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We propose efficient algorithms for clas-
sically simulating Gaussian unitaries and
measurements applied to non-Gaussian
initial states. The constructions are
based on decomposing the non-Gaussian
states into linear combinations of Gaus-
sian states. We use an extension of the
covariance matrix formalism to efficiently
track relative phases in the superpositions
of Gaussian states. We get an exact simu-
lation algorithm, which costs quadratically
with the number of Gaussian states re-
quired to represent the initial state, and an
approximate simulation algorithm, which
costs linearly with the l1 norm of the coef-
ficients associated with the superposition.
We define measures of non-Gaussianity
quantifying this simulation cost, which we
call the Gaussian rank and the Gaussian
extent. From the perspective of quantum
resource theories, we investigate the prop-
erties of this type of non-Gaussianity mea-
sure and compute optimal decompositions
for states relevant to continuous-variable
quantum computing.

1 Introduction

Quantum computing holds the promise of solving
problems that are currently beyond the reach of
classical methods. In recent years, continuous-
variable (CV) systems have emerged as a prime
candidate to implement quantum computation

Oliver Hahn: hahn@g.ecc.u-tokyo.ac.jp

and have received increased attention due to their
inherent noise resilience, showcased by a series
of breakthrough experiments [1, 2]. CV systems
cannot be described within a finite-dimensional
Hilbert space and naturally appear in optical [3],
microwave radiation [4, 5], and optomechanical
systems [6, 7].

In practical implementations, some operations
are easier to perform experimentally than oth-
ers. While Gaussian operations are relatively
straightforward to implement in CV systems,
they are not sufficient for achieving universal
quantum computing. Moreover, when restricted
to Gaussian operations and states, efficient clas-
sical simulation becomes possible [8] and tasks
such as error correction become impossible [9].
Thus, the incorporation of non-Gaussian re-
sources, such as Fock states, becomes necessary
for achieving universal quantum computing and
opens the possibility for any potential quantum
advantage.

This fact introduces a big challenge in assess-
ing and designing new quantum information pro-
tocols, such as error correction schemes. In-
deed, quantum mechanical systems are notori-
ously difficult to classically simulate in general,
even more so in the case of CV systems. Aside
from such practical use cases, classical simula-
tion algorithms are useful in tackling fundamen-
tal problems. They provide a lens to directly
study the boundary between the computational
power of classical and quantum computational
models and help to identify the origin of poten-
tial quantum advantages.

The other side of the coin is that adding non-
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Gaussian resources to otherwise classically simu-
latable Gaussian systems in turn makes it hard
to simulate them classically. Thus, any clas-
sical simulation algorithm will be restricted in
some way. One way to simulate a CV system is
to use the Wigner function [10, 11]. The sim-
ulation time scales with the amount of nega-
tive parts of the Wigner function. The nega-
tivity of the Wigner function [12–14] is a mea-
sure of non-Gaussianity, meaning that Gaussian
states and processes can be represented with
strictly positive Wigner function and thus sam-
pled from efficiently. Hence, this method is in-
trinsically constrained to circuits with very low
or no Wigner negativity. The simulation of spe-
cific circuits with large negativity has been con-
sidered in Refs. [15–18]. The approaches therein
are restricted to the simulation of a Gaussian cir-
cuit with input infinitely squeezed GKP “states”
encoding stabilizer states, and are not directly
applicable to the case of more general input
non-Gaussian states, including realistic (finitely-
squeezed) GKP states. A further approach re-
lies on decomposing states in the Fock basis with
bounded support [19, 20]. The non-Gaussian
measure quantifying the simulation overhead of
non-Gaussian states using such a decomposition
is the stellar rank [21]. However, many states
that are of utmost relevance for CV quantum
computing, such as GKP and cat states, require a
large number or even infinitely many Fock states,
leading to scaling issues. The simulator [22]
circumvents some of these issues, but its per-
formance is not studied analytically, making an
analysis difficult.

In this work, we introduce two classical algo-
rithms for the simulation of CV systems, which
are inherently connected with two measures for
the resource theory of non-Gaussianity. The
idea behind the simulators is to decompose non-
Gaussian states into a superposition of Gaus-
sian states and use an efficient Gaussian sub-
routine. For the subroutine, we develop a tech-
nique to compute the relative phase of these
Gaussian states using an extension of the co-
variance matrix formalism. The first algorithm
is exact and scales with the number of Gaus-
sian states in the superposition—the Gaussian
rank—quadratically. We improve this algorithm
by approximating the input state by sparsify-
ing the decomposition, yielding the second algo-

rithm. For the latter, we also develop a method
for the fast estimation of the norm of the non-
Gaussian state, bringing the scaling down to lin-
ear in the l1 norm of the coefficients in the su-
perposition, or equivalently, the Gaussian extent.
Hence, in both algorithms, the simulation cost
increases with the amount of non-Gaussianity in
the input state, measured by the two measures
of non-Gaussianity we introduce.

Our simulation algorithms are particularly
suitable for quantum optical setups, where non-
Gaussian states are generated and then trans-
formed via Gaussian operations. Although we
consider primarily the scenario of input non-
Gaussian states followed by Gaussian operations
and measurements, the simulators also allow for
the simulation of other non-Gaussian circuits
through gadgetisation.

The idea of the simulator, through decompos-
ing non-Gaussian states into superpositions of
Gaussian states, is based on analogous ideas that
were used for the simulation of magic states in
qubit systems [23], fermionic [24], and passive
linear optics [25].

In the second part, we formally introduce the
two measures, the Gaussian rank and the Gaus-
sian extent. These measures quantify the small-
est cost to run the two algorithms. This fact
gives the Gaussian rank and the Gaussian extent
an immediate operational interpretation. Addi-
tionally, we thoroughly investigate the proper-
ties of the measures. The Gaussian extent is
connected to the generalized robustness of non-
Gaussianity [26, 27]. This allows us to derive a
useful condition for the optimal witness of the
generalized robustness. At last, we compute
optimal decompositions of states of interest for
bosonic error correction, as well as derive bounds
for CV protocols such as Gaussian boson sam-
pling and cat state breeding. Our work connects
the practical usefulness of an efficient classical
simulator with the fundamental investigation of
resources required for CV quantum computing.

The rest of this paper is organized as follows.
In Sec. 2, we provide an introduction to Gaussian
quantum optics. In Sec. 3, we develop a phase-
sensitive simulator for Gaussian states and oper-
ations based on the covariant matrix formalism.
This allows us to compute the overlap between
pure Gaussian states, including the phase infor-
mation, which is not available using the standard
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formalism based on the covariance matrix. In
Sec. 4, we provide two classical simulation algo-
rithms for non-Gaussian optics. The first algo-
rithm performs exact simulation by using the de-
composition of non-Gaussian states into a super-
position of Gaussian states. This allows the usage
of continuous decompositions as well. The second
algorithm improves the runtime scaling by using
a low-rank approximation of non-Gaussian states
by sparsifying their decomposition in Gaussian
states. These low-rank approximations are gen-
erally not normalized, so we introduce a fast
norm estimation algorithm. In Sec. 5 we intro-
duce two measures in the resource theory of non-
Gaussianity — the Gaussian rank and the Gaus-
sian extent — and prove their properties. The
simulation cost of the two simulation algorithms
we introduced scales with the resource measured
by the two new measures. We characterize the
Gaussian extent by a robustness measure and
find a condition that needs to be obeyed by the
optimal decomposition in Gaussian states. Ex-
amples and applications of this measure are given
in Sec. 6, such as optimal decompositions and
a resource-theoretic analysis using the Gaussian
extent of Gaussian boson sampling and cat state
breeding. Finally, our conclusions are given in
Sec. 7.

2 Gaussian quantum optics
Gaussian quantum optics offers a rich area of re-
search. Beyond its vast range of applicability,
which spans from quantum metrology to quan-
tum key distribution, an appealing feature of
Gaussian quantum optics is that several analyti-
cal techniques are available in this regime. Here,
we introduce the main notations and formalism
used in this paper regarding Gaussian quantum
optics.

In this work, we will use the canonical opera-
tors q, p with

[q, p] = i. (1)

Gaussian unitaries are defined as

U = eiH (2)

H = 1
2r

THr + r̄r (3)

where we use the shorthand notation r =
(q1, p1, ..., qn, pn)T for the vector of canonical op-
erators and r̄ = (rq1 , rp1 , ...rqn , rpn)T a vector of

real numbers. The matrix H is a symmetric ma-
trix, while H denotes the operator.

This allows us to define Gaussian states as

ρG = e−βH

Tr[e−βH ] (4)

including the case β → ∞ being pure states. We
let G denote the set of Gaussian states.

The advantage of Gaussian states is that they
are fully determined by the mean

r̄ = Tr[rρ] (5)

and the covariance matrix

σ = Tr
[
{(r − r̄), (r − r̄)T }ρ

]
(6)

where {, } is the anti-commutator, and rrT is the
outer product. The requirement on all covariance
matrices is

σ ± iΩ ≥ 0, (7)

where Ω =
⊕N

j=1

(
0 1

−1 0

)
. Gaussian operations

refer to any operations composed of the prepara-
tion of Gaussian states, applications of Gaussian
unitaries, and measurement by homodyne or het-
erodyne detection.
Using the covariance matrix formalism, one

can easily compute the dynamics of a quantum
state as long as the operations involved are Gaus-
sian. This fact means that Gaussian quantum
optics can be efficiently simulated on a classi-
cal computer. This implies, in turn, that no
exponential quantum advantage can be achieved
with only Gaussian quantum circuitry. Below,
we summarize a list of ingredients used for the
Gaussian simulator in the covariance matrix for-
malism [28].

Gaussian unitaries Displacement operations
by r̄′ have the following action on the mean and
the covariance matrix:

r̄ → r̄ + r̄′, (8)
σ → σ. (9)

A general symplectic transformation S acts as

r̄ → Sr̄, (10)
σ → SσST . (11)
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There exists a parameterization for symplectic
transformations [29]. Every symplectic transfor-
mation can be decomposed as [30]

S = O1ZO2, (12)

Z =
n⊕
i=1

(
zi 0
0 z−1

i

)
, (13)

with O1, O2 ∈ SP2n,R ∩ SO(2n), which are
the passive symplectic transformations. So we
can decompose all symplectic transformations in
terms of single-mode squeezers, phase shifters,
and two-mode beam splitters. Note that SP2n,R∩
SO(2n) is isomorphic to U(n)

Oi = Ū ′†
(
U∗ 0n
0n U

)
Ū ′ (14)

with U ∈ U(n) and

Ū ′ = 1√
2

(
1n i1n
1n −i1n

)
. (15)

Tensor product and partial trace Suppose
that we have a two-mode Gaussian state with

r̄ = r̄A ⊕ r̄B =
(
r̄A
r̄B

)
, (16)

σ = σA ⊕ σB =
(
σA 0
0 σB

)
. (17)

Then, the partial trace on the second subsystem
yields

r̄ → r̄A, (18)
σ → σA. (19)

Gaussian completely positive and trace-
preserving (CPTP) map Given a Gaussian
initial state with covariance σ and mean r̄, the
evolution of a Gaussian CPTP map is character-
ized by two real matrices X,Y and a vector D
as

r̄ → Xr̄ + D, (20)
σ → XσXT + Y, (21)

with the requirement that

Y + iΩ ≥ iXΩXT . (22)

Gaussian measurements Measurement re-
sults of homodyne detection are determined by
the mean and covariance matrix, e.g.,

p(x) = e
− (x−x̄)2

σ1
√
πσ1

. (23)

More generally, the POVMs of a general-dyne de-
tection are given with the completeness condition

1n = 1
(2π)2n

∫
R2n

drmD(−rm)S† |0⟩⟨0|SD(rm)

(24)

with the outcomes rm. The probability density
p(rm) of measuring a Gaussian state ρ with σ
and r̄ can then be inferred from the expression
of Gaussian overlaps

p(rm) = ⟨ψG|ρ|ψG⟩
(2π)n = e−(rm−r̄)T (σ+SST )−1(rm−r̄)

πn
√

det (σ + SST )
,

(25)

where |ψG⟩ = D(−rm)S† |0⟩ from the POVM.
One retrieves homodyne detection in certain lim-
its; e.g, for n = 1, one measures q in the limit
SST = limz→0 diag(z2, 1/z2) and p for z → ∞.

One can generalize this notion to noisy mea-
surements, such as measurements with finite de-
tection efficiency. The POVMs are then given
with the completeness condition

1n = 1
(2π)2n

∫
R2n

drmD(−rm)ρmD(rm) (26)

for the outcomes rm and ρm having covariance
matrix σm. The probability density of obtaining
result rm is then

p(rm) = 1
(2π)n Tr [ρD(−rm)ρmD(rm)] (27)

or equivalently if ρ is a Gaussian state with co-
variance σ and mean r̄

p(rm) = e−(rm−r̄)T (σ+σm)−1(rm−r̄)

πn
√

det [σ + σm]
. (28)

Conditional Gaussian dynamics We con-
sider a bipartite Gaussian state

r̄ =
(
r̄A
r̄B

)
, (29)

σ =
(
σA σAB
σTAB σB

)
. (30)

Accepted in Quantum 2025-10-08, click title to verify. Published under CC-BY 4.0. 4



The n-mode subsystem of an (n+m)-mode Gaus-
sian state with the covariance and mean defined
above undergoes the following mapping upon
general-dyne measurement of the m modes char-
acterized by measurement outcome rm and co-
variance σm:

r̄A → r̄A − σAB
1

σB + σm
(rm − r̄B), (31)

σA → σA − σAB
1

σB + σm
σTAB. (32)

3 Phase-sensitive simulator for Gaus-
sian states and operations
First, we consider the simulation when all states
and operations are Gaussians. The task is to
compute the Born probability of obtaining a sam-
ple x while performing heterodyne detection of
the Gaussian state |G⟩

P (x) = |⟨G|x⟩|2. (33)

In principle, this can easily be computed using
the covariance formalism, as it is well known
that Gaussian states and operations are classi-
cally simulable efficiently.
However, the issue is that the conventional way

of simulating Gaussians as summarized in Sec. 2
is based on the covariance matrix formalism and
thus does not compute global phases. By con-
trast, for our non-Gaussian simulator, as we will
see later, we need to exploit a Gaussian simulator
that keeps track of the phases, which we will de-

velop here inspired by Ref. [31]. A more in-depth
derivation can be found in Appendix A.

The most important ingredient is to compute
the inner product of Gaussian pure states

⟨Gi|Gj⟩ for |Gi⟩ , |Gj⟩ ∈ G, (34)

in a phase-sensitive way; i.e., our method does
not only provide | ⟨Gi|Gj⟩ | but also clarifies θ ∈
[0, 2π) for ⟨Gi|Gj⟩ = eiθ| ⟨Gi|Gj⟩ |. We fix a
Gaussian reference state G0 = |G0⟩⟨G0|, which
can be an arbitrary Gaussian state.

Given the reference state G0 = |G0⟩⟨G0| and
our two Gaussian states of interest G1 = |G1⟩⟨G1|
and G2 = |G2⟩⟨G2|, we deduce the phase sensitive
overlap between ⟨G1|G2⟩ via

Tr (G0G1G2) = Tr (|G0⟩⟨G0| |G1⟩⟨G1| |G2⟩⟨G2|)
(35)

= ⟨G2|G0⟩ ⟨G1|G2⟩ ⟨G0|G1⟩ . (36)
The fidelity between an n-mode Gaussian state
ρ0 with covariance σ0 and mean x0 and an n-
mode pure Gaussian state ρ1 = |ϕ⟩⟨ϕ| with co-
variance σ1 and mean x1 is given by [32]

F(ρ0, |ϕ⟩⟨ϕ|) = ⟨ϕ| ρ0 |ϕ⟩ = 2n e
−(dT (σ0+σ1)−1d)√

det [σ0 + σ1]
(37)

with d = x0 − x1. Then, as shown in Ap-
pendix A, the right-hand side of (36) can be
calculated using the covariance matrices σi and
means µi by

⟨G2|G0⟩ ⟨G1|G2⟩ ⟨G0|G1⟩ = 1√
det(σ1 + σ2)

1√
det(σ0 + ∆)

e− 1
4 (µ1−µ2)T (σ1+σ2)−1(µ1−µ2) (38)

e− 1
4 (µ0−µ∆)T (σ0+∆)−1(µ0−µ∆), (39)

where we write

∆ = σ2 − (σ2 − iΩ)T

2 (σ1 + σ2)−1 (σ2 − iΩ)
2 , (40)

µ∆ = µ2 + 1
2(µ1 − µ2)(σ1 + σ2)−1 (σ2 − iΩ)

2 . (41)

In order to obtain the desired inner product
⟨G1|G2⟩, we need to use the inner products with
the reference states. Therefore, we not only spec-

ify all Gaussian states with covariance matrix σi
and mean µi, but we also use the inner product
with the reference state, which we indicate as oi;
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as a whole, we will henceforth represent a pure
Gaussian state as

|Gi⟩ = |σi,µi, oi⟩ (42)

when necessary. We can then use the tools pre-
sented in Sec. 2 to update the covariance and
mean of the Gaussian state and then perform a
Gaussian measurement by computing the over-
lap with the corresponding Gaussian state in a
phase-sensitive manner. We can directly give
the covariance matrices and means to compute
the overlap with the reference state for a single
mode; more generally, we give an algorithm to
do this computation in Appendix B. Also in Ap-
pendix C, we give based on the article [33] an
alternative way to simulate Gaussian overlaps in
a phase sensitive way using the stellar formalism.

4 Classical simulation algorithm for
non-Gaussian optics

In this section, we present our non-Gaussian sim-
ulation algorithm using the phase-sensitive Gaus-
sian simulator introduced in Sec. 3. Our inter-
est is the classical simulation of representative
classes of operations in non-Gaussian optics that
can be written as combinations of Gaussian op-
erations with auxiliary non-Gaussian states, e.g.,
quantum computation using Gottesman-Kitaev-
Preskill (GKP) codes [34–36] and cubic phase
gates implemented by gate teleportation [34, 37].

As a simple case, we begin by considering non-
Gaussian states decomposed into a sum of Gaus-
sian states as

|ψ⟩ =
χ∑
i=1

ci |Gi⟩ , (43)

where we used the notation |Gi⟩ = |σi,µi, oi⟩ as
in Eq. (42). The Born probability that we want
to estimate then has the form

P (x) = ⟨ψ|x⟩ ⟨x|ψ⟩
∥ψ∥2 =

∑χ
i,j=1 c

∗
jci ⟨Gj |x⟩ ⟨x|Gi⟩

∥ψ∥2 ,

(44)

where we perform heterodyne detection and |x⟩
is then just a tensor product of coherent states.
We will then argue how to approximate arbitrary
non-Gaussian states by such a finite sum.

4.1 Exact simulation

The first simulation algorithm computes the
Born probability exactly by computing all over-
laps in Eq. (44). Thus, to simulate Gaussian
operations on non-Gaussian states, we update
the individual Gaussian states using the tools
of Sec. 2. Then we apply the phase-sensitive
Gaussian simulator and the tools of Sec. 3 for
each term ⟨x|Gi⟩ in Eq. (44), where we need to
take into account the relative phase between the
terms. The cost of exactly estimating the Born
probability requires O(χ2) inner products.

4.2 Approximate simulation

We can improve this simulation method by intro-
ducing an approximate version of the latter, by
considering sampling terms |σi, µi, oi⟩ in the de-
composition Eq. (43) to sparsify it. The intuition
behind this is to find low rank approximations
and therefore speed up the computation. Using
a sparsified state allows one to use continuous
decompositions of the form

|ψ⟩ =
∫
dk c(k) |σk,µk, ok⟩ (45)

as well. The sampling procedure becomes appar-
ent if we rewrite the decomposition of the state
ψ as follows

|ψ⟩ =
χ∑
i=1

ci |σi, µi, oi⟩ (46)

= ∥c∥1

χ∑
i=1

p(i) |σ̃i, µ̃i, õi⟩ , (47)

where |σ̃i, µ̃i, õi⟩ := (ci/|ci|) |σi,µi, oi⟩ with the
probability distribution

p(i) := |ci|
∥c∥1

. (48)

The same holds for the continuous decomposition
as well, with

|ψ⟩ = ∥c∥1

∫
dk p(k) |σ̃k, µ̃k, õk⟩ (49)

with the probability distribution

p(k) := |c(k)|
∥c∥1

. (50)
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Thus if we sample Gaussian state |σ̃i, µ̃i, õi⟩
from the decomposition of |ψ⟩ with probability
p(i), then the expectation is the state |ψ⟩

|ψ⟩ = ∥c∥1Ei∼p(i)[|σ̃i, µ̃i, õi⟩], (51)

where we may omit the subscript of the expecta-
tion value Ei∼p(i) to write E if it is obvious from
the context.
Sampling from this probability distribution k

times, we get a sparsified state—a low rank ap-
proximation of state |ψ⟩—

|Ω⟩ = ∥c∥1
k

k∑
i=1

|σ̃i, µ̃i, õi⟩ . (52)

As a consequence, we have that

E[⟨Ω|ψ⟩] = E[⟨ψ|Ω⟩] = 1. (53)

If we use the sparsified state |Ω⟩ instead of the
state |ψ⟩ in the computation the error is upper
bounded by

E[||ψ⟩ − |Ω⟩|2]
= E[⟨Ω|Ω⟩] + E[⟨ψ|ψ⟩] − E[⟨ψ|Ω⟩] − E[⟨Ω|ψ⟩]

(54)

≤ ∥c∥2
1

k
. (55)

Thus, by choosing the number

k =
(∥c∥1

δ

)2
(56)

of sampled Gaussian states, we can upper-bound

E
[
∥ |ψ⟩ − |Ω⟩ ∥2

]
≤ δ2. (57)

The minimum sampling cost for a given state |ψ⟩
and error δ in Eq. (56) for each non-Gaussian
state is characterized by the Gaussian extent in
Eq. (81). Using the sparsified state in estimat-
ing the Born probability scales linearly with χ
instead of quadratically in the exact case [38].
For further details and an alternative sampling
strategy introduced in Ref. [30], please consult
Appendix D.
However, in order to compute the Born proba-

bility in Eq. (44) approximately by using a spar-
sified state |Ω⟩ defined in Eq. (52), we need to
compute the norm of the state. This is necessary
because the sparsification will lead to an unnor-
malized state |Ω⟩. Given a decomposition (52) of

|Ω⟩, the required time steps for a straightforward
computation of its norm would grow quadrati-
cally in the number of summands of the decom-
position. By contrast, the procedure here, called
the fast norm estimation, computes the norm
of a sparsified state with a cost that scales lin-
early rather than quadratically in the number of
Gaussian states in the superposition. This allows
for an overall linear scaling in the χ —the num-
ber of Gaussian states in the decomposition—for
the non-Gaussian simulator. In the following, we
present the procedure of fast norm estimation for
non-Gaussian states. A more detailed derivation
can be found in Appendix E.

It is known that coherent states and displace-
ment operators in CV cases can be used analo-
gously to the 1-design of multiqubit cases. We
can represent the identity using coherent states
or displacement operators as

1 = 1
π

∫
C

dα |α⟩⟨α| = 1
π

∫
C

dαD(α) |0⟩⟨0|D†(α).

(58)
This means that, using a uniformly weighted in-
tegral over all coherent states |ξ⟩ = D(ξ) |0⟩ for
X defined as

X := π−n|⟨ξ|Ω⟩|2, (59)

we have that ∫
Cn

dξX = ⟨Ω|Ω⟩ , (60)

where D(ξ) is integrated over the non-weighted
choices of ξ. Consequently, if we can approximate
this integral by some quadrature, computing the
overlap between a random coherent state and the
state |Ω⟩ can be accomplished in time scaling lin-
early with the number of Gaussian states in the
decomposition of |Ω⟩.

Yet problematically, the distribution of all dis-
placements is not compact, and it is therefore
impossible to sample from a uniform distribu-
tion over it. To resolve this problem, similar to
Ref. [39], we use sampling from a Gaussian en-
semble

DN =
{
D(ξ) : ξ ∼ PGD (ξ, N) = e−|ξ|2/N

πnNn

}
,

(61)
which reproduces the identity in the limit of

lim
N→∞

Nn
∫
Cn

dξ PGD (ξ, N)D(ξ) |0⟩⟨0|D†(ξ) = 1,

(62)
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and it also holds that

lim
N→∞

Nn
∫
Cn

dξ PGD (ξ, N)D(ξ)⊗2 |0 ⊗ 0⟩⟨0 ⊗ 0|D†(ξ)⊗2

= 1
πn

∫
Cn

dξD(ξ)⊗2 |0 ⊗ 0⟩⟨0 ⊗ 0|D†(ξ)⊗2.

(63)

In particular, these limits mean that, for any δ >

0, there is a sufficiently large Nδ such that, for a
state |Ω⟩ of interest, 1

∣∣∣∣Nn
δ

∫
Cn

dξPGD (ξ, Nδ) ⟨Ω|D(ξ) |0⟩⟨0|D†(ξ) |Ω⟩ − ⟨Ω|Ω⟩
∣∣∣∣

≤ δ ⟨Ω|Ω⟩ ,
(64)

and

∣∣∣πnNn
δ

∫
Cn

dξPGD (ξ, Nδ) ⟨Ω ⊗ Ω|D(ξ) ⊗D(ξ) |0 ⊗ 0⟩⟨0 ⊗ 0|D†(ξ) ⊗D†(ξ) |Ω ⊗ Ω⟩

−
∫
Cn

dξ ⟨Ω ⊗ Ω| (D(ξ) ⊗D(ξ)) |0 ⊗ 0⟩⟨0 ⊗ 0| (D†(ξ) ⊗D†(ξ)) |Ω ⊗ Ω⟩
∣∣∣ ≤ δ ⟨Ω ⊗ Ω|Ω ⊗ Ω⟩ . (65)

Based on Eq. (64), we define the random vari-
able as

X = Nn
δ |⟨ξ|Ω⟩|2. (66)

Thus, if we sample random displacements or,
equivalently, coherent states from the ensemble
in Eq. (61) with N = Nδ and compute the over-

lap with the state of interest |Ω⟩, we can estimate
the norm of |Ω⟩ within the desired target error δ.

In order to bound the number of samples
needed to estimate the norm, we will use Cheby-
shev’s inequality and thus need to bound the vari-
ance of X. Due to (65), the variance is upper-
bounded by

Var[X] ≤ E[X2] (67)

= N2n
δ

∫
Cn

dξ e
−|ξ|2/Nδ

πnNn
δ

⟨Ω ⊗ Ω|D(ξ) ⊗D(ξ) |0 ⊗ 0⟩⟨0 ⊗ 0|D†(ξ) ⊗D†(ξ) |Ω ⊗ Ω⟩ (68)

≤ Nn
δ

πn
2−n ⟨Ω ⊗ Ω| Π |Ω ⊗ Ω⟩ + δ ⟨Ω ⊗ Ω|Ω ⊗ Ω⟩ (69)

≤ 2−nNn
δ + δπn

πn
∥Ω∥4. (70)

where Π is a projector.

Thus, by performing IID sampling of L co-
herent states from the Gaussian ensemble in
Eq. (61), we can estimate the overlap with the
state |Ω⟩ for sufficiently large Nδ. In particular,
we can define the estimator as

η = 1
L

L∑
i=1

Nn
δ |⟨αi|Ω⟩|2, (71)

1A rigorous mathematical proof of the interchange of
limit and integral in Eqs. (62) and (63) is left for future
work. The scope of this paper is a physical regime where
Eqs. (62) and (63) can be assumed, as in Ref. [39].

where |αi⟩ is the coherent state for the ith sam-
pling. Then, η estimates the expectation value
∥Ω∥2 and has a variance that is upper bounded
by σ2 ≤ L−1(2−nNn

δ + δ/πn)/πn∥Ω∥4. Using
Chebyshev’s inequality and choosing the number
of samples as

L = 2−nNn
δ + δπn

πn
ϵ−2p−1

f , (72)

we can conclude that the estimator is bounded,
with a probability of at least 1 − pf , by

(1 − ϵ− δ)∥|Ω⟩∥2 ≤ η ≤ (1 + ϵ+ δ)∥|Ω⟩∥2. (73)
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See also Appendix E for more details.

The bounds we investigated can be improved
using physical insights in the states we want to
simulate. By taking into account the mean pho-
ton number of the sparsified state |Ω⟩, that is

NΩ = ⟨Ω|n|Ω⟩
⟨Ω|Ω⟩ = 1

πn⟨Ω|Ω⟩
∫
Cn dξ|ξ|2|⟨ξ|Ω⟩|2, we

can improve the fast norm algorithm. See Ap-
pendix F for more details. By explicitly using
the mean photon number NΩ of the state |Ω⟩, we
can bound the expectation value of X by

⟨Ω|Ω⟩
(

1 − NΩ
N

)
≤ E(X) ≤ ⟨Ω|Ω⟩ , (74)

and the variance by

Var[X] ≤ E[X2] ≤ Nn

2nπn ∥Ω∥4. (75)

Using the same techniques as before, we obtain
that with using

L = 2−nNn
δ

πn
ϵ−2p−1

f (76)

samples the estimator η is bounded with a prob-
ability of at least 1 − pf by

(1 − ϵ− NΩ
N

)∥|Ω⟩∥2 ≤ η ≤ (1 + ϵ)∥|Ω⟩∥2. (77)

In the end, the fastnorm algorithm scales linearly
in the number of terms required to represent the
non-Gaussian state; however, the runtime now
depends on the mean photon number of the state
of interest.

Note that whereas we presented our non-
Gaussian simulator for pure states, the simula-
tion works for the mixed states with minor mod-
ifications; that is for a state ρ =

∑
i pi |ψj⟩⟨ψj | one

starts by sampling |ψj⟩ with pi and then runs the
simulation for the pure state |ψj⟩.

4.3 Comparison

In this subsection, we compare the algorithms
presented in this manuscript with other state-of-
the-art methods.

The most commonly used simulation technique
to treat infinite-dimensional systems is based on
Fock space expansions. These methods are very
versatile since states and operators can be ex-
pressed as matrices, and then standard linear
algebra tools can be applied. The big down-
side with this approach is that the matrices tend

to get large, especially when one needs to treat
multi-mode systems. Using this approach, even
Gaussian states become intractable very quickly.
Additionally, one makes approximations from the
start of the simulation. Our simulation algo-
rithm circumvents these problems. The algo-
rithm in this manuscript can always treat Gaus-
sian states efficiently, and there is no a priori
increase in simulation complexity by considering
more modes.

The algorithm presented in [25] is similar to
the exact algorithm presented in this manuscript.
Reference [25] considers decompositions in coher-
ent states and allows passive Gaussian unitaries.
Our algorithms allow for a larger class of oper-
ations that do not increase the simulation cost.
Furthermore, the decomposition of states using
Gaussian states instead of coherent states will
lead to the same or smaller simulation cost since
coherent states are a subset of Gaussian states.
Furthermore, the approximate simulation algo-
rithm leads to an improved scaling to linear in
the number of terms in the decomposition.

5 Measures of non-Gaussianity based
on Gaussian decomposition

It is known that the coherent states and, there-
fore, the Gaussian state form an over-complete
basis. The references [40, 41] study which sub-
set of the coherent states form a complete basis.
With such a basis, we can expand an arbitrary
state |ψ⟩ as

|ψ⟩ =
∑
m,n

cm,n |αm,n⟩ (78)

for a coherent state |αm,n⟩ with α = mω1 + nω2,
where the complex numbers ω1, ω2 span a cell
with area π. The simplest example is αm,n =√
π(m+ in). This countably infinite subset of

the coherent state is complete. Thus, one can,
in principle, express a quantum state |ψ⟩ in a
countable infinite basis. We relax this notation
and not only optimize over the set of coherent
states, but arbitrary Gaussian states. Since the
set of coherent states is a proper subset of Gaus-
sian states, expanding states in a superposition
of Gaussian states is possible, but may be im-
practical for some states/hard to find.

We can therefore represent any arbitrary state
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as a sum of Gaussian states

|ψ⟩ =
χ∑
k=1

ck |σk,µk⟩ (79)

where we label each Gaussian state with covari-
ance σk and mean µk, and χ ∈ {1, 2, . . . ,∞}.
We have seen before that the exact simulation
algorithms scale with χ2, while the approximate
algorithm linearly in ∥c∥2

1. Decomposing arbi-
trary states in superposition of Gaussian states
allows us to define quantifiers of non-Gaussianity
as in the framework of quantum resource theo-
ries [42, 43]. In analogy to the resource theory of
magic [23, 38, 44], we define the Gaussian rank
as

χ(|ψ⟩) := inf
{
χ : |ψ⟩ =

χ∑
k=1

ck |σk,µk⟩
}
, (80)

and the Gaussian extent as

ξ(|ψ⟩) := inf
{

∥c∥2
1 : |ψ⟩ =

∑
k

ck |σk,µk⟩
}
.

(81)

We allow in the definition of the Gaussian rank
and the Gaussian extent countably infinitely
many terms in the decomposition. A decompo-
sition of quantum states in coherent states was
instead considered in the context of the resource
theory of non-classicality [45].
Sometimes it is more convenient to decompose

the state in continuous decomposition instead of
sums. We have seen that the approximate simu-
lation algorithm works equivalently if one chooses
a continuous decomposition. Thus we can use the
integral in place of the sum in the definition of
these measures to take into account continuous
decomposition, i.e.,

ξ′(|ψ⟩) := inf
{

∥c∥2
1 : |ψ⟩ =

∫
dk ck |σk,µk⟩

}
.

(82)

We leave the analysis of such measures for future
work. The Gaussian extent can always be used
to upper-bound the approximate Gaussian rank,
which is defined as

χδ(|ψ⟩) := inf
{
χ(
∣∣ψ′〉) :

∥∥ψ − ψ′∥∥ < δ
}
. (83)

The upper bound is then given as

χδ(|ψ⟩) ≤ 1 + ξ(|ψ⟩)
δ2 , (84)

which follows from Eq. (57) that extends the
argument in Ref. [23] for magic states to non-
Gaussian states. The two measures for the re-
source theory of non-Gaussianity we have intro-
duced here have a powerful operational meaning;
namely, they quantify the simulation overhead
introduced by the non-Gaussian nature. These
measures can be naturally extended to density
matrices, e.g.,

Ξ(ρ) = inf

∑
j

p(j)ξ(|ψj⟩) : ρ =
∑
j

p(j) |ψj⟩⟨ψj |

,
(85)

where the minimization is taken over all pos-
sible ensembles {p(j), |ψj⟩} such that ρ =∑
j pj |ψj⟩⟨ψj | and |ψj⟩⟨ψj | are pure quantum

states as in the conventional technique called con-
vex roof extentions [42].

It is possible to use the continuous decomposi-
tion as well, i.e.,

Ξ′(ρ) = inf
{∫

dj p(j)ξ(ψj) : ρ =
∫
dj p(j) |ψj⟩⟨ψj |

}
,

(86)

while we leave the analysis of the difference in
these definitions for future work. It is also
straightforward to define the approximate version
of these measures in the same way as those in the
resource theory of magic [23, 38].

These functions are valid measures of non-
Gaussianity satisfying the monotonicity under
Gaussian operations as follows. To see the mono-
tonicity, it suffices to check that the composition
with Gaussian states, applications of Gaussian
unitaries, and measurement by heterodyne or ho-
modyne detection cannot increase the Gaussian
rank and the Gaussian extent. It is easy to see
that the composition with Gaussian states as well
as application of Gaussian unitaries do not in-
crease the Gaussian rank or extent, because of
the fact that the Gaussian states in the decom-
position will be mapped to a different Gaussian
state, while the number of Gaussian states in the
superposition is left invariant. What is left to
check is monotonicity under heterodyne measure-
ments. Heterodyne measurements on subsystem
B consisting of m modes are given by the follow-
ing POVMs Π|α⟩⟨α| = 1

(2π)m |α⟩⟨α|. In order to
improve the readability, we will use the notation
|Gk⟩ = |σk,µk⟩ for the Gaussian state k. By
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choosing one specific outcome, we get

|ψα⟩ = 1√
p(α)

ΠB
|α⟩⟨α| |ψ⟩ (87)

=
χ∑
k=1

ck√
p(α)

Π|α⟩⟨α| |Gk⟩AB (88)

=
χ∑
k=1

cαk√
p(α)

|Gαk ⟩AB , (89)

where the covariance matrix gets changed accord-

ing to Sec. 2 and p(α) = Tr
[
ΠB

|α⟩⟨α| |ψ⟩⟨ψ|
]
, cαk =

ck
√
p̃k(α), |Gαk ⟩AB = Π|α⟩⟨α| |Gk⟩AB /

√
p̃k(α)

with p̃k(α) = Tr
[
ΠB

|α⟩⟨α|

∣∣∣GABk 〉〈
GABk

∣∣∣]. There-

fore, we see that the Gaussian rank of the
post-measurement state is upper-bounded by the
Gaussian rank of the pre-measurement state. A
similar argument can be given homodyne and
other Gaussian measurements.

Furthermore, we have for the Gaussian extent
that

ξ(|ψ⟩) ≥
∫
Cm

dαp(α)ξ(|ψα⟩). (90)

We can see this as follows.

The Gaussian extent ξ in (81) can be written by

ξ(|ψ⟩) = inf


(∑

i

|ci|
)2

∣∣∣∣∣∣ |ψ⟩ =
∑
i

ci |ϕi⟩ , ci ∈ C, |ϕi⟩ ∈ f


= inf


(∑

i

ci

)2
∣∣∣∣∣∣ |ψ⟩ =

∑
i

ci |ϕi⟩ , ci ≥ 0, |ϕi⟩ ∈ f


= inf

{
µ2
∣∣∣ |ψ⟩ = µ

∑
i

pi |ϕi⟩ , |ϕi⟩ ∈ f

}
= inf

{
µ2
∣∣∣ |ψ⟩ ∈ µ conv f

}
(91)

where in the second line we used the fact that eiθ |ϕ⟩ ∈ G if |ϕ⟩ ∈ G, and in the third line {pi}i denotes
a probability distribution.

This means that the optimal decomposition of a
state |ψ⟩ is given as

|ψ⟩ = µ
∑
i

pi |Gi⟩ . (92)

We will write |σ⟩ =
∑
i pi |Gi⟩ ∈ conv G, meaning

that |σ⟩ is in the convex superposition of Gaus-
sian states with

∑
i pi = 1. By applying a het-

erodyne measurement Π|α⟩⟨α| or, more generally,
a free completely positive map, we know that

Π|α⟩⟨α| |σ⟩ =
∑
i

piΠ|α⟩⟨α| |Gi⟩ (93)

=
∑
i

pi |Gαi ⟩ =: ηα, (94)

where |Gαi ⟩ = Π|α⟩⟨α| |Gi⟩. Then, ηα is in

ηα ∈ ∥ηα∥ conv G =
∥∥∥Π|α⟩⟨α| |σ⟩

∥∥∥ conv G. So we

can write that

Π|α⟩⟨α| |ψ⟩ = µηα = µ∥ηα∥
∣∣∣Ḡ〉 (95)

where
∣∣∣Ḡ〉 ∈ conv G. This is a feasible solution

to ξ(Π|α⟩⟨α||ψ⟩√
p(α)

), however not guaranteed to be op-

timal and thus

ξ

(
Π|α⟩⟨α| |ψ⟩√

p(α)

)
≤ µ2∥ηα∥2

p(α) . (96)

Furthermore we have that, since ∥ψ∥2 = 1 and
µ2 ≥ 1 that ∥σ∥ ≤ 1. This means how-
ever that

∫
Cm dα∥ηα∥ ≤ 1, since it holds that∫

Cm dαΠ|α⟩⟨α| = 1. To conclude, we get that∫
Cm

dαp(α)ξ(|ψα⟩) ≤ µ2∥ηα∥2 ≤ µ2 = ξ(|ψ⟩).

(97)
This monotonicity also holds for their exten-

sions to mixed states due to a conventional ar-
gument for the monotonicity of convex-roof re-
source measures [42]. It is easy to see that
both measures are faithful, i.e., have the minimal
value 1 only for probabilistic mixtures of Gaus-
sian states.
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5.1 Characterization of Gaussian extent by ro-
bustness measure
In this section, we investigate the properties of
the Gaussian extent ξ in Eq. (81). We show
a characterization of the Gaussian extent using

the robustness measure. This characterization
provides a powerful condition for finding optimal
decomposition for the Gaussian extent. Lower
semicontinuous robustness for a set F of states is
given by [27, Corollary 6]

RF (ρ) = sup
{

Tr(Wρ)
∣∣∣ W ≥ 0, Tr(Wσ) ≤ 1, ∀σ ∈ F

}
. (98)

By choosing F as the closure of the convex
hull of the set of pure Gaussian states [13, 27],
i.e., F = cl conv{|ϕ⟩⟨ϕ| | |ϕ⟩ ∈ G}, (98) repre-
sents the lower semicontinuous robustness of non-
Gaussianity.

To see the relation to the Gassian extent, let ξ̄
be the quantity defined by

ξ̄(|ψ⟩) := inf
{
µ2
∣∣∣ |ψ⟩ ∈ µ cl conv G

}
(99)

where µ cl conv G = cl conv{µ |ϕ⟩ | |ϕ⟩ ∈ G} is the
closure of the convex hull of vectors in G scaled
by µ.
Comparing (99) and (91) implies ξ̄(|ψ⟩) ≤

ξ(|ψ⟩). Together with the identification between
ξ̄(|ψ⟩) and RF (|ψ⟩⟨ψ|) [27, Proposition 17], we
get

ξ(|ψ⟩) ≥ ξ̄(|ψ⟩) = RF (|ψ⟩⟨ψ|) (100)

for an arbitrary pure state ψ.
This means that if we find a decomposi-

tion |ψ⟩ =
∑
i ci |ϕi⟩ with |ϕi⟩ ∈ G such that

(
∑
i |ci|)2 matches RF (|ψ⟩⟨ψ|), we can conclude

that ξ(|ψ⟩) = ξ̄(|ψ⟩) = RF (|ψ⟩⟨ψ|) for such a
state.
On the other hand, we show in Appendix G

that whenever the equality ξ(ψ) = RF (|ψ⟩⟨ψ|)
holds and the optimal values for both expressions
are achieved with a certain decomposition and
a witness operator, the optimal decomposition
|ψ⟩ =

∑
i ci |ϕi⟩ , |ϕi⟩ ∈ G such that (

∑
i |ci|)2 =

ξ(|ψ⟩) is related to the optimal witness operator
W for R(|ψ⟩⟨ψ|) satisfying RF = Tr(W |ψ⟩⟨ψ|) as

| Tr(W |ϕi⟩⟨ϕi|)| = 1, ∀i. (101)

We prove this for general resource theories
defined in infinite-dimensional Hilbert spaces
equipped with an arbitrary subset of pure states,
extending the corresponding relation established
for finite-dimensional theories in the context of
the resource theory of magic [46, Lemma 3].

This characterization is a useful guide to find-
ing the optimal decomposition of a state for
which we know the optimal witness for robust-
ness. For instance, we know for Fock state |n⟩
that [27, Proposition 28]

RF (|n⟩⟨n|) = 1
supα,ξ |⟨n|α, ξ⟩|2

, (102)

where ξ is a squeezing parameter. Letting |α∗, ξ∗⟩
be a state that optimizes the right-hand side, we
have

W = |n⟩⟨n|
|⟨n|α∗, ξ∗⟩|2

. (103)

In turn, the free states in the optimal decom-
position would need to satisfy

|⟨n|ϕi⟩|2 = |⟨n|α∗, ξ∗⟩|2, ∀i. (104)

These states include
∣∣∣eiθα∗, ξ∗

〉
, i.e., the states

obtained by a phase shift from the seed state
|α∗, ξ∗⟩. As we will see in the next section
(Sec. 6), the optimal decomposition fulfills these
requirements.

Finding optimal α∗ and ξ∗ involves optimiza-
tion in general. Nevertheless, for the Fock state
of n = 1, we have an analytical form [27, Propo-
sition 29]

α∗ = 2
3 , ξ

∗ = ln
√

3. (105)

6 Decompositions and Applications

6.1 Optimal Decompositions for the Gaussian
extent

In this section, we give Gaussian decompositions
for states that are of interest to the CV quantum
computing community and show optimality for
some of those.

The decomposition for the Fock state |n = 1⟩
is obtained as follows. In the previous section, we
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saw that the optimal value for the Gaussian ex-
tent of the Fock state |1⟩ is given with the param-
eters in Eq. (105). We can construct the corre-
sponding Gaussian decomposition in the follow-
ing way. For this purpose, we use the projectors
defined in Ref. [47], i.e.,

Πl
2N =

∞∑
k=0

|2kN + l⟩⟨2kN + l| (106)

= 1
2N

2N−1∑
m=0

(
eiπl/Neiπn/N

)m
, (107)

where n is the photon number operator. In par-
ticular, we define a projector into the Fock state
|1⟩ as

|1⟩⟨1| = lim
N→∞

Π1
2N . (108)

Then, we apply this projector to a Gaussian state

lim
N→∞

Π1
2N |G⟩ = ⟨1|G⟩ |1⟩ . (109)

We need a normalization to get |1⟩. In order to
minimize ∥c∥1, we choose the Gaussian state that
has the maximum overlap with the Fock state |1⟩,
since it in turn will minimize ∥c∥1. Among co-
herent states, the maximum overlap is achieved
by |α = 1⟩ with ⟨1|α = 1⟩ = 1√

e
. Intuitively, the

operator
(
eiπl/Neiπn/N

)m
is a phase-shifting op-

erator. In the limit limN→∞ Π1
2N , it superposes

phase-shifted versions of the same state |G⟩ on a
circle with the same weight. We can immediately
read the coefficients

|1⟩ = 1
⟨1|G⟩

lim
N→∞

Π1
2N |G⟩ (110)

= 1
⟨1|G⟩

lim
N→∞

1
2N

2N−1∑
m=0

(
eiπl/Neiπn/N

)m
|G⟩ ,

(111)

then we have ∥c∥1 =
√
e. We see that all

coherent states in the decomposition have the
same weight. For the more general Gaussian
states, the state that maximizes the overlap is∣∣∣α = 2

3 , ξ = ln
√

3
〉
. The overlap between the

state
∣∣∣α = 2

3 , ξ = ln
√

3
〉
and the Fock state |1⟩ is∣∣∣〈1

∣∣∣α = 2
3 , ξ = ln

√
3
〉∣∣∣2 = 3

√
3

4e . Using the state∣∣∣α = 2
3 , ξ = ln

√
3
〉
as the seed state |G⟩, we ob-

tain the decomposition of Fock state |1⟩ with
∥c∥2

1 = 4e
3
√

3 . By comparing with the reported

optimal result in [27], we see that this decom-
position is optimal. To summarize, the optimal
decomposition of |1⟩ is then a superposition of

the seed state
∣∣∣α = 2

3 , ξ = ln
√

3
〉
on which phase-

shift operators have been applied to. This decom-
position fulfills Eq. (104), e.g. it holds that for
all m that∣∣∣∣⟨1|

(
eiπl/Neiπn/N

)m ∣∣∣∣α = 2
3 , ξ = ln

√
3
〉∣∣∣∣2

(112)

=
∣∣∣∣〈1

∣∣∣∣α = 2
3 , ξ = ln

√
3
〉∣∣∣∣2. (113)

A family of states that have many applications
for CV quantum computing [18, 48, 49], espe-
cially for error correction, is GKP states [34]. A
finite-energy GKP state that encodes a computa-
tional basis state µ of a d-dimensional qudit can
be decomposed into a sum of squeezed states by
definition, i.e., [34, 50]

∣∣µκ,∆〉 = 1√
N

∞∑
s=−∞

e− 1
2κ

2α2
d(ds+µ)2 (114)

×D(αd(ds+ µ))S(− log ∆) |0⟩ (115)

= 1√
N

∞∑
s=−∞

e− 1
2κ

2α2
d(ds+µ)2 |Gs⟩ , (116)

where N is a normalization constant. The con-
stant κ−1 is the width of the Gaussian envelope,
∆ describes the individual squeezing parameter

with log
(
∆−1) and αd =

√
2π
d a constant. One re-

covers the ideal GKP state for ∆, κ → 0. We use
the notation Gs = D(αd(ds+ µ))S(− log ∆) |0⟩
to show that the GKP state can be written as a
superposition of Gaussian states.

We see that states labeled by high s are expo-
nentially suppressed in the superposition, mak-
ing the simulator based on the Gaussian extent
significantly more viable as compared to the one
based on the Gaussian rank.

Another family of bosonic codes is the cat code.
The cat code is an example of a rotational sym-
metric code [51]. The codewords of the cat code
are written as∣∣∣µ = 0/1M

〉
= 1√

N

2M−1∑
m=0

(−1)µmei
mπ
M
n |α⟩ ,

(117)

where |α⟩ is a coherent state, and N is a nor-
malization constant. For squeezed cat codes, the
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superposition goes over squeezed states instead of
coherent states. The most commonly used states
of this family are the even/odd cat states

|α±⟩ = 1√
N

(|α⟩ ± |−α⟩) (118)

with N = 2(1 ± e−2|α|2). For this decomposition,

we obtain that ∥c∥1 = 2√
N =

√
2

1±e−2|α|2 . It triv-

ially holds that these decompositions are optimal
in minimizing the Gaussian rank in Eq. (83) for
non-vanishing α because 2 is the smallest rank
for a non-Gaussian state.

The optimal decomposition that minimizes the
Gaussian extent in Eq. (81) requires more care-
ful analysis. For the resource theory of non-
classicality, the decomposition Eq. (118) is op-
timal for the case of |α+⟩; for |α−⟩, the same is
the case for approximately α > 1. Both cases
yield ∥c∥1 =

√
2 for α → ∞. For the resource

theory of non-Gaussianity, the previous decom-
position is an upper bound, and the optimality
is unknown in general. To gain further insight,
consider the extreme cases limα→0 |α+⟩ = |0⟩
and limα→0 |α−⟩ = |1⟩, which yield ∥c∥2

1 = 1 and
∥c∥2

1 = 4e
3
√

3 , respectively. In the opposite case of

α → ∞, it should converge to ∥c∥1 =
√

2 even if
one exchanges the coherent states with squeezed
states (squeezed along the correct axis) as for the
non-classicality case; after all, they asymptoti-
cally become orthogonal. Therefore, the decom-
position above is optimal for large enough cat
states (and/or squeezing). It could even be that
for |α+⟩, the optimal decomposition is the same
for non-Gaussianity and non-classicality. Note
here that either way, the scaling is better than
the one proposed in [22], reducing the simulation
overhead.

In general, for non-classicality, the norm ∥c∥1
and thus the optimal decomposition is multiplica-
tive for single-mode states [27, Proposition 24].
However, this is not known in the case of non-
Gaussianity. In Ref. [24, Theorem 6.6], it is
proved that the multiplicativity of the D-fidelity
implies multiplicativity of the D-extent for a pos-
sibly infinite dictionary D ⊂ H if there exists a
finite ϵ-net in D that contains an orthonormal
basis of H. A sufficient condition for this is that
the subset D ⊂ H is compact. However, in our
case, the set of Gaussian states is not compact,
and thus their proof is not applicable to this case.

We will nonetheless report here a counterex-
ample for the multiplicativity of the Gaussian ex-
tent. As reported before in Eq. (102), the lower
semicontinuous robustness of non-Gaussianity is
the inverse maximal fidelity of a Fock state |n⟩
and pure Gaussian state |α, ξ⟩. Since the opti-
mal value for RF (|1⟩⟨1|) = ξ(|1⟩) = 4e

3
√

3 , this,

together with Eq. (102), implies that the maxi-
mal overlap between a Fock state and a Gaussian

state is |⟨1|G⟩|2 = 3
√

3
4e ≈ 0.47789, where |G⟩ is

the Gaussian state closest to the state |1⟩. Since
we do not have provable optimal results for the
multimode case, we use a numerical approach.
Details as well as the optimization parameters
can be found in Appendix H. The highest fidelity
we numerically found between the tensor prod-
uct of two Fock states |1 ⊗ 1⟩ and a two-mode
Gaussian state |G′⟩ is |⟨1 ⊗ 1|G′⟩|2 = 1

4 . Note
here that this fidelity is not provably maximum,
but is nonetheless a lower bound on the maximal
fidelity between two Fock states |1 ⊗ 1⟩ and the
set of Gaussian states. It thus holds that

∣∣〈1 ⊗ 1
∣∣G′〉∣∣2 > |⟨1|G⟩|2|⟨1|G⟩|2, (119)

which shows that the Gaussian fidelity is not mul-
tiplicative for the state |1⟩. Since the Gaussian
extent coincides with the Gaussian fidelity for
Fock states as in Eq. (102), we conclude that
the Gaussian extent is not multiplicative, even
for single-mode states. This means, in terms of
classical simulation, that finding multi-mode ex-
pansions can improve the performance of the sim-
ulation algorithm as the simulation cost is sub-
multiplicative.

6.2 Applications

In this section, we discuss the applications of our
non-Gaussian simulator and the bounds that we
derive using the Gaussian extent.

Gaussian boson sampling: We start by in-
vestigating sampling models. There are several
versions of boson sampling. All can be im-
plemented using linear optics transformations.
Standard boson sampling [52] has several Fock
states as input and measures photon number

|1⟩N ⊗ |0⟩M−N → Measure n. (120)
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Gaussian boson sampling [53] changes the input
to Gaussian states and measures photon number

|G⟩N → Measure n. (121)

Equivalently, this can be reversed, and instead,
we can have Fock states in the input and mea-
sure heterodyne or, more generally, a Gaussian
measurement [19, 54]

|1⟩N → Measure G. (122)

All variants of boson sampling are based on the
fact that it is hard to compute the output prob-
abilities of measuring a certain photon pattern
in the high mode regime, where the number of
modes scales faster than the number of photons.
Among these variants, Gaussian boson sam-

pling and the reversed variant are especially
suited for our approach. The probability of mea-
suring a certain output pattern in a Gaussian bo-
son sample experiment is

P (n⃗) = Tr

 M⊗
j=1

|nj⟩⟨nj |U |G⟩⟨G|U †

, (123)

where we start with a Gaussian pure state |G⟩⟨G|
and then evolve it under a Gaussian (passive)
unitary U with nj = 0/1. This is equivalent to
the time-reversed version

P (n⃗) = Tr

 M⊗
j=1

|nj⟩⟨nj |U |G⟩⟨G|U †

 (124)

= Tr

U †
M⊗
j=1

|nj⟩⟨nj |U |G⟩⟨G|

, (125)

where we start with some Fock states |1⟩ and |0⟩,
evolve them with the inverse unitary, which is
again a Gaussian unitary, and then finally mea-
sure by a certain Gaussian measurement. Inter-
estingly, the hardness proofs require that there
are more modes than photons in the system. Our
simulator has, in some sense, the converse be-
havior. Adding Gaussian auxiliary modes in the
vacuum states does not really increase the simu-
lation cost significantly, but adding single-photon
states does.
As we have shown before, the Gaussian extent

is not multiplicative; therefore, we can give only
an upper bound on the simulation cost and not
the lowest one possible. Note that the simula-
tion algorithm still works—it just does not have

optimal performance. The upper bound of the

simulation cost is then just
(
∥c∥2

1

)M̄
=
(

4e
3
√

3

)M̄
,

where M̄ is the number of Fock state |1⟩ in the in-
put. Therefore, our results provide an algorithm
whose simulator runtime scales exponentially in
the number of Fock states, allowing one to classi-
cally simulate logarithmically many Fock states
efficiently. This is consistent with [19].

It is insightful to compare the case of the re-
source theory of non-classicality since all the bo-
son sampling models only involve passive sym-
plectic unitary operations. In this case, the cor-
responding extent is multiplicative, and the op-
timal decomposition is known with

RF (|n⟩⟨n|) = en
n!
nn
. (126)

Therefore, to compute the probability of obtain-
ing a specific sampling pattern that involves M̄
single photons, the simulation cost scales with

eM̄ >
(

4e
3
√

3

)M̄
. We see that even though the

dynamics and measurements are fully included
in the set of free operations, using the decompo-
sition obtained for the resource theory of non-
Gaussianity improves the simulation capacity,
even if we only compare it with the upper bound.

Cat state breeding: The generation of grid
states is of wide interest in the continuous-
variable quantum information community due to
their usefulness for fault-tolerant quantum com-
puting [34]. The generation of such states re-
mains challenging. One of the most promising
ways is to use cat states to breed grid states [55].
The breeding protocol takes in squeezed cat
states and uses Gaussian operations to generate
a grid state of higher quality. The targeted grid
states are the sensor states, i.e.,

|Ψ∆⟩ ∝
∞∑

t=−∞
e−π∆2t2D

(
t

√
π

2

)
S(∆) |0⟩ (127)

∝
∞∑

t=−∞
e−π∆2t2 |Gt⟩ . (128)

We can use the Gaussian extent to derive a lower
bound on how many cat states are needed to ob-
tain one sensor state with a certain squeezing
∆. Cat state breeding protocols require large
enough displacement in the input [55], so we
assume that the cat states are in the limit of
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∆ ξ(|Ψ∆⟩) n

0.3 2.797 2
0.2 3.969 2
0.1 7.496 3
0.05 14.562 4
0.025 28.701 5
0.01 71.126 7

Table 1: Numerical values of the Gaussian extent
ξ(|Ψ∆⟩) of the grid state |Ψ∆⟩ with squeezing ∆ in
Eq.(128) and the lower bound on the required number
n of cat states for obtaining |Ψ∆⟩.

near-orthogonality of |α⟩ and |−α⟩ leading to
ξ(|α+⟩) ≈ 2. We do not require this fact in order
to derive a lower bound for the required copies
of cat states. Since we have optimal values of
the robustness for non-classicality, we have up-
per bounds on the Gaussian extent, which allows
us to compute a lower bound on the number of
copies required. The minimal required number
n of cat states |α+⟩ for generating a grid states
|Ψ∆⟩ is bounded by using the monotonicity of the
Gaussian extent ξ as

ξ
(∣∣∣α⊗n

+

〉)
≥ ξ(|Ψ∆⟩). (129)

Since it holds that

ξ
(∣∣∣α⊗n

+

〉)
≤ ξ(|α+⟩)n, (130)

we can find the lower bound by

n ≥
⌈ log ξ(|Ψ∆⟩)

log ξ(|α+⟩)

⌉
≥
⌈ log ξ(|Ψ∆⟩)

log 2

⌉
. (131)

For high enough squeezing, i.e., small enough
∆, the Gaussian states |Gt⟩ of the grid states are
nearly orthogonal. So we compute ξ(|Ψ∆⟩) using
the coefficients of Eq. (128). The results can be
found in Table 1. These bounds are far away
from the results reported in Ref. [55]. To obtain
a squeezing level of ∆ = 0.1, the authors of [55]
report M = 6 rounds of breeding using 2M = 64
cat states. However, they fix the input squeezing
and displacement of their cat states, while we
essentially leave it indeterminate. So our bounds
are valid for all input cat states, independent of
their magnitude.

We here compare these bounds with other
state-of-the-art techniques. The most commonly
studied measures in the resource theory of non-
Gaussianity are the stellar rank [21] and the

Wigner negativity [13, 14]. In the following, we
will compare state transformation bounds that
one can obtain using the stellar rank and Wigner
negativity with the bounds we obtain using the
Gaussian extent. If we consider the state con-
version from many cat states to one GKP state,
the stellar rank cannot be used as cat and GKP
states have infinite stellar rank. The Wigner
negativity of cat states with large spacing is
upper-bounded [12]. The number of such cat
states with large magnitude to GKP states with
∆ = 0.3, 0.2, 0.1 is equivalent to the one obtained
with the Gaussian extent presented in Tab. 1.
However, if we consider the state transformation
from cat states with large magnitude to a single
Fock state, Wigner negativity allows this conver-
sion. Even more, as long as the magnitude α is
approximately larger than

√
2, the transforma-

tion is possible. The stellar rank allows the state
conversion even for α = ϵ. The bounds using the
Gaussian extent, however, tell us that we need
at least two cat states to obtain the Fock state
one. Generally, one can say that since the Gaus-
sian extent is sub-multiplicative and the Wigner
negativity is multiplicative, the Gaussian extent
will have tighter bounds in most multi-copy sce-
narios.

7 Conclusion

In this work, we introduced two efficient al-
gorithms for the classical simulation of non-
Gaussian optics. Inherently connected to these
algorithms are two measures of non-Gaussianity,
i.e., the Gaussian rank and the Gaussian ex-
tent, which quantify the computational cost of
the simulation. The simulator, whose cost scales
quadratically with the Gaussian rank, is exact,
while the other one uses a sparsification of the
non-Gaussian states and is thus approximate.
This approximation allows for reducing the scal-
ing of the simulation cost to linear in the Gaus-
sian extent. The algorithms use extensions of
the standard covariance matrix formalism that
include phase-sensitive overlaps and a routine for
fast norm estimation that allows for linear scal-
ing. Furthermore, we investigated the properties
of the Gaussian extent. Employing the fact that
the Gaussian extent is connected to the lower
semicontinuous robustness of non-Gaussianity,
we were able to find optimal decompositions for
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states that are of interest to the continuous vari-
able quantum computing community. Using the
direct connection between the Gaussian extent
and the Gaussian fidelity that exists for Fock
states, we give a counterexample showing that
the Gaussian extent is, in general, not multiplica-
tive. We applied the simulator and the tools we
developed in this work to boson sampling. We
gave an upper bound to the simulation cost and
showed that even when the dynamics are fully in-
cluded within the free set of operations of the re-
source theory of non-classicality, it is beneficial to
use the more general decompositions using Gaus-
sian states. At last, we made a resource-theoretic
analysis of cat state breeding and derived bounds
using the Gaussian extent. The bounds are fun-
damental lower bounds on how many cat states
are required, independent of their magnitude.

Although we have focused the presentation
on Gaussian circuits with input non-Gaussian
states, our method might also be useful to simu-
late circuits with non-Gaussian operations by re-
casting the latter into the former with techniques
similar to those used for Clifford + T circuits
[20, 56, 57]. Furthermore, in order to compute
bounds on state conversions within the resource
theory of non-Gaussianity, one requires provably
optimal decompositions. These decompositions,
in turn, improve the scaling of the simulation al-
gorithm. Therefore, it is an interesting path to
find a provably optimal decomposition for more
states that are relevant for CV quantum comput-
ing and to compute bounds. Our work connects
the practical usefulness of an efficient classical
simulator with the fundamental investigation of
resources required for CV quantum computing.

Note: During the preparation of this
manuscript, we became aware of related work by
B. Dias and R. Koenig [58]. We independently
arrived at similar results on defining a simulator
for non-Gaussian states using similar ideas to
compute the overlap and estimate the norm.
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A Inner product formula
We present the details of the way of computing overlaps of two pure Gaussian states |Gi⟩ , |Gj⟩ ∈ G,
i.e.,

⟨Gi|Gj⟩ . (132)

For this purpose, we introduce a Gaussian reference state G0 = |G0⟩⟨G0|, which can be a random
Gaussian state or the vacuum state. As presented in the main text, we want to calculate overlaps
between Gaussian states ⟨G1|G2⟩ using

Tr (G0G1G2) = Tr (|G0⟩⟨G0| |G1⟩⟨G1| |G2⟩⟨G2|) (133)
= ⟨G2|G0⟩ ⟨G1|G2⟩ ⟨G0|G1⟩ . (134)

To obtain the desired inner product ⟨G1|G2⟩ from (133), we need to specify Gaussian states not only
using the covariance matrix and the mean but also by specifying the inner product with the reference
state.
To compute (133), we represent the Gaussian states |G⟩ in terms of the characteristic function as

G = 1
(2π)n

∫
R2n

dr e− 1
4r

T σr+iµrD(ΩTr). (135)

Using this representation, we have that

Tr (G0G1G2) = 1
(2π)3n

∫
R2n

dr0dr1dr2 e− 1
4r

T
0 σ0r0+iµ0r0e− 1

4r
T
1 σ1r1+iµ1r1e− 1

4r
T
2 σ2r2+iµ2r2 (136)

× Tr
[
D(ΩTr0)D(ΩTr1)D(ΩTr2)

]
. (137)

Then, using

D(ΩTr1)D(ΩTr2) = D(ΩT (r1 + r2))e− i
2 (Ωr1)T Ω(Ωr2) (138)

= D(ΩT (r1 + r2))e
i
2r

T
1 Ωr2 (139)

and

Tr
[
D(ΩT r)D(ΩT s)

]
= (2π)nδ2n(ΩT (r + s)), (140)

we obtain

1
(2π)2n

∫
R2n

dr0dr1dr2 e− 1
4r

T
0 σ0r0+iµ0r0e− 1

4r
T
1 σ1r1+iµ1r1e− 1

4r
T
2 σ2r2+iµ2r2δ2n(ΩT (r0 + r1 + r2))e

i
2r

T
1 Ωr2

(141)

= 1
(2π)2n

∫
R2n

dr0dr1 e− 1
4r

T
0 σ0r0+iµ0r0e− 1

4r
T
1 σ1r1+iµ1r1e− 1

4 (rT
0 +rT

1 )σ2(r0+r1)−iµ2(r0+r1)e− i
2r

T
1 Ω(r0+r1)

(142)

= 1
(2π)2n

∫
R2n

dr0dr1 e− 1
4r

T
0 σ0r0+iµ0r0e− 1

4r
T
1 σ1r1+iµ1r1 (143)

× e− 1
4 (rT

0 σ2r0+rT
1 σ2r0+rT

0 σ2r1+rT
1 σ2r1)−iµ2r0−iµ2r1e− i

2r
T
1 Ω(r0+r1) (144)

= 1
(2π)2n

∫
R2n

dr0dr1 e− 1
4r

T
0 σ0r0+iµ0r0e− 1

4r
T
0 σ2r0−iµ2r0e− 1

4r
T
1 σ1r1+iµ1r1 (145)

× e− 1
4 (rT

1 σ2r0+rT
0 σ2r1+rT

1 σ2r1)−iµ2r1e− i
2r

T
1 Ωr0e− i

2r
T
1 Ωr1 (146)

= 1
(2π)2n

∫
R2n

dr0e− 1
4r

T
0 σ0r0+iµ0r0e− 1

4r
T
0 σ2r0−iµ2r0

∫
R2n

dr1 e− 1
4r

T
1 σ1r1+iµ1r1 (147)

× e
i
2r

T
0 Ωr1e− 1

4 (rT
1 σ2r1+rT

1 σ2r0+rT
0 σ2r1)−iµ2r1 , (148)
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where (142) is obtained by using the Dirac distribution δ2n(ΩT (r0+r1+r2)) to replace r2 = −r0 −r1,
and the last line follows from the fact that rT1 Ωr1 = 0 since Ω is anti-symmetric. Using the Gaussian
integral formula

∫
R2n

dr e− 1
4r

TAr+BT r =

√
(2π)2n

detA e
1
4B

TA−1B,

we rewrite the integral over r1 into

1
(2π)n

∫
R2n

dr1 e− 1
4r

T
1 (σ1+σ2)r1+(− 1

2r
T
0 σ2+i[µ1−µ2+ 1

2r
T
0 Ω])r1 = 1√

detA
e

1
4B

TA−1B, (149)

where we use rT1 σ2r0 = rT0 σ2r1, and we take

A = σ1 + σ2, (150)

BT = −1
2r

T
0 σ2 + i

[
µ1 − µ2 + 1

2r
T
0 Ω
]
. (151)

The right-hand side is further simplified by

e
1
4B

TA−1B = e
1
4 [(− 1

2r
T
0 σ2+i(µ1−µ2+ 1

2r
T
0 Ω))(σ1+σ2)−1(− 1

2r
T
0 σ2+i(µ1−µ2+ 1

2r
T
0 Ω))T ]

= e

1
4

[
(
rT
0
2 (−σ2+iΩ)+i(µ1−µ2))(σ1+σ2)−1((−σ2+iΩ)T r0

2 +i(µ1−µ2)T )
]

= e
1
4

[
rT
0

(σ2−iΩ)T

2 (σ1+σ2)−1 (σ2−iΩ)
2 r0

]
e
(

−i
2 (µ1−µ2)T (σ1+σ2)−1( σ2−iΩ

2 )
)
r0e− 1

4 (µ1−µ2)T (σ1+σ2)−1(µ1−µ2).

Thus, we have for all integrals

1
(2π)n

1√
det(σ1 + σ2)

e− 1
4 (µ1−µ2)T (σ1+σ2)−1(µ1−µ2)

×
∫
R2n

dr0 e
− 1

4r
T
0

[
σ0+σ2− (σ2−iΩ)T

2 (σ1+σ2)−1 (σ2−iΩ)
2

]
r0
e

−i
[
µ0−µ2+ 1

2 (µ1−µ2)(σ1+σ2)−1 (σ2−iΩ)
2

]
r0 (152)

= 1√
det(σ1 + σ2)

1√
det(σ0 + ∆)

e− 1
4 (µ1−µ2)T (σ1+σ2)−1(µ1−µ2)e− 1

4 (µ0−µ∆)T (σ0+∆)−1(µ0−µ∆), (153)

where we take

∆ = σ2 − (σ2 − iΩ)T

2 (σ1 + σ2)−1 (σ2 − iΩ)
2 , (154)

µ∆ = µ2 + 1
2(µ1 − µ2)(σ1 + σ2)−1 (σ2 − iΩ)

2 . (155)

Consequently, we obtain

⟨G2|G0⟩ ⟨G1|G2⟩ ⟨G0|G1⟩ = 1√
det(σ1 + σ2)

1√
det(σ0 + ∆)

e− 1
4 (µ1−µ2)T (σ1+σ2)−1(µ1−µ2)

× e− 1
4 (µ0−µ∆)T (σ0+∆)−1(µ0−µ∆).

B Phases and reference states
As we have shown in Appendix A, we can compute the inner product between two pure Gaussian
states using the covariance matrix, the mean, and a reference state. Any n-mode Gaussian unitary
can be decomposed as

G = US(γ)D(β)V, (156)
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where U, V are passive symplectic transformations, S the single-mode squeezing, and D the displace-
ment [59]. Any pure Gaussian state can be consequently written as

|G⟩ = US(γ)D(β)V |0⟩ (157)

= U

(
n⊗
i=1

S(γi)D(βi)
)

|0⟩ (158)

= U
n⊗
i=1

|Gi⟩ , (159)

where we use V |0⟩ = |0⟩. We choose the vacuum |0⟩ as our reference state. We thus want to compute
the overlap

⟨0|G⟩ = ⟨0|U
n⊗
i=1

|Gi⟩ =
n⊗
i=1

⟨0|Gi⟩ . (160)

We can compute this overlap by using the stellar representation [59]; in particular with [59, Lemma
7], we see that

n⊗
i=1

⟨0|Gi⟩ =
n∏
i=1

(1 − |ti|2)− 1
4 eCi (161)

with ti = eiθi tanh(ri), γi = eiθiri, and Ci = 1
2(t∗iβ2

i − |βi|2) for γi = rie
iθi .

We can retrieve these coefficients from a given covariance matrix and mean. For this retrieval,
our simulator keeps track of the mean and the covariance matrix during the applications of the
Gaussian unitary. The mean and covariance matrix before the application of U are those of single-
mode Gaussians

µ =
n⊕
i=1

Siβi, (162)

σ =
n⊕
i=1

Si1iS
T
i =

n⊕
i=1

σi, (163)

where Si is the symplectic matrix associated to S(γi). Then, the application of U yields

µ = Ū
n⊕
i=1

Siβi, (164)

σ = Ū
n⊕
i=1

σiŪ
T , (165)

where Ū is the orthogonal symplectic matrix associated with the unitary U . We can thus use σ to
find Ū by block-diagonalizing σ and consequently Si from σi. Having access to Ū and Si, we can also
compute β from the mean µ. Numerical recipes can be found in [60].

C Alternative phase sensitive simulator
In this section, we give an alternative phase-sensitive simulator for Gaussian overlaps. We base it
on [33]. We use the stellar formalism directly in the computation. The stellar function of a Gaussian
pure state |ψ⟩⟨ψ| consisting of M modes is given by

Γ(α) = cψ exp
(
αTbψ + 1

2α
TAψα

)
, (166)
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where Aψ is an M ×M complex symmetric matrix, bψ is a M−dimensional complex vector , cψ the
vacuum amplitude. The same can be done for Gaussian mixed states ρ with Aρ, bρ, cρ where Aρ,
bρ are 2M dimensional. In this case, we can compute these parameters directly from the covariance
matrix and mean of the Gaussian state ρ. We will use the s−parameterized complex covariance matrix
σ̄S

σ̄S = σ̄ + s

212M (167)

with

σ̄ = Ū †σŪ (168)

and the complex mean

µ̄ = Ū †r̄. (169)

We use the matrix

Ū =
M⊕
j=1

1√
2

(
1 i
1 −i

)
(170)

to go between the quadrature operators r and the annihilation and creation operators a, a†. We will
use the matrix W to switch between the ordering of the quadratures operators rq1 , rp1 , ..., rqM , rpM to
rq1 , ..., rqM , rp1 , ....

Then we can compute the matrix Aρ, the vector bρ and cρ using the covariance matrix and the
mean as follows:

Aρ = PMWσ̄−1
+1σ̄−1W

†, (171)
bρ = PMWη−1

+1µ̄, (172)

cρ =
exp

(
−1

2 µ̄
†σ−1

+1µ̄
)

√
det (σ+1)

, (173)

PM =
(

0M 1M
1M 0M

)
. (174)

Note that the map σ̄ → σ̄−1
+1σ̄−1 is known as the Caley transform and for a pure state |ψ⟩⟨ψ|. It

holds that

Aρ = A∗
ψ ⊕Aψ, (175)

bρ = b∗
ψ ⊕ bψ. (176)

So we see that for pure Gaussian states, we only need dimensionality M instead of 2M .
For a single mode Gaussian state |ψ⟩ = D(α)S(reiϕ) |0⟩ we can give these parameters directly

Aψ = − tanh(r)eiϕ, (177)
bψ = α+ α∗eiϕ tanh(r), (178)

cψ =
exp

(
−1

2

[
|α|2 + α∗2eiϕ tanh(r)

])
√

cosh(r)
. (179)

If we want to compute the overlap between Gaussian states, we want to compute quantities like

⟨α∗|U |β⟩ = exp
(

−1
2
[
|α|2 + |β|2

])
cU exp

(
bTUν + 1

2ν
A
Uν

)
(180)
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with ν = (α,β)T , where |α⟩ , |β⟩ are multimode coherent states, and U a Gaussian unitary. These pa-
rameters can be computed directly from the symplectic matrix S and the displacement d corresponding
to U as follows:

AU = P2MR

(
12M − ξ−1 ξ−1S
ST ξ−1 12M − ST ξ−1S

)
R†, (181)

bU = R∗
(

ξ−1d
−ST ξ−1d

)
, (182)

cU =
exp

(
−1

2d
T ξ−1d

)
√

det(ξ)
, (183)

with

R = 1√
2


1M i1M 0M 0M
0M 0M 1M −i1M
1M −i1M 0M 0M
0M 0M 1M i1M

 , (184)

ξ = 1
2
(
12M + SST

)
. (185)

This can be computed faster by simplifying it further, see [33].
If two unitaries are applied one after another Uf = U1U2, it is not enough to just consider S = S1S2

and d = d1 + d2 as the phase information is lost this way. However, one can update the parameters
AUf

, bUf
, cUf

to compute the overlap in a phase sensitive way. For two Gausian unitaries Uf = U1U2,
the parameters are updates as follows:

AUf
= B1 ⊕D2 + {C1 ⊕ CT2 }Z{CT1 ⊕ C2}, (186)

bTUf
= [cT1 ,dT2 ][dT1 , cT2 ]Z{CT1 ⊕ C2}, (187)

cUf
= cU1cU2√

det(Y )
exp

(1
2[dT1 , cT2 ]Z[d1, c2]T

)
, (188)

where we used the notation

bTUi
= [cTi ,dTi ], (189)

AUi =
(

Bi Ci
CTi Di

)
, (190)

and the auxiliary quantities

Y = 1M −D1B2, (191)

Z =
(
Y −1B2 Y −1

(Y T )−1 D1Y
−1

)
. (192)

If more Gaussian unitaries are applied one just updates the parameters consecutively. Using Eq. (180)
one can then compute the overlap using the updated parameters.

D Simulation algorithm based on Gaussian extent
D.1 Finite rank approximations
If the given non-Gaussian state |ψ⟩ has an infinite Gaussian rank, such as the Fock state |1⟩,

|ψ⟩ =
∞∑
i=0

ci |Gi⟩ , |c0| ≥ |c1| ≥ |c2| ≥ · · · , (193)
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then we consider a state with a cut-off ∣∣∣ψ̃m〉 =
m∑
i=0

ci |Gi⟩ , (194)

|ψm⟩ = 1
Nm

∣∣∣ψ̃m〉 , (195)

with normalization

Nm =
√〈

ψ̃m
∣∣∣ψ̃m〉 =

√√√√ m∑
i,j=0

c∗
i cj ⟨Gi|Gj⟩. (196)

We can check that

lim
m→∞

⟨ψ|ψm⟩ = 1, (197)

lim
m→∞

Nm = 1. (198)

In the following, we will work on this finite-rank approximation.

D.2 Standard Approach

This argument is based on Ref. [23]. We write our input state as

|ψ⟩ =
χ∑
i=1

ci |Gi⟩ ,

where |Gi⟩ is a Gaussian state characterized by a covariance matrix σi and a mean µi, so we will use
the notation |Gi⟩ = |σi, µi⟩. We want to estimate the Born probability

P (x) = ⟨ψ|x⟩ ⟨x|ψ⟩
∥ψ∥2 (199)

=
∑χ
i,j=1 ⟨σj , µj |x⟩ ⟨x|σi, µi⟩

∥ψ∥2 . (200)

Estimating the Born probability takes O(χ2) inner products. This can be improved by sampling terms
|σi, µi⟩ in the decomposition to sparsify |ψ⟩ according to

|ψ⟩ =
χ∑
i=1

ci |σi, µi⟩ (201)

= ∥c∥1

χ∑
i=1

|ci|
∥c∥1

ci
|ci|

|σi, µi⟩ (202)

= ∥c∥1

χ∑
i=1

p(i) ci
|ci|

|σi, µi⟩ (203)

= ∥c∥1

χ∑
i=1

p(i) |σ̃i, µ̃i⟩ . (204)

We now consider sampling the states |σ̃i, µ̃i⟩ with probability p(i). To do this, we define a random

variable |ωi⟩ that is |σ̃i, µ̃i⟩ with probability p(i). By definition, it holds that E[|ωi⟩] = |ψ⟩
∥c∥1

and

consequently

|ψ⟩ = ∥c∥1E[|ωi⟩]. (205)
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Performing this sampling k times, we obtain a sparsified state

|Ω⟩ = ∥c∥1
k

k∑
i=1

|ωi⟩ . (206)

By definition, it holds that

E[⟨Ω|ψ⟩] = E[⟨ψ|Ω⟩] = 1. (207)

The norm of |Ω⟩ is

E[⟨Ω|Ω⟩] = ∥c∥2
1

k2

E[ k∑
α=1

⟨ωα|ωα⟩
]

+ E

∑
α̸=β

⟨ωα|ωβ⟩

 (208)

= ∥c∥2
1

k
E[⟨ωα|ωα⟩] + 1

k2

∑
α̸=β

E
[
∥c∥2

1 ⟨ωα|ωβ⟩
]

(209)

= ∥c∥2
1

k
+ 1
k2

∑
α̸=β

⟨ψ|ψ⟩ (210)

= ∥c∥2
1

k
+ k(k − 1)

k2 (211)

= ∥c∥2
1

k
+ 1 − 1

k
. (212)

The bound of the approximation is

E[||ψ⟩ − |Ω⟩|2]
= E[⟨Ω|Ω⟩] + E[⟨ψ|ψ⟩] − E[⟨ψ|Ω⟩] − E[⟨Ω|ψ⟩] (213)

= ∥c∥2
1 − 1
k

≤ ∥c∥2
1

k
. (214)

To guarantee the upper bound E[∥ |ψ⟩ − |Ω⟩ ∥2] ≤ δ2, it suffices to sample k times with

k =
(∥c∥1

δ

)2
. (215)

In Ref. [23], a sparsification tail bound is given. If we choose k ≥
(

∥c∥1
δ

)2
, then we have

E[⟨Ω|Ω⟩ − 1] ≤ δ2. (216)

Using the triangle inequality, we get

∥ψ − Ω∥2 ≤ ⟨Ω|Ω⟩ − 1 + 2 × |1 − Re(⟨ψ|Ω⟩)|. (217)

We define a random variable

Xα = ∥c∥1Re(⟨ψ|ωα⟩), (218)

X̃ = 1
k

k∑
α=1

Xα = Re(⟨ψ|Ω⟩). (219)

Then, we have

|Re(⟨ψ|Ω⟩) − 1| =
∣∣∣X̃ − E[X̃]

∣∣∣ (220)
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Here, X̃ is a sample mean of k IID random variables Xα, satisfying

|Xα| ≤ ∥c∥1|⟨ψ|wα⟩| ≤ ∥c∥1

√
F (ψ), (221)

with F being the Gaussian fidelity F (ψ) = sup|G⟩∈G{|⟨ψ|G⟩|2}. We can then apply Hoeffding’s in-
equality to obtain

Pr

[
|Re(⟨ψ|Ω⟩) − 1| ≥ δ2

2

]

≤ 2 exp
(

− 2k(δ2/2)2

(2∥c∥1
√
F (ψ))2

)
(222)

≤ 2 exp
(

− δ2

8F (ψ)

)
. (223)

Consequently, it holds that

Pr[∥ψ − Ω∥2 ≤ ⟨Ω|Ω⟩ − 1 + δ2] ≥ 1 − 2 exp
(

− δ2

8F (ψ)

)
. (224)

D.3 Approach by Seddon et al.
We describe another approach based on Ref. [30]. If we use the approach described in the previous
section, post-selection is needed for states with a norm close to 1, but Ref. [30] proposes a sampling
strategy that avoids post-selection. This strategy renormalizes and bounds the error between |ψ⟩ and
the ensemble

ρ1 = E

( |Ω⟩⟨Ω|
⟨Ω|Ω⟩

)
=
∑
Ω

Pr(Ω) |Ω⟩⟨Ω|
⟨Ω|Ω⟩

(225)

of sparsified states. We then want to bound

∥ρ1 − |ψ⟩⟨ψ|∥1. (226)

First, we define

ρ2 = 1
µ
E[|Ω⟩⟨Ω|]. (227)

with E[⟨Ω|Ω⟩]. The triangle inequality yields

∥ρ1 + ρ2 − ρ2 − |ψ⟩⟨ψ|∥1 ≤ ∥ρ1 − ρ2∥1 + ∥ρ2 − |ψ⟩⟨ψ|∥1. (228)

The first term on the right-hand side is given by

∥ρ1 − ρ2∥1 =
∥∥∥∥E[|Ω⟩⟨Ω|

( 1
⟨Ω|Ω⟩

− 1
µ

)]∥∥∥∥
1
. (229)

We then use Jensen’s inequality to obtain

∥ρ1 − ρ2∥1 ≤ E

[∥∥∥∥|Ω⟩⟨Ω|
( 1

⟨Ω|Ω⟩
− 1
µ

)∥∥∥∥
1

]
(230)

= E

[∣∣∣∣⟨Ω|Ω⟩
( 1

⟨Ω|Ω⟩
− 1
µ

)∣∣∣∣] (231)

= 1
µ
E[|µ− ⟨Ω|Ω⟩|] (232)

≤
√
E|µ− ⟨Ω|Ω⟩|2 (233)

=
√
Var[⟨Ω|Ω⟩]. (234)
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To evaluate the second term on the right-hand side of (228), we use

µρ2 = ∥c∥2
1

k2

∑
α̸=β

E[|wα⟩ ⟨wβ| +
∑
α

|α⟩⟨α|]

 (235)

= k(k − 1)
k2 |ψ⟩⟨ψ| + ∥c∥2

1
k

σ (236)

with σ = |wα⟩⟨wα|. Then, we have

∥ρ2 − |ψ⟩⟨ψ|∥1 = 1
µ

∥∥∥∥∥(1 − k−1 − µ) |ψ⟩⟨ψ| + ∥c∥2
1

k
σ

∥∥∥∥∥
1

(237)

= ∥c∥2
1

kµ
∥σ − |ψ⟩⟨ψ|∥ (238)

≤ 2∥c∥2
1

k
, (239)

where we use µ−1 ≤ 1, the triangle inequality, and ∥σ∥1 = 1.
As for the bounds of the variance, we have

Var(⟨Ω|Ω⟩) = E[⟨Ω|Ω⟩2] − E[⟨Ω|Ω⟩]2. (240)

The right-hand side is evaluated by

⟨Ω|Ω⟩2 = ∥c∥4
1

k4

(
k2 + 2kB +B2

)
(241)

with B =
∑
α

∑
α̸=β ⟨wα|wβ⟩. Thus, we obtain

E[⟨Ω|Ω⟩2] = ∥c∥4
1

k4

(
k2 + 2kE[B] + E[B2]

)
. (242)

Therefore, we have

Var(⟨Ω|Ω⟩) = ∥c∥4
1

k4

(
E[B2] − E[B]2

)
. (243)

Following the same calculation for matching the coefficients as that found in the appendix of Ref. [30],
we arrive at

Var(⟨Ω|Ω⟩) ≤ 4(C − 1)
k

+ 2
(

∥c∥2
1

k

)2

+ O
(
C

k3

)
(244)

with C = ∥c∥1
∑
i |c|i|⟨ψ|σ̃i, µ̃i⟩|2.

Then, there is a critical precision δc = 8(C − 1)/∥c∥2
1 such that for every target precision δS for

which δc ≤ δS , we can sample pure states from an ensemble ρ1, where every pure state drawn from
ρ1 has Gaussian rank at most ⌈4∥c∥2

1/δS⌉. This bound provides a critical threshold, where we get an
improvement by a factor of 1/δS . For higher precision, there is no improvement obtained from this
sampling strategy outside of avoiding post-selection.

E Fast norm estimation
E.1 Description of the core idea
A naive estimation of the norm of a decomposed non-Gaussian state would require a quadratic cost
of the number of Gaussian states in the decomposition. To achieve better efficiency, we can estimate
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the norm probabilistically by sampling random coherent states and computing the overlap. This
procedure, called the fast norm estimation, results in a linear cost of the number of Gaussian states in
the decomposition. To achieve this scaling, we sample a coherent state |α⟩ and use the completeness
condition

1 = 1
π

∫
C

dα |α⟩⟨α| . (245)

A non-trivial part of the analysis arises from the fact that the right-hand side of this completeness con-
dition uses the integral over all α, but it is not straightforward to sample α from a uniform distribution
since the displacement operators are a non-compact group and thus impossible to uniformly sample.
To address this point, we need to sample α from a weighted distribution in reality. Nevertheless, in
this section, we use the integral without weight to describe the core idea of our fast norm estimation
procedure, while we will explain the sampling from the weighted distribution in the next section.
Using the uniform integral of a random coherent state |ξ⟩ = D(ξ) |0⟩, we can define a variable X

and |ψ⟩

X = π−n|⟨ξ|ψ⟩|2. (246)

In this case, we have ∫
C

dξX = 1
π

∫
C
dα ⟨ψ|α⟩ ⟨α|ψ⟩ = ⟨ψ|ψ⟩ . (247)

Similarly, we can write for X2 as∫
Cn

dξX2 = π−2n
∫
Cn

dξ ⟨ψ ⊗ ψ|D(ξ) ⊗D(ξ) |0 ⊗ 0⟩⟨0 ⊗ 0|D†(ξ) ⊗D†(ξ) |ψ ⊗ ψ⟩ . (248)

So we want to investigate

T (|0 ⊗ 0⟩⟨0 ⊗ 0|) :=
∫
Cn

dξD(ξ) ⊗D(ξ) |0 ⊗ 0⟩⟨0 ⊗ 0|D†(ξ) ⊗D†(ξ) (249)

in order to get further insights into X2. It holds in general for displacement operators that

D(ξ)D(α)D(ξ)†

= D(ξ)D(α)D(−ξ) (250)

= e
1
2 (ξα∗−ξ∗α)D(ξ + α)D(−ξ) (251)

= e
1
2 (ξα∗−ξ∗α)e

1
2 ((ξ+α)(−ξ)∗−(ξ+α)∗(−ξ))D(α) (252)

= e
1
2 (ξα∗−ξ∗α)e

1
2 (−ξξ∗−αξ∗+ξ∗ξ+α∗ξ)D(α) (253)

= eξα
∗−ξ∗αD(α). (254)

We can expand every state in terms of the basis of displacement operators with the characteristic
function χρ as

ρ = 1
π2n

∫
Cn

dαdβ χρ(α,β)D(α) ⊗D(β). (255)

So T (|0 ⊗ 0⟩⟨0 ⊗ 0|) can be computed using the following property∫
Cn

dξ [D(ξ) ⊗D(ξ)] [D(α) ⊗D(β)]
[
D†(ξ) ⊗D†(ξ)

]
(256)

=
∫
Cn

dξ (D(ξ)D(α)D(ξ)†) ⊗ (D(ξ)D(β)D(ξ)†) (257)

=
∫
Cn

dξ eξα∗−ξ∗αeξβ
∗−ξ∗βD(α) ⊗D(β) (258)

=
∫
Cn

dξ eξ(α∗+β∗)−ξ∗(α+β)D(α) ⊗D(β) (259)

= πnδ(α + β)D(α) ⊗D(β) (260)
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and then

T (|0 ⊗ 0⟩⟨0 ⊗ 0|) = π−2n
∫
Cn

dα dβ χ|0⊗0⟩(α,β)T (D(α) ⊗D(β)) (261)

= π−n
∫
Cn

dα χ|0⊗0⟩(α,−α)D(α) ⊗D(−α). (262)

We will follow the reasoning of Ref. [31] and show that that T (|0 ⊗ 0⟩⟨0 ⊗ 0|) is proportional to a
projector. This will allow us to bound ⟨ψ ⊗ ψ| T (|0 ⊗ 0⟩⟨0 ⊗ 0|) |ψ ⊗ ψ⟩ from above. So we need
to show that T (|0 ⊗ 0⟩⟨0 ⊗ 0|) = T (|0 ⊗ 0⟩⟨0 ⊗ 0|)† and T (|0 ⊗ 0⟩⟨0 ⊗ 0|) ∝ T (|0 ⊗ 0⟩⟨0 ⊗ 0|)2. By
definition of T in Eq. (249), we have that

T (|0 ⊗ 0⟩⟨0 ⊗ 0|) = T (|0 ⊗ 0⟩⟨0 ⊗ 0|)†. (263)

So we just need to show that T (|0 ⊗ 0⟩⟨0 ⊗ 0|) = T (|0 ⊗ 0⟩⟨0 ⊗ 0|)2.

Thus, it follows that

T (|0 ⊗ 0⟩⟨0 ⊗ 0|)T (|0 ⊗ 0⟩⟨0 ⊗ 0|) = π−4n
∫
Cn

dα dβ dc dd χ|0⊗0⟩(α,β)χ|0⊗0⟩(c, d) (264)

× T (D(α) ⊗D(β))T (D(c) ⊗D(d)) (265)

= π−2n
∫
Cn

dα dc χ|0⊗0⟩(α,−α)χ|0⊗0⟩(c,−c)[D(α) ⊗D(−α)][D(c) ⊗D(−c)] (266)

= π−2n
∫
Cn

dα dc χ|0⊗0⟩(α)χ|0⊗0⟩(c)eαc∗−α∗c/2D(α + c) ⊗ χ|0⊗0⟩(−α)χ|0⊗0⟩(−c)eαc∗−α∗c/2D(−α − c)

(267)

= π−2n
∫
Cn

dαdµχ|0⊗0⟩(α)χ|0⊗0⟩(µ − α)eαµ∗−α∗µ/2D(µ) ⊗ χ|0⊗0⟩(−α)χ|0⊗0⟩(−µ + α)eαµ∗−α∗µ/2D(−µ)

(268)

= π−2n
∫
Cn

dµD(µ) ⊗D(−µ)
[∫
Cn

dαχ|0⊗0⟩(α)χ|0⊗0⟩(−α)χ|0⊗0⟩(µ − α)χ|0⊗0⟩(−µ + α)eαµ∗−α∗µ
]

(269)

= π−2n
∫
Cn

dµD(µ) ⊗D(−µ)
[∫
Cn

dα
∣∣∣χ|0⊗0⟩(α)

∣∣∣2∣∣∣χ|0⊗0⟩(µ − α)
∣∣∣2eαµ∗−α∗µ

]
(270)

= π−n2−n
∫
Cn

dµD(µ) ⊗D(−µ)
∣∣∣χ|0⊗0⟩(µ)

∣∣∣2 (271)

= π−n2−n
∫
Cn

dµχ|0⊗0⟩(µ)χ|0⊗0⟩(−µ)D(µ) ⊗D(−µ). (272)

We used that ∫
Cn

dα
∣∣∣χ|0⊗0⟩(α)

∣∣∣2∣∣∣χ|0⊗0⟩(µ − α)
∣∣∣2e(αm∗−α∗µ) (273)

=
∫
Cn

dα e−|α|2e−|µ−α|2e(αµ∗−α∗µ) (274)

= e−|µ|2
∫
Cn

dα e−2|α|2+2µ∗α (275)

= e−|µ|2
∫
Rn

dαr dαi e
−2(α2

r+α2
i +αrµr−αiµi+iαrµi−iµrαi) (276)

= e−|µ|2
∫
Rn

dαr e
−2α2

r+αr(2µr−2iµi)
∫
Rn

dαi e
−2α2

i +αi(2µi+2iµr) (277)

= e−|µ|2 π
n

2n e
(µr−iµi)2/2e(µi+iµr)2/2 (278)

=
∣∣∣χ|0⊗0⟩(µ)

∣∣∣2πn2n (279)
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and χ|0⊗0⟩(a) = e− 1
2 |a|2 . By comparing the results of T (|0 ⊗ 0⟩⟨0 ⊗ 0|)T (|0 ⊗ 0⟩⟨0 ⊗ 0|) with

T (|0 ⊗ 0⟩⟨0 ⊗ 0|) = π−n
∫
Cn

dα χ|0⊗0⟩(α,−α)D(α) ⊗D(−α), (280)

we observe that they are the same up to a scaling factor

T (|0 ⊗ 0⟩⟨0 ⊗ 0|)2 = 2−nT (|0 ⊗ 0⟩⟨0 ⊗ 0|). (281)

By multiplying T (|0 ⊗ 0⟩⟨0 ⊗ 0|) with 2n, we get the projector Π = 2nT (|0 ⊗ 0⟩⟨0 ⊗ 0|). This approach
is, however, not realistic. The displacement operators are a non-compact group and thus impossible
to sample uniformly. We address this problem in the next section.

E.2 Fast norm estimation by sampling from Gaussian ensemble

We can make it possible to sample from a distribution of displacements by introducing a Gaussian
ensemble of displacements [39]. The group of all displacements is not compact, and we cannot sample
it uniformly. Reference [39] uses sampling from a Gaussian ensemble

DN =
{
D(ξ) : ξ ∼ PGD (ξ, N) = e−|ξ|2/N

πnNn

}
, (282)

which can be used in CV state tomography and reproduces the identity in the limit

lim
N→∞

Nn
∫
Cn

dξ PGD (ξ, N)D(ξ) |0⟩⟨0|D†(ξ) = 1. (283)

It also holds that

lim
N→∞

Nn
∫
Cn

dξ PGD (ξ, N)D(ξ)⊗2 |0 ⊗ 0⟩⟨0 ⊗ 0|D†(ξ)⊗2

= 1
πn

∫
Cn

dξD(ξ)⊗2 |0 ⊗ 0⟩⟨0 ⊗ 0|D†(ξ)⊗2. (284)

Our contribution here is to propose sampling from the Gaussian ensemble as an approximation of the
procedure in the previous section. We present an analysis in the following.

The above limits ensure that for any δ > 0, there is a sufficiently large Nδ such that, for a state |Ω⟩
of interest,

∣∣∣∣Nn
δ

∫
Cn

dξPGD (ξ, Nδ) ⟨Ω|D(ξ) |0⟩⟨0|D†(ξ) |Ω⟩ − ⟨Ω|Ω⟩
∣∣∣∣ ≤ δ ⟨Ω|Ω⟩ (285)

and

∣∣∣πnNn
δ

∫
Cn

dξPGD (ξ, Nδ) ⟨Ω ⊗ Ω|D(ξ) ⊗D(ξ) |0 ⊗ 0⟩⟨0 ⊗ 0|D†(ξ) ⊗D†(ξ) |Ω ⊗ Ω⟩

−
∫
Cn

dξ ⟨Ω ⊗ Ω| (D(ξ) ⊗D(ξ)) |0 ⊗ 0⟩⟨0 ⊗ 0| (D†(ξ) ⊗D†(ξ)) |Ω ⊗ Ω⟩
∣∣∣ ≤ δ ⟨Ω ⊗ Ω|Ω ⊗ Ω⟩ .

(286)
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Equivalently to the previous section, using Eq. (285), we define

TG(|0 ⊗ 0⟩⟨0 ⊗ 0|) := πnNn
δ

∫
Cn

dξ e
−|ξ|2/Nδ

πnNn
δ

D(ξ) ⊗D(ξ) |0 ⊗ 0⟩⟨0 ⊗ 0|D†(ξ) ⊗D†(ξ) (287)

= πnNn
δ

π2n

∫
Cn

dα dβ dξ χ|0⊗0⟩(α,β)e
−|ξ|2/Nδ

πnNn
δ

(D(ξ) ⊗D(ξ))(D(α) ⊗D(β))(D†(ξ) ⊗D†(ξ))

(288)

= πnNn
δ

π2n

∫
Cn

dα dβ dξ χ|0⊗0⟩(α,β)e
−|ξ|2/Nδ

πnNn
δ

eξ(α∗+β∗)−ξ∗(α+β)D(α) ⊗D(β) (289)

= πnNn
δ

π2n

∫
Cn

dα dβ χ|0⊗0⟩(α,β)D(α) ⊗D(β) (290)

×
∫
Cn

dξr dξi
e−|ξr|2/Nδe−|ξi|2/Nδ

πnNn
δ

eξr(α∗+β∗)−ξr(α+β)eiξi(α∗+β∗)+iξ(α+β) (291)

= πnNn
δ

π2n

∫
Cn

dα dβ χ|0⊗0⟩(α,β)e−Nδ|α+β|2D(α) ⊗D(β), (292)

which will approach the result in the previous section in the limit of Nδ → ∞.

Importantly, we can use the results from the previous section that

T (|0 ⊗ 0⟩⟨0 ⊗ 0|) =
∫
Cn

dξD(ξ) ⊗D(ξ) |0 ⊗ 0⟩⟨0 ⊗ 0|D†(ξ) ⊗D†(ξ) (293)

is proportional to a projector Π = 2nT (|0 ⊗ 0⟩⟨0 ⊗ 0|). In particular, Eq. (286) immediately implies
that∣∣∣∣πnNn

δ

∫
Cn

dξ PGD (ξ, Nδ) ⟨Ω ⊗ Ω|D(ξ)⊗2 |0 ⊗ 0⟩⟨0 ⊗ 0|D†(ξ)⊗2 |Ω ⊗ Ω⟩ − 2−n ⟨Ω ⊗ Ω| Π |Ω ⊗ Ω⟩
∣∣∣∣

(294)
≤ δ ⟨Ω ⊗ Ω|Ω ⊗ Ω⟩ .

(295)

We can then define a random variable X as

X = Nn
δ |⟨ξ|Ω⟩|2. (296)

Thus, by sampling coherent states from the Gaussian ensemble, we can resolve the identity and
estimate the norm

|E[X] − ⟨Ω|Ω⟩| =
∣∣∣∣∣Nn

δ

∫
Cn

dξ e
−|ξ|2/Nδ

πnNn
δ

⟨Ω|D(ξ) |0⟩⟨0|D†(ξ) |Ω⟩ − ⟨Ω|Ω⟩
∣∣∣∣∣ ≤ δ ⟨Ω|Ω⟩ , (297)

where the inequality follows from Eq. (285).
Due to Eq. (294), the variance can be bounded by

Var[X] ≤ E[X2] (298)

= N2n
δ

∫
Cn

dξ e
−|ξ|2/Nδ

πnNn
δ

⟨Ω ⊗ Ω|D(ξ) ⊗D(ξ) |0 ⊗ 0⟩⟨0 ⊗ 0|D†(ξ) ⊗D†(ξ) |Ω ⊗ Ω⟩ (299)

≤ Nn
δ

πn
2−n ⟨Ω ⊗ Ω| Π |Ω ⊗ Ω⟩ + δ ⟨Ω ⊗ Ω|Ω ⊗ Ω⟩ (300)

≤ 2−nNn
δ + δπn

πn
∥Ω∥4. (301)
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Now, if we define an estimator as

η = 1
L

L∑
i=1

Nn
δ |⟨ξ|Ω⟩|2. (302)

Then, η has expectation value ∥Ω∥2 up to ±δ and variance σ2 ≤ L−1(2−nNn
δ + δπn)/πn∥Ω∥4. Using

Chebyshev’s inequality and choosing the number of samples as

L = 2−nNn
δ + δπn

πn
ϵ−2p−1

f , (303)

we have that, with a probability of at least 1 − pf ,

(1 − ϵ− δ)∥|Ω⟩∥2 ≤ η ≤ (1 + ϵ+ δ)∥|Ω⟩∥2. (304)

F Refined Bounds
The output of the channel ∫

Cn
dξPGD (ξ,M)D(ξ) |0⟩⟨0|D†(ξ) = ρthM (305)

is the thermal state with mean photon number M

ρthM = 1
M + 1

∞∑
n=0

(
M

M + 1

)n
|n⟩⟨n| . (306)

This channel is known in the literature as the classical-noise channel [61]. Therefore, the integral is
upper bounded by ∫

Cn
dξPGD (ξ,M) ⟨Ω|D(ξ) |0⟩⟨0|D†(ξ) |Ω⟩ ≤ ⟨Ω|Ω⟩ . (307)

Furthermore it holds for ⟨Ω|Ω⟩ =
∑∞
n=0 |Ωn|2. Thus

M ⟨Ω| ρthM |Ω⟩ = M

M + 1

∞∑
n=0

|Ωn|2
(

M

M + 1

)n
≤

∞∑
n=0

|Ωn|2 = ⟨Ω|Ω⟩ . (308)

We can lower bound this integral using the mean photon number of the state |Ω⟩ NΩ = ⟨Ω|n|Ω⟩
⟨Ω|Ω⟩ =

1
πn⟨Ω|Ω⟩

∫
Cn dξ|ξ|2|⟨ξ|Ω⟩|2. It holds for a Gaussian function that e−x2 ≥ (1 − x2). So by expanding

PGD (ξ, N) to the first order we get∫
Cn

dξPGD (ξ, N) ⟨Ω|D(ξ) |0⟩⟨0|D†(ξ |Ω⟩ =
∫
Cn

dξ e
−|ξ|2/N

πnNn
|⟨ξ|Ω⟩|2

≥ 1
πnNn

∫
Cn

dξ
(

1 − |ξ|2

N

)
|⟨ξ|Ω⟩|2

= 1
Nn

⟨Ω|Ω⟩
(

1 − NΩ
N

)
.

(309)

We can then define a random variable X as

X = Nn|⟨ξ|Ω⟩|2. (310)

We can then estimate the norm of |Ω⟩ by sampling coherent states from the Gaussian ensemble, since

E(X) = Nn
∫
Cn

dξPGD (ξ, N)|⟨ξ|Ω⟩|2 (311)
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with

⟨Ω|Ω⟩
(

1 − NΩ
N

)
≤ E(X) ≤ ⟨Ω|Ω⟩ . (312)

The variance is bounded in the following way.

Var[X] ≤ E[X2] (313)

= N2n
∫
Cn

dξ e
−|ξ|2/N

πnNn
⟨Ω ⊗ Ω|D(ξ) ⊗D(ξ) |0 ⊗ 0⟩⟨0 ⊗ 0|D†(ξ) ⊗D†(ξ) |Ω ⊗ Ω⟩ (314)

≤ Nn

πn

∫
Cn

dξ|⟨ξ ⊗ ξ|Ω ⊗ Ω⟩|2 (315)

= Nn

πn
2−n ⟨Ω ⊗ Ω| Π |Ω ⊗ Ω⟩ (316)

≤ Nn

2nπn ∥Ω∥4. (317)

G Proof of Eq. (101)

Let f ⊂ H be a subset of separable Hilbert space H. Consider the extent measure with respect to the
set f defined by

ξf (|ψ⟩) = inf


(∑

i

ci

)2
∣∣∣∣∣∣ |ψ⟩ =

∑
i

ci |ϕi⟩ , |ϕi⟩ ∈ f

 . (318)

We also define

ξ̄f (|ψ⟩) := inf
{
µ2
∣∣∣ |ψ⟩ ∈ µ cl conv f

}
. (319)

This allows for an alternative expression [27, 62]

ξ̄f (|ψ⟩) = sup
{

| ⟨w|ψ⟩ |2
∣∣∣ | ⟨w|ϕ⟩ | ≤ 1, ∀ |ϕ⟩ ∈ f

}
. (320)

As shown in Ref. [27], this quantity coincides with the lower semicontinuous robustness

ξ̄f (|ψ⟩) = RF (|ψ⟩⟨ψ|) (321)

for F = cl conv
{

|ϕ⟩⟨ϕ|
∣∣∣ |ϕ⟩ ∈ f

}
.

Let us now assume that a decomposition |ψ⟩ =
∑
i c̃i
∣∣∣ϕ̃i〉 with

∣∣∣ϕ̃i〉 ∈ f satisfies

(∑
i

|c̃i|
)2

= ξf (|ψ⟩) = ξ̄f (|ψ⟩) = RF (|ψ⟩⟨ψ|) = Tr
(
W̃ |ψ⟩⟨ψ|

)
(322)

for an optimal witness operator W̃ , which appears in the definition of RF . Note that

RF (|ψ⟩⟨ψ|) = sup
{

Tr(Wψ)
∣∣∣ W ≥ 0, Tr(Wσ) ≤ 1, σ ∈ F

}
≥ sup

{
| ⟨w|ψ⟩ |2

∣∣∣ | ⟨w|ϕ⟩ | ≤ 1, ϕ ∈ f
}

= ξ̄f (|ψ⟩)

(323)

where in the second line we restricted W to the form W = |w⟩⟨w| for some unnormalized vector |w⟩,
and the third line is because of (320). This, together with (321), ensures that the optimal witness W̃
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in (322) takes the form W̃ = |w̃⟩⟨w̃| for some unnormalized vector |w̃⟩ satisfying | ⟨w̃|ϕ⟩ | ≤ 1 for every
|ϕ⟩ ∈ f . Therefore, we get

ξ̄f (|ψ⟩) =
∣∣∣∣∣∑
i

c̃i
〈
w̃
∣∣∣ϕ̃i〉

∣∣∣∣∣
2

≤
(∑

i

|c̃i|
∣∣∣〈w̃∣∣∣ϕ̃i〉∣∣∣

)2

≤
(∑

i

|c̃i|
)2

= ξf (|ψ⟩)

(324)

where in the first line we wrote |ψ⟩ =
∑
i c̃i
∣∣∣ϕ̃i〉 and used that (320) is achieved with |w̃⟩ due to (323),

the second line is due to the triangle inequality, and the third line is because | ⟨w̃|ϕ⟩ | ≤ 1, ∀ |ϕ⟩ ∈ f .
Then, (322) implies that these all coincide, and in particular,

〈
ω̃
∣∣∣ϕ̃i〉 = c̃i

|c̃i|
, ∀c̃i ̸= 0. (325)

This gives ∣∣∣Tr
(
W̃
∣∣∣ϕ̃i〉〈ϕ̃i∣∣∣)∣∣∣ = 1, ∀i (326)

concluding the proof.

H Numerical evaluation of maximal fidelity between Gaussian states and two Fock
states

We want to compute the maximal overlap between a two-mode Gaussian state and two Fock states
|1⟩ ⊗ |1⟩. We numerically find an approximate solution of an optimization problem of maximizing the
fidelity by parameterizing the unitaries in |G′⟩ = U(ϕ, ξ)S(r1e

iθ1) ⊗ S(r2e
iθ2)D(α1) ⊗D(α2) |0⟩ ⊗ |0⟩,

where U is a passive symplectic unitary. In this optimization, we numerically optimize the overlap
between |G′⟩ and |1⟩ ⊗ |1⟩. We used the parameterization used in Ref. [63]. The parameters that we
numerically found are

α1 = 0, (327)
α2 = 0, (328)
r1 = 0.8814, (329)
θ1 = 0.609, (330)
r2 = 0.8814, (331)
θ2 = 1.107, (332)
ϕ = −1.322, (333)
ξ = 1.571. (334)

This yields ∣∣〈1 ⊗ 1
∣∣G′〉∣∣2 = 0.25 = 1

4 , (335)

which coincides with the result reported in Ref. [64].
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