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Abstract: Machine tools are essential to manufacturing for precise and efficient component
production. With Industry 4.0, abundant machine condition data enables data-driven mainte-
nance decisions. However, deploying condition-based maintenance solutions is challenging due to
the diverse configurations of equipment, complex failure modes, and compatibility issues with
the digital infrastructure. While machine tool health monitoring relies on detailed tests like
Ballbar measurements, they consume valuable production time. To address these challenges,
this article presents a human-centric development and deployment of a condition-based data-
driven maintenance dashboard. The solution uses data from the controller system to improve
machine tool testing in a Swedish heavy-duty vehicle powertrain facility.
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1. INTRODUCTION

Machine tools are the apparatus used to shape or ma-
chine metal materials or other hard materials by processes
like cutting, boring, grinding or shearing (Liang et al.,
2023). They play a key role in manufacturing parts with
precise accuracy which is crucial for modern industrial
manufacturing (Son et al., 2023). Machine tools are im-
portant for achieving high productivity and efficiency in
manufacturing, boosting the company’s competitiveness
in the marketplace (Aghdaie et al., 2013). In the context
of gear axis shaft manufacturing for heavy-duty vehicles,
Computer Numerical Control (CNC) machines, whirling
machines, hobbing and shaping machines, broaching and
profile milling, grinding machines along with heat treat-
ment equipment and measuring/inspection tools are the
common machine tools used in a production line. These
machines tools are expected to perform with high accu-
racy and precision ensuring reliability and efficiency in
manufacturing processes. Various tests and methods are
commonly used to assess the anticipated performance of
machine tools as any part manufactured slightly out of
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dimension could lead to expensive scrap. Examples of some
of the widely used tests include linear positioning accuracy
test using laser interferometers, Ballbar test (circularity
test), static accuracy test and cutting test (Usop et al.,
2015).

A circularity test on machine tools assesses the contouring
accuracy and identifies geometric errors by measuring de-
viations from a perfect circular path. This test is essential
for validating the precision and performance of machine
tools, identify any setup errors, geometric errors or servo
mismatches especially in CNC systems. However, the time
taken to set up and perform this test and analyse the data
is high. Especially in a scenario of high-volume production
of gear axis shafts where the number of working machine
tools are high in number and performing these tests on
hundreds of machine tools can be a bottleneck. This arti-
cle, in an attempt to address the above stated challenge,
leverages data from advanced CNC systems to develop
a conditioned-based maintenance (CBM) dashboard. The
contribution of this paper is the utilization of human-
centric methodology for building and deployment of a dy-
namic, interactive CBM dashboard for the circularity test.
This approach was validated using real-world production
of gear axis shafts and powertrain parts for heavy-duty
vehicles.
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This paper is structured as follows: Section 2 sets the
theoretical and practical context. Section 3 outlines the
research procedures and techniques. Section 4 presents
the findings. Section 5 interprets the results and addresses
their implications, significance, and limitations. Section 6
summarizes the study’s contributions.

2. FRAME OF REFERENCE

CNC machine tools are sophisticated manufacturing sys-
tems that automate machining processes through com-
puter programming. These tools are important for pro-
ducing highly precise components and are widely utilized
across industries for their efficiency with precision. They
are integral to intelligent manufacturing systems, enabling
data acquisition and monitoring to improve production
efficiency and eliminate information silos (Guo et al.,
2020). Though CNC machines are evolving to meet the
demands of Industry 4.0 by incorporating features like
fog computing and cyber-physical systems (Zhou et al.,
2018), it is yet to be widely practically achieved. The data
acquired by these sophisticated CNC machines can be used
to perform CBM.

A handful of literature is available where CBM is applied
on CNC machine tools for circularity tests which demon-
strates its effectiveness in maintaining machine accuracy
and reducing downtime. (Harja et al., 2024) measured
circular geometric errors on CNC lathes using Ballbar
tests for assessing machine condition and recommending
maintenance activities. In another research developed by
(Werner et al., 2011), the authors concentrate on signal ac-
quisition, data processing, and network communication for
effective machine health monitoring. By integrating both
internal and external sensors they introduce a framework
that improves machine tool monitoring through real-time
data acquisition of spindle vibrations and coolant temper-
atures. (Rangga et al., 2020) adopt an approach in their
study to optimize the CNC machine settings using Ballbar
and coordinate measuring machine (CMM) measurements
to diagnose and adjust circularity errors.

The literature outlines two key approaches for implement-
ing CBM in CNC machine tools. One involves integrating
sensors to monitor and predict failures, while the other
focuses on conducting tests, such as the Ballbar test, for
example, to measure geometric errors. However, in a typ-
ical mass manufacturing environment, installing sensors
on many CNC machine tools might not be the solution
that provides operational efficiency due to increased sys-
tem complexity and data management challenges, while
performing traditional tests is often time-consuming. This
work finds its motivation from this challenge and aims
to bridge the gap between traditional manufacturing pro-
cesses and modern digital infrastructure by developing
a human- centric methodology. The focus is on creat-
ing practical solutions that can be readily deployed on
the shop floor, making advanced maintenance strategies
accessible to manufacturers regardless of their scale of
operations.

Academic literature consistently shows that human-centric
methodologies in data analytics solution development led
to improved usability, better decision-making capabilities,
and enhanced overall tool effectiveness. (Astudillo et al.,
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2020) in their work highlight that data analytics method-
ologies become more adaptable, efficient, and collaborative
when users are actively engaged in the design process, as
this human-centric approach ensures solutions are aligned
with genuine user requirements and preferences. (Tong
et al., 2019) discuss in their article that interactive and
engaging features are common elements of human-centric
tool design, enabling users to thoroughly explore data and
identify patterns more effectively. Adding on, (Sharma
and Osei-Bryson, 2009) emphasize that human expertise
is vital for understanding business context and objectives
in data mining, as this crucial phase cannot be automated
and requires alignment with organizational goals.

Despite their automated nature, CNC machines require
extensive human input during the initial process design
and subsequent optimization of manufacturing parameters
(Samsonov et al., 2023). Similarly, maintenance operations
demand skilled personnel to conduct and interpret sophis-
ticated tests and determine appropriate corrective actions
for CNC lathe machine tools. The practical knowledge
and insights gained through years of hands-on experience
with machine tools are irreplaceable. Recognizing this
valuable domain expertise, maintaining human-in-the-loop
is crucial while designing, developing, deploying, and oper-
ationalizing any CBM solution. Inspired by the current lit-
erature, this research adopts human-centered methodology
and emphasizes the importance of domain knowledge by
actively engaging maintenance engineers and maintenance
technicians from the beginning, ensuring their expertise is
incorporated while building trust with the end users.

3. METHODOLOGY

This section provides a comprehensive description of the
procedure used to develop the human-centric methodology
illustrated in Figure 1.

Problem
Understanding

* Requirements

+ Machine/Processisetup
knowledge Data
Collection

Deployment

+ Deployment manual
* Guiding Docker
installation

App
Development

Domain
Experts
Knowledge
& Input

* Testexecution
+ Data exporting

- Define tolerances

* Visualization
requirements

DELE]
Preprocessing

=

Fig. 1. Human-centric methodology

8.1 Problem understanding:

The methodology is tested on a gear axis shaft production
line in one of the leading heavy-duty vehicle power train
components manufacturing companies in Sweden, and the
volume of production is high. The line includes soft turning
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with Lathe Machine 1 (outer surface) and Lathe Machine
2 (internal surface), with dimensional accuracy checks and
adjustments to the CNC program between operations.
The parts then undergo gear hobbing, drilling, chamfering,
and washing before heat treatment and final hard turning
for assembly. The CBM dashboard development initially
focused on Lathe Machine 1 before expanding to other
machines in the line. Built-in circularity test was scheduled
weekly to check the machine’s health before full-scale man-
ufacturing could proceed. However, as noted earlier, this
built-in test did not provide a comprehensive assessment
of the machine’s mechanical health. At the same time,
the recommended Ballbar test was considered too time
consuming for each machine tool and there were large
number of machine tools in operation. The maintenance
team needed an interactive, dynamic, and data-driven so-
lution that could help them decide when to initiate a work
order for the Ballbar test. Discussions were held regarding
software solutions that were security-approved within the
company’s infrastructure. The ability to successfully de-
ploy the solution was established as a key objective from
the beginning.

3.2 Data Collection:

To collect data, the built-in circularity test was run on the
system. A new program was created with basic settings
including radius, feed-rate, plane selection, rotation direc-
tion, starting angle, and number of revolutions, along with
other general settings. After the tests were performed on
the revolvers shown in Figure 2, the data was exported for
analysis. Domain experts handled the testing, data export,
and data collection processes.

Fig. 2. "Lathe Machine 17 with two revolvers (Left:
Revolver-1, right: Revolver-2

3.3 Data preprocessing:

The collected data files were processed by organizing and
extracting relevant information based on key measurement
categories. Data parameters were standardized to numeri-
cal values to ensure consistency in the analysis. Calculated
column for deviation from the mean radius was added to
capture dimensional variation. Data was transformed by
calculating statistical metrics based on user-defined toler-
ance (the acceptable range of deviation from the specified
radius) and threshold (the maximum allowed percentage
of data points falling outside the tolerance range). This
included measuring deviation, percentage of points outside
specified tolerance levels, and categorizing each dataset as
pass or fail according to these customizable parameters.
Finally, processed data from individual files were concate-
nated into a structured dataset ready for further analysis.
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8.4 CBM App Building Using Flask:

To construct a data visualization application for condition
monitoring, an iterative approach was taken, focusing on
interactivity and modularity to support real-time user
interaction with circularity test data. Flask, a lightweight,
open-source Python web framework, was chosen for its
simplicity and flexibility in building web applications and
visualization interface. Discussions were held iteratively
with the domain experts regarding:

e What kind of visualization/information display would
be adding value for decision making?

e What design keeps the insights explainable?

e What should be the scope and granularity of the
monitoring system? individual machine, production
line, or overall process?

e User friendly design and what parameters to be cho-
sen for user input/drop-down selection/push buttons?

e Optimum Scaling factor values to amplify and visu-
alize the small micron level deviations clearly.

e Preconditions for pass/fail of a test.

e Finally, does the developed app address the defined
problem?

The application’s interactive design allows user-defined
parameters, such as tolerance and threshold, to be ad-
justed through the user interface, ensuring adaptability
for diverse contexts. Additionally, a second visualization
is embedded in the Flask application, which gives the
trend of change in the percentage of deviations outside the
defined tolerance over time for predictive maintenance in
the long run. Interactive features, such as data cursors,
allow users to hover over individual points to examine
specific deviation values, adding precision to the analysis.

8.5 CBM App Deployment Using Docker:

To deploy the CBM application in a consistent and scal-
able manner, Docker was utilized to package and manage
the application environment. The deployment architec-
ture, as illustrated in Figure 3, includes essential project
files like app.py (Flask application), docker-compose.yml,
Data-preprocessing.py, and requirements.txt, Data folder
to drop in test files, template folder which has the HTML
file for the front-end app development. This structure
ensures that application logic, dependencies, and con-
figurations are well-defined and isolated within a single
directory. Docker Compose was employed to streamline
deployment by defining a reproducible application environ-
ment. Key configurations in docker-compose.yml included
specifying Python 3.9-slim as a lightweight base image
and mapping the local data directory to the container
(./data:/app/data) for direct access to essential data files.
Additionally, the configuration exposed port 5000 to al-
low external access to the application, while environment
variables, such as FLASK-APP and FLASK-RUN-HOST,
ensured the application runs correctly within the Docker
environment.

The deployment process required a single command:
docker-compose up. This command automatically builds
the Docker image by encapsulating the application code
and dependencies defined in requirements.txt and launches
the container, mapping it to port 5000 on the host ma-
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chine. A comprehensive, user-friendly CBM manual was
created, guiding domain experts from Docker installation
to interpreting test results using the dashboard.

Userachine

Fask Pt Sruckre

docker-
= 1 . readme.txt
compose.yml Data_| oy

app.py (Flask
application
Script)

) Data | [ Templates
requirements.txt | | [

J Environment Variables:
FLASK_APP=app.py
FLASK_RUN_HOST=0.0.0.0

% Python 3.9-
slim JIdata:/app/data

Volume: 4 Port:
5000:5000

DockerContaner

Flask Application
Running on
0.0.0.0:5000

Project Files
Copied to /app

) Web
Browser
localhost:5000

Fig. 3. Deployment Architecture

The methodology is referred by the authors as human-
centric as it integrates domain expert’s input (Figure 1)
at every stage. User-centered design prioritizes user needs,
the structure in Figure 3 grants control over data manage-
ment. Continuous feedback loops enable iterative improve-
ments, while early planning and emphasis on deployment
and scalability ensures adaptability for future needs. These
factors improve usability and build user trust, reinforcing
the human-centric approach.

4. RESULTS

The CBM dashboard was iteratively built based on the
received input from the discussions and the above stated
human-centric methodology and deployed on the shop
floor. Figure 4 shows the dashboard’s user interface, where
users can select between 4-axis lathe machines, 2-axis
lathe machines, and training machines. The dashboard
also enables analysis of circularity test data for Revolver 1
and Revolver 2 of the 4-axis lathe machine. Additionally,
users can set a threshold percentage to determine test
pass/fail criteria and specify tolerance levels in microns.
It was decided with the maintenance engineer that the
inbuilt circularity test will be conducted once a week and
the data will extracted for the respective machine tool
and stored in the ”Data” folder( Figure 3). The naming of
filenames for each week provided information regarding the
week number and which particular machine tool/revolver
the test belongs to for performing the trend analysis. The
operator could also set the overall threshold percentage
to decide the test results and display it. The circle test
in Figure 5 represents a passed test results within the set
tolerance of +5 to -5 microns.

The predictive maintenance trend displayed in the dash-
board (Figure 5) reveals that Revolver 1 of the 4-axis
lathe machine consistently shows a higher frequency of
deviations exceeding the 5-percentage threshold compared
to Revolver 2 (Figure 6). This discrepancy prompts the
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CBM App for Machine Tools

Select Machine:
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Fig. 4. CBM Dashboard
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Predictive maintenance trend:

Percentage Outside Tolerance by Filename

3.5

IR A

2

Percent Outside Tolerance

| /\ P
~
s, o, e, o, o, o, e,
Rog, % 2 27, P 27, R,

g, 7o, 37, ~72 S
R %

2L, 2, R, e,
" 765, s s s
‘o ey ey ey ey

Filename

Fig. 6. Revolver 2 trend

creation of a maintenance work order to perform a Ballbar
test on Revolver 1. Adding on, it was confirmed by the
maintenance engineer that Revolver 1 had history of un-
der performance and crashes which adds more trust. The
dashboard also displays historical data of instances where
the threshold was marginally exceeded. While individual
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minor breaches are overlooked, repeated occurrences of
such deviations lead to the initiation of maintenance work
orders, as demonstrated in this case.

Circle tests:

Filename: F6000D50.sud | % Outside Tolerance: 26.34% | Test Result: Fail

40000

20000 + X

-« Within Tolerance
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—40000 1

—60000 —40000 —20000 0 20000 40000 60000
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Fig. 7. Failed test due to high percentage of deviations and
presence of vibrations close to the horizontal axis that
represents change of direction of axes .

Figure 7 illustrates a failed circularity test in a soft
turning process on a 2-axis lathe machine. This failure
may be attributed to various mechanical issues, such as
misalignment, tool wear, instability, backlash in the gears,
or uneven wear in the bearings and guides. To confirm the
root cause, a detailed Ballbar test is required. In this case,
a maintenance work order was issued to conduct a Ballbar
test, aiming to thoroughly assess the machine, identify
the cause of the degradation, and implement corrective
actions.

The Ballbar test can identify various machine tool errors,
including backlash, reversal spikes, and stick/slip effects
(Renishaw plc, 2017) in the company’s production environ-
ment, we primarily detected reversal spikes and stick/slip
errors. From Figure 4, the measurements showed notice-
able deviations along the X and Z axes. Reversal spikes
typically emerge when an axis changes direction, as the
machine’s moving parts experience momentum and inertia
effects. This is particularly evident in the X-axis of hor-
izontal setups. The stick/slip error shows up as irregular
motion patterns, usually stemming from uneven friction,
poor lubrication, or bearing clearance issues. While these
measurement deviations point to potential mechanical
problems, a full Ballbar test is needed for definitive con-
firmation. The dashboard’s monitoring system helps track
these deviations over time, with special attention to the
horizontal axis — where growing deviations might indicate
wearing components. The vibrations we observed during
direction changes (Figure 7) suggested possible backlash
issues. Based on the dashboard’s data, particularly the
high deviation readings and direction-change vibrations,
the maintenance engineer determined a Ballbar test was
necessary. Though we have only gathered 10 weeks of data
so far, we are working towards implementing predictive
maintenance capabilities to anticipate deviations before
they become critical.
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5. DISCUSSION

The CBM dashboard prioritized trustworthiness and ex-
plainability by involving maintenance operators and do-
main experts from the outset. This early engagement en-
sured the dashboard was seen as a reliable and tangible
solution reflecting their expertise, leading to successful
deployment. Designed as a decision support system, it
avoided being perceived as a ’black box’ by incorporat-
ing user requirements and providing clear documentation,
thereby fostering trust and transparency.

Key contributions of this work include:

e Time and Resource Efficiency: The developed dash-
board significantly reduces testing time for circularity
assessment in machine tools. The built-in circularity
test, which serves as the dashboard’s data source,
requires approximately 10 minutes for setup and read-
ing acquisition. This represents a substantial time re-
duction compared to the detailed Ballbar test, which
can take between 30 minutes and 4 hours depending
on the machine tool. Furthermore, operator training
for the built-in circularity test is estimated at 2 hours,
whereas training for the Ballbar test exceeds a day
and necessitates additional practice and skill devel-
opment. Given the facility’s 900 machine tools, the
selective testing enabled by the dashboard addresses
the inefficiency of performing time- and resource-
intensive Ballbar tests on tools that do not require
them. The estimated time and resource savings of the
developed dashboard are currently based on end-user
evaluations and experiences with the machine tools
in the pilot production line, which may lack rigorous
validation. To address this limitation, ongoing work
within the project involves a comprehensive quanti-
tative study aimed at affirmatively quantifying the
potential efficiency improvements of the dashboard.
This study will also expand the solution from the pilot
production line to additional lines in a phased man-
ner, ensuring a broader applicability and validation.

e Human-Centric Solution Design: The integration of
domain expert’s knowledge into the CBM dashboard
highlights the benefits of combining human exper-
tise with technological solutions, shifting from purely
automated decision-making systems. However, this
approach also introduces a limitation: the lack of
explanations regarding the selection of user input
tolerances and threshold values, which are critical for
decision making. Future work aims to address this by
capturing detailed data on the reasoning behind these
selections from maintenance engineers and expert op-
erators which are purely based on their experience
and expertise. During the app development phase,
unstructured usability tests and user experience feed-
back were collected using the iterative methodology
presented. Future work will involve conducting more
comprehensive and structured usability tests.

e Practical Industrial Application: The successful im-
plementation of the dashboard in gear axis shaft pro-
duction proves its practical viability in real manufac-
turing settings, particularly in the automotive sector,
where high precision and efficiency are crucial.
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The literature in Section 2 discusses that data analyt-
ics tools are more effective and better support decision-
making when they prioritize user needs and adopt a
human-centric approach. The current study provides ad-
ditional evidence to this through a real-world case study
involving the development and deployment of a CBM
dashboard using a human-centric methodology.

6. CONCLUSION

This article presents a human-in-the-loop methodology for
CBM dashboard development and deployment, specifically
designed as a decision support system to guide main-
tenance engineers and operators to initiate work orders
for Ballbar testing in machine tools. A detailed Ballbar
test can take anywhere from 30 minutes to 4 hours (for
a 2-axis lathe machine tool in this facility) and requires
skilled personnel to perform the test accurately. This can
lead to production delays and impact productivity. The
developed dashboard provides maintenance operators with
three essential insights to guide work order decisions: per-
centage deviation from user-defined tolerance circles, his-
torical trend analysis of marginal deviations, and amplified
visualizations of micron-level deviations. These features
help to understand both the magnitude and nature of
machine tool errors and initiate a work order for detailed
testing only when needed. Reversal spikes, slip/slick and
backlash were the errors identified by the experts using the
dashboard and to confirm this, maintenance work order
for Ballbar test was triggered in two instances during
the study. The proposed CBM solution is developed and
deployed using a human-centric methodology and aids the
maintenance engineer and maintenance operators to take
informed decisions thus optimizing production time and
cost. Future work involves gathering more test data to
perform predictive maintenance using machine learning
and also to perform quantitative study to validate the
advantages of using the solution when scaled to all the
machine tools in the facility.

ACKNOWLEDGEMENTS

The authors would like to thank Christer Nordstrom,
Junia Cupertino Ribeiro and Kanika Gandhi for their
guidance and support. We are particularly grateful to the
domain experts who generously contributed their time and
expertise to this study.

REFERENCES

Aghdaie, M.H., Zolfani, S.H., and Zavadskas, E.K. (2013).
Decision making in machine tool selection: An inte-
grated approach with swara and copras-g methods. En-
gineering Economics, 24(1), 5-17. doi:10.5755/j01.ee.24.
1.2822.

Astudillo, B., Santérum, M., and Aguilar, J. (2020). A
methodology for data analytics based on organizational
characterization through a user-centered design: A sys-
tematic literature review. In Advances in Human Fac-
tors and Ergonomics, volume 1217 of AISC, 150-157.
Springer. doi:10.1007/978-3-030-51828-8_20.

Guo, Y., Sun, Y., and Wu, K. (2020). Research and devel-
opment of monitoring system and data acquisition of cnc
machine tool in intelligent manufacturing. International

Mohan Rajashekarappa et al. / IFAC PapersOnLine 59-10 (2025) 2557-2562

Journal of Advanced Robotic Systems, 17(2), 1-12. doi:
10.1177/1729881419898017.

Harja, H.B., Rusmana, N., Suherlan, E., Nurdin, M.,
Hadiani, D., and Daril, M.A.M. (2024). Geometric
error assessment of cnc turning machine tools with a
case study on gildemeister ctx 310 eco. In Engineering
Frontiers, 225-240. Springer Nature Switzerland AG.
doi:10.1007/978-3-031-56844-2_22.

Liang, E., Kong, J., Zheng, M., and Li, S. (2023). In-
novative design of new laser cutting head quick release
structure for machine tools. In Proceedings of SPIE-The
International Society for Optical Engineering, volume
12801, 128013E. SPIE, SPIE. doi:10.1117/12.3007235.

Rangga, M., Gandana, D.M., Nasril, A.H.L., and
Astharini, D. (2020). Gain optimization for cutting tests
on cnc machine using the ballbar method with cmm
machine measurements. In Proceedings of International
Conference on Engineering and Information Technology
for Sustainable Industry (ICONETSI 2020), 7 pages.
ACM. doi:10.1145/3429789.3429871.

Renishaw plc (2017).  Ballbar and circle, diamond,
square machine tests. Technical report, Renishaw plc,
New Mills, Wotton-under-Edge, Gloucestershire, United
Kingdom. URL https://www.renishaw.com. Technical
White Paper, Rev 1m, Part no. H-5650-2055-01-A.

Samsonov, V., Chrismarie, E., Képken, H.G., Bir, S.,
Liitticke, D., and Meisen, T. (2023). Deep representa-
tion learning and reinforcement learning for workpiece
setup optimization in cnc milling. Production Engineer-
ing, 17(1), 847-859. doi:10.1007/s11740-023-01209-3.

Sharma, S. and Osei-Bryson, K.M. (2009). Role of human
intelligence in domain driven data mining. doi:10.1007/
978-0-387-79420-4_4. Cited by: 0.

Son, N.H., Hieu, T.T., Thang, N.M., Tan, H.N., Can,
N.T., Thao, P.T., and Bao, N.C. (2023). Choosing
the best machine tool in mechanical manufacturing.
EUREKA: Physics and Engineering, 2023(2), 97-109.
doi:10.21303/2461-4262.2023.002771.

Tong, C., Zhang, J., Chowdhury, A., and Trost, S.G.
(2019). An interactive visualization tool for sensor-based
physical activity data analysis. In Proceedings of the
Australasian Computer Science Week Multiconference,
ACSW ’19, 1-4. Association for Computing Machinery,
New York, NY, USA. doi:10.1145/3290688.3290734.

Usop, Z., Sarhan, A.A., Mardi, N., and Wahab, M.N.A.
(2015). Measuring of positioning, circularity and static
errors of a cnc vertical machining centre for validating
the machining accuracy. Measurement, 61, 39-50. doi:
10.1016/j.measurement.2014.10.025.

Werner, A., Mehta, P., and Mears, L. (2011). Devel-
opment of a condition-based maintenance program for
a cnc machine: Part 1-signal acquisition, processing,
and network communication. In Proceedings of the
ASME 2011 International Manufacturing Science and
Engineering Conference, 243-254. ASME. doi:10.1115/
MSEC2011-50132.

Zhou, Z., Hu, J., Liu, Q., Lou, P., Yan, J., and Li, W.
(2018). Fog computing-based cyber-physical machine
tool system. IEEFE Access, 6, 44580-44590. doi:10.1109/
ACCESS.2018.2863258.



