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ARTICLE INFO ABSTRACT
Keywords: We introduce a new model of random tree that grows like a random recursive tree, except at
Random tree some exceptional “doubling events” when the tree is replaced by two copies of itself attached

Random recursive tree to a new root. We prove asymptotic results for the size of this tree at large times, its degree

distribution, and its height profile. We also prove a lower bound for its height. Because of the
doubling events that affect the tree globally, the proofs are all much more intricate than in the
case of the random recursive tree in which the growing operation is always local.

1. Introduction
1.1. Model and motivation

In this paper we consider a variant of the random recursive tree, with what we call doubling events. Recall that the random
recursive tree is a process of growing random trees where, at each step, a new leaf is added to a node chosen uniformly at random,
starting from a single root node. In our process, we also randomly grow a tree by selecting a uniformly random node at each step,
and similarly to the random recursive tree, a leaf is added to that node unless it is the root of the tree. If the randomly chosen node
is the root, however, a doubling event occurs, which means that we replace the entire subtree of the root with two copies of itself.
See Fig. 1 for an illustration; a more formal description of the process, using the Ulam-Harris framework, is given below.

This model was introduced to us by Olivier Bodini, who asked whether we could get some information on the size of the tree at
large times (one of our main results is to show that it is linear in the number of steps). Bodini sees this model as a simplification
for a more intricate model in which, at every time step, we pick a node v uniformly at random and replace it by a new node whose
two subtrees are two copies of the tree rooted at v. In other words, doubling events happen not only at the root, but everywhere in
the tree. Bodini would eventually like to understand the size of this doubling tree after » steps: in our last result we prove that, in
expectation, this size is superlinear in »n (see Proposition 5.1).

We now recall the Ulam-Harris notation for trees, and define our process using this framework. A tree 7 is a set of finite words
using the alphabet {1,2,3, ...} such that, for all w € 7, all prefixes of w are also in . That is to say, if w = w w, ...w,, € r, with
each w; € {1,2,3,...}, then w w, ... w, € 7 for all k € {0,1,...,m}. Each element w € 7 is called a node or vertex of r, and the
empty word @ is called the root. The number of nodes in a tree 7 is denoted |z|, while if w,w, ... w,, € r is a node then |w| :=m
denotes its length as a word, and is also called its height. One can see a tree as a genealogical structure: the prefixes of a word are
its ancestors, the longest of its prefixes is its parent, the other children of its parents are its siblings, etc.

We now formally define the random recursive tree with doubling events. We define the sequence of random trees (z,),>; by
setting 7, = {@} and for all n > 0, given 7,,
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Fig. 1. Steps in the construction of a random doubling tree. The root is drawn grey and, at each step, the randomly selected node is circled in
red. In the first and fourth steps, the selected node is the root and a doubling event occurs. At the other steps, a non-root node is selected and a
leaf is added to that node. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

+ we pick a node (i.e. word) v, uniformly at random among the nodes of z,,
«ifv,=0@,thenwesetr,, ={@lu{lw:wer,}u{2w:wer,},
- if v, # @, then we set 7,,; =7, U {v,j}, where j =min{i > 1:v,i & 7,}.

In words, this means that each time the randomly chosen node v, is the root @, then 7, is the tree whose root has two children
at which are attached two copies of r,, while if v, is not the root then 7, equals z, with one child added to v,.

1.2. Main results

Our first result gives an estimate for the size of the tree as time goes to infinity: for all n > 0, we let B, be the number of non-root
nodes in the tree (B, = 0) at time n. Note that |z,| = B, + 1, for all n > 0. Parts (b), (c) and (d) in the following result are simple
consequences of part (a); we only state them for clarity.

Proposition 1.1 (Asymptotic Size).

(a) Forall k > 1,

k . k
K . O W i-1
E[(B,/n)] — m, ._g<1 -+ ) = g(l +5 ) (1.1)
(b) The sequence (B,/n),, is tight.

(c) For any sequence (w(n)),»o such that n = o(w(n)), B,/w(n) — 0 in probability as n 1 co.

(d) For any n > 0, B,/n'*" — 0 almost surely as n 1 co.

Remark 1.2. This result comes close to, but does not quite reach, establishing weak convergence of the sequence (B, /n),;. Indeed,
if we knew that there was a unique probability measure  on [0, co) whose moments are the sequence (m;),>, then weak convergence
would follow from standard compactness arguments. The most famous condition for uniqueness is Carleman’s criterion, which states

that y is unique provided Y., mzl/ ** = 0. In our case, however, this condition is not satisfied.

Our second main result says that the degree distribution is the same as for random recursive trees (without doubling):

Theorem 1.3 (Degree Distribution). For all i,n > 0, let U;(n) be the number of nodes in z, that have exactly i children. Almost surely as
nt oo,
U;(n) 1

- —.
|T"| 2i+1

The equivalent result for the random recursive tree is due to Mahmoud and Smythe [1] (see also [2]), who also prove that
the fluctuations are Gaussian. The fact that the asymptotic degree distribution is the same as in the random recursive trees can be
expected from the observation that, except at doubling times, the tree does grow like a random recursive tree, while at doubling
times the degree distribution stays roughly unchanged. In the case of the random recursive tree, one can use standard results for
Pélya urns since, for all m > 1, the vector (U,(n),...,U,,_,(n), ZiZm U;(n)) is a Pélya urn. In our case, because of the doubling steps,
we no longer have a Pélya urn. Instead we use stochastic approximation methods, which are also classical in the context of urns;
see [3] for a survey on stochastic approximation, and [4,5] for books on the topic.

Our third main result concerns what is called the (height) profile, i.e. the joint distribution of the heights of uniformly random
nodes:



J.E. Bjornberg and C. Mailler Stochastic Processes and their Applications 192 (2026) 104790

Theorem 1.4 (Height Profile). For all k,n > 1, given t,, let u), ... ,u’’ be k nodes taken uniformly, independently at random in ,. Then,
in distribution as n 1 oo,

2logn (k) 2logn

luy| = s [y’ | = s
1+log2 n 1+log?2
e > VW,V + W),
/ logn [ logn
1+log 1+log2

where V is an almost surely finite random variable, and W, ..., W, are i.i.d. standard Gaussian, independent of V.

It is interesting to compare this result to its equivalent for the random recursive tree: in the case of the random recursive tree,
it is known that

(|u;”|—1ogn ul’| - logn

(See Devroye [6] and Dobrow [7] for convergence of the marginals, and [8] for the joint convergence.) Perhaps as expected, the
height of a typical node in the doubling tree is larger than in the random recursive tree (l+lig 5 logn > logn). Interestingly, the
doubling events add some dependencies between the height of i.i.d. nodes (these dependencies are expressed in the random variable
V in the limit).

Note that the height profile of random trees is the object of interest of a large amount of literature: see, e.g., Drmota and
Gittenberger [9] for the Catalan tree, Chauvin, Drmota and Jabbour-Hattab [10] and Chauvin, Klein, Marckert and Rouault [11]
for the binary search tree, Schopp [12] for the m-ary increasing tree, Katona [13] and Sulzbach [14] for the preferential attachment
tree, and the very recent universal result of Kabluchko, Marynych, and Sulzbach [15]. All of these papers use a martingale method
that dates back to Biggins [16] in the context of branching random walks; as far as we know, this method does not apply to our
setting because the doubling events remove the branching property that is crucial to this approach. Also, our result is, as far as we
know, the only one to show some dependence between the marginals in the limit: we will see in the proof that the dependent term
V does come directly from the doubling events, which dramatically impact the shape, and thus the height profile, of the whole tree.

To supplement our result on the height profile, we also prove the following lower bound on the height H, of the tree 7, itself,
i.e. the maximal height of a node:

):(Wl,..‘,Wk).

Proposition 1.5 (Lower Bound on the Height). Let H, denote the height of ,. Almost surely as n — +oo,

1+e
02 m -logn + o(log n).

Note that this lower bound is strictly larger than % log n, the order of the height of a typical node as given in Theorem 1.4,

which is as expected. Again, it is interesting to compalrel ﬁ'fis result to the equivalent in the case of the random recursive tree, which
is due to Pittel [17]: in the case of the random recursive tree, H, /logn — e almost surely as n 1 0. Because (1+e¢)/(1+log2) < e, our
lower bound does not allow for any definite comparison between the height of the doubling tree and that of the random recursive
tree. We leave this as an open problem.

The rest of the paper is organised as follows: in Section 2, we prove Proposition 1.1 as well as some asymptotic results on the
times at which doubling events happen, which are used in the rest of the paper. We prove convergence of the degree distribution
(i.e. Theorem 1.3) in Section 3, convergence of the height profile (Theorem 1.4) and the lower bound on the height of the tree in
Section 4. Finally, Section 5, we look at the original model of Bodini in which doubling events happen at all nodes and not only at
the root, and prove that, in expectation, the size of the tree is superlinear.

2. Asymptotic analysis of the number of nodes and the doubling times

In this section, we prove Proposition 1.1, and state and prove a number of preliminary results which will subsequently be used
in the proofs of our other main results.

2.1. Asymptotics of the number of nodes

The aim of this section is to prove Proposition 1.1. We start with the following lemma:

1
n>0 B_n

Lemma 2.1. Almost surely, Y,

= 0.

Proof. This follows from Lévy’s extension of the Borel-Cantelli lemma (see, e.g. [18, 12.15]). Let 7, denote the s-algebra generated
by 7. ...,7, and let D, be the event that v, = @, i.e. at time n we pick the root of the tree. By definition of the model, for all n > 0,
1 1

PD,IF) = o] B,+1
n n

On the event that )’ ., BL < o0, we have that, almost surely,
- n

1 1
ZP(Dann): Zm S,géfn < oo,

n>0 n>0
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which implies that, almost surely, there exists n, such that, for all n > n,, D, does not occur. Then

ZP(D |T’)>Z B, +1 _Z B, +n—n0=oo'

n>0 nxngy n>ng

This contradiction means that [P(Zpo — < o0) =0, as required. []

1

Remark 2.2. In fact, we will prove later that A N —_
logn ~i=0 B 1+log2

(see Remark 4.5).

in probability as n — oo (see (4.10)) and in fact almost surely

Proof of Proposition 1.1. We start with (1.1); as we explain below, the remaining claims are simple consequences of the
convergence in (1.1). We proceed by induction on k > 1. First note that, if we let 7, = ¢(B,. ..., B,), then

1

E[B,|F,) = 5 (B, +1)=B,+2

n
Indeed, with probability 1/(B, + 1) a doubling occurs, in which case B,,; = 2B, + 2, while with probability 1/(B, + 1), we just add
one non-root node, i.e. B,,; = B, + 1. Thus E[B, ] = E[B,] + 2, which implies E[B,] = 2n for all n > 0. This concludes the proof of
(1.1) in the base case k = 1.

For the induction step, we assume that (1.1) holds for all # < k. Now note that, for all n > 0,

E[B*, | F,1= . @B, +2)fF + —2 T (B, + D = (B, +2%)(B, + D¥!
n

B, +1 X

S (k-1 Sl(k-1 k-1
= (B, +2* ' )B? = B* - 267 BY + 2k
(n+ )fg()( f ) " n+f§] Lﬂ_l ’ f "+ ’

which implies

E[BY, 1=E[B] + 2 [( 1> +2k<k; 1>]E[Bf]+2".

This implies that, for all n > 0,

k—1
k-1 k-
E[Bf]:l+;:‘1[<f_l>+2"< )]ZE[B"]+(n+1)2"

By the induction hypothesis, for all # < k, E[Bf] = (m, +o(1))n’ as n 1 co. Thus, for all # < k, we can write IE[Bf] = (my + (i, O)i¥
where €(i,#) - 0 as i —» oo, and obtain

c o - . _ (1+0(1)) ev1l S INE oy Mo,
;E[Bi]—gl (my, +€(i,0))=m —f+1 +n ng(") 6(1,f)——f+1 n“*,

since % Zlf’:O(ﬁ)fs(i, ¢) — 0. In total, we thus get that

_ k
]E[B:] = <% +0(1)>nk

Using the expression m,_; = 2]} (1 - % + 271), we get

E[Bk]NanH< ——+ 2’)
1

as claimed, which concludes the proof of (1.1).
Tightness follows from the fact that E[B, /n] — 2: indeed, by Markov’s inequality, for any K > 0,

sy, E[B,/n
supP(B,/n > K) < p"ZO—["/].
n>0 K

Because E[B, /n] — 2, we have that sup,, E[B,/n] < co, and thus, for all £ > 0, there exists K = K(¢) such that sup,,,P(B,/n > K) <
g, as desired.
Now let (w(n)),»o be a sequence such that n = o(w(n)) as n 1 oo; for all € > 0,

B, _of Bi | g0 ELB,/n]
IP)(oo(n) >£) _P< n > n > < ew(n)/n 0

as n 1 oo, as claimed. Finally, fix n > 0 and choose an integer k such that k# > 1. For all € > 0, by Markov’s inequality,

k
IP( ?,, >g> < E[(B,/n) ],

nl+n eknkn

which is summable because (E[(B, /”)k])nzo is convergent and thus bounded. By the first Borel-Cantelli lemma, this implies that
B, /n'*" converges almost surely to 0, as claimed. []
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2.2. Asymptotics of doubling times
We now consider the number of doubling events before time n, i.e. the random variable
n
k() ==Y 1, g 2.1
i=1
The following results will be useful in the proof of Theorem 1.4.
Proposition 2.3. Asn 1 o,

logn
1+log2

ylogn

(1+log2)3/2

Kk(n) —

= N(0,1).

Remark 2.4. Using the continuous-time embedding in Section 4.3 (see Remark 4.5) one can also show that

K(n) 1
- >
logn 1+1log2

almost surely as n — oo.

We define the sequence (s,),5o of doubling times as follows: sy = 0 and, for all n > 0,
S,e1 =min{k > s, v = @}

To prove Proposition 2.3, we start by looking at the sequence (s, B, ),»o- To simplify notation, we set C, = B, and we set
As,1 = S,,1 — S, for all n > 0. Note that, by definition, for all n > 0, for all x € {0,1,2,...},

C, C+1 C+x-1_ C,
C,+1 C,+2 C,+x  C,+x

P(4s,4y > x|s,,C,) =

Equivalently,

X

P(4s,,1 < x|s,,C,) = C i~

Thus, if (U,),»; is a sequence of i.i.d. uniform random variables on [0, 1], then for all n > 0,

U,..C
A5, = [ﬁ] (2.2)

n+l

where = means equality in distribution. Furthermore, because, at time s,,; — 1, the number of non-root nodes in the tree is
C,+ 4s,,; — 1, we have

_ _ i Un+1Cn
Co1=2(C,+4s,, 1 —1D+2=2C,+4s5,,)=2(C, + —uv. |/ (2.3)
— Y+l

In what follows, we treat the distributional equalities in (2.2) and (2.3) as actual equalities, in other words we replace the random
variables s, and C, with distributional copies satisfying these equalities.

Lemma 2.5. In distribution as n 1 oo,

<logCn — (1 +1log2)n logs, —(1+log2)n
i

where N ~ N'(0,1) is a standard normal random variable.

) = (N, N),

Proof. First note that, by (2.3), for all n > 0,

U,..C 2C,
C,H.] > 2<Cn + n+1%n > - n )
1=Upyy 1-U,yy
By induction, we thus get
S T
c, 227, [ ——=2"T] —. 2.4
"= lgl—U,. I:!I—U,- 249

because, by definition, s; = 1 and C; = B, = 2. On the other hand, (2.3) also implies that, for all n > 0

S1

U, C C
C 1sz(c +M+1>=2<—"+1>.
" ! l_UVH-l 1_l]n+1

By induction, we thus get
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n+1 n n+l

Cns2nilclﬁ1 +22n+2 kH :2nH1 +Z2n+2 kHl_
i i=2
n+1 — n
<2”+22"+2 ") L 2"<1+Z(1/2)">H 1 <2"<1+Z(1/2)">H—
i 1-U; pout 2 1-U;

i= k>1

1
— 2n+l . (25)
M

In total, we have thus proved that

n

1 H 1
<C <2n+1 S

-U, - "~ ,-=21_Ui

n

2”1'[1

i=2

which implies that, as n 1 o,

logC, —n10g2+210g<
i=2

Next, by (2.2), for all n > 0,

U, C,
Syl =S, + %
— Yntl

1
7 ) + o). (2.6)

which implies, by induction,
Ui Cy_y n 1 1
S>Sl+zl—Uk_ >2" UH
where we have used (2.4). On the other hand, using (2.2) again we get that, for all n > 0,
Un+lCn

Sn_HSSn-Fw'Fl,

n+1

which implies, using induction and (2.5), that

n U.C n k 1
kCk—1 k
sy <+ Y DG <y kg, [T -
k=2 1-U; k=2 i=2 -1

Now, because U; € (0, 1) almost surely for all i > 1, we get

n n=2 n
s, <n+2" (H ﬁ) 2(1/2)" <n+2" <H ﬁ) 2(1/2)" =n+ 2! H

i=2 k=0 i=2 k>0

In total, we have thus proved that for all n > 1,

n
1 SS,,S"+2"+1H—
U; i=21_

n
-y
11 —

which implies that

S 1
1 =nlog2 1 od . 2.7
ogs, =nlog +Z;‘0g(1—U,->+ (log n) 2.7)
Applying the central limit theorem applied to the sequence of i.i.d. random variables (log(1/(1 — U)));»;), which have expectation
and variance both equal to 1, the result follows from (2.6) and (2.7). [J

Proof of Proposition 2.3. The argument is inspired by standard arguments in renewal theory, with s, playing the role of the time
of the k’th renewal and «(n) the number of renewals up to time n. By definition, for any k € N, we have that x(n) > k if and only if
s, < n. Now, for any x € R,

x(m) = 11:)1“2
P(Tn"g > —x) = P(k(n) > k,(x)) = P(s; () < 1)

(1+log 2)3/2
where

T EETR T

I+log2  (1+log2)3/2 |

But

log sy () — (1 +log 2)k,,(x) < logn — (1 +log 2)k, (x) )
Vka(x) - V()

6

Psg,0 <m) = IP’(
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and as n —» oo we have k,(x) - o and
logn — (1 +1log2)k,(x)
- X

Vk,(x)

Thus by Lemma 2.5, with @ the cumulative density function of the standard normal distribution,

P(sg, () S 1) = @) = 1 = D(=x),

as required. []
3. The degree distribution: proof of Theorem 1.3

The proof of Theorem 1.3 is based on stochastic approximation, specifically the following result, attributed to Robbins and
Siegmund [19]:

Theorem 3.1 (e.g. [5, Theorem 1.3.12]). Suppose that (V (n)),50, (@,);500 (Bp)us0, and (v,,),s0 are four non-negative sequences adapted to
a filtration (F,),s and satisfying, for all n > 0,

EV(n+ DIF,]1 <+ )V ) = f, +7,

Then, on the event that ano a, < o and ano ¥n < 00, we have that, almost surely, (V (n)),5( converges to a finite random variable, and

ZVIZO ﬁn < .

Proof of Theorem 1.3. Recall that U;(n) denotes the number of nodes in 7, that have exactly i children. We fix m > 1 and let, for
all0<i<m,

U;(n) ifo<i<m-1
X, () =
ijm Uym ifi=m,

and set
X;(n)

)2"(")=B +1
n

By definition, forall 0 <i<m—1, X ;(n) is the proportion of nodes having i children in 7,. Let us set AX;(n + 1) = X;(n + 1) — X;(n)
and 4B, =B, — B,. Forall 0 <i <m, for all n >0,
X,(n) + AX;(n+1) B,+1  AX;(n+1)
Bn+1 +1 Bn+l +1 Bn+1 +1
1
B, +

n+1 1

Xi(n+1)= = Xn)-

= X;(n)+ (AX;(n+ 1) — AB,,1 X;(n)).

Note that, by definition of the model, with probability 1/(B, + 1), we pick the root and double the number of nodes with i children

(for all i > 1) and add one node with two children, whilst, with probability B, /(B,+1), we pick a non-root node uniformly at random

and increase its number of children by one (in this case, with probability X ;(n), the number of nodes with i children decreases by

one, and with probability X ,_1(m), it increases by one). Hence, forall 1 <i<m-1,

1 X 1 B,

B 41 KiWH L)t e

iz + Xi(m) = Xy (n)
B, +1
Similarly, in the case when the tree does not double, the number of leaves (nodes with 0 children) always increases by one, except
if the node we have picked was itself a leaf. Hence

E[AX,(n+ DIF,] = Xz () = X ()

. 1
=X;_1(n)+

1— Xo(n)
B,+1 ~

B, R
- Xo(n) + - (1= Xy =1~

B, +

E[4Xy(n+ DIF,] = B;H
n

Because Y X;(n) = 1, we can write

3 Ri(n) - 1= Xolm
i=0

E[4Xy(n + DIF,]

B, +1
Finally,
1 n O v v X’"—l(n)
E|AX,,(n+ D|F,| = XM+ — X, n)=X,n)+X,_(n)— .
[ m Vl] Bn+1 m Bn+1 m—1 m m—1 Bn+1
Note that, also,
E[AB,,|F,] = L B, +2+ -2 =2
ntlTnl =g 1 B, +1 =
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Introduce, for all 0 <i < m,

AM;(n+1) = AX;(n+ 1) = AB,,, X,(n) ~E[AX,(n + 1) — 4B, | X,(n)|F,],
and set, for all x = (xg, ..., x,,) € R"1,

m .
2 xi—xg ifi=0,

Fi(x) = 9x;_; —2x; ifl<i<m-1,
Xpel — X ifi=m.
Also let
| —(1 = Xy(n)) ifi=0,
gn+1)= i Lo+ Xm—X,_ () ifl<i<m-—1, (3.1)
! —X,_1(n) ifi=m.

Using the above, we can write
Xn+1)=X,(n)+ _1 (F,(X(m) + AM;(n+ 1) + g;(n+ 1)), (3.2)
Bn+1 +1
We write (3.2) as an identity on vectors:
X(n+1) =X+ ﬁ (F(X(m) + AM(n + 1) + e(n + 1)). (3.3)
n+1

Now, because B, is not F,-measurable, we re-write this as

" ™ 1
X+ 1) =X+ 3

n

. (F(X(m)+ AM(n+ 1) + e(n + 1))

Bn+l B Bn Y(n+1)
B, + DB, +1) T
where we have set
Yn+1)= FXm)+AMn+1) + e(n+ 1). (3.4)
In total, this gives
X(n+ 1) =X+ 3 1+ ; (FXm)+ AM(n+ 1)+ n(n + 1)), (3.5)
where
n+D=emn+1 AB, Y(n+1 (3.6)
nn ) =é&n ) m n ) .

This recursion is of the form of a stochastic approximation. However, the step sizes (1/(B, + 1)),5 are random, and we have a
random error term (5(n + 1)),5(. Because of these two reasons, we cannot apply a theorem directly from the literature, but need
instead to write a specific argument. We now let v; =27"~! for all 0 < i < m— 1 and v,, = 2. One can check that F(v) = 0; in fact,
for all x € RY, F(x) = Ax, with

-1 1 1 1
1 -2 0 0
A= O ! . .
: X 1 -2 0
0 B 1 -1
and one can check that the largest eigenvalue of A is 0, it is a simple eigenvalue with eigenvector v, the unique one with non-negative
coefficients and satisfying Zl'.":o v; = 1. We thus have (write || - || for the L? norm on Z"*1), for all n > 0,
X+ 1) = ol> = |1 X(n) - ol* + 3 2+ : (X(n) — v, AX(n) + AM(n + 1) + n(n + 1))
n
1 0 2
+———|[AX(m)+ AM(n+ 1)+ n(n+ 1)||°. (3.7)
! I

We use the triangle inequality and the fact that (x + y)?> < 2x* +2)? for all x,y € R, to get
IAX () + AM (n+ 1) + n(n + D> < 2| AX W) + 2| AM (n + 1) + n(n + D||?
<20 AX (1) = 01> + 4| AM (n + D] + 4{ln(n + D]1?
<20 AIPIX (n) = vll> + 4| AM (n + D> + 4lIn(n + DI, (3.8)
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where || A|| is the operator norm of A. Before proceeding, we show that there exists a constant C > 0 such that

sup [AM(n+ 1) <C and supllp(n+1)|| < C. 3.9
>0 >0

Indeed, first recall that
AM(n+1) = AX(n+ 1) — AB,,; X(n) — E[4X(n + 1) — AB, .1 X(0)|F,].

On the event that the tree doubles at time n+ 1, we have (with e, = (0,0, 1,0, ...,0)"; to be consistent with X(n) = (X,(n), ..., X,,(n)),
we let ey =(1,0,0,...,0), e; =(0,1,0,...,0), etc)

AX(n+1)— AB, . X(n) = X(n) + 2¢, — (B, +2)X (n)
= X(n) — (B, + DX (n) +2e, — X(n) = 2¢, — X(n),

which implies [|[AX (n+ 1) — 4B, X()|| < 3 (because [ X(m)||> < X1, X;(n) = 1, as X (n) has non-negative coefficients that sum to 1).
On the event that the tree does not double at time n + 1,

AX(n+1) = 4B, Xl = [|AX(n + 1) = Xl < [[AX (n+ D]l + 1,

and ||AX (n+ 1)|| is bounded by the maximum of the norms of the columns of A + I, which is a constant, which we let K denote. In
total, we thus get that

lAX(n+1)— AB,  X(m)|| < K +3,

for all n > 0, which implies that sup, [|AM (n+ 1)|| < 2(K + 3). We now prove that sup,q [|[7(n+ 1)|| < o (see (3.6) for the definition
of n(n+ 1)). First note that, by definition (see (3.1) for the definition of £(n + 1)),

4

Fhls——<
e+ DI < 5=

Thus, by the triangle inequality (see (3.4) for the definition of Y (n + 1)),
1Y+ DIl < IAX @)l + 1AM (n + DIl + lle(n + DIl < ANl + (K +3) +4,

implying that sup,q [1Y (n + 1)|| < [lAll + K + 7. Thus, for all n >0,

AB,
[ln(n + DI < lle(r + DIl + B—"J:] WY@+ DI < lle+ DI+ 1Y+ DIF< AN+ K + 11, (3.10)
n+1

which concludes the proof of (3.9) (we choose C > [|A|| + K + 11). We now let V(n) = || X(n) — v||? for all n > 0; with this notation,
and using the triangle inequality, we get from (3.7) and (3.8) that

E[V(n+ D|F,] <V (n) + an+ : (X(n) — v, AX(n)) + Bn2+ : (X(n) — v, Eln(n + D|F,])
1
+ m(nmnw(n) +2C), (3.11)

where we have chosen C larger than sup,, AM (n + 1) and sup,5( #(n + 1). Now, by the Cauchy-Schwarz and Jensen inequalities,
(X(m) = v.Eln(n + DIF,1) < [1X(m) = ol|ELlln(n + DIIF,] < 2ELlln(n + DIIF, 1, (3.12)

because || X (n) — v|| < |X ()|l + ||v]l < 2. Now, by (3.10), and the fact that e(n+ 1) <4 < C and ||Y (n + 1)|| < C for all n > 0, we have

1 B,+2 B, 1
F.l=C . + . N
B,+1 2B,+3 B,+1 B,+2

Bl + DIIF,] < CE|1 4 281
BrH—l +1

by definition of the model. Thus,

C_(Bu+2 B, \__2c
B,+1\2B,+3 B,+2)~ B,+1’
Thus, by (3.12) and (3.11), for all n > 0,

Eflln(n + DIIIF,] <

llAll > 2 . o 10C
EVin+DIF]<|(1+ ——— |V(n) + ——(X(n) — v, AX + —
[Vin+ DI|F,] < ( B, + 17 (n) B,,+1< (n) (n)) B, + 17
We want to apply Theorem 3.1 with a, = (B:+'])2, b, = —#(X’ (n) — v, AX(n)), and Yy = (Bl,,OTCl)Z’ so we need to check the conditions

on these sequences. Because, by definition, B, > n for all n > 0, we have that, almost surely, }’ ., < co and ¥ .,7, < . To
check that g, > 0 first note that (X (n) — v, AX(n)) = (X (n) — v, A(X (n) - v)). While the eigenvalues of A are all non-positive, A is not
Hermitian and hence not negative semidefinite; however, one may check explicitly that (x, Ax) < 0 for all x = (CHHN that satisfy
Yo x; = 0. Indeed, for such x,
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m m—1
(x, Ax) = x <—x0 + Z x,-) + Z x;i(xi_1 = 2x;) + X, (X1 — X))
i i=1
m—1

2
= —2(2x,~> +ixix,~_l —ZZx,.z—x%n <=2

i=1 i=1 i

m
3

J=Lj#i

M§
M;

i

i=1 i=1 i=1

Applying this observation to x = X(n) — v gives f, > 0. Therefore, by Theorem 3.1, almost surely, W := lim,;, V'(n) exists and is
finite, and ZHZO B, < . On the event that W # 0, there exists € > 0 such that, for all » large enough, V' (n) > . Now note that, on
the set {x € [0,1]™*1: X" x;, = 1} to which X (n) belongs for all n > 0, x = (x — v, A(x — v)) is continuous, non negative, and its
unique zero is v. Thus, on {x € [0,1]"*!: Z, oXi = 1} n{llx — v|| > €}, the maximum of x ~ (x — v, A(x — v)) is negative; we let
—c denote this maximum. We thus get that, for all n large enough, g, > 2¢/(B, + 1). By Lemma 2.1, this implies that ), ., f, = o,
which is an event of probability zero. Thus, W = 0 almost surely, i.e. lim ,., X(n) = v almost surely as n 1 . In other wofds, for all
0<i<m- 1’

U i(”) X i(”) 1

= - —.
B,+1 B,+1 2l

ntoo

Because m can be chosen arbitrarily large, this concludes the proof. []

Remark 3.2. Because of the step-sizes in (3.5) being random, we were unable to prove a central limit theorem for X (n). We leave
this as an open problem.

4. The distribution of heights

We now turn to the height profile, Theorem 1.4, as well as the lower bound on the height of the tree, Proposition 1.5. We will
give full details for the case k = 1 of Theorem 1.4 (the height of a typical node) in Section 4.1. In Section 4.2 we describe the
necessary modifications for the case k = 2, and give an outline of the case k > 3. Proposition 1.5 is proved in Section 4.3
4.1. The height of a typical node

Let us reformulate the case k = 1 of Theorem 1.4:
Proposition 4.1. For all n > 0, let u, be a uniformly random node in z,. There is an a.s. finite random variable A such that, as n 1 oo,

_ 2logn
lu”l I+log2

logn
I+log2

For the proof of Proposition 4.1, we define a process (7, i,),»( such that, for all » > 0, (z,,, “n) = (%,,1,). The process (7, 1,),5o Will
have the properties: (i) at non-doubling times, the height of i, is either unchanged or increases by 1, and (ii) at doubling-times, the
height of @, either increases by 1, or is reset to 0. The process is an adaptation of a standard construction for the random recursive
tree (see [8] for a description of it in a more general case). In the latter case there are no doubling-times, and the height of the
uniform node is monotonically increasing. In our case we need the possibility to reset, since at doubling steps there is a new node
at height 0; however, we prove that there are only finitely many reset-times (almost surely), so they can effectively be ignored. In
addition, we control the increase of the height of i, due to doublings by using Proposition 2.3.

Let us now define the process (%,.,),5o. We let 7, = (&} and i, = @. Then, for all »n > 0, given (%,,,), we sample

* K(n+ 1) a Bernoulli-distributed random variable of parameter 1/(2|%,| + 1), and
* L(n+ 1), a Bernoulli-distributed random variable of parameter 1/(|%,| + 1).

Then (%,,,i,,,) is constructed as follows:

(1) We let ¥, be a node taken uniformly at random among the nodes of 7,;
(2) If ¥, = @, then we define

T ={2}V{lw:wet,}u{2w:wef7,}.
Furthermore,

+ if K(n+1) =1, then we set i, = @, and
+ if K(n+1) =0, then we set i, = 1, or &,,; = 2i, with probability 1/2 each.

(3) If ¥, # @, then

10
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«if Ln+1)=1, then we set 7, ; =%,
« if L(n+1) =0, then we set 7, | =7,

d
Lemma 4.2. Forall n >0, (%,,i,) = (t,,u,).

Proof. By induction. []
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Proof of Proposition 4.1. Throughout the proof, we identify (z,,u,) with the distributional copy (%,,#,) and omit the tilde from

the notation. Then, for each n > 0 there are three cases:

« either |u,,,| = |u,| (if v, # @ and L(n+ 1) = 0),

cor |u, |l =lu,l+1 G v,=@ and K(n+1)=0,0rif v, #@ and L(n+ 1) = 1),

»or |u, | =0(fv,=@ and K(n+1) = 1).

Let us write R(n) = max{k <n:v, = @ and K(k + 1) = 1} for the last time before n when v, = @ and K(k+1) =1 (we set R(n) =0 if

there are no such times). Then by the above,

n n
lal= 3 Lot 2 L L0
)

1

i=R(m+1 i=R(n)+1
n n n
= Y Lot Y LO- Y 1,,oL0.
i=R(n)+1 i=R(n)+1 i=R(n)+1
Let F, = o(z, 71, ..., 7,). Then, since |z, | > k + 1 almost surely, for each k > 0
1
P(v, =@, K(k+1)=1) = E[P(v, =@, K(k+1) =1 |7_~. )]:]E[
' ’ e A PATE PA

< .
T (k+1D2k+3)

It follows, by the Borel-Cantelli lemma, that there is an a.s. finite random variable R such that R(n) — R almost surely as n 1 .

Similarly,

1

P(1, _gL(k+1)=1|F) =E[PA, 5Ltk + 1) =1|F] = ]E[

and thus, by the Borel-Cantelli lemma,

n

Y1, oL < D1, g L) =0O),
i=1

i=R(n)+1

almost surely as n 1 co. Thus, almost surely as n t o,

lu,l = Y1, g+ X, L) +O).
i=1

i=1

We write (4.1) in the following form:

n n n
1 1
=2>1, _5- 1, 5—— L@i)— ——— o(l).
|un| ; Vi1 =@ Z( Vi_1=0 Bi—] +1> +i=1< (l) B[_] +2> + ( )

i=1

To do this, we have used the fact that

n n n

1 1 1 1
y _ -y <Y1 _on.
= < B_;+1 B, +2> (Bi_y + 1)(B;_; +2) 4 2

i=1 i=

The first summand in (4.2) is taken care of by Proposition 2.3: as n 1 oo,

Zn 1 _ _logn
i=1 Vi-1=@ " 1+log2

G, = = Gy ~ N(0,1).
o) Jiogn o~ NOD
(1+log2)3/2
We claim that, as n 1 oo,
(b= 57
Gy(n) 1= — T Bt L G~ N D)
logn
I+log2
and
T (L0 - 57)
W= —— B N,
logn
1+log2

11

1 ] < ’
[l 7] + 1) (k+ 1)(k+2)

4.1)

(4.2)

(4.3)

4.4

(4.5)

(4.6)
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where W is independent of (G, G,). Taken together, (4.4), (4.5) and (4.6) give the claim, with A = G + W, where

. 2G, G 4.7)
T 1+1log2 v ’
is independent of W. We now proceed with the proofs of (4.5) and (4.6).
For (4.5), recalling that E[1,  _4|F,_;| = ﬁ = B;]H, we can write

Zlvl 1=0 = ZE[l", 1—®| 1] + Z( Vie1 =9 _E[IVFF@'F"—I])
=! (4.8)

L S
B, +1

where M, := ¥ | (1,_ —¢ — E[l,_ _|F;_;]) defines a martingale. We need to prove that M, / 11:)1%:;12 = N(0, 1). The quadratic
variation of (M), is given by

(M), = ZE[ vreo —E[L,_ olFil])’IF; ZE vr=olFiat|(1=E[1,_ _51F,1])
i=1

n n
1 1 1
=) 1- = +0(1),
4 Bi_1+1< B,-_1+1> ZB,-_1+1 M

i=1 i=1

(4.9

where we used that B, > n almost surely for all n > 0. Furthermore, by Lemma 2.1, (M), — +oc0 almost surely as n 1 co. Thus, by
the martingale law of large numbers [18, 12.14], M, = o((M),) almost surely as n 1 0. Using again the fact that B, > n, we get
that (M), = O(logn) almost surely as n 1 co and hence M,, = o(log n) almost surely as n 1 co. Now note that, by Proposition 2.3,

n

log " 1 Tl
; Lii=0~ T3jogae I probability.
Thus, by (4.8),

n

n
Z B, i Z vioi=p — M, = 2 1, g +o(logn) almost surely,

i=1 i=1 i=1 (4.10)
logn
~ i bability.
T log2 in probability
By (4.9), this implies that (M), ~ logn/(1 + log2) in probability. Thus, by the martingale central limit theorem [20, Thm 8.2.8],
M,
—— = N, 1), (4.11)
logn
I+log2

as required.
For (4.6), we first reason conditionally on v = (v;);5¢ and thus on (B,);»o: conditionally on v, (L(i));»o is a sequence of
independent Bernoulli random variables of respective parameters 1/(B,_; +2), i > 0. By (4.3) and (4.10),

n n

1 1 . .
= =—+001 bability.
;BH"‘Z ;Bm +0(1) lg2+ (1), in probability.

Thus, by the Lindeberg central theorem [21, Theorem 7.2.1] (whose conditions are easily checked since the L(i) are bounded), we
get that, conditionally on v,

T L) - 5
W= — By (4.12)
logn
1+log2

where W is a standard Gaussian. Explicitly, this means that for all continuous and bounded functions ¢ : R — R,
Elp(W @) | vl = E[lp(W)].

Because the limit does not depend on v, by dominated convergence, we can take expectations on both sides of the limit, which
gives (4.6).
It only remains to show that W is independent of (G, G,). First, for all continuous and bounded functions ¢,y : R - R,

Elp(W (m)w(Gy(m)] = E[Ele(W (m)w(Gy() | v]] = E[w(Gy(m)Elp(W (1)) | v]]
= E[w(Gy(m)Ele(W)]] + E[w(Gy(n) (Ele(W (n) | v] - Ele(W)])]. (4.13)
On the one hand, by linearity (because E[@(W)] is a constant), and by (4.4),

E [ (Go(n)Elp(W)]] = Elp(W)IE |y (Gy(n)] — Elo(W)IElw(Gy)].

12
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On the other hand,
|E[w(Gon) (Lo () | VI~ ElpW )1)]| < E[w(Gom)|EleW () | v - ElpW)]|] - 0,

by dominated convergence, because y and ¢ are bounded, and by (4.6). Thus, (4.13) implies
Elp(W (m)y(Go(m)] —» E[p(W)IE[y(Gp)].

Similarly, one can show that, for all continuous and bounded functions ¢ : R - R and y : R? - R,
Ele(W m)y (Gy(n), G1(n)] = Elp(W)]E[w (G, G))].

This implies that (4.4), (4.5), and (4.6) hold jointly with W independent of (G, G,), as desired. []

Remark. Note that we cannot say much about the distribution of A = G + W since the two Gaussians G, and G, (see (4.7)) might
be correlated.

4.2. The height profile: proof of Theorem 1.4

We now turn to the case k = 2 of Theorem 1.4, and we write (u,,v,) for the two uniformly random vertices in 7, rather than
@, u). We follow a strategy similar to that of Section 4.1, defining a sequence (7, ii,, §,,),» such that for each n > 0, the triple
(%,,1,,0,) is a distributional copy of (z,,u,, v,).

First, let 7, = {@} and &, = §;, = @. Then, for all n > 0, given (%,,4,, §,), we first sample K;(n+ 1) and K,(n+ 1), two independent
Bernoulli-distributed random variables of parameter 1/(2|%,|+ 1), and L;(n+1) and L,(n+ 1), two independent Bernoulli-distributed
random variables of parameter 1/(|7,| + 1). Finally, we sample (,),>; and (8,),>, two independent sequences of random variables,
uniformly distributed on {1,2}.

(1) We let ¥, be a node taken uniformly at random among the nodes of 7,;
(2) If ¥, = @, then we define

Ta={olv{lw:wet,ju{2w:wei,l.
Furthermore,

« if K;(n+ 1) = 1, then we set i,,; = @, and
+ if K;(n+1) =0, then we set i, | = a,i,.
+ if Ky(n+ 1) = 1, then we set §,,; = @, and
« if K,(n+ 1) =0, then we set 0, = f,410,.

(3) If ¥, # @, then

if Li(n+1)= Ly(n+1) =1, then we set 7, ; =%, U {i,i} and i&,,, = 0, =i,i, where i =min{j > 1:4,j & 7,};

if Li(n+1)=1and Ly(n+ 1) =0, then we set 7,,; = 7, U {ii,i} and &, = i,i, where i = min{j > 1:4,j ¢ 7,}; we also
set B,y = O

if Li(n+1)=0and Ly(n+ 1) = 1, then we set 7, = %, U {0,i} and 0,,, = 0,i, where i = min{j > 1:7,j ¢ %,}; we also
set i, = ii,.

if Ly(n+1)= Ly(n+1) =0, then we set 7,,, =%, U {V,i}, where i =min{j > 1:7V,j & ,}, #,,, =i,, and J,,; = D,,.

Note that, with this definition, (%,,4,),5¢ is the same process as in Section 4.1. Recall that, in that process, we see some “resets”
at the root at doubling-times when also K, (n + 1) = 1, while otherwise &, is either &, or a child of &,. The evolution of 5, is a bit
more complex as it can reset at the root (a doubling-times when K,(n + 1) = 1), it can “jump” to i, (at non-doubling times when
Li(n+1)= Ly(n+1) = 1), and otherwise, 7, is either #, or a child of 5,,.

d
Lemma 4.3. Forall n>0, (%,,i,,0,) = (1,,u,, U,).
Proof. By induction. []
Proof of Theorem 1.4 for k = 2. Again, we identify (z,,u,,v,) with its distributional copy (%,.#,,7,) and drop the tilde from the

notation. We let R, (n) (resp. R,(n)) be the last time before (or at) time n when v,_; = @ and L,(i) = 1 (resp. L,(i) = 1). With this
definition, we have

n n n n
= Y 1, ot D L soli®=D 1, g+ D1, sgLi)+0O0), (4.14)
i=Ry(n)+1 =Ry (n)+1 i=1 i=1

13
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as in Section 4.1. Now, we let S(n) be the last time before (or at) time n when v,_; # @ and L,(i) = L,(i) = 1. This is the last time
before time n when v, jumped to join u, at a non-doubling time. If S(n) < R,(n), then v, has reset to @ since last jumping to join
u,, SO

n n
=D 1, g+ D L.
i=Ry(n)+1 i=Ry(n)+1

If Ry(n) < S(n) (note that they cannot be equal, by definition), then
[l = lusel+ D L g+ D, L oL
i=S(n)+1 i=S(n)+1

To summarise, if we let S,(n) = Ry(n) v S(n), then

n n

(04l = luson LRy my<s0m) + Z 1, o+ Z 1, oL (®. (4.15)
i=Sy(n)+1 i=Sy(n)+1

Note that

By # @ and L) = Ly() = 1| Fy_y) = —2t! LYoot )<
. an = = . = . -,
Yist 1= Falt =g 1 \B_+2) “\B_+2) ~ 7~

and thus P(v,_; # @ and L,(i)) = L,(i)) = 1) < ,lz By the Borel-Cantelli lemma, almost surely as n 1 oo, S(n) — .S, where S is
an almost surely finite random variable. Similarly, as proved in Section 4.1, R,(n) — R, almost surely as n 1 oo, where R, is an
almost-surely finite random variable. Thus, S,(n) — S, = R, vV .S almost surely as n 1 oo, and therefore

n n
o = D1, g+ D1, g Lal) +O(). (4.16)
i=1 i=1

From this point, the rest of the argument is as in the proof of Proposition 4.1: we write (4.14) and (4.16) as

n n n
1 1
=2%1, -3 (1, - —1— 1, oli()— —— ) +0q),
ol gf He1=e Z( Y=o Bi—1+l>+21< sarot1 ) Bi—l+1>+ o

i= i=

n n n
1 . 1
lv,| =2 ’; L, - Z(%,-,,:@ - m) + Z}(lv,.,ﬁeng(l) - m) +0(1),

i= i=

(4.17)

where in each expression, the first sum is handled using Proposition 2.3 and the others using the maringale central limit theorem.
Note that this gives

|u |_ 2logn |U l_ 2logn
nl” Thoga 1Unl T Tilog2
( o2 L) = VWLV W), (4.18)
logn logn
V 1+log2 \/ 1+log2
where V = % — G, as in (4.7) and W;, W, are defined as in (4.6) using L, and L,, respectively.
We now briefly comment on the modifications needed for the case k > 3. As before, we define a process (£, ,dy, ..., &)') such
that for each n > 0, (7,4, ...,4") has the same distribution as (7,4, ..., u®). In this process, the triple (%,,a.’,a}) will be t_he
same as the process used for k = 2 above. Each 4’ can be “reset” to @ (in the case v, = @), it can “jump” to any of &\, ...,aJ ™"

(in the case v, # @), it can be replaced by a “new” child, or it can remain unchanged, these choices being determined by suitable
random variables K ;(n+1),...,K;(n+1) and L;(n+1),..., L,(n+ 1). In writing expressions such as (4.15), there are many cases to
consider, but the analogs of (4.14) and (4.16) hold for each of @, ...,4\, and the rest of the argument is as before.

4.3. Lower bound on the height: proof of Proposition 1.5

Let v, denote the leftmost child of the root at height x(n), where we recall (2.1) that «(n) is the number of doubling events before
time n. Since, by definition, the new node added at non-doubling times is always added to the right of already existing siblings, tv,,
is a ‘copy’ of the original root of the tree 7. Let S, denote the subtree rooted at w,, let s(n) denote the number of nodes in &, and
let h(n) denote the height of &,. Note that &, is a distributional copy of the random recursive tree at time s(n). Clearly, the height
H, of 7, satisfies H, > k(n) + h(n). Moreover, we have the following estimate on the height of the random recursive tree, which
gives h(n) ~ elogs(n):

Theorem 4.4 (see Pittel [17]). Let h(n) be the height of the n-node random recursive tree. Almost surely as n 1 oo, h(n) ~ elogn.

However, rather than applying Theorem 4.4 directly, which would require finding estimates on s(n), we use an embedding of
our process (z,),5( into continuous time. We define a continuous-time process (7 (1)), of growing trees by first setting 7(0) = {&}
and then assigning to every node of the tree a clock that rings at exponential rate of parameter 1, the clocks for different nodes
being independent. When a clock rings, if it is the clock associated to @, then, at that time, we double the tree as done at doubling

14



J.E. Bjornberg and C. Mailler Stochastic Processes and their Applications 192 (2026) 104790

events in the discrete time tree; otherwise, we add one child to the node whose clock rang. As before, our convention is to add the
new node to the right of already existing siblings.

If we let ¢, be the time of the nth ring of a clock, then (7(z,)),50 < (7,)50- Also note that the times at which the tree doubles define
a Poisson point process of intensity 1; in particular, the number D(¢) of doubling events before time ¢ is distributed as a Poisson of
parameter . We now let S(¢) denote the subtree rooted at the leftmost node at height D(¢). Thus S(¢) is the continuous-time version
of &,, and it is now simply a Yule process of parameter 1.

Note that a random recursive tree can be coupled to a Yule process so that the random recursive tree equals the Yule process
taken at its successive jump times. Thus, if H(7) is the height of the Yule process S(¢) at time ¢, then H(r) = h(|S(?)|), where |S()|
is the number of nodes in the Yule process at time 7. Thus, by Theorem 4.4, almost surely as ¢ 1 oo,

_HO —e
log |S()]

It is well-known that e™'|S(f)| converges almost surely to a standard exponential random variable (see, e.g. [22, Section III.5]),
which implies log | S(f)| ~ ¢ almost surely as ¢ 1 co. Thus, almost surely as 7 1 o,

H(t) ~et.

It follows that the height of 7(¢) is at least D(r) + H(¢) ~ (1 +e)t, almost surely as ¢ 1 co.

Proof of Proposition 1.5. It only remains to translate this lower bound into discrete time. For that, we need to understand the
asymptotic behaviour of ¢,, the times at which 7 (r) grows. Let N(¢) = |7 (r)| be the number of notes in the tree 7(¢) at time 7. At
time ¢, the rate at which the next clock rings is N(7), so we need to understand N (7).

To do this, we will couple (N (7)),5( to a process (Y (1)), which is the size of a standard Yule process. Indeed, intuitively (N ()),5
is a Yule process with jumps at the doubling-times; the process (Y (t)),», will be defined to “fill in” the instantaneous doubling events
of N(r) with a Yule process run for the amount of time it takes to double in size.

To express this more precisely (and we refer to Fig. 2 for this discussion), write d;,d,, ... for the doubling times of N(¢), i.e. the
jump times of the Poisson process (D(1));»o. For 0 < t < d|, we set Y () = N(t). Then, we let Y () g, <t<dy+¢, be the size of a Yule
process started at Y@y and stopped at time #,, defined as the first time it reaches 2Y(d))+1. Then, for all n > 1, given Y D)i<a,+e,
weletY(n=N(@-7,) foralld,+¢, <t <d,, +¢,. Also, we define (Y(1))y,,, 1¢,<i<d,,,+¢,,, @S a Yule process started at N(d, ) and
stopped at time 47, = £, — £,, defined as the first time it hits 2N(d,, ,)+1. By the strong Markov property, (Y(1)),» is a Yule
process. Furthermore, by definition, almost surely for all > 0, Y(t + £p(,)) = N ().

Now e™Y(r) — ¢ almost surely as ¢ — oo, where ¢ is exponentially distributed. It follows that log N(f) ~ t + £, almost surely.
We now show that #p,) ~ tlog2 almost surely as ¢ 1 oo. First note that at doubling times we have N(d,) = Y(d; + ¢;), thus
e~ @*IN(d;) — & almost surely as i — co. But also N(d,) = 2N(d;)+1=2Y(d, +¢,_)) + 1, so that

e DI N(d) = 26~ Uit i1t 4Dy (g, 4 £, ) + 7D S g a.s. as i — co.

Since also e"“i*/i-DY (d; + £,_|) — &, it follows that A¢; — log2 almost surely. Since D(7) ~ t as t — oo,

D)
o = Z AC; ~tlog2, almost surely,
i=1
as claimed.
We thus have that

log N(7) ~ (1 +log 2)t, almost surely as ¢ 1 co. (4.19)
We claim that

t
liminf —2— > — 1

_ 1 I . .2
il Cen 2 T log2’ almost surely as n 1 o (4.20)

For this, we first note that 7, — oo almost surely as n — oo; indeed, conditionally on all the B;, we have that 7, is a sum of
independent exponential random variables of rates By+1, B; +1, ..., B,_; + 1, thus the conditional mean of #, diverges almost surely
by Lemma 2.1, while the conditional variance is bounded since B, + 1 > n for all n > 0. Then, using (4.19) we have

logn <log(B, + 1) =log N(t,) ~ (1 +log2)t,,, almost surely as n — .

From (4.20) and the fact that the height of the continuous-time tree 7 () is asymptotically at least (1 + e + o(1))t (where the
o(1)-term goes to 0 almost surely as ¢ 1 ), we thus get that, almost surely as n 1 o,

1+e+o(1)‘

H,>(1 0, > ————
nzd+etolDy, 2 1+log2

log n,

as claimed. []
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dy dy — dy d3 — dy

Fig. 2. One can see how the process (N(1)),», can be coupled with a Yule process (Y (7)), so that, for all > 0, Y(t +¢)) = N(z), where D(7) is
the number of doubling events before time 7. The Yule process is the concatenation of the black and grey parts of the curve, whilst (N (1)), is
the curve obtained by only keeping the black parts and gluing them as if time-warps made us skip the intervals of time in grey. The two pairs
of distances highlighted on the left-hand side are such that the two arrows in one pair have the same length: this means that the grey intervals
are intervals during which the Yule process doubles in size. Note that, although both Y and N are jump processes that take value in N, we have
here represented them as continuous curves (with jumps for N when it doubles); this is just for ease of representation. One can see that, if the
total length of all the purple intervals is 7, then, indeed, D(r) = 2 and N(r), which is the value highlighted by large a purple dot, equals Y (1 +¢,),
as claimed in the proof of Proposition 1.5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Remark 4.5. Using Proposition 1.1(d), in fact 10th — 1++0g2 almost surely as n — . Since x(n) from (2.1) satisfies x(n) = D(z,,)) ~ t,,
almost surely, it follows that ]K(”) — —L_ almost surely.
ogn 1+log2
Moreover, conditionally on (B);5, the expression #, — Z::Ol ﬁ is a sum of independent random variables with mean zero and

summable variances. Hence, it is a martingale bounded in L? which therefore converges almost surely. Using that ¢, ~ log n/(1+log?2)
almost surely as n — o, it follows that (4.10) can be improved to an almost sure equivalence: explicitly,

n—1

1 logn

= B+1  1+log2

almost surely as n — oo.

5. A lower bound on the size of the tree doubling everywhere

As mentioned in the introduction, the model of random recursive tree that doubles at the root is a simplification of a tree that
would “double everywhere”. We define the random tree (z°),5( recursively as follows: 750 = {2} and, for all n > 0, given 7°, we
pick a node v, uniformly at random in z{°, let 7, be the set of (non-strict) descendants of v, in z%°, and set

Tooy = (ta\ 1) U (vl U v lw:vw € P} U {(v,2w: v,w € ).

In other words, at every time step, we pick a node uniformly at random in 72°, remove its subtree (the node and all its descendants)
from z{° and replace it by two copies of itself as the two subtrees of a new node. Note that, by definition, for all n > 0, 7° is binary,
i.e. all its words are made on the alphabet {1,2}.

We only make the following simple observation about this model:

Proposition 5.1. For all n > 1 we have E[|z°[] > "T_l logz(%).

Proof. For all n >0 and « € 72°, we let 5,(u) be the number of (strict) descendants of nodes u in 72°. Also recall that |u| is the height
of node u (i.e. the number of strict ancestors of u). Note that, if at step n + 1, we select node u € 3°, then |T:_°H =1z +2+5,).
Indeed, the tree rooted at u (which contains 1 + s,(u) nodes) is replaced by a node to which are attached two copies of u and its
subtree (which contains 1 + 2(1 + s, (1)) nodes in total). Thus, for all n > 0,

1 1
Z (2+5,@) = 17| +2+ B Z 21:|T;°|+2+ o] Z o]

oo o ) 0
UET), n ' uer,® v<u n ' over,

o0 o071 o0
Blle 1257 = el + 1o
n

The last term is the expected height of a node chosen uniformly at random in z°. Since z{° is a binary tree, for any k > 0 the number
of nodes at height at most k is at most 2¢*!. Thus, at least half the nodes of ¢ have height at least log, [t®°| — 2 > log, n — 2. This
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implies that, almost surely,

E[|z

@ 11> E[lz2°[1+ 2 + 3 (logy n = 2) > E[|z2[] +  log, n.

By induction,

n

1 .
Ellgs, 112 5 _leogu > 2logy(M). O

j=
Remark 5.2. Proposition 5.1 says that, in expectation, the size of the tree that “doubles everywhere” is superlinear in the number
of steps. By definition, |z5°| < 2", where the upper-bound is attained on the event that all doubling events happen at the root. What
is the exact order of E[|z$°|] as n 1 co? Can we find asymptotic equivalents for |z°| itself, either in probability, or almost surely?

We leave these as open problems.
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