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jonas.karlsson@his.se)

∗∗ School of Informatics, University of Skövde, Skövde, Sweden
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Abstract: Predictive maintenance is a central concept in the shift towards Industry 4.0.
Accurately estimating the remaining useful life of a machine, or a machine component, is an
important aspect of predictive maintenance. Deep learning models have previously been applied
to this task with success. However, these models may not perform well for cases where training
data is sparse. In these situations, the model should also provide some degree of uncertainty
about its prediction to instill trust in the user. Hence, predictive models should accurately
estimate their own uncertainty, in addition to providing correct predictions. In this paper,
we propose up-sampling of sparse ballbar measurement data in order to generate adequate
samples to train and evaluate deep neural networks. The inference is conducted with three
different types of models, Monte Carlo Dropout, variational inference, and deep ensemble. The
approaches are compared based on point prediction accuracy, and uncertainty quantification
quality. It is found that both Monte Carlo Dropout and deep ensemble perform well in regards
to predictive accuracy, with the deep ensemble consistently resulting in the best calibrated
uncertainty estimation.
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1. INTRODUCTION

The manufacturing industry is currently in a shift towards
a more connected environment known as Industry 4.0. In
this new stage, Predictive Maintenance (PdM) (Lee et al.,
2006) has been identified as filling a key role (Zonta et al.,
2020) by allowing for both more sustainable manufactur-
ing, reducing costs, and increasing productivity (Achouch
et al., 2022; Zonta et al., 2020). The increased connectivity
and data gathering in factories has been a critical factor
in enabling PdM. With this data on hand, smart systems
can learn about and anticipate when machine faults are
likely to happen. This allows for maintenance to be carried
out before a critical link in the production line suffers a
breakdown.
⋆ The authors would like to thank the Advanced and Innovative
Digitalization Program funded by VINNOVA for their funding of the
research project TPdM-Trustworthy Predictive Maintenance (Grant
No. 2022-01710), within which this study has been conducted. We
specifically would like to thank Volvo GTO Skövde for their guidance
and support. We are particularly grateful to the domain experts who
generously contributed their time and expertise to this study.

A common way to predict how long a given machine can
run before suffering a fault is by estimating its Remaining
Useful Life (RUL) (Si et al., 2011). Being able to predict
a fault in advance reduces reactive maintenance, enabling
service personnel to schedule repairs during planned down-
times. PdM also minimizes downtimes, as the machine
will only have to be taken off-line during the repair, with
less time spent on waiting on the arrival of personnel or
spare parts. Indeed, having a machine run to failure can be
costly, as the stop of a critical machine may cause issues
for the entire production line.

Compared to the last couple of decades, the amount of
sensor data that is available to the manufacturers has
increased drastically. This enables smart systems to learn
about, and predict, when faults are going to occur in
industrial equipment. However, there are still challenges
with training Deep Learning (DL) models in cases where
historical data is sparse. Additionally, condition monitor-
ing tests may cause interrupts in production. This can be
labor intensive, especially when manually conducted. This
creates a problem where diagnostic data from machines
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can be both sparse, and not uniformly distributed in time.
For example, a machine may be subject to more tests
right before or after a breakdown, while machines that
work within expected parameters may go multiple months
between measurements. This creates a challenge for DL
models, as they commonly require large amounts of data
in order to be performant (Sarker, 2021).

Providing an estimation of the model’s uncertainty has
been identified as an avenue for increasing the trust of a
DL model (Kompa et al., 2021). This has also been applied
in the case of PdM (Chen et al., 2022). For PdM, accurate
uncertainty estimation is important as human operators
will act on the predictions given by the model. A model
that is unaware of its uncertainty may elicit distrust, and
can slow adoption of the technology. This is particularly
pertinent when the quantity of training data is low. As
we cannot count on the Neural Network (NN) being able
to accurately and exhaustively interpret all ranges of data
that it will see in a real-life setting.

Thus, the aim of this paper is twofold. First, we want
to evaluate the feasibility of interpolating sparse time-
series data to train DL models. Secondly, we want to
compare the performance of three commonly used methods
for obtaining probabilistic predictions from DL models on
real-world data.

In this paper, we provide two novel contributions:

• A generalizable approach for processing sparse and
sporadic Renishaw QC20 ballbar (Čep et al., 2018)
measurement data in a way that makes it possible
to use for training DL models. This is done by
interpolating between extracted features using the
tsfresh (Christ et al., 2018) library. To the best
of our knowledge, time-series data have not been
extracted from ballbar data in this manner before. We
also show how manifold learning-based visualization
of such kind of data can guide the user in designing
and applying DL models. We then validate the utility
of the generated data by using it to successfully train
DL models to predict RUL.

• We use the dataset to compare the predictive per-
formance and uncertainty estimation quality between
three different types DL methods, namely, Monte
Carlo Dropout (MC Dropout) (Gal and Ghahramani,
2016), Variational Inference (VI) (Blei et al., 2017),
and a deep ensemble (Hansen and Salamon, 1990). We
provide empirical evidence that DL can perform ac-
curate inference for real-world use cases within PdM.

It is important to note that the primary aim of this
study is not to benchmark against other models, but to
explore uncertainty quantification techniques in DL. While
DL models have been successfully applied to PdM, their
performance can suffer when training data is sparse, which
is a common challenge in real-world cases. To address this,
we use the interpolated dataset to assess the predictive
performance and uncertainty estimation quality of various
techniques within a fully real-world PdM scenario. This
ensures that our analysis remains centered on evaluating
the effectiveness of uncertainty estimation methods in
handling sparse data.

2. RELATED WORK

Multiple DL architectures have been applied on PdM
data. For example the Long Short-Term Memory (LSTM)
network (Nguyen et al., 2022; Youness and Aalah, 2023), or
the Convolutional Neural Network (CNN) (Benker et al.,
2021; de Pater and Mitici, 2022) architecture. Likewise,
these models have been trained with a wide array of
probabilistic methods; like deep ensemble (Basora et al.,
2025), MC Dropout (de Pater and Mitici, 2022), and VI
(Benker et al., 2021).

MC Dropout was proposed by Gal and Ghahramani (2016)
as a method for obtaining probabilistic predictions from a
NN model. This can almost be seen as a free lunch method
of obtaining an uncertainty estimation for an otherwise
deterministic model as it incurs no extra training complex-
ity. Dropout has previously been used as a regularization
method to prevent overfitting (Hinton et al., 2012) by
randomly disabling, or dropping, neurons in the NN during
training. MC Dropout extends this notion by keeping the
dropout active during inference, resulting in slight varia-
tions of the predictions depending on what neurons are
dropped. A prediction distribution can then be set up by
running inference multiple times. Since inference is usually
much quicker than training a NN, this is an attractive and
scalable option for uncertainty estimation.

VI (Blei et al., 2017) represents the weights of a NN as be-
ing drawn from a distribution. Instead of sampling model
weights from the posterior distribution like Hamiltonian
Monte Carlo (HMC) or No U-Turn Sampler (NUTS) (Hoff-
man et al., 2014), it re-frames the sampling problem into
an optimization problem. This is done by substituting
the intractable posterior distribution for another, simpler,
distribution. The optimization step is then to minimize the
Kullback-Leibler divergence in order to make the substi-
tuted distribution as close as possible to the true posterior
distribution. This allows for faster training of NNs com-
pared to sampling with HMC, although a limitation of the
method is that we will never know the distance to the true
posterior.

An ensemble model (Hansen and Salamon, 1990) aggre-
gates multiple individual models in order to increase the
total performance and generalizability. This has been suc-
cessfully implemented with NN (Ganaie et al., 2022), and
can act as a third point of comparison to the methods
described above. Like MC Dropout and VI, an ensemble
model will yield a distribution of predictions, one for each
model in the ensemble.

In related literature for methods applied to the C-MAPSS
dataset (Saxena et al., 2008), a common processing step
is to include historical data when predicting the current
RUL (de Pater and Mitici, 2022; Benker et al., 2021;
Youness and Aalah, 2023). Indeed, including previous
feature inputs may expose a trend in the data, leading
to increased model performance. This is done by applying
a time window over the data, moving once per new
measurement. A drawback of this method is that, for a
time window of size N , the first N − 1 data points in the
dataset will effectively be lost, as they are used to fill out
the first window.
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deterministic model as it incurs no extra training complex-
ity. Dropout has previously been used as a regularization
method to prevent overfitting (Hinton et al., 2012) by
randomly disabling, or dropping, neurons in the NN during
training. MC Dropout extends this notion by keeping the
dropout active during inference, resulting in slight varia-
tions of the predictions depending on what neurons are
dropped. A prediction distribution can then be set up by
running inference multiple times. Since inference is usually
much quicker than training a NN, this is an attractive and
scalable option for uncertainty estimation.

VI (Blei et al., 2017) represents the weights of a NN as be-
ing drawn from a distribution. Instead of sampling model
weights from the posterior distribution like Hamiltonian
Monte Carlo (HMC) or No U-Turn Sampler (NUTS) (Hoff-
man et al., 2014), it re-frames the sampling problem into
an optimization problem. This is done by substituting
the intractable posterior distribution for another, simpler,
distribution. The optimization step is then to minimize the
Kullback-Leibler divergence in order to make the substi-
tuted distribution as close as possible to the true posterior
distribution. This allows for faster training of NNs com-
pared to sampling with HMC, although a limitation of the
method is that we will never know the distance to the true
posterior.

An ensemble model (Hansen and Salamon, 1990) aggre-
gates multiple individual models in order to increase the
total performance and generalizability. This has been suc-
cessfully implemented with NN (Ganaie et al., 2022), and
can act as a third point of comparison to the methods
described above. Like MC Dropout and VI, an ensemble
model will yield a distribution of predictions, one for each
model in the ensemble.

In related literature for methods applied to the C-MAPSS
dataset (Saxena et al., 2008), a common processing step
is to include historical data when predicting the current
RUL (de Pater and Mitici, 2022; Benker et al., 2021;
Youness and Aalah, 2023). Indeed, including previous
feature inputs may expose a trend in the data, leading
to increased model performance. This is done by applying
a time window over the data, moving once per new
measurement. A drawback of this method is that, for a
time window of size N , the first N − 1 data points in the
dataset will effectively be lost, as they are used to fill out
the first window.
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To evaluate the point prediction accuracy of RUL values,
metrics like Root Mean Squared Error (RMSE) and Mean
Absolute Error (MAE) are commonly used (de Pater and
Mitici, 2022; Benker et al., 2021; Nguyen et al., 2022).
However, as expressed by de Pater and Mitici (2022),
only comparing point scores disregards the variance and
sharpness of the predictions. To alleviate this problem,
the tightness of the distribution can be measured with the
Continuous Ranked Probability Score (CRPS) metric. In
addition to sharpness, a desired feature of the uncertainty
is that it should be calibrated. In the PdM context, this has
previously been measured by using the Reliability Score
(RS) (de Pater and Mitici, 2022).

3. DATA

The data used in this paper includes measurements from
Renishaw ballbar tests (Čep et al., 2018). These tests
are performed by fastening the ballbar, a telescopic linear
sensor, between a fixed and a moving point on the machine.
The machine then conducts a circular test by moving
around the fixed point in a circle, clockwise (CW) and
counter clockwise (CCW). The deviations from the perfect
circle are recorded by the ballbar. The data provided by
the Renishaw software contains a time series of measure-
ment values (circularity deviations), and some metadata
regarding the test. The measurements were taken for 8
different CNC milling machines, between the years 2013
and 2022. The machines had measurements for each op-
erational plane (XY, YZ, and ZX) for two different feed
rates, 1000 and 4000 mm/min. The service reports were
made available for each machine, and paired with the
corresponding ballbar measurement. The report document
contained the date of the report, a description of the
severity of the fault (yellow or red), and a short description
of the cause of the fault and the affected plane (or axes).
A yellow marked report indicated a developing, but non-
critical fault, whereas a red marking meant a need for
immediate repairs. All ballbar measurements that did not
have a corresponding report signify a still healthy machine.
Thus, in order to predict the RUL of a machine, the
measurements corresponding to the red reports were set
to have a RUL value of 0. There was some discrepancy in
the representation of different axis in the fault reports.
Thus, in order to ensure a balanced dataset, only the
measurement data and reports regarding the ZX plane was
used.

However, fitting a DL model on the data at this stage
would be difficult for two reasons. Primarily, the data
is still sparse, meaning that many machines have only a
handful of measurements between failures. Secondly, there
is no standardized interval in the data, this would likely
confuse any model, as an unknown amount of time will
have passed between measurements. This also makes it
unclear how far into the future the prediction will be
expected to fall. In order to solve both problems, the data
was interpolated. The up-sampling frequency was set to
weekly, as to generate adequate samples for training while
still maintaining interval between tests that realistically
could be carried out by an operator. After discussions
with domain experts, it was decided that interpolation
in this manner makes sense. As we expect a fault to
be evolving over time slowly moving from one measured

Fig. 1. Example of an interpolated feature. The blue dots
represent the mean of the circularity deviations for
each measurement date, generated by tsfresh. The
yellow dots are the (weekly) interpolated values. The
rightmost measurement in early 2018 is the date of
machine failure.

state to another. This is similar to the procedure used to
generate the well-known C-MAPSS dataset (Saxena et al.,
2008), which consists of simulated run-to-failure turbofan
engines. In the simulation, a fault grows over time making
each time step in the data correlated with those before and
after.

However, the start and end points of the circularity de-
viation data is not guaranteed to line up between mea-
surements. In addition, the measurements are not always
of the same sample length, making interpolating between
measurement points difficult. To alleviate these issues, and
make the process generalizable to any time series data, the
measurements were first processed by the Python package
tsfresh (Christ et al., 2018) with the minimal parameters
setting. This resulted in 10 features per measurement
and direction. Out of these 10 features, nine were used,
namely: sum values, median, mean, standard deviation,
variance, root mean square, maximum, absolute maximum,
and minimum. The feature data length was discarded, due
to it not containing information regarding the state of the
machine. These features were generated for both feed rates
(1000 and 4000 mm/min) and directions (CW and CCW),
resulting in 36 total features per measurement date.

Once generated, each feature is linearly interpolated to
yield weekly measurements, the result of one such in-
terpolated feature can be seen in Fig. 1. One question
remains, however, regarding how far ahead we can expect
faults to become visible in the data. According to domain
experts, the earliest we can expect to detect a fault is 26
weeks before a breakdown occurs. It is then reasonable
to assume that for RUL values of more than 26 weeks,
the fault may not yet have developed (or be so small as
not to be detectable). Thus, we create a piece-wise linear
RUL function (Sateesh Babu et al., 2016) by bounding the
upper RUL value to 26. In addition, in order to avoid a
strong bias towards high RUL values in the dataset, each
machine was limited to the last 53 weeks of measurement

Fig. 2. t-SNE visualization: Isolated plots of the feature
values of machine 1 and 3, projected on a two-
dimensional plane with t-SNE. Although containing
similar points, the faults occur at opposite ends of
the feature space.

data (one year of runtime, in addition to the week for RUL
value 0).

4. SELECTED MODEL

The DL model used in this paper is a convolutional
neural network inspired by related work (see Section 2). It
consists of two convolutional layers with sigmoid activation
function. The kernel size is (3, 15) and (1, 8) respectively.
The stride length of the kernels is (1, 3) for the first layer,
and (1, 1) for the second. These are followed by a fully
connected layer with 1 output neuron and a leaky ReLU
activation function. Between the convolutional layers is
one mean pooling layer with kernel size (2, 1). In the
case of MC Dropout and the ensemble network, there
is one dropout layer after each convolutional layer. The
dropout layers have a dropping probability of 0.1 for the
first layer, and 0.25 for the second. To reduce the risk of
overfitting, the size of the model was iteratively fine-tuned
to maximize predictive power at a low model parameter
count.

5. EXPERIMENTS

In a first step of data exploration, the high dimensional
feature data (described in Section 3) was dimensionally re-
duced with t-SNE (Van der Maaten and Hinton, 2008), by
the scikit-learn (Pedregosa et al., 2011) Python package.
From the t-SNE projection it became clear that there were
at least three groups of different degradation behavior.
Examples of this are shown in Fig. 2. Here, it is apparent
that the two machines, while occupying a similar feature
space, experience faults at opposite ends of the space,
this means that fitting a single model for all machines
will have trouble distinguishing high RUL values from
low RUL values. For the following experiments, we focus
on machines that are similar both in the type of fault
experienced (given by the written reports), and close in
the t-SNE projection space. Some thoughts on how to deal
with this challenge, and apply a more general model is
discussed in Section 7.

Similar to the related work, the data was gathered into
time windows. After manual tuning, a data window size of
10 was found as a balance point between predictive power

and dataset reduction. All models are evaluated using the
MAE and RMSE of the mean of the prediction distri-
bution. Likewise, the shape of the prediction distribution
given by each model is compared by utilizing the CRPS
and Reliability Score metrics.

For all experiments, the deep ensemble and MC Dropout
models were trained with 10% of the training data set
aside for validation. To prevent over-fitting, a decaying
learning rate was implemented. For VI, the likelihood was
modeled in Turing with a Gaussian with σ2 set to 1, and µ
yielded by the NN. For inference, NN weights were sampled
from the learned distribution to yield a point prediction µ.
Because of the windowed data, randomly picking samples
may lead to a high overlap between training and validation
sets. Thus, the validation data was selected in one coherent
interval at the end of the training data.

For experiments containing only one run-to-failure interval
in the training data (experiment 1 and 2.2), this was set
to the high end of the RUL values. For experiments with
multiple intervals (experiment 2.1) in the training set, the
validation data was picked from the low-end of RUL values
from one of the intervals. For an overview of which machine
measurement data used in each experiment, see Table 1.
The number of predictions each of the three methods gives
per sample from the test data was set to 100. This means
that for MC Dropout, the fully trained model was fed
the same test data 100 times. For VI, the model weights
were sampled 100 times to create 100 unique models. The
ensemble model used 100 individually trained networks
where each network contributes one prediction per test
sample.

Table 1. Machine faults used per experiment

Experiment Training Set Testing Set

Exp. 1 Machine 1, fault 1 Machine 1, fault 2

Exp. 2.1 Machine 1, fault 1,2 Machine 2 fault 1

Exp. 2.2 Machine 3, fault 1 Machine 4, fault 2

5.1 Experiment 1

The first experiment sets out to test whether data from
a machine could be used to predict a similar future fault
on the same machine. Machine 1 was alone in having two
recorded faults which both has a matching report and fell
into the same cluster in projection space. The training set
spanned a full year. However, due to long periods without
measurements, the testing set contained only 18 weeks of
data. After applying the time window, this resulted in a
test set of nine samples (week 0 to 8).

5.2 Experiment 2

The second experiment is designed to test to what degree
a model trained on one machine can be used to predict
faults on another machine. This is tested for two pairs of
machines. For the first pair, both failures from machine 1
is collected into a training set, where the samples from the
shorter second sample interval is repeated to create two
intervals of similar length. The data from the first fault
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Fig. 2. t-SNE visualization: Isolated plots of the feature
values of machine 1 and 3, projected on a two-
dimensional plane with t-SNE. Although containing
similar points, the faults occur at opposite ends of
the feature space.

data (one year of runtime, in addition to the week for RUL
value 0).

4. SELECTED MODEL

The DL model used in this paper is a convolutional
neural network inspired by related work (see Section 2). It
consists of two convolutional layers with sigmoid activation
function. The kernel size is (3, 15) and (1, 8) respectively.
The stride length of the kernels is (1, 3) for the first layer,
and (1, 1) for the second. These are followed by a fully
connected layer with 1 output neuron and a leaky ReLU
activation function. Between the convolutional layers is
one mean pooling layer with kernel size (2, 1). In the
case of MC Dropout and the ensemble network, there
is one dropout layer after each convolutional layer. The
dropout layers have a dropping probability of 0.1 for the
first layer, and 0.25 for the second. To reduce the risk of
overfitting, the size of the model was iteratively fine-tuned
to maximize predictive power at a low model parameter
count.

5. EXPERIMENTS

In a first step of data exploration, the high dimensional
feature data (described in Section 3) was dimensionally re-
duced with t-SNE (Van der Maaten and Hinton, 2008), by
the scikit-learn (Pedregosa et al., 2011) Python package.
From the t-SNE projection it became clear that there were
at least three groups of different degradation behavior.
Examples of this are shown in Fig. 2. Here, it is apparent
that the two machines, while occupying a similar feature
space, experience faults at opposite ends of the space,
this means that fitting a single model for all machines
will have trouble distinguishing high RUL values from
low RUL values. For the following experiments, we focus
on machines that are similar both in the type of fault
experienced (given by the written reports), and close in
the t-SNE projection space. Some thoughts on how to deal
with this challenge, and apply a more general model is
discussed in Section 7.

Similar to the related work, the data was gathered into
time windows. After manual tuning, a data window size of
10 was found as a balance point between predictive power

and dataset reduction. All models are evaluated using the
MAE and RMSE of the mean of the prediction distri-
bution. Likewise, the shape of the prediction distribution
given by each model is compared by utilizing the CRPS
and Reliability Score metrics.

For all experiments, the deep ensemble and MC Dropout
models were trained with 10% of the training data set
aside for validation. To prevent over-fitting, a decaying
learning rate was implemented. For VI, the likelihood was
modeled in Turing with a Gaussian with σ2 set to 1, and µ
yielded by the NN. For inference, NN weights were sampled
from the learned distribution to yield a point prediction µ.
Because of the windowed data, randomly picking samples
may lead to a high overlap between training and validation
sets. Thus, the validation data was selected in one coherent
interval at the end of the training data.

For experiments containing only one run-to-failure interval
in the training data (experiment 1 and 2.2), this was set
to the high end of the RUL values. For experiments with
multiple intervals (experiment 2.1) in the training set, the
validation data was picked from the low-end of RUL values
from one of the intervals. For an overview of which machine
measurement data used in each experiment, see Table 1.
The number of predictions each of the three methods gives
per sample from the test data was set to 100. This means
that for MC Dropout, the fully trained model was fed
the same test data 100 times. For VI, the model weights
were sampled 100 times to create 100 unique models. The
ensemble model used 100 individually trained networks
where each network contributes one prediction per test
sample.

Table 1. Machine faults used per experiment

Experiment Training Set Testing Set

Exp. 1 Machine 1, fault 1 Machine 1, fault 2

Exp. 2.1 Machine 1, fault 1,2 Machine 2 fault 1

Exp. 2.2 Machine 3, fault 1 Machine 4, fault 2

5.1 Experiment 1

The first experiment sets out to test whether data from
a machine could be used to predict a similar future fault
on the same machine. Machine 1 was alone in having two
recorded faults which both has a matching report and fell
into the same cluster in projection space. The training set
spanned a full year. However, due to long periods without
measurements, the testing set contained only 18 weeks of
data. After applying the time window, this resulted in a
test set of nine samples (week 0 to 8).

5.2 Experiment 2

The second experiment is designed to test to what degree
a model trained on one machine can be used to predict
faults on another machine. This is tested for two pairs of
machines. For the first pair, both failures from machine 1
is collected into a training set, where the samples from the
shorter second sample interval is repeated to create two
intervals of similar length. The data from the first fault
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of machine 2 was identified as similar, and is withheld as
a test-set. The second pair consists of training data from
the only fault of machine 3 and test data from the second
fault of machine 4.

6. RESULT AND DISCUSSION

The model architecture, along with the three fitting meth-
ods were implemented in the Julia programming language
with the Flux (Innes, 2018) and Turing (Ge et al., 2018)
packages. The resulting metrics for each model and ex-
periment can be seen in Table 2. In the table, all metrics
are the mean taken over 10 individual runs. Examples of
predictions from the MC Dropout model on the test data
of experiment 1, 2.1, and 2.2 can be seen in Fig. 3.

Table 2. RMSE, MAE, CRPS, and RS for all
models and experiments. The unit is in weeks.
Lower is better, the best result is marked in

bold.

Experiment Metric MC Dropout VI Ensemble

RMSE 1.34 2.90 1.65
Exp. 1 MAE 0.99 2.65 1.25

CRPS 0.80 1.64 0.79
RS 0.16 0.27 0.07

RMSE 8.15 7.97 8.19
Exp. 2.1 MAE 5.33 5.34 5.36

CRPS 10.57 11.31 10.55
RS 0.41 0.47 0.41

RMSE 2.98 11.85 2.96
Exp. 2.2 MAE 2.50 11.25 2.32

CRPS 2.10 10.77 1.60
RS 0.33 0.50 0.05

Evaluating model performance, MC Dropout and deep
ensemble have better point prediction accuracy and un-
certainty estimation when compared to VI. Although both
the deep ensemble and MC Dropout models are close in
point prediction error. The ensemble consistently performs
equally well, or better, when it comes to Uncertainty
Quantification (UQ). Hence, the deep ensemble may be
the preferred choice in these aspects. However, as the
deep ensemble is much costlier to train when compared to
MC Dropout (about 100 times more time consuming), the
scalability of the deep ensemble may come into question.

Picking similar machines for training and testing likely
induces some bias in the test results. However, picking
machines that are similar does not guarantee high perfor-
mance, as can be seen in experiment 2.1. Here all models
failed to find the degradation trend for machine 2 in time,
even though machine 1 was similar in feature space (t-SNE
plot) and in the type of fault (from the service report). A
potential contributing factor to this behavior is that the
dates may not be completely correlated to degradation be-
havior. The production load may be different from machine
to machine; or it may indeed shift over time, for example
during vacations. Instead of measuring RUL in weeks, as
done in this paper, perhaps a more descriptive metric to
use would be the number of units produced between the
measurements.

Fig. 3. Predictions of the MC Dropout model for the
test data of experiment 1 (top), 2.1 (middle), and
experiment 2.2 (bottom).

7. CONCLUSIONS

In this paper, we have demonstrated a novel approach
for interpolating ballbar measurement data in order to
train DL models. The tsfresh extraction procedure is
domain agnostic, and can be applied to other time-series
data where it can produce enough new data to enable the
use of DL models. This opens up for more applications of
other datasets in the future, as NNs can now be applied
on datasets that have previously been prohibitively small.
We also train and compare three different probabilistic
NNs, providing valuable points of comparisons for future
studies. Finally, we show how visualizing the interpolated
data can assist in the design of DL models.

During preliminary testing, it was found that a single NN
model did not perform well when trained on the total
dataset of all machines. In fact, the t-SNE projection of
the extracted features indicates that there are multiple
different degradation behaviors within the same cluster of
machines. These behaviors may be better distinguished by
extracting additional tsfresh features. Another potential
avenue of research to increase generalizability is to add a
step before the final RUL prediction. Here, we can first
cluster the machines according to the sub-clusters identi-
fied within the data. We can then fit a dedicated RUL pre-
dictor model to each cluster. Future measurements would
first be sorted into the correct cluster, in order to have the
optimal regression model applied. In an uncertainty aware
system, this could also serve as way to warn the operators
of a new developing machine fault that is different from
previous encountered errors.
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During preliminary testing, it was found that a single NN
model did not perform well when trained on the total
dataset of all machines. In fact, the t-SNE projection of
the extracted features indicates that there are multiple
different degradation behaviors within the same cluster of
machines. These behaviors may be better distinguished by
extracting additional tsfresh features. Another potential
avenue of research to increase generalizability is to add a
step before the final RUL prediction. Here, we can first
cluster the machines according to the sub-clusters identi-
fied within the data. We can then fit a dedicated RUL pre-
dictor model to each cluster. Future measurements would
first be sorted into the correct cluster, in order to have the
optimal regression model applied. In an uncertainty aware
system, this could also serve as way to warn the operators
of a new developing machine fault that is different from
previous encountered errors.
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