
Using Physics Informed Neural Network (PINN) to Improve a k-omega
Turbulence Model

Downloaded from: https://research.chalmers.se, 2025-11-14 23:22 UTC

Citation for the original published paper (version of record):
Davidson, L. (2025). Using Physics Informed Neural Network (PINN) to Improve a k-omega
Turbulence Model. Proceedings of the 15th ERCOFTAC Symposium on Engineering Turbulence
Modelling and Measurements (ETMM15)

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

USING PHYSICS INFORMED NEURAL NETWORK (PINN)
TO IMPROVE A k − ω TURBULENCE MODEL

Lars Davidson
M2 Fluid Dynamics Chalmers University of Technology

Gothenburg, Sweden, lada@chalmers.se

ERCOFTAC symposium on Engineering, Turbulence, Modelling and Measurements (ETMM14)

in Mini-Symposium: Machine learning for turbulence, Dubrovnik on 22-24 September 2025

Eq. 6 is corrected

Abstract
The Wilcox k−ω turbulence model predicts turbu-

lent boundary layers well, both fully-developed chan-
nel flows and flat-plate boundary layers. However, it
predicts too low a turbulent kinetic energy. This is
a feature it shares with most other two-equation tur-
bulence models. When comparing the terms in the k
equations with DNS data it is found that the production
and dissipation terms are well predicted but the turbu-
lent diffusion is not. In the present work the poor mod-
eling of the turbulent diffusion is improved by making
the turbulent diffusion constant, σk, a function of y/δ.
By taking the production, the dissipation terms as well
as the turbulent kinetic energy from DNS channel flow
data, the k equation is turned into an ordinary differen-
tial equation for the turbulent viscosity which is solved
using Physics Informed Neural Network (PINN). In
order to not change the predicted turbulent viscos-
ity – which is well predicted by the standard Wilcox
k − ω turbulence model – a new function is added to
the dissipation term and the destruction term in the
ω equation. The new model, called the k − ω NN
model, is shown to produce excellent velocity and tur-
bulent kinetic profiles in channel flow at Reτ = 2000,
Reτ = 5200, Reτ = 10 000 as well as in flat-plate
boundary layer flow. The Python PINN script and the
pyCALC-RANS code can be downloaded (Davidson,
2025).

1 Introduction
Eddy-viscosity RANS (Reynolds-Averaged

Navier-Stokes) turbulence models in the literature
have been developed with the object of predicting
a correct velocity field. v̄i. The most common
turbulence models are the k − ε and the k − ω
models where k, ε and ω denote the turbulent kinetic
energy, its dissipation rate and the specific dissipation
ω = ε/(β∗k), respectively. Both turbulence models
include five tuning constants. These constants can be
improved using PINN.

Yazdani and Tahani (2024) use PINN to optimize
the five constants α, β∗, β, σk and σω in the k − ω
model. DNS data of the flow over a periodic hill at
Re = 5600 are used. Using these DNS data, they
compute all terms in the 2D RANS equations com-
prising of the two momentum equations (v̄1 and v̄2),
the continuity equation, the k and ω equations. The
loss function is defined as the sum of (Q̂n

i − Q̃n
i)

2

where Q̂ and Q̃ denote DNS value and PINN value,

respectively. Subscript i represents 5000 arbitrary cho-
sen DNS data points and superscript n corresponds
to v̄1, v̄1, continuity equation, k or ε. The residu-
als (square of L2 norm) of the five governing equa-
tions, Qn, are added to the loss function. They use
PINN to find optimal values of the five coefficient in
the k − ω model. PINN gives modified values for
α = 2.9719 and σω = 1.2685 (baseline values are
2 and 0.52) whereas the other three constants are not
changed. Then they carry out RANS simulations of
the flow over the same periodic hill that was used for
training and compare with RANS simulations using
the standard values for the coefficients. They find that
the new PINN coefficients give somewhat better re-
sults.

Luo et al. (2020) improve the five constants. Cµ,
Cε1, Cε2, σk and σε in the k − ε model using PINN.
They define the loss function as (Q̂n

i − Q̃n
i)

2 (see
above) at the DNS data points where Qn is k or ε.
Subscript i represents all DNS data points. The residu-
als of the transport equations of k and ε, multiplied by
penalty functions, are added to the loss function. All
terms in the k and ε equations are taken from DNS of a
converging-diverging channel. New values of the con-
stants are found by PINN (Cµ keeps its standard value
of 0.09). Finally, RANS simulations are carried out for
the converging-diverging channel flow (the sane flow
that was used when training with PINN) using the new
PINN-optimized k− ε constants. Somewhat better re-
sults are obtained compared with the standard k − ε
constants.

Thakur et al. (2024) use PINN to predict a dif-
fusion coefficient. They study an unsteady, two di-
mensional convection-diffusion concentration equa-
tion (i.e. a PDE), c = c(x, y, t), with a spatially depen-
dent diffusion coefficient, D = D(x, y). The object is
to predict D. The loss function, L, is

L =
1

Nσc

N∑
i=1

|c̃− c|2 + 1

Neσc

Ne∑
i=1

|c̃− cp|2

where c denotes true data predicted with CFD using a
prescribed (true), varying diffusion coefficient (Dtrue

varies linearly, sin, tanh etc) and cp is obtained from
the explicit unsteady diffusion equation using c̃ at the
old time step. σc is the standard deviation of the con-
centration. D and c̃ are obtained from two neural net-
works.

In simple flows including a boundary layer (chan-

nel flow, flat-plate boundary layer flow, jet flow etc)
the turbulent shear stress, v′1v

′
2, must be correctly pre-

dicted. The turbulent shear stress is in these models
linearly coupled to the turbulent viscosity, νt, via the
Boussinesq assumption. Hence, well-tuned eddy vis-
cosity models correctly predict the mean flow, the tur-
bulent shear stress and the turbulent viscosity. How-
ever, the turbulent, kinetic energy, k, is usually poorly
predicted, see Fig. 1. Figure 1 present a prediction us-
ing the Wilcox k−ω turbulence model (Wilcox, 1988)
of fully developed channel flow at Reτ ≡ uτδ/ν =
5200 where uτ and δ denote friction velocity and half-
channel width, respectively. It can be seen that the
k−ω model behaves as outlined above: the mean flow
(and hence the turbulent shear stress and the turbulent
viscosity) is well predicted but the predicted turbulent
kinetic energy is much too small.

The object of the present paper is to improve the
predicted, turbulent kinetic energy while not deterio-
rating the predicted mean flow. The predicted terms –
production, dissipation and diffusion – in the k equa-
tion using the k − ω model are compared with DNS
in Fig. 1c. It can be seen that the production term,
P k, and the sum of the viscous diffusion and the dis-
sipation term, Dν − ε, agree fairly well with DNS
but that the agreement for the turbulent diffusion term,
Dk, is not so good. In order to improve the predicted
k, we will use Physics Informed Neural Network, i.e.
Physics Informed NN – usually called PINN – to im-
prove the predicted diffusion term. In the works of
Yazdani and Tahani (2024) and Luo et al. (2020) sum-
marized above, new constant values of turbulent co-
efficients were optimized. In the present study, one
turbulent constant, σk, will be turned into a function
of y/δ where δ denotes the boundary layer thickness.
class NN(nn.Module):
def __init__(self):
self.lay_1=nn.Linear(1, 2) # Connection 0-1
self.lay_2=nn.Linear(2, 1) # Connection 1-2
def forward(self, x):
x = torch.nn.functional.sigmoid(self.lay_1(x))
out = torch.nn.functional.sigmoid(self.lay_2(x))

Listing 1: Simple NN. Initiation and forward step

2 Equations and the numerical method
The RANS equations are given by

∂v̄i
∂xi

= 0

∂v̄iv̄j
∂xj

= −1

ρ

∂p̄

∂xi
+

∂

∂xj

[
(ν + νt)

∂v̄i
∂xj

]
The Wilcox k − ω turbulence model reads

∂v̄jk

∂xj
= P k +

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
− Cµkω

∂v̄jω

∂xj
= Cω1

P k

νt
+

∂

∂xj

[(
ν +

νt
σω

)
∂ω

∂xj

]
− Cω2ω

2

P k = νt

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
∂v̄i
∂xj

, νt =
k

ω
(1)

(a) Mean velocity.

(b) Turbulent kinetic energy.

(c) Terms in k equation.

Figure 1: Fully-developed channel flow. Solid lines: k − ω;
dashed lines:DNS (Lee and Moser, 2015).

a
(0)
1

a
(1)
1

a
(1)
2

a
(2)
1

input
layer hidden layers

output
layer

Figure 2: Schematic of Simple NN

The standard coefficients are used, i.e. Cω1 = 5/9,
Cω2 = 3/40, σk = σω = 2 and Cµ = 0.09.

The pyCALC-RANS code is used (Davidson,
2021) for solving the discretized equations. It is an
incompressible, finite volume code written in Python.
It is fully vectorized (i.e. no for loops). The convective
terms in all equations are discretized using the Hybrid
central/upwind scheme. The numerical procedure is
based on the pressure-correction method, SIMPLEC,
and a collocated grid arrangement using Rhie-Chow
interpolation.

3 Physics informed NN (PINN)
Let’s create a simple NN that finds a damping

function, Y ≡ f , as a function of X ≡ y+, see
Fig. 2. It has one input (X = a

(0)
1), one hid-

den layer with two neurons (a(1)1 , a
(1)
2) and one out-

put (Y = a
(2)
1). In Listing 1, you find the line la-

beled Connection 0-1 which connects a
(0)
1 and(

a
(1)
1 , a

(1)
2

)
and the line labeled Connection 1-2

which connects
(
a
(1)
1 , a

(1)
1

)
and a

(2)
1 .

Now we formulate the NN with weights, w, and bi-
ases, b and add Sigmoid activators, s, to both neurons,
i.e.

Activation 1: a
(1)
1 = s

(1)
1

(
w

(0)
1 a

(0)
1 + b

(0)
1

)
Activation 2: a

(1)
2 = s

(1)
2

(
w

(0)
2 a

(0)
1 + b

(0)
2

)
Output: a

(2)
1 = s

(2)
1

(
w

(1)
1 a

(1)
1 + b

(1)
1

+w
(1)
2 a

(1)
2 + b

(1)
2

)
≡ Y

The Python code is given in Listing 2.
initiate the NN model
model = NN()
define input, X
X=np.zeros(nj,1))
X[:,0] = scaler_yplus.fit_transform(yplus)[:,0]
define output, Y (f is known)
Y = f
Training loop
for epoch in range(max_no_epoch):
Compute prediction and loss, L
o = model(X) #prediction
L = loss_fn(o, Y) # L = |o-Y|_2
L.backward()

Listing 2: Simple NN. Prediction and backward step

The loss.backward() command computes
the gradients of the loss, L, with respect to the
weights, biases and activators, (i.e. ∂L/∂w1,
∂L/∂b1, ∂L/∂s1 . . .) in order to get new improved
w1, b1, s1 . . .

Now, let’s involve our differential equation, the k
equation (see Eq. 1). In fully-developed channel flow
it is a diffusion equation with source terms which reads

d

dy

(
ν + νt,NN

dk

dy

)
+ P k − ε = Q.

It is re-written as

(ν + νt,NN)
d2k

dy2
+

dk

dy

dνt,NN

dy
+ P k − ε = Q (2)

We want to find a new turbulent viscosity, νt,NN , that
gives a turbulent diffusion that agrees with the DNS
turbulent diffusion term in Fig. 1c. Hence, νt,NN is
the unknown variable in Eq. 2 and k, P k and ε are
taken from DNS. Equation 2 is solved in half a channel
at Reτ = 5200. The boundary condition at the wall
(y = 0) is νt,NN = 0 and at the center (y = δ) it is
νt,DNS .

The turbulent viscosity, νt,NN in Eq. 2, will be pre-
dicted by PINN while minimizing the error Q2. The
loss function, loss fn, in Listing 2 is replaced with
Eq. 2 and the Python code is given in Listing 3.
def ODE(y, nut):
nut_y = grad(nut, y, torch.ones\

(x.size()[0], 1,),create_graph=True)[0]
Differential equation loss
ODE_loss = (nu+nut)*k_yy + k_y*nut_y + Pk - eps
ODE_loss = torch.sum(ODE_loss ** 2)
b.c. loss

(a) Turbulent viscosity.

(b) Prandtl number.

(c) Turbulent diffusion.

Figure 3: Prediction by PINN compared to DNS and the
Wilcox k − ω model. Reτ = 5200.

Figure 4: CFD predictions with different σk,max.

BC_loss = (nut[0] - nut_0) ** 2
return ODE_loss, BC_loss
loss_ODE, loss_bc = ODE(y,o)

Listing 3: Python code for PINN.

nut and k in Listing 3 are νt,NN and k in Eq. 2,
respectively. k y, for example, is dk/dy. Note that
k y and k yy are known and constant. There are
two losses in Listing 3, one, ODE loss, which relates
to the ODE and one, BC loss, which relates to the
boundary conditions. In this way the PINN is forced
to satisfy both the ODE and the boundary conditions.

Figures 3a and 3b present the predicted turbulent
viscosity in the k equation, νt,NN , and the turbulent
Prandtl number, σt,NN , where σt,NN = νt/νt,NN

(νt is the turbulent viscosity predicted by the Wilcox
k − ω). It is compared to the DNS turbulent diffusion
in Fig. 3c, and the agreement is good. The turbulent
diffusion goes to zero at y+ ≃ 40 and the turbulent dif-
fusion is negligible for y+ ≳ 40 (see Fig. 1c). Hence,
the value of νt,NN (and σt,NN) is not relevant in the
outer region and σt,NN is set to a constant in this re-

Figure 5: Ck and Cω2 vs. y/δ.

gion (to be determined).
Now we have modified the turbulent Prandtl num-

ber in the k equation so that we – with exact source
terms taken from DNS, P k and ε – predict a correct
near-wall behaviour of k. In the next step, we have to
take the source terms from the k − ω model. Recall
that P k in the k − ω model is correct since the model
does predict the velocity profile correctly, see Fig. 1
and hence the turbulent viscosity (the total shear stress
is predicted as y − 1 by all turbulence models). The
k predicted by DNS is near the wall much larger than
that predicted by the k − ω model, see Fig. 1b. This
means that ω must be modified in order to give the
same turbulent viscosity as the k − ω model, i.e.

νt,k−ω =
kk−ω

ωk−ω
= νt,DNS =

kDNS

ωDNS
= νt,NN (3)

which gives

ωDNS = kDNS/νt,DNS . (4)

The turbulent Prandtl number in the k equation has
now been modified (Fig. 3b) and we have found an
expression for a correct ω (Eq. 4). Let’s verify that
a CFD solver does predict a correct turbulent kinetic
energy. Equation 2 is formulated as an equation for k,
i.e.

d

dy

((
ν +

νt,k−ω

σt,NN

)
dk

dy

)
+ P k − ε = 0 (5)

where P k and ε are again taken from DNS. The turbu-
lent viscosity, νt,k−ω , is taken from the standard k−ω
model and the turbulent Prandtl number is computed
using the DNS value of ω, i.e.

σt,NN =
k/ωDNS

νt,NN
(6)

We solve Eq. 5 using the CFD solver pyCALC-
RANS . Figure 4 presents the predicted k profiles us-
ing two different turbulent Prandtl numbers. We find
that when using σk,max = 1 the agreement is excel-
lent. The larger value σk,max = 2 gives also excellent
agreement near the wall for y+ < 200 but further out
is gives much too small a k. The reason is that the
diffusion in the outer region is too small because of
a small dkDNS/dy. However, when solving the full
equation system (i.e. v̄1, k and ω) the k profile in the

Figure 6: Turbulent Prandtl number vs. y and y+.

outer region must adapt so that the total shear stress
satisfies y − 1. In Section it is found that σk,max = 1
and using no limit give identical predictions. The rea-
son is that the turbulent diffusion in the k equation
is negligible in the outer region, see Fig. 1c. In the
Wilcox k − ω model σk = 2 and hence σk,max is set
to two.

Now we know ωDNS . Next, the dissipation term
Cµkω in the k equation in Eq. 1 must be modified so
that it agrees with εDNS = CµkDNSωDNS . This
is achieved by multiplying the dissipation term by
a damping function, Ck = Ck (y/δ), so that the k
equation in Eq. 1 is satisfied with k = kDNS and
ω = ωDNS , i.e. (see Eq. 5)

Ck =

d
dy

(
νt

σt,NN

dkDNS

dy

)
+ P k

DNS

CµkDNSωDNS
(7)

Note that the viscous diffusion has been omitted
in order to prevent a large gradient of Ck close to the
wall.

Finally, we must make sure that the ω equation in
Eq. 1 predicts ω = ωDNS . This is achieved by making
Cω2 = Cω2 (y/δ). From the ω equation in Eq. 1 we get

Cω2 =

d
dy

(
νt

σω

dωDNS

dy

)
+ Cω1

Pk
DNS

νt,DNS

ω2
DNS

(8)

Again, the viscous diffusion has been omitted.
Figure 5 shows the two damping functions. The

thick, black, dashed line indicates the standard value
of Cω,2 = 3/40, see below Eq. 1. The damping func-
tion, Ck, is essentially (kDNS/kk−ω)

2 because of the
denominator in Eq. 7: first, kDNS is larger than kk−ω

(see Fig. 4), and, second, ωDNS is larger than ωk−ω ,
see Eq. 3.

4 Results
The turbulent Prandtl number, σt,NN =

σt,NN (y/δ), Ck = Ck (y/δ) and Cω2 = Cω2 (y/δ)
(see Figs. 3b and 5) are obtained using PINN and DNS

(a) Velocity.

(b) Turbulent kinetic energy.

(c) Turbulent viscosity.

Figure 7: Fully-developed channel flow. Reτ = 2000.

(a) Velocity.

(b) Turbulent kinetic energy.

(c) Turbulent viscosity.

Figure 8: Fully-developed channel flow. Reτ = 5200.

(a) Velocity.

(b) Turbulent kinetic energy.

(c) Turbulent viscosity.

Figure 9: Fully-developed channel flow. Reτ = 10 000.

(a) Skin friction.

(b) Velocity.

(c) Turbulent kinetic energy.

(d) Turbulent shear stress.

Figure 10: Flat-plate boundary layer. Profiles at Reθ =
4500.

data for fully-developed channel flow at Reτ = 5200
in the previous section. They are in this section used
in the k − ω model. The new model is called the
k − ω-NN model. Note that σt,NN , Ck and Cω2 are
expressed as function of y/δ rather than of y+. The
reason is that when repeating the predictions in the
previous section using data at Reτ = 2000 it is found
that σt,NN scales much better with y/δ than with y+,
see Fig. 6.

Fully-developed channel flows at Reτ = 2000,
Reτ = 5200 and Reτ = 10 000 are simulated us-
ing pyCALC-RANS . The predicted velocity, turbu-
lent kinetic energy and turbulent viscosity using the
Wilcox k − ω model and the k − ω-NN model are
compared with DNS in Figs. 7, 8 and 9. The veloc-
ity profiles are well predicted with both models but the
turbulent kinetic energy is much better predicted with
the k − ω-NN model. It can be seen that the turbu-
lent viscosities predicted by the two turbulence mod-
els are very similar in the inner part of the boundary
layer (y+ ≲ 300, y+ ≲ 1 000 and y+ ≲ 2 000 for
Reτ = 2000, Reτ = 5200 Reτ = 10 000, respec-
tively). It may be recalled that this was indeed a re-
quirement when developing the k−ω NN model in the
previous section, see Eq. 3.

5 Conclusions
The present work proposes a methodology for us-

ing PINN for improving turbulence models. A new
k − ω turbulence model, k − ω NN, has been pre-
sented. By making the turbulent Prandtl number in
the k equation a function of y/δ we were able to pre-
dict k near the wall in agreement with DNS which the
Wilcox k− ω model fails to do. The k− ω NN model
predicts a larger k near the wall but the same turbulent
viscosity (which is necessary in order to predict an ac-
curate velocity field). In order to keep νt the same in
the k − ω NN model as in the Wilcox k − ω model,
we had to introduce Ck = Ck (y/δ) in front of the
dissipation term in the k equation and Cω2 in the ω
equation was made a function of y/δ.

In this work σk, CK and Cω2 are made functions
of y/δ. Hence, the current formulation of the model
is not applicable to re-circulating flow. Using Neural
Network (NN), we have tried to make them functions
of Pk/ε, P+

k , νt/(yuτ), etc. It is important that they
are properly non-dimensionalized so that can be used
in other flows as well at other Reynolds numbers. In
the end, a good combination was found: σk, Ck and
Cω2 can be made functions of u′v′/u2

τ and νt/(yuτ).
The predictions (not shown) using σk, Ck and Cω2

based on NN are very good for all three channel flows.
However, the skin friction for the flat-plate boundary
layer is over-predicted by some 10%.

References
Davidson L. pyCALC-RANS: a 2D Python

code for RANS. Division of Fluid Dynam-
ics, Dept. of Mechanics and Maritime Sciences,

Chalmers University of Technology, Gothenburg,
2021. URL https://www.tfd.chalmers.
se/˜lada/pyCALC-RANS.html.

Davidson L. Using physical informed neural
network (PINN) to improve a k − ω turbu-
lence model: Python CFD code and PINN
script. Division of Fluid Dynamics, Dept. of
Mechanics and Maritime Sciences, Chalmers
University of Technology, Gothenburg, 2025. URL
https://www.tfd.chalmers.se/˜lada/
Using-Physical-Informed-Neural-
Network-PINN-improve-a-k-omega-
turbulence-model.html.

Lee M. and Moser R. D. Direct numerical simula-
tion of turbulent channel flow up to Reτ ≈ 5200.
Journal of Fluid Mechanics, 774:395–415, 2015.
doi: 10.1017/jfm.2015.268. URL https://doi.
org/10.1017/jfm.2015.268.

Luo S., Vellakal M., Koric S., Kindratenko V., and
Cui J. Parameter identification of RANS turbulence
model using physics-embedded neural network. In
Jagode H., Anzt H., Juckeland G., and Ltaief H.,
editors, High Performance Computing, pages 137–
149, Cham, 2020. Springer International Publish-
ing. URL https://link.springer.com/
book/10.1007/978-3-030-59851-8.

Thakur S., Esmaili E., Libring S., Solorio L., and
Ardekani A. M. Inverse resolution of spatially vary-
ing diffusion coefficient using physics-informed
neural networks. Physics of Fluids, 36(8):081915,
08 2024. ISSN 1070-6631. doi: 10.1063/5.
0207453. URL https://doi.org/10.1063/
5.0207453.

Wilcox D. C. Reassessment of the scale-determining
equation. AIAA Journal, 26(11):1299–1310, 1988.

Yazdani S. and Tahani M. Data-driven discovery
of turbulent flow equations using physics-informed
neural networks. Physics of Fluids, 36(3):035107,
03 2024. ISSN 1070-6631. doi: 10.1063/5.
0190138. URL https://doi.org/10.1063/
5.0190138.

https://www.tfd.chalmers.se/~lada/pyCALC-RANS.html
https://www.tfd.chalmers.se/~lada/pyCALC-RANS.html
https://www.tfd.chalmers.se/~lada/Using-Physical-Informed-Neural-Network-PINN-improve-a-k-omega-turbulence-model.html
https://www.tfd.chalmers.se/~lada/Using-Physical-Informed-Neural-Network-PINN-improve-a-k-omega-turbulence-model.html
https://www.tfd.chalmers.se/~lada/Using-Physical-Informed-Neural-Network-PINN-improve-a-k-omega-turbulence-model.html
https://www.tfd.chalmers.se/~lada/Using-Physical-Informed-Neural-Network-PINN-improve-a-k-omega-turbulence-model.html
https://doi.org/10.1017/jfm.2015.268
https://doi.org/10.1017/jfm.2015.268
https://link.springer.com/book/10.1007/978-3-030-59851-8
https://link.springer.com/book/10.1007/978-3-030-59851-8
https://doi.org/10.1063/5.0207453
https://doi.org/10.1063/5.0207453
https://doi.org/10.1063/5.0190138
https://doi.org/10.1063/5.0190138

