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ARTICLE INFO ABSTRACT

Keywords: Two dimensional (2D) van der Waals (vdW) materials have attractive mechanical, electronic, optical, and
2D materials catalytic properties that are highly tunable especially when they are thin. However, they are rarely perfect
Van der Waals materials and flat, and their properties are strongly influenced by local crystal lattice deformations that include the 2D
Strain

strain tensor, in-plane rotation and corrugation, where the latter is manifested as local sample tilt. Therefore,
diffraction to gain more control over their properties, a detailed understanding of these deformations is needed. Position
Convolutional neural networks averaged convergent beam electron diffraction (PACBED) is a powerful technique for providing information
Machine learning about local atomic structure. In this work, we perform a comprehensive simulation study of the performance
of PACBED in combination with convolutional neural networks (CNNs) for prediction of deformations of 2D
materials. We generate around 100,000 simulated PACBED patterns from 2H MoS, for thicknesses from 1 to 20
atomic layers where strain, rotation, and tilt parameters are varied. Five convergence angles are explored which
vary from conventional nano beam electron diffraction (6.35 mrad) to atomic resolution conditions (32.94
mrad). From this simulated PACBED library, we train regression CNNs to simultaneously predict the 2D strain
tensor, in-plane rotation, and tilt of the sample. For different convergence angles and thicknesses, we study the
prediction performance for each of the deformation parameters. We find that there is a trade-off between better
prediction performance (small convergence angles) and probe size (large convergence angles). For smaller
convergence angles like those used for conventional NBED conditions, the strain prediction error can be as
low as 0.0003 %, while for larger convergence angles like those used for atomic resolution probes, the strain
error increases to 0.001 - 0.003 %. The impressive prediction performance even for large convergence angles
suggests that PACBED combined with CNNs is a feasible method for predicting deformation parameters using
atomic resolution electron probes. Further, we conclude that the prediction can be difficult for monolayers,
and suggest two remedies: excluding tilt from the predictions and performing nonlinear intensity rescaling of
the training data. This work contributes to the optimal design of PACBED experiments for characterization of
local crystal deformations and, therefore, to an improved understanding of how 2D vdW materials respond to

Position averaged convergent beam electron

imperfections.
1. Introduction be induced by applying external forces, such as mechanical, thermal or
electrical, or it can arise from discontinuities in an otherwise perfect
Understanding how crystalline materials deform at the nanoscale is atomic crystal structure, such as from surfaces, interfaces, point de-
crucial for realizing the full potential of many material systems and fects, defect clusters, dislocations, grain boundaries, and composition
devices. Because many material properties are a direct consequence variation. These types of deformations typically create complex and

non-intuitive strain gradients that can spatially vary on the atomic
length scale. Therefore, measuring the complete strain state, ideally
with atomic spatial resolution, is fundamental for understanding and
tailoring a wide range of material properties.

of its precise atomic structure, local atomic lattice deformations have
a direct effect on local properties and device performance. Indeed,
deformation can have profound effects on for example mechanical,
chemical, electronic, optical, and catalytic properties. Deformation can

* Corresponding author.
E-mail address: andrew.yankovich@chalmers.se (A.B. Yankovich).
1 Equal contribution.

https://doi.org/10.1016/j.ultramic.2025.114246
Received 11 July 2025; Received in revised form 23 September 2025; Accepted 28 September 2025

Available online 8 October 2025
0304-3991/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://www.elsevier.com/locate/ultramic
https://www.elsevier.com/locate/ultramic
https://orcid.org/0000-0002-1772-6778
mailto:andrew.yankovich@chalmers.se
https://doi.org/10.1016/j.ultramic.2025.114246
https://doi.org/10.1016/j.ultramic.2025.114246
http://creativecommons.org/licenses/by/4.0/

A.B. Yankovich et al.

Since the pioneering work on graphene [1], two dimensional (2D)
van der Waals (vdW) materials have attracted significant attention,
partially due to their vast range of properties. 2D vdW materials
feature a planar layered crystalline structure where the layers are held
together by weak vdW interactions and the atoms within the layers
are held together by stronger intralayer (covalent or ionic) bonds.
This layered structure provides the ability to isolate vdW materials
with constant atomic layer thickness over large areas, even down to
single atomic monolayers, as well as the ability to synthesize designer
heterostructures by mix-and-match stacking of different component
layers to create exotic devices with tailored properties [2-5]. Transition
metal dichalcogenide (TMD) materials, which were first discovered
more than a century ago by Linus Pauling et al. [6], have emerged as
a particularly interesting group of vdW materials. TMD materials are
composed of transition metal atoms (e.g. Mo, W, Re) and chalcogenide
atoms (e.g. S, Se, Te) [7]. Their exceptional mechanical, electronic,
excitonic and optical properties have attracted their use in various
nanotechnology applications [8-13]. TMDs, and other vdW materials,
are often imagined as being perfectly flat. In contrast, micro- and
nanoscopic corrugation are often an intrinsic feature of isolated layers
and can directly affect their properties. For example, the discovery
of intrinsic corrugation in suspended graphene was critical for under-
standing its unique electronic transport properties [14-16]. Because
TMDs have a thin flake morphology, crystal deformation frequently
causes flake corrugation, and flake corrugation frequently causes crys-
tal deformation. Improving our ability to measure and spatially map
this deformation phenomenon is critical for obtaining a more complete
understanding of the atomic structure and properties of vdW materials.

Scanning/ transmission electron microscopy (S/TEM) is an impor-
tant characterization tool that provides a plethora of materials infor-
mation with impressive spatial resolution down to 50 pm [17-22].
Numerous S/TEM methods have been developed to map local crys-
tal deformations and these can be categorized as either image-based
or diffraction-based techniques, each with its strengths and weak-
nesses [23,24].

Image-based techniques require resolving the crystalline lattice in
an atomic resolution TEM or STEM image, followed by quantification of
the strain, using for example Geometric Phase Analysis (GPA) [25,26],
Dark Field Electron Holography (DFEH) [27] or direct peak analy-
sis [28-32]. TEM has been used to directly image strain within crys-
talline materials [33-37]. However, due to the phase-contrast nature,
TEM images are typically not directly interpretable without using more
advanced methods [38,39] and special care is required to reliably
measure strain [26,40-45]. On the contrary, STEM images are directly
interpretable with mass-thickness Z-contrast [46], and sub-picometer
precision in locating atom columns is possible [31] which enables
strain mapping in nanoparticles with < 1 % precision [32,47]. Image-
based methods are powerful, but hold some limitations. GPA and peak
analysis methods require that each atomic column position in the image
is clearly resolved to precisely locate its position. This introduces a
limitation to the real space field of view (FOV) (typically < 50— 100 nm)
of the resulting strain maps because the images have a limited number
of pixels. GPA and DFEH methods are limited to > 1 nm spatial res-
olution and cannot provide atomic-site-specific strain information like
that attainable with direct peak analysis. Furthermore, S/TEM images
and the resulting strain maps can be highly sensitive to the electron
beam focus and aberration conditions, so these parameters need to be
carefully controlled and remain stable during image acquisition.

Diffraction-based techniques rely on momentum-resolved measure-
ments of forward scattered electrons for which there are two conver-
gent beam electron diffraction (CBED) approaches. The first approach
measures strain by analyzing position shifts of the higher order Laue
zone (HOLZ) lines in CBED patterns [48,49]. Although this approach
can achieve nm-scale spatial resolution, it does not work well for
all sample thicknesses, particularly thin samples that produce weak
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HOLZ information. The second approach, nano beam electron diffrac-
tion (NBED), [50-54] uses a near-parallel nanoscale electron beam
to record CBED patterns that have non-overlapping Bragg scattering
discs. By measuring the displacements of the Bragg discs, the local
strain of the sample illuminated by the electron beam can be measured.
Furthermore, by recording NBED diffraction patterns over a 2D grid
of probe positions on the sample, a four dimensional (4D) STEM data
set [55] can be recorded and analyzed to produce strain maps.

Conventional NBED is a powerful strain mapping tool that has
advantages and limitations. The FOV of the NBED strain maps is typi-
cally limited by the maximum allowed 4D STEM data set size. Current
size limitations easily allow for NBED strain mapping over multiple
micrometers FOV [54,56], surpassing the limitations of imaging-based
methods. The strain precision of NBED can be as low as 0.1% and is
typically limited by the ability to accurately measure the position of
the Bragg discs. Various methods have been explored to improve disc
position measurements, and most are either limited by the number
of pixels in the detector or the non-uniform disc intensity caused
by dynamical scattering effects [57-59]. These limitations have mo-
tivated the measurement of sub-pixel shifts of the diffraction discs
and the use of structured probe-forming apertures [56,60-64]. The
spatial resolution of NBED is limited by the electron probe size, which
is inversely proportional to the convergence angle that defines the
Bragg diffraction disc size. In order to reliably determine the positions
of the Bragg discs for strain analysis, the discs typically need to be
non-overlapping because overlap makes it difficult for conventional
methods to determine disc positions. Therefore, the non-overlapping
disc criterion limits the maximum convergence angle and the minimum
probe size. Conventional NBED uses highly separated Bragg discs and
< 1 mrad convergence angles to make disc position measurements
easier, resulting in spatial resolutions of 5-10 nm [24]. This can be
improved to around 1 nm by increasing the convergence angle so that
the Bragg discs are slightly non-overlapping [54], but this can reduce
strain precision because the dynamical scattering effects becomes more
apparent.

In order to improve the spatial resolution of 4D STEM beyond con-
ventional NBED and into the atomic-scale, larger convergence angles
are required that result in substantial Bragg diffraction disc overlap.
Additionally, as the probe size is reduced to smaller than the size
of a unit cell, the CBED pattern is highly sensitive to the position
of the probe within the unit cell. One way to simplify these atomic-
scale CBED patterns is to incoherently average them over many probe
positions, for example over one unit cell, to produce a position aver-
aged CBED (PACBED) pattern [65]. PACBED patterns are not strongly
affected by lens aberrations or focus, but are highly sensitive to sample
thickness [65,66], tilt [65], polarity [67], sub-lattice tilts [68], crystal
symmetry [69] and composition [70]. Because of the complexity of
measuring the positions of individual Bragg discs within highly over-
lapped CBED or PACBED patterns using conventional methods, strain
measurements from these patterns have not been reported.

Recently, there has been a growing interest in applying machine
learning (ML) methods to enhance the capabilities of S/TEM [71,72].
Various methods have focused on analyzing PACBED data using con-
volution neural networks (CNNs) to measure sample thickness, tilt,
and crystal phase. [73-75]. ML has also been used to analyze NBED
data containing non-overlapping discs to study deformation [76-78].
Shi et al. [77] utilized unsupervised ML to hierarchically cluster NBED
data to reveal classes of sample deformation, such as strain, rotation,
and corrugation, without the need for a priori structure information.
Although this method is good at identifying classes of deformations
that are present in the 4D STEM data, it does not directly quantify
these deformations. Yuan et al. [76] developed separate CNNs for a
known material structure to independently predict the x sample tilt
direction, y sample tilt direction, x position of a single Bragg diffraction
disc and y position of a single Bragg diffraction disc. This has the
implication of requiring multiple trained CNNs and multiple predictions
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for different Braggs discs to subsequently calculate tilt and strain in-
formation. Their CNN models are trained on simulated diffraction data
that are not simultaneously tilted and strained, presumably limiting the
ability to disentangle the effects from both tilt and strain diffraction
contributions which are common in many real experiments. Munshi
et al. [78] developed a neural network model that predicts the structure
factor of a material from an NBED pattern. This method does not
require a priori knowledge about the material structure because the
model was trained on a simulated NBED library from different crystal
structures, orientations, thicknesses, and microscope parameters. This
model also does not directly quantify the deformations, but requires
subsequent use of conventional methods to measure deformations from
the resulting structure factors.

In this study, we perform a comprehensive simulation study to ex-
plore the viability and performance of individual CNNs that are trained
to directly and simultaneously predict various deformation parameters
from single PACBED patterns of a 2D material. This method does not
require the need to explicitly measure disc positions to access strain
information (like with conventional NBED) but instead is trained to di-
rectly output the full 2D strain tensor simultaneously with the in-plane
rotation and tilt. Our CNNs are trained on a large library of simulated
PACBED patterns that are calculated using combinations of the strain
tensor, rotation, tilt, thickness and electron probe convergence angle in
order to disentangle the effects from all. Simulated PACBED libraries
are necessary for this work in order to have a large enough labeled
training library that precisely and systematically varies all the relevant
parameters (e.g. strain tensor, tilt, thickness). Labeled experimental
data is not a viable option. This work specifically investigates the CNN
prediction performance as a function of electron probe convergence
angle and thickness, a systematic investigation of which is lacking.
In particular, this work explores the possibility of determining defor-
mations using atomic-scale electron probes that create significantly
overlapping Bragg discs. This method assumes that the 2D material
composition and crystal phase are known prior information, but these
assumptions could be alleviated with future work aimed at making
the CNNs more generalizable. Additionally, these CNNs are trained
on deformed single crystalline models without the introduction of any
crystalline defects. Future work could explore training CNNs to predict
deformations even in the presence of defects.

We find that CNNs can effectively predict strain, rotation, and tilt
across a wide range of convergence angles and sample thicknesses, even
for larger convergence angles that are suitable for atomic resolution
STEM imaging. However, there is a trade-off, and to gain the best
performance in deformation prediction, smaller convergence angles are
required. The method is robust to the sample thicknesses explored
here, except when the sample is ultra thin, i.e. monolayers. For ex-
periments specifically aimed at measuring deformations in monolayers,
we suggest excluding tilt which we demonstrate improves strain pre-
diction performance. These results will help guide the optimization of
diffraction experiments aimed at measuring 2D material deformations
by unveiling the expected CNN performance for different experiment
and sample conditions. Furthermore, this method, in combination with
modern 4D STEM experiments, enables future investigations of fast and
robust deformation mapping of 2D materials over large FOVs using
atomic resolution probes.

2. Methods

We begin by introducing the material structure which has to be
specified for simulating PACBED, and then derive the expressions gov-
erning the deformations and the strain tensor. After that, we provide
details of how the PACBED simulations are performed, and illustrate
the impact of convergence angle, thickness, and deformations on the
PACBED patterns. Further, we describe how the training data is pro-
duced. Finally, we provide the specification of the CNN and how it is
trained.
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2.1. Material structure

In this work, we study the trigonal prismatic 2H crystal phase
of molybdenum disulfide (2H MoS,), which is a prototypical TMD
material. We use the smallest possible orthogonal unit cell of 2H MoS,,
instead of the nonorthogonal primitive unit cell. The orthogonal unit
cell has dimensions L, = 3.1613 i\, L, = 54755 [o\, L, = 12.3063 A.
The x, y and z directions are aligned with the zigzag [1100], armchair
[1120] and [0001] crystallographic directions, respectively. The unit
cell contains four molybdenum atoms and eight sulfur atoms that are
organized into two monolayers with the AB stacking sequence in the z
direction. Hence, further unit cell repetition in the z direction maintains
the AB stacking sequence of the 2H crystal phase.

2.2. Deformation model

We consider three unique contributions to the deformations: an in-
plane x-y oriented 2D strain tensor (), a rotation of the lattice about
the z direction (y) (i.e. a rotation in the x-y plane), and a tilt of the
sample relative to the direction of the electron beam (¢, and ¢)) (e
relative to the z direction).

To model strain deformations, we consider strain only in the x-y
plane because there are much fewer interactions between the layers in
the out-of-plane z direction due to the weak vdW bonding and larger
interatomic distances. To derive the 2D strain tensor &, our point of
departure is to define the principal stretches, A, and 4,, which are
scale factors that contract (4; < 1) or expand (4; > 1) the structure
along the principal directions. The principal directions are defined by
the unit vectors e; = (cos 6, sin 0" and e, = (—sind, cos " and provide
a coordinate system that is rotated by an angle 6 counterclockwise
relative to the x and y directions. By convention, 4, > 4,, and they
constitute the largest and smallest stretches in any direction. Given a
counterclockwise rotation matrix R,

cosf —sinf
R= 1
<sin 6 cosb ) ’ )
we calculate the position of a deformed point (x’,)’) from an original

point (x,y) by applying (1) a clockwise rotation R”, (2) principal
stretches 4, and 4,, and (3) a counterclockwise rotation R so that

()-=(s 2)=() @

To arrive at the usual zero-centered strain measures, we define the

principal strains €, = 4, — 1 and ¢, = 4, — 1 (that are zero for no
deformation). From this, we arrive at the symmetric 2D strain tensor
<5xx 5xy> T <£1 0 >
E = = R R, (3)
Exy  Eyy 0 &

where ¢,, and ¢, are the normal strains in the x and y directions,
respectively, and ¢, is the shear strain.

To model the rotation deformations of the lattice about the z
direction, we directly rotate the simulated PACBED patterns. Given our
model for strain deformations, the strain tensor is always symmetric
and therefore does not account for lattice rotation. Further, a rotation
of the lattice by an angle y corresponds to a rotation of the resulting
PACBED pattern by the same angle. Therefore, rotation is easiest and
least computationally intensive to model by directly applying a rotation
with an angle y to the simulated PACBED patterns.

To model corrugation, we include a tilt between the sample and
the electron beam so that the electron beam incidence is not perfectly
normal to the sample surface. This is accomplished using a built-
in function in the PACBED simulation software (see below) which
provides control over this parameter in two directions, ¢, and ¢,. Note
that the tilts are defined relative to the x — y coordinate system of the
undeformed unit cell regardless of strain and rotation.

In this study we set ranges for the modeled deformations to repre-
sent expected maximum deviations for typical freestanding TMD flakes.
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To simulate strain, the two principal stretches are selected randomly
(uniformly) in the range [0.95,1.05] (ascertaining that 4, > 4,). The
angle 0 is selected randomly in the range [0, z] radians. The elements
of the strain tensor, ¢,,, ¢,,, and ¢,, are computed using Eq. (3),
and all three are consequently distributed non-uniformly in the range
[-0.05,0.05]. Note that we provide strain values in % from here on
(hence in the range [-5, 5] %). The rotation angle y is selected randomly
in the range [-10, 10]°. The sample tilt angles ¢, and ¢, are selected
randomly in the range [-5,5] mrad. These parameter ranges could be
easily extended if needed, but this would incur a larger computational
cost in order to sample the deformation parameter space sufficiently
densely.

2.3. PACBED simulations

PACBED patterns are simulated using the frozen phonon multislice
algorithm implemented in the software Prismatic (version 2.0) [79-81],
which accurately captures the dynamical scattering effects in CBED
patterns.

A large pre-strained supercell of atomic coordinates are used as the
input model for Prismatic. For given values of 4,, 4,, and 6, a strained
unit cell is generated by applying the deformation in Eq. (2) to all
the x and y atom coordinates of the original orthogonal unit cell. We
then periodically replicate the deformed unit cell many times in the
x-y plane, and 10 times in the z direction (corresponding to 20 layers).
The resulting model is cropped in the x and y directions to generate a
supercell of size 400 A x 400 A x 123 A, which is used as the input
model for Prismatic.

The selection of probe positions in this case requires special con-
sideration for two reasons. First, the strained supercell will not satisfy
periodic boundary conditions in the x and y directions. This implies that
any probe positions sufficiently near the supercell edge will produce
distorted PACBED patterns because of the periodic boundary conditions
imposed by Prismatic. Second, the probe positions should not follow
a rectangular grid because they need to be evenly spread across the
deformed unit cell geometry in order to not bias the result towards any
part of the crystal structure. Therefore, to overcome these challenges,
we sample the probe positions in the following manner. The relative
probe positions (relative to a unit cell) are arranged in a rectangular
grid that is deformed along with the unit cell. The grid size is 16 x 28
probe positions (i.e. 448 probe positions) within the deformed unit cell
(ensuring that the maximum inter-probe step size distance is < 0.2
A). The absolute probe positions, however, are spread out as much as
possible by placing each probe position in a randomly selected unit cell
within a square center region (of size 200 A x 200 A) of the supercell.
No two probe positions share the same unit cell. This procedure ensures
all probe positions are at least 100 A from the supercell edge while
providing an even distribution of probe positions across the unit cell
geometry (to avoid sampling bias), an even distribution across a large
part of the supercell (to sample local thermal configurations efficiently),
and satisfaction of the Nyquist sampling criterion (for all values of 4,
and 4, that are used).

All simulations are run using an accelerating beam voltage of 80
kV. Each PACBED pattern is computed as an average across 10 frozen
phonon configurations. However, because many more than 1 unit cell
is sampled by the absolute probe positions (see above), each PACBED
pattern effectively averages over many more than 10 unit cell phonon
configurations. All calculations utilize root-mean-square displacements
of 0.07535 A and 0.08856 A for the Mo and S atoms, respectively.
The model thickness along the z direction is 20 layers (10 unit cells)
and PACBED patterns are saved after each layer. A potential space
sampling of 0.15 A is used for all simulations, and given the constant
supercell size, the PACBED reciprocal space FOV is constant throughout
the study. Five convergence semi-angles (from here on referred to
as convergence angles) are investigated, namely 6.35, 12.65, 18.13,
25.44, and 32.94 mrad, corresponding to convenient choices for our
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JEOL Mono NEO ARM 200F microscope. It is important to note that
because of the unit cell averaging used in this study, the best achievable
PACBED spatial resolution for all the convergence angles studied is
1 unit cell. This is true even for the largest convergence angles that
produce sub-Angstrém sized electron beams. A spatial resolution of
1 unit cell is sufficient for characterizing most material deformations
because they typically vary on the unit cell length scale or larger.

Fig. 1 shows simulated PACBED patterns without deformations for
models with eight different sample thicknesses (number of layers / =
1,2,3,4,5,10,15, and 20) and for all five electron beam convergence
angles. These patterns show that for the smallest convergence angle,
the Bragg discs do not overlap, and for increasing convergence angles
the Bragg discs become more overlapped. Additionally, for the thinnest
samples (i.e. / = 1 —5), the Bragg disc intensity is uniform, while for
the thickest samples, the Bragg discs exhibit non-uniform disc intensity
caused by dynamical scattering. Both disc overlap and non-uniform disc
intensity can make it more difficult for conventional methods to locate
disc positions and measure strain, as discussed in the introduction.

Fig. 2 shows unit cell models and their associated simulated PACBED
patterns for different strain tensors and rotations, but without tilts.
This is shown for a sample thickness of 10 layers and two convergence
angles, 6.35 and 18.13 mrad. The illustrated strain conditions are for
pure normal strain ¢, and ¢,,, pure shear strain ¢,,, and pure rotation
y. For all the deformed cases, obvious differences in the PACBED
patterns are observed compared to the unstrained case. For pure normal
expansive strains, such as Fig. 2(b), one can see that expansive strain
in real space causes a decrease in the Bragg scattering angles in that
particular direction of the PACBED pattern. This brings the Bragg discs
closer together along that particular direction, even though the Bragg
disc size remains the same because disc size is determined by the
convergence angle. In contrast, for pure normal compressive strains,
such as Fig. 2(c), one can see that compressive strain in real space
causes an increase in the Bragg scattering angle in that particular
direction of the PACBED pattern. For pure shear strains, such as Fig.
2(d), one can see that shear strain in real space causes an associated
shearing of the Bragg scattering angles that is less intuitive to identify
by eye, but cannot be recreated by a combination of normal strains. For
pure rotation, such as Fig. 2(e), one can see that a rotation in real space
causes the same rotation of the PACBED pattern. All of these effects can
be seen both for the smaller convergence angle where discs are well-
separated and for the larger convergence angle where significant disc
overlap occurs. In addition to changes in the position of the Bragg discs,
the specific strain tensor can also change the intensity within the Bragg
discs, as can be seen more easily for the small convergence case by
comparing the relative intensities of the center disc and Bragg disc. This
effect does not contribute to conventional NBED strain measurements
that rely only on Bragg disc positions.

Fig. 3 shows simulated PACBED patterns of models without strain
and rotation but with different tilts for the same two convergence an-
gles, 6.35 and 18.13 mrad. For the 10 layer thick sample (Fig. 3(a)-(d)),
tilts produce obvious changes in the intensities of the Bragg discs but
do not shift the locations of the Bragg discs. These changes in Bragg
disc intensity are directed along the tilt direction. This effect is intuitive
for small convergence angles where there is an overall shift of bright
intensity within the Bragg discs in the tilt direction. However, while
tilting is still obvious in the patterns for larger convergence angles,
its effect on disc intensity is more complex due to overlapping discs.
For the monolayer (Fig. 3(e)), tilts do not produce obvious changes in
the disc intensities. This indicates that for very thin samples, tilts have
very little effect on PACBED patterns and that prediction of tilts will be
difficult.

By inspecting strain, rotation, and tilt separately, it is easier to
identify how each deformation source uniquely affects PACBED pat-
terns. However, if all of these deformations are simultaneously present
in the sample with different magnitudes, it would be more difficult
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Fig. 1. Simulated PACBED patterns with no deformations for various sample thicknesses (I = 1,2,3,4,5,10,15, and 20 layers) and five convergence angles
(6.35,12.65,18.13,25.44, and 32.94 mrad). All the patterns are split images with the left half in linear intensity scale and the right half in cubic root intensity
scale. The cubic root intensity scaling enhances the low intensity details, which is particularly important for the thin samples. The scale bar in the lower left
panel corresponds to 20 mrad. The FOV is the same for every panel (100 mrad). A qualitative depiction of the colormap is provided at the bottom right.

to disentangle the contributions from each deformation source using
conventional approaches.

For each convergence angle, we run 1000 PACBED simulations with
unique strain and tilt conditions. The final simulated PACBED patterns
are stored in a resolution of 1336? pixels with one pattern for each of
the 20 layers. PACBED simulations are run on dual Intel Xeon Gold
6130 CPUs (32 cores). Each simulation has an average execution time
of ~ 3.8 h and produces ~ 140 MB of data. The code calling Prismatic
is implemented in Matlab (Mathworks, Natick, MA, US).

2.4. ML dataset generation

Datasets for ML are generated separately for eight individual thick-
nesses (number of layers / = 1,2,3,4,5,10,15, and 20) and five con-
vergence angles (6.35, 12.65, 18.13, 25.44, and 32.94 mrad). Each
of the datasets are used to train separate CNN models in order to
study the effect of varying both the thickness and convergence angle.
For each individual case, the 1,000 total PACBED simulations with
varied deformations are split into training (500 simulations), validation
(250 simulations), and test data subsets (250 simulations). This ensures
that the three data subsets have no deformation parameter values in
common, avoiding data leakage and reducing the risk of overfitting.

Each input pattern is generated by randomly selecting a pattern
from the simulation dataset, and performing random transformations
that include rotations, crops, rescaling, translations, noise, and intensity
normalization. As discussed previously, the patterns are rotated by
an angle y, uniformly distributed in the range [—10, 10]°. The FOV is
randomly varied by +6.25 % by cropping the patterns to resolution
(768 + 48)* pixels, resulting in a FOV of 100 + 6.25 mrad, followed by
rescaling to 256> pixels. The patterns are translated with displacements

in both x and y directions, uniformly distributed in the range [—10, 10]
pixels (relative to the final scale and resolution of the patterns). To add
noise to the patterns, we assume that the noise is Poisson distributed
and that the number of detected electrons is proportional to the pattern
intensity in each pixel. To simulate varying exposure times and beam
intensities, the number of simulated electrons is sampled log-uniformly
in the range [10°,50 x 10°]. To approximate the noise behavior of
the fiber coupled CMOS cameras equipped on our JEOL Mono NEO
ARM 200F microscope, we approximate the Poisson distribution using
a lognormal distribution with the same mean and standard deviation.
Future studies could utilize different noise models, such as a pure
Poisson distribution that can be observed with modern direct electron
detectors. Fig. 4 shows simulated PACBED patterns that indicate the
minimum and maximum noise levels used in this study. As a final step,
random intensity normalization is applied so that the mean pattern
intensity is uniformly distributed in the range [0.20, 0.30] (the individual
pixel intensities are then approximately in the range [0, 1]). In some
cases, as will be elaborated upon below, we compute the square root of
the individual pixel intensities before the final intensity normalization
step.

After augmentations, ML dataset sizes are 128,000 patterns (train-
ing), 32,000 patterns (validation), and 16,000 patterns (test). The CNN
inputs are 256° pixel PACBED patterns. The CNN outputs are the
corresponding deformation parameter vectors, either six-dimensional
VeCtors (€,.€,,.€x,.7, by $,), or, as will be elaborated upon below,
four-dimensional vectors (&,,,€,,.&,,.7)-
Matlab (Mathworks, Natick, MA, US).

The code is implemented in
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Fig. 2. Atomic models and simulated PACBED patterns for five different strain tensor and rotation cases without tilts. The sample is 10 layers thick. For each case,
the top panel illustrates the deformed unit cell (black) relative to the original unit cell (red) and specifies the strain tensor and rotation angle. The crystallographic
directions of the unit cell are provided in (a). The middle and bottom panels show the resulting PACBED patterns for the 6.35 and 18.13 mrad convergence
angles, respectively. The cases are (a) no deformation, (b) 10% pure normal ¢, expansive strain, (c) 10% pure normal €,, compressive strain, (d) 10% pure shear
€,, strain, and (e) 15° pure y rotation. The patterns are shown in cubic root intensity scale. The scale bar in the lower left panel corresponds to 20 mrad. The
FOV is the same for every panel (100 mrad).
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Fig. 3. Simulated PACBED patterns for different sample tilt conditions without deformations. (a)-(d) are for a 10 layer thick sample and (e) is for a monolayer.
For each case, the figure illustrates the tilt angles and the resulting PACBED patterns for the 6.35 (upper) and 18.13 (lower) mrad convergence angles. The cases
are (a) no tilt, (b) a pure ¢,, (c) a pure by and (d) a combined ¢, and b, The patterns are shown in cubic root intensity scale. The scale bar in the lower left
panel corresponds to 20 mrad. The FOV is the same for every panel (100 mrad).
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Fig. 4. Simulated PACBED patterns that demonstrate the noise range used in
this study for a 10 layer thick sample for convergence angles 6.35 mrad (upper)
and 18.13 mrad (lower). The images are split, showing the lowest (left) and
the highest (right) noise level. The patterns are shown in cubic root intensity
scale. The scale bar in the lower panel corresponds to 20 mrad. The FOV is
the same for both panels (100 mrad).

2.5. CNN prediction

We use straightforward convolutional neural networks (CNNs) for
predicting the deformation parameters. The CNNs consist of convolu-
tional layers, pooling layers, and fully connected layers. In a convolu-
tional layer, the input is convolved with several convolution kernels
to produce an output. In a pooling layer, the input is downsampled
to decrease resolution. The output from the convolutional and pooling
layers is used by the fully connected layers to compute the final output.
The CNNs here are built up of four convolutional blocks, each with two
convolutional layers and one pooling layer. The number of convolu-
tional filters applied is 32, 64, 128, and 256 for each convolutional
block, with a convolution kernel size of 3 x 3. The pooling layers
output the average of non-overlapping 2 x 2 patches in the input.
After the convolutional part, four fully connected layers with 512, 384,
256, and 128 nodes are used to compute the final output. After each
convolutional and fully connected layer, an Elu activation function [82]
is applied to the output to introduce non-linearities. The convolutional
blocks can be thought of as feature extractors that extract PACBED
pattern information at different scales which are then used by the fully
connected layers to produce predictions. The CNN has approximately
3.5M weights. During training the CNN is optimized with respect to
minimizing deviations from the target output measured by some loss
function [83,84].

The CNNs are trained using stochastic gradient descent (SGD) with
momentum 0.9 [85,86] and a batch size of 256. Data augmentation is
performed on the training data by varying the image mean uniformly
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in the range [0.20,0.30]. The learning rate is increased stepwise from
10~* to 103 and then decreased stepwise again to 10~#, comprising
a total of 4,000 epochs. The CNN is optimized with respect to mean
squared error (MSE) loss,

MSE = ((9 - »)°) )

where y is the target (true) deformation vector and j is the predicted
deformation vector. Note that the average in the MSE loss is computed
across all samples and all individual parameters in the deformation
vector. All parameters are rescaled to the range [—1,1] for training.
Across all epochs, the best-performing model with respect to the MSE
of the validation set is selected. Training is performed on single NVIDIA
A100 GPUs, and the execution time is approximately 60 h for each run.
The networks are implemented in Tensorflow [87].

3. Results and discussion
3.1. Prediction performance

Instead of using the MSE for assessing prediction performance, we
use the more intuitive mean absolute error (MAE),

MAE,' = <|)A7i_yi|>s )

where y; and J; are the target (true) and predicted values of the ith
deformation parameter, respectively. Due to limited space, we cannot
show a performance comparison between training, validation, and
test datasets for all thicknesses, convergence angles, and deformation
parameters. In all cases, the training, test, and validation MAEs are
comparable, indicating that that the models generalize reasonably well
and overfitting is not a significant problem. Therefore, we assess the
prediction performance of the various CNNs using the test datasets.

In order to analyze the prediction performance trends of the CNNs
across the studied sample thicknesses, convergence angles and deforma-
tion parameters, we show the MAE for all CNNs in Fig. 5 and scatter
plots for a selected set of parameters in Fig. 6. The scatter plots show
the true vs. predicted values for three of the six parameters, ¢, v
and ¢,. We do not show scatter plots of ¢,, and ¢,, because they are
both nearly identical to ¢,,. Likewise, we do not show ¢, because it is
nearly identical to ¢,. Further, the scatter plots are only shown for five
thicknesses (/ = 1,3, 5, 10, and 20) and three convergence angles (6.35,
18.13, and 32.94 mrad). It is worth pointing out that the prediction
error is approximately Gaussian, and hence the scatter plots are denser
close to the y = x line than further away. This is not obvious from
the scatter plots, making the prediction errors appear larger than they
are on average. Fig. 5 and Fig. 6 illustrate five clear trends in the CNN
performance.

First, Fig. 5 shows the prediction trends for all the strain tensor
parameters (&,,, €,,, £,) are comparable, and the prediction trends for
both tilt parameters (¢,, ¢,) are comparable. This is expected behavior
and indicates that similar types of deformation parameters are treated
similarly by the CNNs and offer similar difficulties for prediction.

Second, for all deformation parameters, the MAE increases with
increasing convergence angle, highlighting that CNN prediction is more
reliable for smaller convergence angles. This trend is also observed in
the scatter plots where there is a wider scatter plot distribution for
increasing convergence angle. This is not a surprise considering that,
with increasing convergence angle, there is an increasing overlap of
the diffraction discs, making it more difficult to identify the details
of individual discs. However, it is important to note that all of the
deformations can still be predicted with impressive reliability even
for the largest convergence angles where conventional strain mapping
methods are not possible. This indicates that these CNNs could enable
large convergence angle atomic-scale strain mapping, but there is an
obvious trade-off between deformation prediction performance and
probe size.
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Fig. 5. Prediction performance in terms of mean absolute error (MAE) for all convergence angles and thicknesses for the parameters (a) ¢,,, (b) £y (€) £y (d)

7, (&) ¢,, and (f) ¢,. The y axes is in log scale.

Third, as discussed earlier and shown in Fig. 3(e), there is essentially
no tilt information in patterns from very thin samples. This observation
is evident in the poor tilt prediction performance for thin samples
(I = 1-5). For example, the MAE values for tilt prediction of monolayers
is around 2 mrad, which is poor considering that this is 20% of the
total tilt range (+/- 5 mrad). The scatter plots for tilt prediction of
monolayers (Fig. 6(c)) also reveal poor reliability for all convergence
angles. They exhibit the broadest scatter plot distributions and poorest
performance across all the CNN models. However, for I > 5, tilt
prediction is reliable for all convergence angles, with MAE < 0.1 mrad
and narrow scatter plot distributions.

Fourth, for all deformation parameters, the MAE decreases sharply
as a function of thickness for small thicknesses. Indeed, the scatter
plots show broader distributions for the smallest thicknesses. These
observations highlight a significant decrease in CNN prediction perfor-
mance for thin samples, especially monolayers. There are two sources
for the increased errors for thin samples. One source is that for very
thin samples, the intensities of the Bragg discs (which hold all the
information about deformations) are extremely low (as can be seen in
Fig. 1). Hence, for small thicknesses, the Bragg signals can easily be
lost in the noise. This problem is clearly alleviated by increasing the
thickness (at around 5 layers), which creates more elastic scattering
and higher Bragg disc intensities, consequently making deformation
prediction easier. A second source is that the poor tilt prediction
performance for thin samples (discussed in point 3 above) hinders
the prediction of the strain and rotation deformation parameters. The
rescaling of all deformation parameters to the range [—1, 1] removes
biases in the MSE loss function that would otherwise be present due
to vastly different original ranges. However, if there is a substantial
variation in the difficulty of predicting different parameters, the MSE
loss function will still introduce a ‘bias’ in the sense that the stochastic
gradient descent optimizer will focus most of its efforts on reducing
the largest errors, which for / < 5 would generally occur for the tilt
parameters. Therefore, the reduced prediction performance of strain
and rotation for thin samples is partly due to the difficulty of predicting
tilt. Potential solutions to alleviate both of these sources of increased
error in thin samples will be discussed below in Section 3.2.

Fifth, deformation prediction performance gets slightly worse as
thickness increases (i.e / = 15 — 20), with increasing MAE and slightly

broader scatter plot distributions. This increase could be attributed to
increasing dynamical scattering effects with thickness, which create
non-uniform disc intensities and an increased intricacy of the patterns,
overshadowing the deformation information. Indeed, when visually
inspecting PACBED patterns for even larger thicknesses than shown in
this study (up to 164 layers), there are various dynamical scattering
features in the patterns that get entangled with the deformation infor-
mation, suggesting that the deformation prediction errors would likely
continue to increase for larger thicknesses.

It is worth discussing the connection between the error metrics used
here and those of accuracy (the deviation between the true value and
the average of the predicted values for a given true value) and precision
(standard deviation or variance of the predicted values for a given true
value). The usual error metrics in ML, e.g. MSE and MAE, incorporates
both accuracy and precision, meaning that the error cannot easily be
interpreted in terms of accuracy and precision individually. However,
we observe that in most scatter plots (Fig. 6), the trends mostly follow
the line y = x, with the notable exception of tilt prediction for mono-
layers. This indicates that in most cases the prediction performance
(Fig. 5) is limited by precision rather than accuracy. Accuracy and
precision metrics are defined differently in different studies, and this
study analyzes MAE. For this reason we do not attempt to directly
compare these metrics across different studies.

3.2. Improving prediction performance for monolayers

We explore two routes towards improving the prediction perfor-
mance of thin samples (/ < 5) that are motivated by the two sources
for the increased errors for thin samples identified above. In Fig. 7, we
illustrate the improvement in the prediction performance in terms of
MAE of these two routes for the 6.35 mrad convergence angle and for
thicknesses / < 5, and in Fig. 8 we illustrate the improvements from the
first route with scatter plots for a monolayer (I = 1).

The first route is to train CNNs to only predict strain and rotation de-
formation parameters and not tilt. This is motivated by the observation
that the CNNs have severe difficulty predicting tilts for thin samples,
affecting prediction of the strain and rotation deformation parameters
as well. Fig. 7 reveals that there is a substantial reduction in error
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Fig. 6. Scatter plots of the true (x axis) vs. predicted (y axis) values for three of the six deformation parameters: (a) ¢,,, (b) 7, and (c) ¢,. Due to lack of space,
and we do not show the scatter plot for ¢, because it is nearly

we do not show the scatter plots for ¢, and ¢,, because they are both nearly identical to e
identical to ¢,. Further, results are shown only for a subset of the thicknesses and convergence angles.

when removing the tilt parameters from the training (black curve vs.
red curve), proving that a major difficulty in predicting the strain and
rotation parameters for / = 1 is simply due to the presence of the tilt

xx?

parameters in the same loss function. To a much smaller degree, the
same holds for / = 2 — 5. Fig. 8 shows scatter plots of the true vs.
predicted values for these four deformation parameters when including
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Fig. 8. Scatter plots of the true (x axis) vs predicted (y axis) values for the strain and rotation deformation parameters: (a) ¢,,, (b) £y (C) £yys and (d) y. Scatter
plots are shown for the CNNs trained to predict all six parameters (top) and the CNNs trained to predict only the four strain and rotation deformation parameters
(bottom). Scatter plots are shown for convergence angle 6.35 mrad, only monolayer (/ = 1), and a linear intensity scale.

(top) and not including (bottom) tilt prediction, revealing a noticeably
narrower distribution when not including tilt prediction.

The second route is to train CNNs on PACBED patterns with nonlin-
ear intensity scaling. This is motivated by the observation that for thin
samples, the intensities of the Bragg discs are extremely low. As can
been seen in Fig. 1, the use of a nonlinear intensity scaling can be used
to more easily see low intensity features in the patterns. To this end,
we generate training data with a square root intensity scaling, which
effectively compresses the pattern intensities by reducing contrast be-
tween the Bragg discs and center disc. The idea is that in this manner,
CNNs can extract more deformation information. Indeed, as seen in Fig.
7, the square root intensity scaling provides a small improvement in
prediction performance for / = 1, but has a much smaller impact on
prediction performance compared to the first route. For / = 2—5, there is
no consistent improvement at all. This indicates that nonlinear intensity

10

scaling is a promising approach to improve prediction performance, but
only for monolayers.

3.3. Generalization and extensions

Performing PACBED simulations requires specifying parameters
both for the material, such as composition, crystal phase, and thickness,
and for the experiment, such as electron beam energy, convergence
angle, and diffraction field of view. This requires detailed prior infor-
mation to train CNN prediction models. In this study, we kept some
parameters such as beam voltage, material composition and crystal
phase constant to simplify the study and isolate the impact of changing
individual parameters on prediction performance. We cannot expect the
CNN prediction models to generalize to new electron beam conditions
or new materials.
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Hence, the CNN prediction models are only as generally applicable
as the data they are trained on, and there are two possible solutions
to this limitation. First, CNNs could be trained to cope with a larger
number and range of different electron beam and material parameters,
e.g. convergence angle and thickness. Alternatively, a larger number
of separate and more specific prediction models could be trained for
different electron beam conditions and materials. Concerning the con-
vergence angle, it is typically well known a priori, so it is feasible
to utilize the second solution and train a CNN for a single specific
convergence angle. However, sample thickness is generally not known a
priori, so both solutions could be utilized. First, a CNN intended for real
use could be trained on a range of thicknesses, while recognizing the
fact that including a ‘difficult’ thickness i.e. monolayers might be detri-
mental to the overall performance. The second solution is to determine
the thickness (using e.g. PACBED or electron energy loss spectroscopy)
before deformation prediction and use this prior information to select
a suitable CNN that was trained on simulated data from the correct
thickness.

Regarding the first option, given that PACBED patterns can be sim-
ulated for a larger parameter range, a single CNN can, in principle, be
trained to predict deformation parameters regardless of this extension.
However, because including some of these parameters could consider-
ably compromise prediction performance, the inclusion of more param-
eters could decrease the overall performance. Furthermore, extending
the ranges of the deformation parameters could eventually decrease the
overall prediction performance if extreme deformations are included.
Regarding the second option, since each of these specialized models
would require a set of prior information (i.e. beam and material infor-
mation) in order to select the suitable model, this solution could be
organized into a hierarchical system. It could be composed of operator
decisions, additional analysis steps, and other CNNs that provide the
required prior knowledge.

In this work, although averaging is performed over unit cell sized re-
gions, exploring the use of sub-Angstrom sized probes is still of interest
for two reasons. First, most STEM experiments use atomic scale probes
for imaging and spectroscopy, and when deformation information is
desired, it is often beneficial to collect both atomic resolution images
and NBED data. Furthermore, it is tedious to switch between atomic res-
olution STEM imaging conditions and conventional NBED deformation
mapping conditions. Additionally, it is ideal to collect registered atomic
resolution images and diffraction deformation maps from precisely the
same areas. This work demonstrates that the same atomic scale probe
can be used to perform standard atomically resolved imaging and
diffraction deformation mapping. Furthermore, in principle, the two
can be done simultaneously by post-processing a single 4D STEM data
set. Second, sub-unit cell PACBED averaging is an intriguing method
for extracting sub-unit cell information, as has recently been explored
for thickness measurements [74]. Measuring deformation information
from sub-unit cell regions (e.g. individual atomic columns) could be
a powerful method for measuring very local deformations around e.g.
point defects and surfaces. This work of using atomic scale probes for
diffraction deformation measurements constitutes an important step
towards this idea.

There are numerous directions to pursue for future work. First, the
study would benefit from investigating the prediction performance for
different diffraction fields of view. Second, it would be of interest to
train separate networks for strain, rotation, and tilt to likely obtain
better overall performance. To explore this while reducing the need
for computational resources, it could be efficient to train a network
on predicting all parameters. Then, using a transfer learning approach,
let several instances of that network specialize towards predicting indi-
vidual parameters. Third, given the indication that nonlinear intensity
scaling might be beneficial, it could be beneficial to implement a more
general parameterization of a nonlinear scaling as a first layer in the
CNN. This training would then learn to optimize the scaling parame-
ters. Fourth, the CNNs in this study were trained on deformed single
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crystalline models without the introduction of any crystalline defects.
Future work could explore training CNNs to predict deformations even
in the presence of defects. Finally, the current investigation is limited
to determining 2D strain tensors. Extending this capability to explore
prediction of the 3D strain tensor is relevant to many materials.

4. Conclusion

We have performed a comprehensive simulation study on the per-
formance of PACBED combined with CNNs for predicting the local 2D
strain tensor, rotation, and tilt of thin 2D materials. We study 2H MoS,
as an example. For five convergence angles ranging from conventional
NBED conditions (6.35 mrad) to atomic resolution conditions (32.94
mrad), and eight thicknesses ranging from 1 to 20 layers, we have
simulated 100,000 PACBED patterns with varying strain, rotation and
tilt parameters. We train CNN models to simultaneously predict all
these deformation parameters and study the prediction performance
as a function of convergence angle and thickness. In general, we find
excellent prediction performance across all conditions, but there is a
trade-off between better prediction performance (small convergence
angles) and probe size (large convergence angles). For smaller conver-
gence angles like those used for conventional NBED conditions, the
strain prediction error can be as low as 0.0003%, while for larger
convergence angles like those used for atomic resolution probes, the
strain error increases to 0.001-0.003%. The better prediction perfor-
mance for small convergence angles is likely due to reduced overlap of
discs in the PACBED pattern. The impressive prediction performance
even for large convergence angles suggests that PACBED combined with
CNNss is a feasible method for predicting deformation parameters using
atomic resolution electron probes. For monolayers, we show that the
prediction of strain and rotation improves considerably when excluding
tilt prediction in the same model. This is due to the CNNs focusing
on the parameters that are most difficult to predict, which for thin
samples are the tilt parameters. For the tilt ranges we study here,
there is negligible effect of tilt on PACBED intensity for monolayers.
To a lesser extent, we demonstrate that for monolayers it can be
beneficial to use a nonlinear intensity scaling of the images in the
training data. In our case, we used square root scaling, which gave a
consistent improvement across parameters for monolayers. This work
demonstrates that PACBED combined with CNNs is a viable method
for pushing the limits of measuring deformations with low errors and
high spatial resolution for a wide range of convergence angles and
thicknesses. Furthermore, this study will help guide the design of
PACBED experiments for measuring deformations in 2D vdW materials.
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