.

A key finding of this research is the spatial variations in electricity
demand. Central regions, characterized by higher population densities,
relatively higher local economies, and lower poverty rates, are projected
to see higher electricity demand growth. Most settlements in these re-
gions are already electrified, which may further increase demand
growth by facilitating the adoption of electricity-dependent appliances
and economic activities. In contrast, peripheral regions, particularly in
the Northeast and Southeast, where poverty rates are higher and local
GDP is relatively low, are expected to experience slower electricity de-
mand growth. Limited access to electricity, and sparse populations in
these areas are likely to keep demand low over the coming decades. The
lower household wealth and less diversified local economies in these
regions may hinder their ability to adopt electricity-intensive activities,
further limiting demand growth. While the study considers important
socioeconomic factors, such as local GDP and poverty levels, it does not
explore other variables that may influence spatial demand, such as
household income.

The analysis of HH electricity demand reveals a trend towards higher
demand tiers (Tiers 3 and 4) over time. This accords with the findings of
Sahlberg et al. [17]. While their study anticipates a higher population
share in Tiers 1 and 2 until 2030 (Ambition and Big Business scenarios)
and up to 2050 (Slow Down), this study shows that Tier 3 demand will
continue to dominate until 2050, with a growing share of Tier 2 and Tier
4 demand. The results showing varied demand (Tiers 1 to 4) across re-
gions differ from projections by Mentis et al. [6,7], who anticipated that
all rural areas would reach Tier 3 (150 and 170 kWh/person/year in
Ethiopia and Nigeria, respectively) and all urban areas would reach Tier
4 (300 and 350 kWh/person/year in Ethiopia and Nigeria respectively)
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by 2030. Similarly, Ouedraogo [8] projected that urban settlements in
Cameroon would reach Tier 5 consumption (1796 kWh/household/-
year) by 2035, while rural settlements would reach Tier 3 (530
kWh/household/year). However, the results indicate that a significant
proportion of the population, particularly in rural areas, will likely
remain in the lower tiers (Tiers 1 and 2) even beyond 2030.

Although PUs and CIs represent a smaller portion of national elec-
tricity demand, their contribution is expected to grow, particularly at
local levels. The demand for PUs, which is tied to HH electricity demand,
is projected to increase alongside the growth of HH demand. CIs demand
is projected to grow at a higher AAGR, due to the low levels of electricity
access in the base year. Spatial analysis shows that in settlements where
CIs are present, their average contribution to local electricity demand is
expected to reach 46 % by 2050. This high contribution at the local level
can be attributed to many ClIs being located in settlements with rela-
tively few HHs among the 809,087 total settlements in Ethiopia delin-
eated by Ref. [47]. In such areas, the smaller number of HHs amplifies
the share of electricity demand from CIs. This is supported by studies in
Benin, where health and education facilities alone are projected to in-
crease national residential demand by up to 23 % by 2030 [76].

The analysis of electricity demand due to temperature variations
across regions and projected temperature rise reveals that, while the
impact at national level remains relatively small, the effect at local level
is considerable, particularly in lowland regions such as Afar and Somali.
In these regions, electricity demand is projected to rise by 21.8 %-22.6
% between 2030 and 2050 due to rising temperatures. These findings
are strengthened by a previous study in Ethiopia [77], which reported a
22 % increase in electricity consumption during the hotter, dry season.
As highlighted in Ref. [22], such temperature-driven demand growth
shows the need to incorporate the effect of temperature into long-term
energy planning, at least at local levels.

This study makes several methodological and analytical contribu-
tions to nationwide geospatial rural electrification planning. Firstly,
many energy modeling studies primarily focus on supply-side optimi-
zation or simulation while giving relatively little attention to demand
projection formulation, often relying on oversimplified assumptions. In
contrast, this study focuses on electricity demand and provides elec-
tricity demand projections at settlement level using high-resolution
gridded GDP and International Wealth Index data. This granular
approach represents a substantial improvement over previous nation-
wide electrification planning studies that relied on oversimplified rural-
urban binary classifications [6-9]. This approach is crucial for capturing
spatial heterogeneity in electricity demand, preventing supply-demand
mismatches, and supporting cost-optimal resource allocation. The
study’s findings of significant spatial heterogeneity in electricity de-
mand, with HH demand ranging from Tier 1 to Tier 4 across settlements,
directly validate its argument against uniform rural-urban electrifica-
tion approaches. Secondly, this paper integrates electricity demand from
three key sectors, including HHs, PUs, and CIs. This offers a more real-
istic representation of electricity needs in rural and peri-urban areas,
contrasting with prior nationwide electrification planning studies that
focused solely on residential demand [6,7,10,11,17]. The inclusion of
PU and CI demand is particularly important for developing economically
sustainable rural electrification solutions. These demands often drive
local economic development and can improve the financial viability of
electricity infrastructure investments through higher load factors and
revenue generation potential.

The incorporation of spatially explicit ambient temperature data and
IPCC-based temperature prediction into the electricity demand pro-
jections is another unique methodological contribution. By identifying
the specific vulnerable regions and quantifying the expected demand
increase, the study provides a clear imperative for capacity planning to
include additional generation capacity. However, this factor has been
overlooked in previous electrification planning studies despite its crit-
ical relevance for SSA, where many regions experience substantial CDDs
annually and face increasing temperature extremes due to climate
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change.

Despite these significant contributions, there are several limitations
which are noteworthy. First, the study’s scope is limited to HHs, PUs,
and CIs, which are deemed most relevant for rural electrification plan-
ning. However, this focus means the study excludes other significant
demand sectors that contribute substantially to national electricity
consumption, such as large-scale industry, mining, and agricultural
processing. Consequently, the total national demand projections do not
capture the full scope of national demand growth and are not compa-
rable to comprehensive energy demand projections. Second, while the
inclusion of PUs is a strength, the method of estimation introduces un-
certainty. The estimation of PU electricity demand relies on a fixed
proportional relationship with HH demand, assuming PU demand equals
25 % of household demand for households at or above Tier 2 access
levels. While this proxy is based on empirical evidence from a study in
Ethiopia and SSA countries, this approach may not adequately capture
the heterogeneous nature of productive activities across different set-
tlements. Consequently, this proxy could underestimate demand in
urban and peri-urban areas where more energy-intensive enterprises or
diverse productive activities are prevalent.

Third, the modeling of CIs faces dual limitations related to both
baseline demand estimation and growth rate projections. The base-year
demand estimates rely on appliance usage parameters adapted from
field surveys conducted in Mozambique [12]. However, the actual
appliance usage patterns, economic conditions, service delivery stan-
dards, and institutional capacity in Ethiopia may differ from those in
Mozambique despite both countries face similar low access and GDP per
capita among other things. This could potentially introduce biases in the
demand estimates for CIs in Ethiopia. Moreover, the growth rate pro-
jections for CIs are derived from the projection of "commercial and
public services" sector data, due to the absence of historical CI-specific
consumption data. However, the aggregated growth rate derived from
the combined "commercial and public services" sector may not reflect
the electricity demand evolution of CIs. This is because public services
may have different growth rates compared to commercial subsectors, as
different sub-sectors within a broad category often exhibit distinct
growth dynamics.

Fourth, the use of the MLR model for demand projection also pre-
sents limitations. While this model provides interpretability and
computational efficiency, it may oversimplify the complex, often
nonlinear relationships between electricity demand and its socioeco-
nomic drivers such as GDP, urbanization, and electricity access. The
long-term projection horizon (2021-2050) further compounds these
uncertainties, as future economic, political, and technological de-
velopments could fundamentally alter demand patterns in ways not
captured by historical relationships used in the model. Fifth, the spatial
demand estimates depend on the quality and resolution of the under-
lying input datasets, including gridded GDP, IWI, and temperature data.
In areas where these datasets are outdated, incomplete, or interpolated,
the reliability of projections may be reduced.

Finally, the modeling of temperature-induced demand is based on a
linear relationship that assumes a 2 % increase in electricity consump-
tion for every 1 °C rise above a 24 °C baseline. This linear assumption
may oversimplify the actual demand response, as it does not account for
potential non-linear peaks. The model also does not consider variations
in appliance ownership, such as the presence or absence of air condi-
tioning units, which can substantially influence temperature-sensitive
demand. These limitations collectively suggest that while the study
provides valuable insights for electrification planning, the results should
be interpreted as indicative rather than precise projections.

5. Conclusion
This study presents long-term, spatial projections of Ethiopia’s

electricity demand from 2021 to 2050. It provides both total national
and high-resolution spatial electricity demand for three key sectors
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relevant to rural electrification planning, under three alternative
development scenarios. The study also integrates spatially explicit
ambient temperature data and projected temperature rise into the
electricity demand projections.

The results show significant growth in demand in all considered
scenarios. The RU scenario results in the highest increase, up to 285 %
by 2050 compared to the 2021 baseline. This is a 40 % increase over the
BAU scenario. This highlights the influence of urbanization on Ethio-
pia’s electricity future. The HEG scenario also projects a large increase in
demand (219 %), driven by accelerated economic development. Sec-
torally, HHs remain the dominant consumer group, but CIs can
contribute up to 46 % of local demand where present by 2050.

The spatial analysis uncovers significant geographic disparities in
electricity demand evolution. Central regions of Ethiopia, with higher
economic status and population density, are projected to transition to-
ward higher consumption tiers (Tiers 3 and 4), while peripheral areas in
the Northeast and Southeast are expected to remain at lower demand
levels (Tiers 1 and 2). This spatial heterogeneity underscores the limi-
tation of traditional, uniform rural-urban demand -classifications.
Furthermore, the study uniquely quantifies the impact of rising ambient
temperatures on electricity demand. While projected temperature in-
creases contribute only 0.53 % to total national demand, they may in-
crease local demand by up to 22.6 % between 2030 and 2050, thereby
validating the necessity of spatially explicit modeling.

Three key policy implications can be drawn from the findings of this
study. First, since household electricity demand is projected to range
from Tier 1 to Tier 4 across different settlements, and community in-
stitutions are expected to contribute up to 46 % of local demand by
2050, Ethiopia’s National Electrification Program should be guided by
settlement-level, multi-sector demand projections. This approach will be
crucial for selecting appropriate electrification solutions, correctly
sizing generation capacity, and ensuring investments are aligned with
the diverse consumption realities of each region. Second, the RU sce-
nario projects demand in 2050 to be 40 % higher than under the BAU.
This underscores the critical need to prioritize early infrastructure,
generation, and productive-use support in fast-growing towns and peri-
urban areas to meet rising electricity needs. Third, substantial

Appendix A. Geospatial datasets used in the analysis
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temperature-driven demand is projected in hot lowland areas (such as
Afar, Somali, and Benishangul-Gumuz), potentially reaching up to 22.6
% by 2050. Therefore, electrification planning must integrate local
climate differences when designing networks and selecting supply
technologies for these regions.

Future research should focus on conducting primary field surveys to
better characterize productive use of electricity and community in-
stitutions, including sector-specific consumption profiles and growth
patterns across different settlement types. Future research should also
extend spatial electricity demand projections to include the agricultural
sector, which represents a substantial yet underexplored component of
rural energy demand in developing countries. Additionally, nationwide
least-cost electrification planning should be based on multi-sectoral,
spatially differentiated demand as it enables technology selection and
sizing decisions based on realistic electricity demand projections.
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Dataset Type Source

Population settlements Vector Temesgen et al. [47]
Administrative boundaries Vector GADM [78]

Villages and towns Vector Geofabrik [58]

Health facilities Vector HDX [56]

GDP Raster Kummu et al. [50]

IWI Raster Lee and Braithwaite [51]
Temperature Raster Global Solar Atlas [29]

Appendix B. Electricity demand estimation basis

Table B 1
Multi-tier household electricity demand [52].

MTF daily consumption levels (Wh per HH)

Adapted annual electricity demand (kWh per HH)

12 < Tier 1 < 200
200 < Tier 2 < 1000
1000 < Tier 3 < 3425
3425 < Tier 4 < 8219
Tier 5 > 8219

38.7
219
807.5
2125
3000
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Table B 2
RAMP configuration parameters for health facilities in urban and rural areas [12].

Urban
Appliances Quantity =~ Power Operating time range Random window variation Functioning cycle Total operating hours Random time variation
w) [h] (%) [h] [h] (%)

External light 15 25 16-24 20 3 3 20

Internal light 36 20 8-12,14-24 20 3 12 20

Phone 10 5 0-24 20 0.5 5 20
charger

Sterilizer 2 1500 6-22 20 0.5 1 20

TV

PC

Fridge 2 250 0-24 20 0.5 - 20

Rural

External light 3 25 16-24 20 3 3 20

Internal light 7 20 8-12,14-24 20 3 12 20

Phone 10 5 0-24 20 0.5 5 20
charger

Sterilizer 2 1500 6-22 20 0.5 1 20

Fridge 2 250 0-24 20 0.5 - 20

Table B 3

RAMP configuration parameters for rural and urban school [12].

Urban
Appliances Quantity Power (W) Operating time range [h] Functioning cycle [h] Total operating hours [h]
External light 4 25 17-06 1 12
Internal light 18 20 7-17 0.5 4
PC 13 50 7-17 0.5 4
TV 3 60 7-17 0.5 2
Rural
External light 2 25 17-06 1 12
Internal light 4 20 7-17 0.5 4
Table B 4
RAMP configuration parameters for government offices [12].
Urban
Appliances Quantity ~ Power Operating time range Random window variation Functioning cycle Total operating hours Random time variation
W) [h] (%) [h] [h] (%)
External light 5 20 16-18 0 1 1 30
Internal light 9 15 16-18 0 1 1 30
Phone 4 5 8-18 0 1 5 20
charger
Fridge 2 70 8-18 0 1 3 0
Electronics 5 100 8-18 0 1 5 20
Rural
External light 2 20 16-18 0 1 1 30
Internal light 3 15 16-18 0 1 1 30
Phone 2 5 8-18 0 1 5 20
charger
Table B 5
RAMP configuration parameters for places of worship in urban and rural areas [12].
Urban
Appliances Quantity ~ Power Operating time range Random window variation Functioning cycle Total operating hours Random time variation
W) [h] (%) [h] [h] (%)
External 5 25 17-06 0 1 12 0
light
Internal light 20 25 18-22 0 1 4 0
vV 1 100 16-21 0 1 4 0.2
PC 3 50 16-21 0 0.5 3 0.2
Rural

(continued on next page)
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Table B 5 (continued)

Energy Strategy Reviews 62 (2025) 101931

Urban
Appliances Quantity =~ Power Operating time range Random window variation Functioning cycle Total operating hours Random time variation
W) [h] (%) [h] [h] (%)
External 2 25 17-06 0 1 12 0
light
Internal light 4 25 18-22 0 1 4 0

Data availability

Data will be made available on request.
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