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 A B S T R A C T

We introduce a new model of random tree that grows like a random recursive tree, except at 
some exceptional ‘‘doubling events’’ when the tree is replaced by two copies of itself attached 
to a new root. We prove asymptotic results for the size of this tree at large times, its degree 
distribution, and its height profile. We also prove a lower bound for its height. Because of the 
doubling events that affect the tree globally, the proofs are all much more intricate than in the 
case of the random recursive tree in which the growing operation is always local.

1. Introduction

1.1. Model and motivation

In this paper we consider a variant of the random recursive tree, with what we call doubling events. Recall that the random 
recursive tree is a process of growing random trees where, at each step, a new leaf is added to a node chosen uniformly at random, 
starting from a single root node. In our process, we also randomly grow a tree by selecting a uniformly random node at each step, 
and similarly to the random recursive tree, a leaf is added to that node unless it is the root of the tree. If the randomly chosen node 
is the root, however, a doubling event occurs, which means that we replace the entire subtree of the root with two copies of itself. 
See Fig.  1 for an illustration; a more formal description of the process, using the Ulam–Harris framework, is given below.

This model was introduced to us by Olivier Bodini, who asked whether we could get some information on the size of the tree at 
large times (one of our main results is to show that it is linear in the number of steps). Bodini sees this model as a simplification 
for a more intricate model in which, at every time step, we pick a node 𝜈 uniformly at random and replace it by a new node whose 
two subtrees are two copies of the tree rooted at 𝜈. In other words, doubling events happen not only at the root, but everywhere in 
the tree. Bodini would eventually like to understand the size of this doubling tree after 𝑛 steps: in our last result we prove that, in 
expectation, this size is superlinear in 𝑛 (see Proposition  5.1).

We now recall the Ulam–Harris notation for trees, and define our process using this framework. A tree 𝜏 is a set of finite words 
using the alphabet {1, 2, 3,…} such that, for all 𝑤 ∈ 𝜏, all prefixes of 𝑤 are also in 𝜏. That is to say, if 𝑤 = 𝑤1𝑤2 …𝑤𝑚 ∈ 𝜏, with 
each 𝑤𝑖 ∈ {1, 2, 3,…}, then 𝑤1𝑤2 …𝑤𝑘 ∈ 𝜏 for all 𝑘 ∈ {0, 1,… , 𝑚}. Each element 𝑤 ∈ 𝜏 is called a node or vertex of 𝜏, and the 
empty word ∅ is called the root. The number of nodes in a tree 𝜏 is denoted |𝜏|, while if 𝑤1𝑤2 …𝑤𝑚 ∈ 𝜏 is a node then |𝑤| ∶= 𝑚
denotes its length as a word, and is also called its height. One can see a tree as a genealogical structure: the prefixes of a word are 
its ancestors, the longest of its prefixes is its parent, the other children of its parents are its siblings, etc.

We now formally define the random recursive tree with doubling events. We define the sequence of random trees (𝜏𝑛)𝑛≥1 by 
setting 𝜏0 = {∅} and for all 𝑛 ≥ 0, given 𝜏𝑛,
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Fig. 1. Steps in the construction of a random doubling tree. The root is drawn grey and, at each step, the randomly selected node is circled in 
red. In the first and fourth steps, the selected node is the root and a doubling event occurs. At the other steps, a non-root node is selected and a 
leaf is added to that node. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.)

• we pick a node (i.e. word) 𝜈𝑛 uniformly at random among the nodes of 𝜏𝑛,
• if 𝜈𝑛 = ∅, then we set 𝜏𝑛+1 = {∅} ∪ {1𝑤∶𝑤 ∈ 𝜏𝑛} ∪ {2𝑤∶𝑤 ∈ 𝜏𝑛},
• if 𝜈𝑛 ≠ ∅, then we set 𝜏𝑛+1 = 𝜏𝑛 ∪ {𝜈𝑛𝑗}, where 𝑗 = min{𝑖 ≥ 1∶ 𝜈𝑛𝑖 ∉ 𝜏𝑛}.

In words, this means that each time the randomly chosen node 𝜈𝑛 is the root ∅, then 𝜏𝑛+1 is the tree whose root has two children 
at which are attached two copies of 𝜏𝑛, while if 𝜈𝑛 is not the root then 𝜏𝑛+1 equals 𝜏𝑛 with one child added to 𝜈𝑛.

1.2. Main results

Our first result gives an estimate for the size of the tree as time goes to infinity: for all 𝑛 ≥ 0, we let 𝐵𝑛 be the number of non-root 
nodes in the tree (𝐵0 = 0) at time 𝑛. Note that |𝜏𝑛| = 𝐵𝑛 + 1, for all 𝑛 ≥ 0.  Parts (b), (c) and (d) in the following result are simple 
consequences of part (a); we only state them for clarity.

Proposition 1.1 (Asymptotic Size). 
(a) For all 𝑘 ≥ 1, 

E[(𝐵𝑛∕𝑛)𝑘] → 𝑚𝑘 ∶=
𝑘
∏

𝑖=1

(

1 − 1
𝑖
+ 2𝑖
𝑖

)

= 2𝑘(𝑘−1)∕2
𝑘!

𝑘
∏

𝑖=1

(

1 + 𝑖 − 1
2𝑖

)

. (1.1)

(b) The sequence (𝐵𝑛∕𝑛)𝑛≥1 is tight.
(c) For any sequence (𝜔(𝑛))𝑛≥0 such that 𝑛 = 𝑜(𝜔(𝑛)), 𝐵𝑛∕𝜔(𝑛) → 0 in probability as 𝑛 ↑ ∞.
(d) For any 𝜂 > 0, 𝐵𝑛∕𝑛1+𝜂 → 0 almost surely as 𝑛 ↑ ∞.

Remark 1.2.  This result comes close to, but does not quite reach, establishing weak convergence of the sequence (𝐵𝑛∕𝑛)𝑛≥1. Indeed, 
if we knew that there was a unique probability measure 𝜇 on [0,∞) whose moments are the sequence (𝑚𝑘)𝑘≥1, then weak convergence 
would follow from standard compactness arguments. The most famous condition for uniqueness is Carleman’s criterion, which states 
that 𝜇 is unique provided ∑𝑘≥1 𝑚

−1∕2𝑘
𝑘 = ∞. In our case, however, this condition is not satisfied.

Our second main result says that the degree distribution is the same as for random recursive trees (without doubling): 

Theorem 1.3 (Degree Distribution).  For all 𝑖, 𝑛 ≥ 0, let 𝑈𝑖(𝑛) be the number of nodes in 𝜏𝑛 that have exactly 𝑖 children. Almost surely as 
𝑛 ↑ ∞,

𝑈𝑖(𝑛)
|𝜏𝑛|

→
1

2𝑖+1
.

The equivalent result for the random recursive tree is due to Mahmoud and Smythe [1] (see also [2]), who also prove that 
the fluctuations are Gaussian. The fact that the asymptotic degree distribution is the same as in the random recursive trees can be 
expected from the observation that, except at doubling times, the tree does grow like a random recursive tree, while at doubling 
times the degree distribution stays roughly unchanged. In the case of the random recursive tree, one can use standard results for 
Pólya urns since, for all 𝑚 ≥ 1, the vector (𝑈1(𝑛),… , 𝑈𝑚−1(𝑛),

∑

𝑖≥𝑚 𝑈𝑖(𝑛)) is a Pólya urn. In our case, because of the doubling steps, 
we no longer have a Pólya urn. Instead we use stochastic approximation methods, which are also classical in the context of urns; 
see [3] for a survey on stochastic approximation, and [4,5] for books on the topic.

Our third main result concerns what is called the (height) profile, i.e. the joint distribution of the heights of uniformly random 
nodes: 
2 
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Theorem 1.4 (Height Profile).  For all 𝑘, 𝑛 ≥ 1, given 𝜏𝑛, let 𝑢(1)𝑛 ,… , 𝑢(𝑘)𝑛  be 𝑘 nodes taken uniformly, independently at random in 𝜏𝑛. Then, 
in distribution as 𝑛 ↑ ∞,

⎛

⎜

⎜

⎜

⎝

|𝑢(1)𝑛 | − 2 log 𝑛
1+log 2

√

log 𝑛
1+log 2

,… ,
|𝑢(𝑘)𝑛 | − 2 log 𝑛

1+log 2
√

log 𝑛
1+log 2

⎞

⎟

⎟

⎟

⎠

⇒ (𝑉 +𝑊1,… , 𝑉 +𝑊𝑘),

where 𝑉  is an almost surely finite random variable, and 𝑊1,… ,𝑊𝑘 are i.i.d. standard Gaussian, independent of 𝑉 .
It is interesting to compare this result to its equivalent for the random recursive tree: in the case of the random recursive tree, 

it is known that
(

|𝑢(1)𝑛 | − log 𝑛
√

log 𝑛
,… ,

|𝑢(𝑘)𝑛 | − log 𝑛
√

log 𝑛

)

⇒ (𝑊1,… ,𝑊𝑘).

(See Devroye [6] and Dobrow [7] for convergence of the marginals, and [8] for the joint convergence.) Perhaps as expected, the 
height of a typical node in the doubling tree is larger than in the random recursive tree ( 2

1+log 2 log 𝑛 > log 𝑛). Interestingly, the 
doubling events add some dependencies between the height of i.i.d. nodes (these dependencies are expressed in the random variable 
𝑉  in the limit).

Note that the height profile of random trees is the object of interest of a large amount of literature: see, e.g., Drmota and 
Gittenberger [9] for the Catalan tree, Chauvin, Drmota and Jabbour-Hattab [10] and Chauvin, Klein, Marckert and Rouault [11] 
for the binary search tree, Schopp [12] for the 𝑚-ary increasing tree, Katona [13] and Sulzbach [14] for the preferential attachment 
tree, and the very recent universal result of Kabluchko, Marynych, and Sulzbach [15]. All of these papers use a martingale method 
that dates back to Biggins [16] in the context of branching random walks; as far as we know, this method does not apply to our 
setting because the doubling events remove the branching property that is crucial to this approach. Also, our result is, as far as we 
know, the only one to show some dependence between the marginals in the limit: we will see in the proof that the dependent term 
𝑉  does come directly from the doubling events, which dramatically impact the shape, and thus the height profile, of the whole tree.

To supplement our result on the height profile, we also prove the following lower bound on the height 𝐻𝑛 of the tree 𝜏𝑛 itself, 
i.e. the maximal height of a node: 

Proposition 1.5 (Lower Bound on the Height).  Let 𝐻𝑛 denote the height of 𝜏𝑛. Almost surely as 𝑛→ +∞,

𝐻𝑛 ≥
1 + e

1 + log 2
⋅ log 𝑛 + 𝑜(log 𝑛).

Note that this lower bound is strictly larger than 2
1+log 2 log 𝑛, the order of the height of a typical node as given in Theorem  1.4, 

which is as expected. Again, it is interesting to compare this result to the equivalent in the case of the random recursive tree, which 
is due to Pittel [17]: in the case of the random recursive tree, 𝐻𝑛∕ log 𝑛→ e almost surely as 𝑛 ↑ ∞. Because (1+e)∕(1+log 2) < e, our 
lower bound does not allow for any definite comparison between the height of the doubling tree and that of the random recursive 
tree. We leave this as an open problem.

The rest of the paper is organised as follows: in Section 2, we prove Proposition  1.1 as well as some asymptotic results on the 
times at which doubling events happen, which are used in the rest of the paper. We prove convergence of the degree distribution 
(i.e. Theorem  1.3) in Section 3, convergence of the height profile (Theorem  1.4) and the lower bound on the height of the tree in 
Section 4. Finally, Section 5, we look at the original model of Bodini in which doubling events happen at all nodes and not only at 
the root, and prove that, in expectation, the size of the tree is superlinear.

2. Asymptotic analysis of the number of nodes and the doubling times

In this section, we prove Proposition  1.1, and state and prove a number of preliminary results which will subsequently be used 
in the proofs of our other main results.

2.1. Asymptotics of the number of nodes

The aim of this section is to prove Proposition  1.1. We start with the following lemma: 

Lemma 2.1.  Almost surely, ∑𝑛≥0
1
𝐵𝑛

= ∞.

Proof.  This follows from Lévy’s extension of the Borel–Cantelli lemma (see, e.g. [18, 12.15]). Let 𝑛 denote the 𝜎-algebra generated 
by 𝜏0,… , 𝜏𝑛 and let 𝑛 be the event that 𝜈𝑛 = ∅, i.e. at time 𝑛 we pick the root of the tree. By definition of the model, for all 𝑛 ≥ 0,

P(𝑛|𝑛) =
1

|𝜏𝑛|
= 1
𝐵𝑛 + 1

.

On the event that ∑𝑛≥0
1
𝐵𝑛

< ∞, we have that, almost surely,
∑

P(𝑛|𝑛) =
∑ 1 ≤

∑ 1 <∞,

𝑛≥0 𝑛≥0 𝐵𝑛 + 1 𝑛≥0 𝐵𝑛

3 
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which implies that, almost surely, there exists 𝑛0 such that, for all 𝑛 ≥ 𝑛0, 𝑛 does not occur. Then
∑

𝑛≥0
P(𝑛|𝑛) ≥

∑

𝑛≥𝑛0

1
𝐵𝑛 + 1

=
∑

𝑛≥𝑛0

1
𝐵𝑛0 + 𝑛 − 𝑛0

= ∞.

This contradiction means that P(∑𝑛≥0
1
𝐵𝑛

< ∞) = 0, as required. □

Remark 2.2.  In fact, we will prove later that 1
log 𝑛

∑𝑛−1
𝑖=0

1
𝐵𝑖

→ 1
1+log 2 , in probability as 𝑛→ ∞ (see (4.10))  and in fact almost surely 

(see Remark  4.5).

Proof of Proposition  1.1.  We start with (1.1); as we explain below, the remaining claims are simple consequences of the 
convergence in (1.1). We proceed by induction on 𝑘 ≥ 1. First note that, if we let 𝑛 = 𝜎(𝐵0,… , 𝐵𝑛), then

E[𝐵𝑛+1|𝑛] =
1

𝐵𝑛 + 1
⋅ (2𝐵𝑛 + 2) +

𝐵𝑛
𝐵𝑛 + 1

⋅ (𝐵𝑛 + 1) = 𝐵𝑛 + 2.

Indeed, with probability 1∕(𝐵𝑛 + 1) a doubling occurs, in which case 𝐵𝑛+1 = 2𝐵𝑛 + 2, while with probability 1∕(𝐵𝑛 + 1), we just add 
one non-root node, i.e. 𝐵𝑛+1 = 𝐵𝑛 + 1. Thus E[𝐵𝑛+1] = E[𝐵𝑛] + 2, which implies E[𝐵𝑛] = 2𝑛 for all 𝑛 ≥ 0. This concludes the proof of 
(1.1) in the base case 𝑘 = 1.

For the induction step, we assume that (1.1) holds for all 𝓁 < 𝑘. Now note that, for all 𝑛 ≥ 0,

E[𝐵𝑘𝑛+1 ∣ 𝑛] =
1

𝐵𝑛 + 1
⋅ (2𝐵𝑛 + 2)𝑘 +

𝐵𝑛
𝐵𝑛 + 1

⋅ (𝐵𝑛 + 1)𝑘 =
(

𝐵𝑛 + 2𝑘
)

(𝐵𝑛 + 1)𝑘−1

=
(

𝐵𝑛 + 2𝑘
)

𝑘−1
∑

𝓁=0

(

𝑘 − 1
𝓁

)

𝐵𝓁
𝑛 = 𝐵𝑘𝑛 +

𝑘−1
∑

𝓁=1

[(

𝑘 − 1
𝓁 − 1

)

+ 2𝑘
(

𝑘 − 1
𝓁

)]

𝐵𝓁
𝑛 + 2𝑘,

which implies

E[𝐵𝑘𝑛+1] = E[𝐵𝑘𝑛 ] +
𝑘−1
∑

𝓁=1

[(

𝑘 − 1
𝓁 − 1

)

+ 2𝑘
(

𝑘 − 1
𝓁

)]

E[𝐵𝓁
𝑛 ] + 2𝑘.

This implies that, for all 𝑛 ≥ 0,

E[𝐵𝑘𝑛 ] = 1 +
𝑘−1
∑

𝓁=1

[(

𝑘 − 1
𝓁 − 1

)

+ 2𝑘
(

𝑘 − 1
𝓁

)] 𝑛
∑

𝑖=0
E[𝐵𝓁

𝑖 ] + (𝑛 + 1)2𝑘.

By the induction hypothesis, for all 𝓁 < 𝑘, E[𝐵𝓁
𝑛 ] = (𝑚𝓁 + 𝑜(1))𝑛𝓁 as 𝑛 ↑ ∞. Thus, for all 𝓁 < 𝑘, we can write E[𝐵𝓁

𝑖 ] = (𝑚𝓁 + 𝜀(𝑖,𝓁))𝑖𝓁
where 𝜀(𝑖,𝓁) → 0 as 𝑖→ ∞, and obtain

𝑛
∑

𝑖=0
E[𝐵𝓁

𝑖 ] =
𝑛
∑

𝑖=0
𝑖𝓁(𝑚𝓁 + 𝜀(𝑖,𝓁)) = 𝑚𝓁

𝑛𝓁+1(1 + 𝑜(1))
𝓁 + 1

+ 𝑛𝓁+1 1
𝑛

𝑛
∑

𝑖=0

( 𝑖
𝑛

)𝓁𝜀(𝑖,𝓁) =
𝑚𝓁 + 𝑜(1)
𝓁 + 1

⋅ 𝑛𝓁+1,

since 1𝑛
∑𝑛
𝑖=0

( 𝑖
𝑛

)𝓁𝜀(𝑖,𝓁) → 0. In total, we thus get that

E[𝐵𝑘𝑛 ] =
(

(𝑘 − 1 + 2𝑘)𝑚𝑘−1
𝑘

+ 𝑜(1)
)

𝑛𝑘.

Using the expression 𝑚𝑘−1 = 2
∏𝑘−1

𝑖=2
(

1 − 1
𝑖 +

2𝑖
𝑖

)

, we get

E[𝐵𝑘𝑛 ] ∼ 2𝑛𝑘
𝑘
∏

𝑖=2

(

1 − 1
𝑖
+ 2𝑖
𝑖

)

,

as claimed, which concludes the proof of (1.1).
Tightness follows from the fact that E[𝐵𝑛∕𝑛] → 2: indeed, by Markov’s inequality, for any 𝐾 > 0,

sup
𝑛≥0

P(𝐵𝑛∕𝑛 ≥ 𝐾) ≤
sup𝑛≥0 E[𝐵𝑛∕𝑛]

𝐾
.

Because E[𝐵𝑛∕𝑛] → 2, we have that sup𝑛≥0 E[𝐵𝑛∕𝑛] < ∞, and thus, for all 𝜀 > 0, there exists 𝐾 = 𝐾(𝜀) such that sup𝑛≥0 P(𝐵𝑛∕𝑛 ≥ 𝐾) ≤
𝜀, as desired.

Now let (𝜔(𝑛))𝑛≥0 be a sequence such that 𝑛 = 𝑜(𝜔(𝑛)) as 𝑛 ↑ ∞; for all 𝜀 > 0,

P
(

𝐵𝑛
𝜔(𝑛)

> 𝜀
)

= P
(

𝐵𝑛
𝑛
>
𝜀𝜔(𝑛)
𝑛

)

≤
E[𝐵𝑛∕𝑛]
𝜀𝜔(𝑛)∕𝑛

→ 0,

as 𝑛 ↑ ∞, as claimed. Finally, fix 𝜂 > 0 and choose an integer 𝑘 such that 𝑘𝜂 > 1. For all 𝜀 > 0, by Markov’s inequality,

P
(

𝐵𝑛
𝑛1+𝜂

> 𝜀
)

≤
E[(𝐵𝑛∕𝑛)𝑘]
𝜀𝑘𝑛𝑘𝜂

,

which is summable because (E[(𝐵𝑛∕𝑛)𝑘])𝑛≥0 is convergent and thus bounded. By the first Borel–Cantelli lemma, this implies that 
𝐵 ∕𝑛1+𝜂 converges almost surely to 0, as claimed. □
𝑛

4 
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2.2. Asymptotics of doubling times

We now consider the number of doubling events before time 𝑛, i.e. the random variable 

𝜅(𝑛) ∶=
𝑛
∑

𝑖=1
𝟏𝜈𝑖−1=∅. (2.1)

The following results will be useful in the proof of Theorem  1.4.

Proposition 2.3.  As 𝑛 ↑ ∞,

𝜅(𝑛) − log 𝑛
1+log 2

√

log 𝑛
(1+log 2)3∕2

⇒  (0, 1).

Remark 2.4.  Using the continuous-time embedding in Section 4.3  (see Remark  4.5) one can also show that
𝜅(𝑛)
log 𝑛

→
1

1 + log 2
,  almost surely as 𝑛→ ∞.

We define the sequence (𝑠𝑛)𝑛≥0 of doubling times as follows: 𝑠0 = 0 and, for all 𝑛 ≥ 0,

𝑠𝑛+1 = min{𝑘 > 𝑠𝑛 ∶ 𝜈𝑘−1 = ∅}.

To prove Proposition  2.3, we start by looking at the sequence (𝑠𝑛, 𝐵𝑠𝑛 )𝑛≥0. To simplify notation, we set 𝐶𝑛 = 𝐵𝑠𝑛  and we set 
𝛥𝑠𝑛+1 = 𝑠𝑛+1 − 𝑠𝑛, for all 𝑛 ≥ 0. Note that, by definition, for all 𝑛 ≥ 0, for all 𝑥 ∈ {0, 1, 2,…},

P(𝛥𝑠𝑛+1 > 𝑥|𝑠𝑛, 𝐶𝑛) =
𝐶𝑛

𝐶𝑛 + 1
⋅
𝐶𝑛 + 1
𝐶𝑛 + 2

⋯
𝐶𝑛 + 𝑥 − 1
𝐶𝑛 + 𝑥

=
𝐶𝑛

𝐶𝑛 + 𝑥
.

Equivalently,

P(𝛥𝑠𝑛+1 ≤ 𝑥|𝑠𝑛, 𝐶𝑛) =
𝑥

𝐶𝑛 + 𝑥
.

Thus, if (𝑈𝑛)𝑛≥1 is a sequence of i.i.d. uniform random variables on [0, 1], then for all 𝑛 ≥ 0, 

𝛥𝑠𝑛+1
d
=
⌈

𝑈𝑛+1𝐶𝑛
1 − 𝑈𝑛+1

⌉

, (2.2)

where d
= means equality in distribution. Furthermore, because, at time 𝑠𝑛+1 − 1, the number of non-root nodes in the tree is 

𝐶𝑛 + 𝛥𝑠𝑛+1 − 1, we have 

𝐶𝑛+1 = 2(𝐶𝑛 + 𝛥𝑠𝑛+1 − 1) + 2 = 2(𝐶𝑛 + 𝛥𝑠𝑛+1)
d
= 2

(

𝐶𝑛 +
⌈

𝑈𝑛+1𝐶𝑛
1 − 𝑈𝑛+1

⌉)

. (2.3)

In what follows, we treat the distributional equalities in (2.2) and (2.3) as actual equalities, in other words we replace the random 
variables 𝑠𝑛 and 𝐶𝑛 with distributional copies satisfying these equalities.

Lemma 2.5.  In distribution as 𝑛 ↑ ∞,
( log𝐶𝑛 − (1 + log 2)𝑛

√

𝑛
,
log 𝑠𝑛 − (1 + log 2)𝑛

√

𝑛

)

⇒ (𝑁,𝑁),

where 𝑁 ∼  (0, 1) is a standard normal random variable.

Proof.  First note that, by (2.3), for all 𝑛 ≥ 0,

𝐶𝑛+1 ≥ 2
(

𝐶𝑛 +
𝑈𝑛+1𝐶𝑛
1 − 𝑈𝑛+1

)

=
2𝐶𝑛

1 − 𝑈𝑛+1
.

By induction, we thus get 

𝐶𝑛 ≥ 2𝑛−1𝐶1

𝑛
∏

𝑖=2

1
1 − 𝑈𝑖

= 2𝑛
𝑛
∏

𝑖=2

1
1 − 𝑈𝑖

, (2.4)

because, by definition, 𝑠1 = 1 and 𝐶1 = 𝐵𝑠1 = 2. On the other hand, (2.3) also implies that, for all 𝑛 ≥ 0

𝐶𝑛+1 ≤ 2
(

𝐶𝑛 +
𝑈𝑛+1𝐶𝑛
1 − 𝑈𝑛+1

+ 1
)

= 2
(

𝐶𝑛
1 − 𝑈𝑛+1

+ 1
)

.

By induction, we thus get
5 
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𝐶𝑛 ≤ 2𝑛−1𝐶1

𝑛
∏

𝑖=2

1
1 − 𝑈𝑖

+
𝑛+1
∑

𝑘=3
2𝑛+2−𝑘

𝑛
∏

𝑖=𝑘

1
1 − 𝑈𝑖

= 2𝑛
𝑛
∏

𝑖=2

1
1 − 𝑈𝑖

+
𝑛+1
∑

𝑘=3
2𝑛+2−𝑘

𝑛
∏

𝑖=𝑘

1
1 − 𝑈𝑖

≤
(

2𝑛 +
𝑛+1
∑

𝑘=3
2𝑛+2−𝑘

) 𝑛
∏

𝑖=2

1
1 − 𝑈𝑖

= 2𝑛
(

1 +
𝑛−1
∑

𝑘=1
(1∕2)𝑘

) 𝑛
∏

𝑖=2

1
1 − 𝑈𝑖

≤ 2𝑛
(

1 +
∑

𝑘≥1
(1∕2)𝑘

) 𝑛
∏

𝑖=2

1
1 − 𝑈𝑖

= 2𝑛+1
𝑛
∏

𝑖=2

1
1 − 𝑈𝑖

. (2.5)

In total, we have thus proved that

2𝑛
𝑛
∏

𝑖=2

1
1 − 𝑈𝑖

≤ 𝐶𝑛 ≤ 2𝑛+1
𝑛
∏

𝑖=2

1
1 − 𝑈𝑖

,

which implies that, as 𝑛 ↑ ∞, 

log𝐶𝑛 = 𝑛 log 2 +
𝑛
∑

𝑖=2
log

( 1
1 − 𝑈𝑖

)

+ (1). (2.6)

Next, by (2.2), for all 𝑛 ≥ 0,

𝑠𝑛+1 ≥ 𝑠𝑛 +
𝑈𝑛+1𝐶𝑛
1 − 𝑈𝑛+1

,

which implies, by induction,

𝑠𝑛 ≥ 𝑠1 +
𝑛
∑

𝑘=2

𝑈𝑘𝐶𝑘−1
1 − 𝑈𝑘

≥
𝑈𝑛𝐶𝑛−1
1 − 𝑈𝑛

≥ 2𝑛−1𝑈𝑛
𝑛
∏

𝑖=2

1
1 − 𝑈𝑖

,

where we have used (2.4). On the other hand, using (2.2) again we get that, for all 𝑛 ≥ 0,

𝑠𝑛+1 ≤ 𝑠𝑛 +
𝑈𝑛+1𝐶𝑛
1 − 𝑈𝑛+1

+ 1,

which implies, using induction and (2.5), that

𝑠𝑛 ≤ 𝑛 +
𝑛
∑

𝑘=2

𝑈𝑘𝐶𝑘−1
1 − 𝑈𝑘

≤ 𝑛 +
𝑛
∑

𝑘=2
2𝑘𝑈𝑘

𝑘
∏

𝑖=2

1
1 − 𝑈𝑖

.

Now, because 𝑈𝑖 ∈ (0, 1) almost surely for all 𝑖 ≥ 1, we get

𝑠𝑛 ≤ 𝑛 + 2𝑛
( 𝑛
∏

𝑖=2

1
1 − 𝑈𝑖

) 𝑛−2
∑

𝑘=0
(1∕2)𝑘 ≤ 𝑛 + 2𝑛

( 𝑛
∏

𝑖=2

1
1 − 𝑈𝑖

)

∑

𝑘≥0
(1∕2)𝑘 = 𝑛 + 2𝑛+1

𝑛
∏

𝑖=2

1
1 − 𝑈𝑖

.

In total, we have thus proved that for all 𝑛 ≥ 1,

2𝑛−1𝑈𝑛
𝑛
∏

𝑖=2

1
1 − 𝑈𝑖

≤ 𝑠𝑛 ≤ 𝑛 + 2𝑛+1
𝑛
∏

𝑖=2

1
1 − 𝑈𝑖

,

which implies that 

log 𝑠𝑛 = 𝑛 log 2 +
𝑛
∑

𝑖=2
log

( 1
1 − 𝑈𝑖

)

+ (log 𝑛). (2.7)

Applying the central limit theorem applied to the sequence of i.i.d. random variables (log(1∕(1 − 𝑈𝑖))𝑖≥1), which have expectation 
and variance both equal to 1, the result follows from (2.6) and (2.7). □

Proof of Proposition  2.3.  The argument is inspired by standard arguments in renewal theory, with 𝑠𝑘 playing the role of the time 
of the 𝑘’th renewal and 𝜅(𝑛) the number of renewals up to time 𝑛. By definition, for any 𝑘 ∈ N, we have that 𝜅(𝑛) ≥ 𝑘 if and only if 
𝑠𝑘 ≤ 𝑛. Now, for any 𝑥 ∈ R,

P
(𝜅(𝑛) − log 𝑛

1+log 2
√

log 𝑛
(1+log 2)3∕2

≥ −𝑥
)

= P(𝜅(𝑛) ≥ 𝑘𝑛(𝑥)) = P(𝑠𝑘𝑛(𝑥) ≤ 𝑛)

where

𝑘𝑛(𝑥) =
⌈

log 𝑛
1+log 2 − 𝑥

√

log 𝑛
(1+log 2)3∕2

⌉

.

But

P(𝑠𝑘𝑛(𝑥) ≤ 𝑛) = P
( log 𝑠𝑘𝑛(𝑥) − (1 + log 2)𝑘𝑛(𝑥)

√
≤

log 𝑛 − (1 + log 2)𝑘𝑛(𝑥)
√

)

𝑘𝑛(𝑥) 𝑘𝑛(𝑥)

6 
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and as 𝑛→ ∞ we have 𝑘𝑛(𝑥) → ∞ and
log 𝑛 − (1 + log 2)𝑘𝑛(𝑥)

√

𝑘𝑛(𝑥)
→ 𝑥.

Thus by Lemma  2.5, with 𝛷 the cumulative density function of the standard normal distribution,
P(𝑠𝑘𝑛(𝑥) ≤ 𝑛) → 𝛷(𝑥) = 1 −𝛷(−𝑥),

as required. □

3. The degree distribution: proof of Theorem  1.3

The proof of Theorem  1.3 is based on stochastic approximation, specifically the following result, attributed to Robbins and 
Siegmund [19]: 

Theorem 3.1 (e.g. [5, Theorem 1.3.12]). Suppose that (𝑉 (𝑛))𝑛≥0, (𝛼𝑛)𝑛≥0, (𝛽𝑛)𝑛≥0, and (𝛾𝑛)𝑛≥0 are four non-negative sequences adapted to 
a filtration (𝑛)𝑛≥0 and satisfying, for all 𝑛 ≥ 0,

E[𝑉 (𝑛 + 1)|𝑛] ≤ (1 + 𝛼𝑛)𝑉 (𝑛) − 𝛽𝑛 + 𝛾𝑛.

Then, on the event that ∑𝑛≥0 𝛼𝑛 < ∞ and ∑𝑛≥0 𝛾𝑛 < ∞, we have that, almost surely, (𝑉 (𝑛))𝑛≥0 converges to a finite random variable, and 
∑

𝑛≥0 𝛽𝑛 < ∞.

Proof of Theorem  1.3.  Recall that 𝑈𝑖(𝑛) denotes the number of nodes in 𝜏𝑛 that have exactly 𝑖 children.  We fix 𝑚 ≥ 1 and let, for 
all 0 ≤ 𝑖 ≤ 𝑚,

𝑋𝑖(𝑛) =

{

𝑈𝑖(𝑛)  if 0 ≤ 𝑖 ≤ 𝑚 − 1
∑

𝑗≥𝑚 𝑈𝑗 (𝑛)  if 𝑖 = 𝑚,

and set

𝑋̂𝑖(𝑛) =
𝑋𝑖(𝑛)
𝐵𝑛 + 1

.

By definition, for all 0 ≤ 𝑖 ≤ 𝑚 − 1, 𝑋̂𝑖(𝑛) is the proportion of nodes having 𝑖 children in 𝜏𝑛. Let us set 𝛥𝑋𝑖(𝑛 + 1) = 𝑋𝑖(𝑛 + 1) −𝑋𝑖(𝑛)
and 𝛥𝐵𝑛+1 = 𝐵𝑛+1 − 𝐵𝑛. For all 0 ≤ 𝑖 ≤ 𝑚, for all 𝑛 ≥ 0,

𝑋̂𝑖(𝑛 + 1) =
𝑋𝑖(𝑛) + 𝛥𝑋𝑖(𝑛 + 1)

𝐵𝑛+1 + 1
= 𝑋̂𝑖(𝑛) ⋅

𝐵𝑛 + 1
𝐵𝑛+1 + 1

+
𝛥𝑋𝑖(𝑛 + 1)
𝐵𝑛+1 + 1

= 𝑋̂𝑖(𝑛) +
1

𝐵𝑛+1 + 1
(

𝛥𝑋𝑖(𝑛 + 1) − 𝛥𝐵𝑛+1𝑋̂𝑖(𝑛)
)

.

Note that, by definition of the model,  with probability 1∕(𝐵𝑛 +1), we pick the root and double the number of nodes with 𝑖 children 
(for all 𝑖 ≥ 1) and add one node with two children, whilst, with probability 𝐵𝑛∕(𝐵𝑛+1), we pick a non-root node uniformly at random 
and increase its number of children by one (in this case, with probability 𝑋̂𝑖(𝑛), the number of nodes with 𝑖 children decreases by 
one, and with probability 𝑋̂𝑖−1(𝑛), it increases by one). Hence,  for all 1 ≤ 𝑖 ≤ 𝑚 − 1,

E
[

𝛥𝑋𝑖(𝑛 + 1)|𝑛
]

= 1
𝐵𝑛 + 1

⋅ (𝑋𝑖(𝑛) + 𝟏𝑖=2) +
𝐵𝑛

𝐵𝑛 + 1
⋅ (𝑋̂𝑖−1(𝑛) − 𝑋̂𝑖(𝑛))

= 𝑋̂𝑖−1(𝑛) +
𝟏𝑖=2 + 𝑋̂𝑖(𝑛) − 𝑋̂𝑖−1(𝑛)

𝐵𝑛 + 1

Similarly,  in the case when the tree does not double, the number of leaves (nodes with 0 children) always increases by one, except 
if the node we have picked was itself a leaf. Hence 

E
[

𝛥𝑋0(𝑛 + 1)|𝑛
]

= 1
𝐵𝑛 + 1

⋅𝑋0(𝑛) +
𝐵𝑛

𝐵𝑛 + 1
⋅ (1 − 𝑋̂0(𝑛)) = 1 −

1 − 𝑋̂0(𝑛)
𝐵𝑛 + 1

.

Because ∑𝑚
𝑖=0 𝑋̂𝑖(𝑛) = 1, we can write

E
[

𝛥𝑋0(𝑛 + 1)|𝑛
]

=
𝑚
∑

𝑖=0
𝑋̂𝑖(𝑛) −

1 − 𝑋̂0(𝑛)
𝐵𝑛 + 1

.

Finally,

E
[

𝛥𝑋𝑚(𝑛 + 1)|𝑛
]

= 1
𝐵𝑛 + 1

⋅𝑋𝑚(𝑛) +
𝐵𝑛

𝐵𝑛 + 1
⋅ 𝑋̂𝑚−1(𝑛) = 𝑋̂𝑚(𝑛) + 𝑋̂𝑚−1(𝑛) −

𝑋̂𝑚−1(𝑛)
𝐵𝑛 + 1

.

Note that, also,

E
[

𝛥𝐵𝑛+1|𝑛
]

= 1
⋅ (𝐵𝑛 + 2) +

𝐵𝑛 = 2.

𝐵𝑛 + 1 𝐵𝑛 + 1

7 
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Introduce, for all 0 ≤ 𝑖 ≤ 𝑚,

𝛥𝑀𝑖(𝑛 + 1) = 𝛥𝑋𝑖(𝑛 + 1) − 𝛥𝐵𝑛+1𝑋̂𝑖(𝑛) − E
[

𝛥𝑋𝑖(𝑛 + 1) − 𝛥𝐵𝑛+1𝑋̂𝑖(𝑛)|𝑛
]

,

and set, for all 𝑥 = (𝑥0,… , 𝑥𝑚) ∈ R𝑚+1,

𝐹𝑖(𝑥) =

⎧

⎪

⎨

⎪

⎩

∑𝑚
𝑖=1 𝑥𝑖 − 𝑥0  if 𝑖 = 0,

𝑥𝑖−1 − 2𝑥𝑖  if 1 ≤ 𝑖 ≤ 𝑚 − 1,
𝑥𝑚−1 − 𝑥𝑚  if 𝑖 = 𝑚.

Also let 

𝜀𝑖(𝑛 + 1) = 1
𝐵𝑛 + 1

⎧

⎪

⎨

⎪

⎩

−(1 − 𝑋̂0(𝑛))  if 𝑖 = 0,
𝟏𝑖=2 + 𝑋̂𝑖(𝑛) − 𝑋̂𝑖−1(𝑛)  if 1 ≤ 𝑖 ≤ 𝑚 − 1,
−𝑋̂𝑚−1(𝑛)  if 𝑖 = 𝑚.

(3.1)

Using the above, we can write 

𝑋̂𝑖(𝑛 + 1) = 𝑋̂𝑖(𝑛) +
1

𝐵𝑛+1 + 1
(

𝐹𝑖(𝑋̂(𝑛)) + 𝛥𝑀𝑖(𝑛 + 1) + 𝜀𝑖(𝑛 + 1)
)

, (3.2)

We write (3.2) as an identity on vectors: 

𝑋̂(𝑛 + 1) = 𝑋̂(𝑛) + 1
𝐵𝑛+1 + 1

(

𝐹 (𝑋̂(𝑛)) + 𝛥𝑀(𝑛 + 1) + 𝜀(𝑛 + 1)
)

. (3.3)

Now, because 𝐵𝑛+1 is not 𝑛-measurable, we re-write this as

𝑋̂(𝑛 + 1) = 𝑋̂(𝑛) + 1
𝐵𝑛 + 1

(

𝐹 (𝑋̂(𝑛)) + 𝛥𝑀(𝑛 + 1) + 𝜀(𝑛 + 1)
)

−
𝐵𝑛+1 − 𝐵𝑛

(𝐵𝑛 + 1)(𝐵𝑛+1 + 1)
⋅ 𝑌 (𝑛 + 1),

where we have set 
𝑌 (𝑛 + 1) = 𝐹 (𝑋̂(𝑛)) + 𝛥𝑀(𝑛 + 1) + 𝜀(𝑛 + 1). (3.4)

In total, this gives 

𝑋̂(𝑛 + 1) = 𝑋̂(𝑛) + 1
𝐵𝑛 + 1

(

𝐹 (𝑋̂(𝑛)) + 𝛥𝑀(𝑛 + 1) + 𝜂(𝑛 + 1)
)

, (3.5)

where 

𝜂(𝑛 + 1) = 𝜀(𝑛 + 1) −
𝛥𝐵𝑛+1
𝐵𝑛+1 + 1

⋅ 𝑌 (𝑛 + 1). (3.6)

This recursion is of the form of a stochastic approximation. However, the step sizes (1∕(𝐵𝑛 + 1))𝑛≥0 are random, and we have a 
random error term (𝜂(𝑛 + 1))𝑛≥0. Because of these two reasons, we cannot apply a theorem directly from the literature, but need 
instead to write a specific argument. We now let 𝑣𝑖 = 2−𝑖−1 for all 0 ≤ 𝑖 ≤ 𝑚 − 1 and 𝑣𝑚 = 2−𝑚. One can check that 𝐹 (𝑣) = 0; in fact, 
for all 𝑥 ∈ R𝑑 , 𝐹 (𝑥) = 𝐴𝑥, with

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 1 1 … … 1
1 −2 0 … … 0
0 1 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 1 −2 0
0 … … 0 1 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and one can check that the largest eigenvalue of 𝐴 is 0, it is a simple eigenvalue with eigenvector 𝑣, the unique one with non-negative 
coefficients and satisfying ∑𝑚

𝑖=0 𝑣𝑖 = 1. We thus have (write ‖ ⋅ ‖ for the 𝐿2 norm on Z𝑚+1), for all 𝑛 ≥ 0,

‖𝑋̂(𝑛 + 1) − 𝑣‖2 = ‖𝑋̂(𝑛) − 𝑣‖2 + 2
𝐵𝑛 + 1

⟨𝑋̂(𝑛) − 𝑣, 𝐴𝑋̂(𝑛) + 𝛥𝑀(𝑛 + 1) + 𝜂(𝑛 + 1)⟩

+ 1
(𝐵𝑛 + 1)2

‖𝐴𝑋̂(𝑛) + 𝛥𝑀(𝑛 + 1) + 𝜂(𝑛 + 1)‖2. (3.7)

We use the triangle inequality and the fact that (𝑥 + 𝑦)2 ≤ 2𝑥2 + 2𝑦2 for all 𝑥, 𝑦 ∈ R, to get
‖𝐴𝑋̂(𝑛) + 𝛥𝑀(𝑛 + 1) + 𝜂(𝑛 + 1)‖2 ≤ 2‖𝐴𝑋̂(𝑛)‖2 + 2‖𝛥𝑀(𝑛 + 1) + 𝜂(𝑛 + 1)‖2

≤ 2‖𝐴(𝑋̂(𝑛) − 𝑣)‖2 + 4‖𝛥𝑀(𝑛 + 1)‖ + 4‖𝜂(𝑛 + 1)‖2

≤ 2|||𝐴|||2‖𝑋̂(𝑛) − 𝑣‖2 + 4‖𝛥𝑀(𝑛 + 1)‖2 + 4‖𝜂(𝑛 + 1)‖2, (3.8)
8 
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where |||𝐴||| is the operator norm of 𝐴. Before proceeding, we show that there exists a constant 𝐶 > 0 such that 

sup
𝑛≥0

‖𝛥𝑀(𝑛 + 1)‖ ≤ 𝐶  and sup
𝑛≥0

‖𝜂(𝑛 + 1)‖ ≤ 𝐶. (3.9)

Indeed, first recall that

𝛥𝑀(𝑛 + 1) = 𝛥𝑋(𝑛 + 1) − 𝛥𝐵𝑛+1𝑋̂(𝑛) − E[𝛥𝑋(𝑛 + 1) − 𝛥𝐵𝑛+1𝑋̂(𝑛)|𝑛].

On the event that the tree doubles at time 𝑛+1, we have (with 𝑒2 = (0, 0, 1, 0,… , 0)𝑡; to be consistent with 𝑋(𝑛) = (𝑋0(𝑛),… , 𝑋𝑚(𝑛))𝑡, 
we let 𝑒0 = (1, 0, 0,… , 0)𝑡, 𝑒1 = (0, 1, 0,… , 0)𝑡, etc)

𝛥𝑋(𝑛 + 1) − 𝛥𝐵𝑛+1𝑋̂(𝑛) = 𝑋(𝑛) + 2𝑒2 − (𝐵𝑛 + 2)𝑋̂(𝑛)

= 𝑋(𝑛) − (𝐵𝑛 + 1)𝑋̂(𝑛) + 2𝑒2 − 𝑋̂(𝑛) = 2𝑒2 − 𝑋̂(𝑛),

which implies ‖𝛥𝑋(𝑛+1)−𝛥𝐵𝑛+1𝑋̂(𝑛)‖ ≤ 3 (because ‖𝑋̂(𝑛)‖2 ≤
∑𝑚
𝑖=0 𝑋̂𝑖(𝑛) = 1, as 𝑋̂(𝑛) has non-negative coefficients that sum to 1). 

On the event that the tree does not double at time 𝑛 + 1,

‖𝛥𝑋(𝑛 + 1) − 𝛥𝐵𝑛+1𝑋̂(𝑛)‖ = ‖𝛥𝑋(𝑛 + 1) − 𝑋̂(𝑛)‖ ≤ ‖𝛥𝑋(𝑛 + 1)‖ + 1,

and ‖𝛥𝑋(𝑛+ 1)‖ is bounded by the maximum of the norms of the columns of 𝐴+ 𝐼 , which is a constant, which we let 𝐾 denote. In 
total, we thus get that

‖𝛥𝑋(𝑛 + 1) − 𝛥𝐵𝑛+1𝑋̂(𝑛)‖ ≤ 𝐾 + 3,

for all 𝑛 ≥ 0, which implies that sup𝑛≥0 ‖𝛥𝑀(𝑛+1)‖ ≤ 2(𝐾 +3). We now prove that sup𝑛≥0 ‖𝜂(𝑛+1)‖ <∞ (see (3.6) for the definition 
of 𝜂(𝑛 + 1)). First note that, by definition (see (3.1) for the definition of 𝜀(𝑛 + 1)),

‖𝜀(𝑛 + 1)‖ ≤ 4
𝐵𝑛+1 + 1

≤ 4.

Thus, by the triangle inequality (see (3.4) for the definition of 𝑌 (𝑛 + 1)),

‖𝑌 (𝑛 + 1)‖ ≤ ‖𝐴𝑋̂(𝑛)‖ + ‖𝛥𝑀(𝑛 + 1)‖ + ‖𝜀(𝑛 + 1)‖ ≤ |||𝐴||| + (𝐾 + 3) + 4,

implying that sup𝑛≥0 ‖𝑌 (𝑛 + 1)‖ ≤ |||𝐴||| +𝐾 + 7. Thus, for all 𝑛 ≥ 0, 

‖𝜂(𝑛 + 1)‖ ≤ ‖𝜀(𝑛 + 1)‖ +
𝛥𝐵𝑛+1
𝐵𝑛+1 + 1

⋅ ‖𝑌 (𝑛 + 1)‖ ≤ ‖𝜀(𝑛 + 1)‖ + ‖𝑌 (𝑛 + 1)‖ ≤ |||𝐴||| +𝐾 + 11, (3.10)

which concludes the proof of (3.9) (we choose 𝐶 ≥ |||𝐴||| +𝐾 + 11). We now let 𝑉 (𝑛) = ‖𝑋̂(𝑛) − 𝑣‖2 for all 𝑛 ≥ 0; with this notation, 
and using the triangle inequality, we get from (3.7) and (3.8) that

E[𝑉 (𝑛 + 1)|𝑛] ≤𝑉 (𝑛) + 2
𝐵𝑛 + 1

⟨𝑋̂(𝑛) − 𝑣, 𝐴𝑋̂(𝑛)⟩ + 2
𝐵𝑛 + 1

⟨𝑋̂(𝑛) − 𝑣,E[𝜂(𝑛 + 1)|𝑛]⟩

+ 1
(𝐵𝑛 + 1)2

(

|||𝐴|||𝑉 (𝑛) + 2𝐶
)

, (3.11)

where we have chosen 𝐶 larger than sup𝑛≥0 𝛥𝑀(𝑛 + 1) and sup𝑛≥0 𝜂(𝑛 + 1). Now, by the Cauchy–Schwarz and Jensen inequalities, 

⟨𝑋̂(𝑛) − 𝑣,E[𝜂(𝑛 + 1)|𝑛]⟩ ≤ ‖𝑋̂(𝑛) − 𝑣‖E[‖𝜂(𝑛 + 1)‖|𝑛] ≤ 2E[‖𝜂(𝑛 + 1)‖|𝑛], (3.12)

because ‖𝑋̂(𝑛) − 𝑣‖ ≤ ‖𝑋̂(𝑛)‖+ ‖𝑣‖ ≤ 2. Now, by (3.10), and the fact that 𝜀(𝑛+ 1) ≤ 4 ≤ 𝐶 and ‖𝑌 (𝑛+ 1)‖ ≤ 𝐶 for all 𝑛 ≥ 0, we have

E[‖𝜂(𝑛 + 1)‖|𝑛] ≤ 𝐶E
[

1 +
𝛥𝐵𝑛+1
𝐵𝑛+1 + 1

|

|

|

𝑛
]

= 𝐶
(

1
𝐵𝑛 + 1

⋅
𝐵𝑛 + 2
2𝐵𝑛 + 3

+
𝐵𝑛

𝐵𝑛 + 1
⋅

1
𝐵𝑛 + 2

)

,

by definition of the model. Thus,

E[‖𝜂(𝑛 + 1)‖|𝑛] ≤
𝐶

𝐵𝑛 + 1

(

𝐵𝑛 + 2
2𝐵𝑛 + 3

+
𝐵𝑛

𝐵𝑛 + 2

)

≤ 2𝐶
𝐵𝑛 + 1

.

Thus, by (3.12) and (3.11), for all 𝑛 ≥ 0,

E[𝑉 (𝑛 + 1)|𝑛] ≤
(

1 +
|||𝐴|||

(𝐵𝑛 + 1)2

)

𝑉 (𝑛) + 2
𝐵𝑛 + 1

⟨𝑋̂(𝑛) − 𝑣, 𝐴𝑋̂(𝑛)⟩ + 10𝐶
(𝐵𝑛 + 1)2

.

We want to apply Theorem  3.1 with 𝛼𝑛 = |||𝐴|||
(𝐵𝑛+1)2

, 𝛽𝑛 = − 2
𝐵𝑛+1

⟨𝑋̂(𝑛) − 𝑣, 𝐴𝑋̂(𝑛)⟩, and 𝛾𝑛 = 10𝐶
(𝐵𝑛+1)2

, so we need to check the conditions 
on these sequences. Because, by definition, 𝐵𝑛 ≥ 𝑛 for all 𝑛 ≥ 0, we have that, almost surely, ∑𝑛≥0 𝛼𝑛 < ∞ and ∑𝑛≥0 𝛾𝑛 < ∞. To 
check that 𝛽𝑛 ≥ 0 first note that ⟨𝑋̂(𝑛) − 𝑣, 𝐴𝑋̂(𝑛)⟩ = ⟨𝑋̂(𝑛) − 𝑣, 𝐴(𝑋̂(𝑛) − 𝑣)⟩. While the eigenvalues of 𝐴 are all non-positive, 𝐴 is not 
Hermitian and hence not negative semidefinite; however, one may check explicitly that ⟨𝑥,𝐴𝑥⟩ ≤ 0 for all 𝑥 = (𝑥𝑖)𝑚𝑖=0 that satisfy 
∑𝑚 𝑥 = 0. Indeed, for such 𝑥,
𝑖=0 𝑖

9 
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⟨𝑥,𝐴𝑥⟩ = 𝑥0

(

−𝑥0 +
𝑚
∑

𝑖=1
𝑥𝑖

)

+
𝑚−1
∑

𝑖=1
𝑥𝑖(𝑥𝑖−1 − 2𝑥𝑖) + 𝑥𝑚(𝑥𝑚−1 − 𝑥𝑚)

= −2
( 𝑚
∑

𝑖=1
𝑥𝑖

)2
+

𝑚
∑

𝑖=1
𝑥𝑖𝑥𝑖−1 − 2

𝑚−1
∑

𝑖=1
𝑥2𝑖 − 𝑥

2
𝑚 ≤ −2

𝑚
∑

𝑖=1
𝑥2𝑖 − 2

𝑚
∑

𝑖=1

𝑚
∑

𝑗=1,𝑗≠𝑖
𝑥𝑖𝑥𝑗

= −2
𝑚
∑

𝑖=1
𝑥2𝑖 − 2

𝑚
∑

𝑖=1
𝑥𝑖(−𝑥0 − 𝑥𝑖) = 2𝑥0

𝑚
∑

𝑖=1
𝑥𝑖 = −2𝑥20 ≤ 0.

Applying this observation to 𝑥 = 𝑋̂(𝑛) − 𝑣 gives 𝛽𝑛 ≥ 0. Therefore, by Theorem  3.1, almost surely, 𝑊 ∶= lim𝑛↑∞ 𝑉 (𝑛) exists and is 
finite, and ∑𝑛≥0 𝛽𝑛 < ∞. On the event that 𝑊 ≠ 0, there exists 𝜀 > 0 such that, for all 𝑛 large enough, 𝑉 (𝑛) ≥ 𝜀. Now note that, on 
the set {𝑥 ∈ [0, 1]𝑚+1 ∶

∑𝑚
𝑖=0 𝑥𝑖 = 1} to which 𝑋̂(𝑛) belongs for all 𝑛 ≥ 0, 𝑥 ↦ ⟨𝑥 − 𝑣, 𝐴(𝑥 − 𝑣)⟩ is continuous, non negative, and its 

unique zero is 𝑣. Thus, on {𝑥 ∈ [0, 1]𝑚+1 ∶
∑𝑚
𝑖=0 𝑥𝑖 = 1} ∩ {‖𝑥 − 𝑣‖ ≥ 𝜀}, the maximum of 𝑥 ↦ ⟨𝑥 − 𝑣, 𝐴(𝑥 − 𝑣)⟩ is negative; we let 

−𝑐 denote this maximum. We thus get that, for all 𝑛 large enough, 𝛽𝑛 ≥ 2𝑐∕(𝐵𝑛 + 1). By Lemma  2.1, this implies that ∑𝑛≥0 𝛽𝑛 = ∞, 
which is an event of probability zero. Thus, 𝑊 = 0 almost surely, i.e. lim𝑛↑∞ 𝑋̂(𝑛) = 𝑣 almost surely as 𝑛 ↑ ∞. In other words, for all 
0 ≤ 𝑖 ≤ 𝑚 − 1,

𝑈𝑖(𝑛)
𝐵𝑛 + 1

=
𝑋𝑖(𝑛)
𝐵𝑛 + 1

→
1

2𝑖+1
.

Because 𝑚 can be chosen arbitrarily large, this concludes the proof. □

Remark 3.2.  Because of the step-sizes in (3.5) being random, we were unable to prove a central limit theorem for 𝑋̂(𝑛). We leave 
this as an open problem.

4. The distribution of heights

We now turn to the height profile, Theorem  1.4, as well as the lower bound on the height of the tree, Proposition  1.5. We will 
give full details for the case 𝑘 = 1 of Theorem  1.4 (the height of a typical node) in Section 4.1. In Section 4.2 we describe the 
necessary modifications for the case 𝑘 = 2, and give an outline of the case 𝑘 ≥ 3. Proposition  1.5 is proved in Section 4.3

4.1. The height of a typical node

Let us reformulate the case 𝑘 = 1 of Theorem  1.4:

Proposition 4.1.  For all 𝑛 ≥ 0, let 𝑢𝑛 be a uniformly random node in 𝜏𝑛. There is an a.s. finite random variable 𝛬 such that, as 𝑛 ↑ ∞,

|𝑢𝑛| −
2 log 𝑛
1+log 2

√

log 𝑛
1+log 2

⇒ 𝛬.

For the proof of Proposition  4.1, we define a process (𝜏𝑛, 𝑢̃𝑛)𝑛≥0 such that, for all 𝑛 ≥ 0, (𝜏𝑛, 𝑢𝑛)
d
= (𝜏𝑛, 𝑢̃𝑛). The process (𝜏𝑛, 𝑢̃𝑛)𝑛≥0 will 

have the properties: (i) at non-doubling times, the height of 𝑢̃𝑛 is either unchanged or increases by 1, and (ii) at doubling-times, the 
height of 𝑢̃𝑛 either increases by 1, or is reset to 0. The process is an adaptation of a standard construction for the random recursive 
tree (see [8] for a description of it in a more general case). In the latter case there are no doubling-times, and the height of the 
uniform node is monotonically increasing. In our case we need the possibility to reset, since at doubling steps there is a new node 
at height 0; however, we prove that there are only finitely many reset-times (almost surely), so they can effectively be ignored. In 
addition, we control the increase of the height of 𝑢̃𝑛 due to doublings by using Proposition  2.3.

Let us now define the process (𝜏𝑛, 𝑢̃𝑛)𝑛≥0. We let 𝜏0 = {∅} and 𝑢̃0 = ∅. Then, for all 𝑛 ≥ 0, given (𝜏𝑛, 𝑢̃𝑛), we sample

• 𝐾(𝑛 + 1) a Bernoulli-distributed random variable of parameter 1∕(2|𝜏𝑛| + 1), and
• 𝐿(𝑛 + 1), a Bernoulli-distributed random variable of parameter 1∕(|𝜏𝑛| + 1).

Then (𝜏𝑛+1, 𝑢̃𝑛+1) is constructed as follows:

(1) We let 𝜈̃𝑛 be a node taken uniformly at random among the nodes of 𝜏𝑛;
(2) If 𝜈̃𝑛 = ∅, then we define

𝜏𝑛+1 = {∅} ∪ {1𝑤∶𝑤 ∈ 𝜏𝑛} ∪ {2𝑤∶𝑤 ∈ 𝜏𝑛}.

Furthermore,

• if 𝐾(𝑛 + 1) = 1, then we set 𝑢̃𝑛+1 = ∅, and
• if 𝐾(𝑛 + 1) = 0, then we set 𝑢̃𝑛+1 = 1𝑢̃𝑛 or 𝑢̃𝑛+1 = 2𝑢̃𝑛 with probability 1∕2 each.

(3) If 𝜈̃ ≠ ∅, then
𝑛
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• if 𝐿(𝑛 + 1) = 1, then we set 𝜏𝑛+1 = 𝜏𝑛 ∪ {𝑢̃𝑛𝑖} and 𝑢̃𝑛+1 = 𝑢̃𝑛𝑖, where 𝑖 = min{𝑗 ≥ 1∶ 𝑢̃𝑛𝑗 ∉ 𝜏𝑛};
• if 𝐿(𝑛 + 1) = 0, then we set 𝜏𝑛+1 = 𝜏𝑛 ∪ {𝜈̃𝑛𝑖}, where 𝑖 = min{𝑗 ≥ 1∶ 𝜈̃𝑛𝑗 ∉ 𝜏𝑛}, and 𝑢̃𝑛+1 = 𝑢̃𝑛.

Lemma 4.2.  For all 𝑛 ≥ 0, (𝜏𝑛, 𝑢̃𝑛)
d
= (𝜏𝑛, 𝑢𝑛).

Proof.  By induction. □

Proof of Proposition  4.1.  Throughout the proof, we identify (𝜏𝑛, 𝑢𝑛) with the distributional copy (𝜏𝑛, 𝑢̃𝑛) and omit the tilde from 
the notation. Then, for each 𝑛 ≥ 0 there are three cases:

• either |𝑢𝑛+1| = |𝑢𝑛| (if 𝜈𝑛 ≠ ∅ and 𝐿(𝑛 + 1) = 0),
• or |𝑢𝑛+1| = |𝑢𝑛| + 1 (if 𝜈𝑛 = ∅ and 𝐾(𝑛 + 1) = 0, or if 𝜈𝑛 ≠ ∅ and 𝐿(𝑛 + 1) = 1),
• or |𝑢𝑛+1| = 0 (if 𝜈𝑛 = ∅ and 𝐾(𝑛 + 1) = 1).

Let us write 𝑅(𝑛) = max{𝑘 ≤ 𝑛∶ 𝜈𝑘 = ∅ and 𝐾(𝑘+ 1) = 1} for the last time before 𝑛 when 𝜈𝑘 = ∅ and 𝐾(𝑘+ 1) = 1 (we set 𝑅(𝑛) = 0 if 
there are no such times). Then by the above,

|𝑢𝑛| =
𝑛
∑

𝑖=𝑅(𝑛)+1
𝟏𝜈𝑖−1=∅ +

𝑛
∑

𝑖=𝑅(𝑛)+1
𝟏𝜈𝑖−1≠∅𝐿(𝑖)

=
𝑛
∑

𝑖=𝑅(𝑛)+1
𝟏𝜈𝑖−1=∅ +

𝑛
∑

𝑖=𝑅(𝑛)+1
𝐿(𝑖) −

𝑛
∑

𝑖=𝑅(𝑛)+1
𝟏𝜈𝑖−1=∅𝐿(𝑖).

Let 𝑛 = 𝜎(𝜏0, 𝜏1,… , 𝜏𝑛). Then, since |𝜏𝑘| ≥ 𝑘 + 1 almost surely, for each 𝑘 ≥ 0

P(𝜈𝑘 = ∅, 𝐾(𝑘 + 1) = 1) = E[P(𝜈𝑘 = ∅, 𝐾(𝑘 + 1) = 1 ∣ 𝑘)] = E
[ 1
|𝜏𝑘|(2|𝜏𝑘| + 1)

]

≤ 1
(𝑘 + 1)(2𝑘 + 3)

.

It follows, by the Borel–Cantelli lemma, that there is an a.s. finite random variable 𝑅 such that 𝑅(𝑛) → 𝑅 almost surely as 𝑛 ↑ ∞. 
Similarly,

P(𝟏𝜈𝑘=∅𝐿(𝑘 + 1) = 1 ∣ 𝑘) = E[P(𝟏𝜈𝑘=∅𝐿(𝑘 + 1) = 1 ∣ 𝑘)] = E
[ 1
|𝜏𝑘|(|𝜏𝑘| + 1)

]

≤ 1
(𝑘 + 1)(𝑘 + 2)

,

and thus, by the Borel–Cantelli lemma,
𝑛
∑

𝑖=𝑅(𝑛)+1
𝟏𝜈𝑖−1=∅𝐿(𝑖) ≤

𝑛
∑

𝑖=1
𝟏𝜈𝑖−1=∅𝐿(𝑖) = (1),

almost surely as 𝑛 ↑ ∞. Thus, almost surely as 𝑛 ↑ ∞, 

|𝑢𝑛| =
𝑛
∑

𝑖=1
𝟏𝜈𝑖−1=∅ +

𝑛
∑

𝑖=1
𝐿(𝑖) + (1). (4.1)

We write (4.1) in the following form: 

|𝑢𝑛| = 2
𝑛
∑

𝑖=1
𝟏𝜈𝑖−1=∅ −

𝑛
∑

𝑖=1

(

𝟏𝜈𝑖−1=∅ − 1
𝐵𝑖−1 + 1

)

+
𝑛
∑

𝑖=1

(

𝐿(𝑖) − 1
𝐵𝑖−1 + 2

)

+ (1). (4.2)

To do this, we have used the fact that 
𝑛
∑

𝑖=1

(

1
𝐵𝑖−1 + 1

− 1
𝐵𝑖−1 + 2

)

=
𝑛
∑

𝑖=1

1
(𝐵𝑖−1 + 1)(𝐵𝑖−1 + 2)

≤
𝑛
∑

𝑖=1

1
𝑖2

= (1). (4.3)

The first summand in (4.2) is taken care of by Proposition  2.3: as 𝑛 ↑ ∞, 

𝐺0(𝑛) ∶=

∑𝑛
𝑖=1 𝟏𝜈𝑖−1=∅ − log 𝑛

1+log 2
√

log 𝑛
(1+log 2)3∕2

⇒ 𝐺0 ∼  (0, 1). (4.4)

We claim that, as 𝑛 ↑ ∞, 

𝐺1(𝑛) ∶=

∑𝑛
𝑖=1

(

𝟏𝜈𝑖−1=∅ − 1
𝐵𝑖−1+1

)

√

log 𝑛
1+log 2

⇒ 𝐺1 ∼  (0, 1) (4.5)

and 

𝑊 (𝑛) ∶=

∑𝑛
𝑖=1

(

𝐿(𝑖) − 1
𝐵𝑖−1+2

)

√

log 𝑛
⇒ 𝑊 ∼  (0, 1), (4.6)
1+log 2

11 
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where 𝑊  is independent of (𝐺0, 𝐺1). Taken together, (4.4), (4.5) and (4.6) give the claim, with 𝛬 = 𝐺 +𝑊 , where 

𝐺 ∶=
2𝐺0

1 + log 2
− 𝐺1, (4.7)

is independent of 𝑊 . We now proceed with the proofs of (4.5) and (4.6).
For (4.5), recalling that E[𝟏𝜈𝑖−1=∅|𝑖−1

]

= 1
|𝜏𝑖−1|

= 1
𝐵𝑖−1+1

, we can write 
𝑛
∑

𝑖=1
𝟏𝜈𝑖−1=∅ =

𝑛
∑

𝑖=1
E
[

𝟏𝜈𝑖−1=∅|𝑖−1
]

+
𝑛
∑

𝑖=1

(

𝟏𝜈𝑖−1=∅ − E
[

𝟏𝜈𝑖−1=∅|𝑖−1
])

=
𝑛
∑

𝑖=1

1
𝐵𝑖−1 + 1

+𝑀𝑛,

(4.8)

where 𝑀𝑛 ∶=
∑𝑛
𝑖=1

(

𝟏𝜈𝑖−1=∅ − E
[

𝟏𝜈𝑖−1=∅|𝑖−1
]) defines a martingale. We need to prove that 𝑀𝑛∕

√

log 𝑛
1+log 2 ⇒  (0, 1). The quadratic 

variation of (𝑀𝑛)𝑛≥0 is given by 

⟨𝑀⟩𝑛 =
𝑛
∑

𝑖=1
E
[(

𝟏𝜈𝑖−1=∅ − E
[

𝟏𝜈𝑖−1=∅|𝑖−1
])2

|𝑖−1
]

=
𝑛
∑

𝑖=1
E
[

𝟏𝜈𝑖−1=∅|𝑖−1
](

1 − E
[

𝟏𝜈𝑖−1=∅|𝑖−1
])

=
𝑛
∑

𝑖=1

1
𝐵𝑖−1 + 1

(

1 − 1
𝐵𝑖−1 + 1

)

=
𝑛
∑

𝑖=1

1
𝐵𝑖−1 + 1

+ (1),
(4.9)

where we used that 𝐵𝑛 ≥ 𝑛 almost surely for all 𝑛 ≥ 0. Furthermore, by Lemma  2.1, ⟨𝑀⟩𝑛 → +∞ almost surely as 𝑛 ↑ ∞. Thus, by 
the martingale law of large numbers [18, 12.14], 𝑀𝑛 = 𝑜(⟨𝑀⟩𝑛) almost surely as 𝑛 ↑ ∞. Using again the fact that 𝐵𝑛 ≥ 𝑛, we get 
that ⟨𝑀⟩𝑛 = (log 𝑛) almost surely as 𝑛 ↑ ∞ and hence 𝑀𝑛 = 𝑜(log 𝑛) almost surely as 𝑛 ↑ ∞. Now note that, by Proposition  2.3,

𝑛
∑

𝑖=1
𝟏𝜈𝑖−1=∅ ∼

log 𝑛
1 + log 2

,  in probability.

Thus, by (4.8), 
𝑛
∑

𝑖=1

1
𝐵𝑖−1 + 1

=
𝑛
∑

𝑖=1
𝟏𝜈𝑖−1=∅ −𝑀𝑛 =

𝑛
∑

𝑖=1
𝟏𝜈𝑖−1=∅ + 𝑜(log 𝑛) almost surely,

∼
log 𝑛

1 + log 2
in probability.

(4.10)

By (4.9), this implies that ⟨𝑀⟩𝑛 ∼ log 𝑛∕(1 + log 2) in probability. Thus, by the martingale central limit theorem [20, Thm 8.2.8], 
𝑀𝑛

√

log 𝑛
1+log 2

⇒  (0, 1), (4.11)

as required.
For (4.6), we first reason conditionally on 𝝂 = (𝜈𝑘)𝑘≥0 and thus on (𝐵𝑘)𝑘≥0: conditionally on 𝝂, (𝐿(𝑖))𝑖≥0 is a sequence of 

independent Bernoulli random variables of respective parameters 1∕(𝐵𝑖−1 + 2), 𝑖 ≥ 0. By (4.3) and (4.10),
𝑛
∑

𝑖=1

1
𝐵𝑖−1 + 2

=
𝑛
∑

𝑖=1

1
𝐵𝑖−1 + 1

+ (1) =
log 𝑛

1 + log 2
+ (1), in probability.

Thus, by the Lindeberg central theorem [21, Theorem 7.2.1] (whose conditions are easily checked since the 𝐿(𝑖) are bounded), we 
get that, conditionally on 𝝂, 

𝑊 (𝑛) =

∑𝑛
𝑖=1 𝐿(𝑖) −

1
𝐵𝑖−1+2

√

log 𝑛
1+log 2

⇒ 𝑊 , (4.12)

where 𝑊  is a standard Gaussian. Explicitly, this means that for all continuous and bounded functions 𝜑 ∶ R → R,

E[𝜑(𝑊 (𝑛)) ∣ 𝝂] → E[𝜑(𝑊 )].

Because the limit does not depend on 𝝂, by dominated convergence, we can take expectations on both sides of the limit, which 
gives (4.6).

It only remains to show that 𝑊  is independent of (𝐺0, 𝐺1). First, for all continuous and bounded functions 𝜑,𝜓 ∶ R → R,

E[𝜑(𝑊 (𝑛))𝜓(𝐺0(𝑛))] = E
[

E[𝜑(𝑊 (𝑛))𝜓(𝐺0(𝑛)) ∣ 𝝂]
]

= E
[

𝜓(𝐺0(𝑛))E[𝜑(𝑊 (𝑛)) ∣ 𝝂]
]

= E
[

𝜓(𝐺0(𝑛))E[𝜑(𝑊 )]
]

+ E
[

𝜓(𝐺0(𝑛))
(

E[𝜑(𝑊 (𝑛)) ∣ 𝝂] − E[𝜑(𝑊 )]
)]

. (4.13)

On the one hand, by linearity (because E[𝜑(𝑊 )] is a constant), and by (4.4),
E
[

𝜓(𝐺 (𝑛))E[𝜑(𝑊 )]
]

= E[𝜑(𝑊 )]E
[

𝜓(𝐺 (𝑛))
]

→ E[𝜑(𝑊 )]E[𝜓(𝐺 )].
0 0 0

12 
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On the other hand,
|

|

|

E
[

𝜓(𝐺0(𝑛))
(

E[𝜑(𝑊 (𝑛)) ∣ 𝝂] − E[𝜑(𝑊 )]
)]

|

|

|

≤ E
[

𝜓(𝐺0(𝑛))
|

|

|

E[𝜑(𝑊 (𝑛)) ∣ 𝝂] − E[𝜑(𝑊 )]||
|

]

→ 0,

by dominated convergence, because 𝜓 and 𝜑 are bounded, and by (4.6). Thus, (4.13) implies
E[𝜑(𝑊 (𝑛))𝜓(𝐺0(𝑛))] → E[𝜑(𝑊 )]E[𝜓(𝐺0)].

Similarly, one can show that, for all continuous and bounded functions 𝜑 ∶ R → R and 𝜓 ∶ R2 → R,

E[𝜑(𝑊 (𝑛))𝜓(𝐺0(𝑛), 𝐺1(𝑛))] → E[𝜑(𝑊 )]E[𝜓(𝐺0, 𝐺1)].

This implies that (4.4), (4.5), and (4.6) hold jointly with 𝑊  independent of (𝐺0, 𝐺1), as desired. □

Remark.  Note that we cannot say much about the distribution of 𝛬 = 𝐺 +𝑊  since the two Gaussians 𝐺0 and 𝐺1 (see (4.7)) might 
be correlated.

4.2. The height profile: proof of Theorem  1.4

We now turn to the case 𝑘 = 2 of Theorem  1.4, and we write (𝑢𝑛, 𝑣𝑛) for the two uniformly random vertices in 𝜏𝑛 rather than 
(𝑢(1)𝑛 , 𝑢

(2)
𝑛 ). We follow a strategy similar to that of Section 4.1, defining a sequence (𝜏𝑛, 𝑢̃𝑛, 𝑣̃𝑛)𝑛≥0 such that for each 𝑛 ≥ 0, the triple 

(𝜏𝑛, 𝑢̃𝑛, 𝑣̃𝑛) is a distributional copy of (𝜏𝑛, 𝑢𝑛, 𝑣𝑛).
First, let 𝜏0 = {∅} and 𝑢̃0 = 𝑣̃0 = ∅. Then, for all 𝑛 ≥ 0, given (𝜏𝑛, 𝑢̃𝑛, 𝑣̃𝑛), we first sample 𝐾1(𝑛+1) and 𝐾2(𝑛+1), two independent 

Bernoulli-distributed random variables of parameter 1∕(2|𝜏𝑛|+1), and 𝐿1(𝑛+1) and 𝐿2(𝑛+1), two independent Bernoulli-distributed 
random variables of parameter 1∕(|𝜏𝑛|+ 1). Finally, we sample (𝛼𝑛)𝑛≥1 and (𝛽𝑛)𝑛≥1, two independent sequences of random variables, 
uniformly distributed on {1, 2}.

(1) We let 𝜈̃𝑛 be a node taken uniformly at random among the nodes of 𝜏𝑛;
(2) If 𝜈̃𝑛 = ∅, then we define

𝜏𝑛+1 = {∅} ∪ {1𝑤∶𝑤 ∈ 𝜏𝑛} ∪ {2𝑤∶𝑤 ∈ 𝜏𝑛}.

Furthermore,

• if 𝐾1(𝑛 + 1) = 1, then we set 𝑢̃𝑛+1 = ∅, and
• if 𝐾1(𝑛 + 1) = 0, then we set 𝑢̃𝑛+1 = 𝛼𝑛+1𝑢̃𝑛.
• if 𝐾2(𝑛 + 1) = 1, then we set 𝑣̃𝑛+1 = ∅, and
• if 𝐾2(𝑛 + 1) = 0, then we set 𝑣̃𝑛+1 = 𝛽𝑛+1𝑣̃𝑛.

(3) If 𝜈̃𝑛 ≠ ∅, then

• if 𝐿1(𝑛 + 1) = 𝐿2(𝑛 + 1) = 1, then we set 𝜏𝑛+1 = 𝜏𝑛 ∪ {𝑢̃𝑛𝑖} and 𝑢̃𝑛+1 = 𝑣̃𝑛+1 = 𝑢̃𝑛𝑖, where 𝑖 = min{𝑗 ≥ 1∶ 𝑢̃𝑛𝑗 ∉ 𝜏𝑛};
• if 𝐿1(𝑛 + 1) = 1 and 𝐿2(𝑛 + 1) = 0, then we set 𝜏𝑛+1 = 𝜏𝑛 ∪ {𝑢̃𝑛𝑖} and 𝑢̃𝑛+1 = 𝑢̃𝑛𝑖, where 𝑖 = min{𝑗 ≥ 1∶ 𝑢̃𝑛𝑗 ∉ 𝜏𝑛}; we also 
set 𝑣̃𝑛+1 = 𝑣̃𝑛.

• if 𝐿1(𝑛 + 1) = 0 and 𝐿2(𝑛 + 1) = 1, then we set 𝜏𝑛+1 = 𝜏𝑛 ∪ {𝑣̃𝑛𝑖} and 𝑣̃𝑛+1 = 𝑣̃𝑛𝑖, where 𝑖 = min{𝑗 ≥ 1∶ 𝑣̃𝑛𝑗 ∉ 𝜏𝑛}; we also 
set 𝑢̃𝑛+1 = 𝑢̃𝑛.

• if 𝐿1(𝑛 + 1) = 𝐿2(𝑛 + 1) = 0, then we set 𝜏𝑛+1 = 𝜏𝑛 ∪ {𝜈̃𝑛𝑖}, where 𝑖 = min{𝑗 ≥ 1∶ 𝜈̃𝑛𝑗 ∉ 𝜏𝑛}, 𝑢̃𝑛+1 = 𝑢̃𝑛, and 𝑣̃𝑛+1 = 𝑣̃𝑛.

Note that, with this definition, (𝜏𝑛, 𝑢̃𝑛)𝑛≥0 is the same process as in Section 4.1. Recall that, in that process, we see some ‘‘resets’’ 
at the root at doubling-times when also 𝐾1(𝑛 + 1) = 1, while otherwise 𝑢̃𝑛+1 is either 𝑢̃𝑛 or a child of 𝑢̃𝑛. The evolution of 𝑣̃𝑛 is a bit 
more complex as it can reset at the root (a doubling-times when 𝐾2(𝑛 + 1) = 1), it can ‘‘jump’’ to 𝑢̃𝑛+1 (at non-doubling times when 
𝐿1(𝑛 + 1) = 𝐿2(𝑛 + 1) = 1), and otherwise, 𝑣̃𝑛+1 is either 𝑣̃𝑛 or a child of 𝑣̃𝑛.

Lemma 4.3.  For all 𝑛 ≥ 0, (𝜏𝑛, 𝑢̃𝑛, 𝑣̃𝑛)
d
= (𝜏𝑛, 𝑢𝑛, 𝑣𝑛).

Proof.  By induction. □

Proof of Theorem  1.4 for 𝑘 = 2.  Again, we identify (𝜏𝑛, 𝑢𝑛, 𝑣𝑛) with its distributional copy (𝜏𝑛, 𝑢̃𝑛, 𝑣̃𝑛) and drop the tilde from the 
notation. We let 𝑅1(𝑛) (resp. 𝑅2(𝑛)) be the last time before (or at) time 𝑛 when 𝜈𝑖−1 = ∅ and 𝐿1(𝑖) = 1 (resp. 𝐿2(𝑖) = 1). With this 
definition, we have 

|𝑢𝑛| =
𝑛
∑

𝟏𝜈𝑖−1=∅ +
𝑛
∑

𝟏𝜈𝑖−1≠∅𝐿1(𝑖) =
𝑛
∑

𝟏𝜈𝑖−1=∅ +
𝑛
∑

𝟏𝜈𝑖−1≠∅𝐿1(𝑖) + (1), (4.14)

𝑖=𝑅1(𝑛)+1 𝑖=𝑅1(𝑛)+1 𝑖=1 𝑖=1
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as in Section 4.1. Now, we let 𝑆(𝑛) be the last time before (or at) time 𝑛 when 𝜈𝑖−1 ≠ ∅ and 𝐿1(𝑖) = 𝐿2(𝑖) = 1. This is the last time 
before time 𝑛 when 𝑣𝑛 jumped to join 𝑢𝑛 at a non-doubling time. If 𝑆(𝑛) < 𝑅2(𝑛), then 𝑣𝑛 has reset to ∅ since last jumping to join 
𝑢𝑛, so

|𝑣𝑛| =
𝑛
∑

𝑖=𝑅2(𝑛)+1
𝟏𝜈𝑖−1=∅ +

𝑛
∑

𝑖=𝑅2(𝑛)+1
𝐿2(𝑖).

If 𝑅2(𝑛) < 𝑆(𝑛) (note that they cannot be equal, by definition), then
|𝑣𝑛| = |𝑢𝑆(𝑛)| +

∑

𝑖=𝑆(𝑛)+1
𝟏𝜈𝑖−1=∅ +

∑

𝑖=𝑆(𝑛)+1
𝟏𝜈𝑖−1≠∅𝐿2(𝑖).

To summarise, if we let 𝑆2(𝑛) = 𝑅2(𝑛) ∨ 𝑆(𝑛), then 

|𝑣𝑛| = |𝑢𝑆(𝑛)|𝟏𝑅2(𝑛)<𝑆(𝑛) +
𝑛
∑

𝑖=𝑆2(𝑛)+1
𝟏𝜈𝑖−1=∅ +

𝑛
∑

𝑖=𝑆2(𝑛)+1
𝟏𝜈𝑖−1≠∅𝐿2(𝑖). (4.15)

Note that

P(𝜈𝑖−1 ≠ ∅ and 𝐿1(𝑖) = 𝐿2(𝑖) = 1 ∣ 𝑖−1) =
𝐵𝑖−1

𝐵𝑖−1 + 1
⋅
(

1
𝐵𝑖−1 + 2

)2
≤
(

1
𝐵𝑖−1 + 2

)2
≤ 1
𝑖2
,

 and thus P(𝜈𝑖−1 ≠ ∅ and 𝐿1(𝑖) = 𝐿2(𝑖) = 1) ≤ 1
𝑖2
. By the Borel–Cantelli lemma, almost surely as 𝑛 ↑ ∞, 𝑆(𝑛) → 𝑆, where 𝑆 is 

an almost surely finite random variable. Similarly, as proved in Section 4.1, 𝑅2(𝑛) → 𝑅2 almost surely as 𝑛 ↑ ∞, where 𝑅2 is an 
almost-surely finite random variable. Thus, 𝑆2(𝑛) → 𝑆2 = 𝑅2 ∨ 𝑆 almost surely as 𝑛 ↑ ∞, and therefore 

|𝑣𝑛| =
𝑛
∑

𝑖=1
𝟏𝜈𝑖−1=∅ +

𝑛
∑

𝑖=1
𝟏𝜈𝑖−1≠∅𝐿2(𝑖) + (1). (4.16)

From this point, the rest of the argument is as in the proof of Proposition  4.1: we write (4.14) and (4.16) as 

|𝑢𝑛| = 2
𝑛
∑

𝑖=1
𝟏𝜈𝑖−1=∅ −

𝑛
∑

𝑖=1

(

𝟏𝜈𝑖−1=∅ − 1
𝐵𝑖−1 + 1

)

+
𝑛
∑

𝑖=1

(

𝟏𝜈𝑖−1≠∅𝐿1(𝑖) −
1

𝐵𝑖−1 + 1

)

+ (1),

|𝑣𝑛| = 2
𝑛
∑

𝑖=1
𝟏𝜈𝑖−1=∅ −

𝑛
∑

𝑖=1

(

𝟏𝜈𝑖−1=∅ − 1
𝐵𝑖−1 + 1

)

+
𝑛
∑

𝑖=1

(

𝟏𝜈𝑖−1≠∅𝐿2(𝑖) −
1

𝐵𝑖−1 + 1

)

+ (1),
(4.17)

where in each expression, the first sum is handled using Proposition  2.3 and the others using the maringale central limit theorem. 
Note that this gives 

( |𝑢𝑛| −
2 log 𝑛
1+log 2

√

log 𝑛
1+log 2

,
|𝑣𝑛| −

2 log 𝑛
1+log 2

√

log 𝑛
1+log 2

)

⇒ (𝑉 +𝑊1, 𝑉 +𝑊2), (4.18)

where 𝑉 = 2𝐺0
1+log 2 − 𝐺1 as in (4.7) and 𝑊1,𝑊2 are defined as in (4.6) using 𝐿1 and 𝐿2, respectively.

We now briefly comment on the modifications needed for the case 𝑘 ≥ 3. As before, we define a process (𝜏𝑛, 𝑢̃(1)𝑛 , 𝑢̃(2)𝑛 ,… , 𝑢̃(𝑘)𝑛 ) such 
that for each 𝑛 ≥ 0, (𝜏𝑛, 𝑢̃(1)𝑛 ,… , 𝑢̃(𝑘)𝑛 ) has the same distribution as (𝜏𝑛, 𝑢(1)𝑛 ,… , 𝑢(𝑘)𝑛 ). In this process, the triple (𝜏𝑛, 𝑢̃(1)𝑛 , 𝑢̃(2)𝑛 ) will be the 
same as the process used for 𝑘 = 2 above. Each 𝑢̃(𝑗)𝑛  can be ‘‘reset’’ to ∅ (in the case 𝜈̃𝑛 = ∅), it can ‘‘jump’’ to any of 𝑢̃(1)𝑛 ,… , 𝑢̃(𝑗−1)𝑛
(in the case 𝜈̃𝑛 ≠ ∅), it can be replaced by a ‘‘new’’ child, or it can remain unchanged, these choices being determined by suitable 
random variables 𝐾1(𝑛 + 1),… , 𝐾𝑘(𝑛 + 1) and 𝐿1(𝑛 + 1),… , 𝐿𝑘(𝑛 + 1). In writing expressions such as (4.15), there are many cases to 
consider, but the analogs of (4.14) and (4.16) hold for each of 𝑢̃(1)𝑛 ,… , 𝑢̃(𝑘)𝑛 , and the rest of the argument is as before.

4.3. Lower bound on the height: proof of Proposition  1.5

Let w𝑛 denote the leftmost child of the root at height 𝜅(𝑛), where we recall (2.1) that 𝜅(𝑛) is the number of doubling events before 
time 𝑛. Since, by definition, the new node added at non-doubling times is always added to the right of already existing siblings, w𝑛
is a ‘copy’ of the original root of the tree 𝜏0. Let S𝑛 denote the subtree rooted at w𝑛, let s(𝑛) denote the number of nodes in S𝑛, and 
let h(𝑛) denote the height of S𝑛. Note that S𝑛 is a distributional copy of the random recursive tree at time s(𝑛). Clearly, the height 
𝐻𝑛 of 𝜏𝑛 satisfies 𝐻𝑛 ≥ 𝜅(𝑛) + h(𝑛). Moreover, we have the following estimate on the height of the random recursive tree, which 
gives h(𝑛) ∼ e log s(𝑛):

Theorem 4.4 (see Pittel [17]).  Let ℎ(𝑛) be the height of the 𝑛-node random recursive tree. Almost surely as 𝑛 ↑ ∞, ℎ(𝑛) ∼ e log 𝑛.

However, rather than applying Theorem  4.4 directly, which would require finding estimates on s(𝑛), we use an embedding of 
our process (𝜏𝑛)𝑛≥0 into continuous time. We define a continuous-time process ( (𝑡))𝑡≥0 of growing trees by first setting  (0) = {∅}
and then assigning to every node of the tree a clock that rings at exponential rate of parameter 1, the clocks for different nodes 
being independent. When a clock rings, if it is the clock associated to ∅, then, at that time, we double the tree as done at doubling 
14 
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events in the discrete time tree; otherwise, we add one child to the node whose clock rang. As before, our convention is to add the 
new node to the right of already existing siblings.

If we let 𝑡𝑛 be the time of the 𝑛th ring of a clock, then ( (𝑡𝑛))𝑛≥0
d
= (𝜏𝑛)𝑛≥0. Also note that the times at which the tree doubles define 

a Poisson point process of intensity 1; in particular, the number 𝐷(𝑡) of doubling events before time 𝑡 is distributed as a Poisson of 
parameter 𝑡. We now let (𝑡) denote the subtree rooted at the leftmost node at height 𝐷(𝑡). Thus (𝑡) is the continuous-time version 
of S𝑛, and it is now simply a Yule process of parameter 1.

Note that a random recursive tree can be coupled to a Yule process so that the random recursive tree equals the Yule process 
taken at its successive jump times. Thus, if 𝐻(𝑡) is the height of the Yule process (𝑡) at time 𝑡, then 𝐻(𝑡) = ℎ(|(𝑡)|), where |(𝑡)|
is the number of nodes in the Yule process at time 𝑡. Thus, by Theorem  4.4, almost surely as 𝑡 ↑ ∞,

𝐻(𝑡)
log |(𝑡)|

→ e.

It is well-known that e−𝑡|(𝑡)| converges almost surely to a standard exponential random variable (see, e.g. [22, Section III.5]), 
which implies log |(𝑡)| ∼ 𝑡 almost surely as 𝑡 ↑ ∞. Thus, almost surely as 𝑡 ↑ ∞,

𝐻(𝑡) ∼ e 𝑡.

It follows that the height of  (𝑡) is at least 𝐷(𝑡) +𝐻(𝑡) ∼ (1 + e)𝑡, almost surely as 𝑡 ↑ ∞.

Proof of Proposition  1.5.  It only remains to translate this lower bound into discrete time. For that, we need to understand the 
asymptotic behaviour of 𝑡𝑛,  the times at which  (𝑡) grows. Let 𝑁(𝑡) = | (𝑡)| be the number of notes in the tree  (𝑡) at time 𝑡. At 
time 𝑡, the rate at which the next clock rings is 𝑁(𝑡), so we need to understand 𝑁(𝑡).

To do this, we will couple (𝑁(𝑡))𝑡≥0 to a process (𝑌 (𝑡))𝑡≥0 which is the size of a standard Yule process. Indeed, intuitively (𝑁(𝑡))𝑡≥0
is a Yule process with jumps at the doubling-times; the process (𝑌 (𝑡))𝑡≥0 will be defined to ‘‘fill in’’ the instantaneous doubling events 
of 𝑁(𝑡) with a Yule process run for the amount of time it takes to double in size.

To express this more precisely (and we refer to Fig.  2 for this discussion), write 𝑑1, 𝑑2,…  for the doubling times of 𝑁(𝑡), i.e. the 
jump times of the Poisson process (𝐷(𝑡))𝑡≥0. For 0 ≤ 𝑡 < 𝑑1, we set 𝑌 (𝑡) = 𝑁(𝑡). Then, we let (𝑌 (𝑡))𝑑1≤𝑡<𝑑1+𝓁1  be the size of a Yule 
process started at 𝑌 (𝑑−1 ) and stopped at time 𝓁1, defined as the first time it reaches 2𝑌 (𝑑−1 )+1. Then, for all 𝑛 ≥ 1, given (𝑌 (𝑡))𝑡<𝑑𝑛+𝓁𝑛 , 
we let 𝑌 (𝑡) = 𝑁(𝑡−𝓁𝑛) for all 𝑑𝑛 +𝓁𝑛 ≤ 𝑡 < 𝑑𝑛+1+𝓁𝑛. Also, we define (𝑌 (𝑡))𝑑𝑛+1+𝓁𝑛≤𝑡<𝑑𝑛+1+𝓁𝑛+1  as a Yule process started at 𝑁(𝑑−𝑛+1) and 
stopped at time 𝛥𝓁𝑛+1 = 𝓁𝑛+1 − 𝓁𝑛, defined as the first time it hits 2𝑁(𝑑−𝑛+1)+1. By the strong Markov property, (𝑌 (𝑡))𝑡≥0 is a Yule 
process. Furthermore, by definition, almost surely for all 𝑡 ≥ 0, 𝑌 (𝑡 + 𝓁𝐷(𝑡)) = 𝑁(𝑡).

Now e−𝑡𝑌 (𝑡) → 𝜉 almost surely  as 𝑡 → ∞, where 𝜉 is exponentially distributed. It follows that log𝑁(𝑡) ∼ 𝑡 + 𝓁𝐷(𝑡) almost surely. 
We now show that 𝓁𝐷(𝑡) ∼ 𝑡 log 2 almost surely as 𝑡 ↑ ∞.  First note that at doubling times we have 𝑁(𝑑𝑖) = 𝑌 (𝑑𝑖 + 𝓁𝑖), thus 
e−(𝑑𝑖+𝓁𝑖)𝑁(𝑑𝑖) → 𝜉 almost surely as 𝑖→ ∞. But also 𝑁(𝑑𝑖) = 2𝑁(𝑑−𝑖 ) + 1 = 2𝑌 (𝑑𝑖 + 𝓁𝑖−1) + 1, so that

e−(𝑑𝑖+𝓁𝑖)𝑁(𝑑𝑖) = 2e−(𝑑𝑖+𝓁𝑖−1+𝛥𝓁𝑖)𝑌 (𝑑𝑖 + 𝓁𝑖−1) + e−(𝑑𝑖+𝓁𝑖) → 𝜉, a.s. as 𝑖→ ∞.

Since also e−(𝑑𝑖+𝓁𝑖−1)𝑌 (𝑑𝑖 + 𝓁𝑖−1) → 𝜉, it follows that 𝛥𝓁𝑖 → log 2 almost surely. Since 𝐷(𝑡) ∼ 𝑡 as 𝑡 → ∞,

𝓁𝐷(𝑡) =
𝐷(𝑡)
∑

𝑖=1
𝛥𝓁𝑖 ∼ 𝑡 log 2, almost surely,

as claimed.
We thus have that 

log𝑁(𝑡) ∼ (1 + log 2)𝑡,  almost surely as 𝑡 ↑ ∞. (4.19)

We claim that 

lim inf
𝑛→∞

𝑡𝑛
log 𝑛

≥ 1
1 + log 2

,  almost surely as 𝑛 ↑ ∞. (4.20)

 For this, we first note that 𝑡𝑛 → ∞ almost surely as 𝑛 → ∞; indeed, conditionally on all the 𝐵𝑖, we have that 𝑡𝑛 is a sum of 
independent exponential random variables of rates 𝐵0+1, 𝐵1+1,… , 𝐵𝑛−1+1, thus the conditional mean of 𝑡𝑛 diverges almost surely 
by Lemma  2.1, while the conditional variance is bounded since 𝐵𝑛 + 1 ≥ 𝑛 for all 𝑛 ≥ 0. Then, using (4.19) we have

log 𝑛 ≤ log(𝐵𝑛 + 1) = log𝑁(𝑡𝑛) ∼ (1 + log 2)𝑡𝑛,  almost surely as 𝑛→ ∞.

From (4.20) and the fact that the height of the continuous-time tree  (𝑡) is asymptotically at least (1 + e + 𝑜(1))𝑡 (where the 
𝑜(1)-term goes to 0 almost surely as 𝑡 ↑ ∞), we thus get that, almost surely as 𝑛 ↑ ∞,

𝐻𝑛 ≥ (1 + e + 𝑜(1))𝑡𝑛 ≥
1 + e + 𝑜(1)
1 + log 2

⋅ log 𝑛,

as claimed. □
15 



J.E. Björnberg and C. Mailler Stochastic Processes and their Applications 192 (2026) 104790 
Fig. 2. One can see how the process (𝑁(𝑡))𝑡≥0 can be coupled with a Yule process (𝑌 (𝑡))𝑡≥0 so that, for all 𝑡 ≥ 0, 𝑌 (𝑡+ 𝓁𝐷(𝑡)) = 𝑁(𝑡), where 𝐷(𝑡) is 
the number of doubling events before time 𝑡. The Yule process is the concatenation of the black and grey parts of the curve, whilst (𝑁(𝑡))𝑡≥0 is 
the curve obtained by only keeping the black parts and gluing them as if time-warps made us skip the intervals of time in grey. The two pairs 
of distances highlighted on the left-hand side are such that the two arrows in one pair have the same length: this means that the grey intervals 
are intervals during which the Yule process doubles in size. Note that, although both 𝑌  and 𝑁 are jump processes that take value in N, we have 
here represented them as continuous curves (with jumps for 𝑁 when it doubles); this is just for ease of representation. One can see that, if the 
total length of all the purple intervals is 𝑡, then, indeed, 𝐷(𝑡) = 2 and 𝑁(𝑡), which is the value highlighted by large a purple dot, equals 𝑌 (𝑡+𝓁2), 
as claimed in the proof of Proposition  1.5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

Remark 4.5.  Using Proposition  1.1(d), in fact 𝑡𝑛
log 𝑛 → 1

1+log 2  almost surely as 𝑛→ ∞. Since 𝜅(𝑛) from (2.1) satisfies 𝜅(𝑛) = 𝐷(𝑡𝑛) ∼ 𝑡𝑛
almost surely, it follows that 𝜅(𝑛)log 𝑛 → 1

1+log 2  almost surely.
Moreover, conditionally on (𝐵𝑖)𝑖≥0, the expression 𝑡𝑛 −

∑𝑛−1
𝑖=0

1
𝐵𝑖+1

 is a sum of independent random variables with mean zero and 
summable variances. Hence, it is a martingale bounded in 𝐿2 which therefore converges almost surely. Using that 𝑡𝑛 ∼ log 𝑛∕(1+log 2)
almost surely as 𝑛→ ∞, it follows that (4.10) can be improved to an almost sure equivalence: explicitly,

𝑛−1
∑

𝑖=0

1
𝐵𝑖 + 1

∼
log 𝑛

1 + log 2
,  almost surely as 𝑛→ ∞.

5. A lower bound on the size of the tree doubling everywhere

As mentioned in the introduction, the model of random recursive tree that doubles at the root is a simplification of a tree that 
would ‘‘double everywhere’’. We define the random tree (𝜏∞𝑛 )𝑛≥0 recursively as follows: 𝜏∞0 = {∅} and, for all 𝑛 ≥ 0, given 𝜏∞𝑛 , we 
pick a node 𝜈𝑛 uniformly at random in 𝜏∞𝑛 , let 𝑡𝑛 be the set of (non-strict) descendants of 𝜈𝑛 in 𝜏∞𝑛 , and set

𝜏∞𝑛+1 =
(

𝜏𝑛 ⧵ 𝑡𝑛
)

∪ {𝜈𝑛} ∪ {𝜈𝑛1𝑤∶ 𝜈𝑛𝑤 ∈ 𝜏∞𝑛 } ∪ {𝜈𝑛2𝑤∶ 𝜈𝑛𝑤 ∈ 𝜏∞𝑛 }.

In other words, at every time step, we pick a node uniformly at random in 𝜏∞𝑛 , remove its subtree (the node and all its descendants) 
from 𝜏∞𝑛  and replace it by two copies of itself as the two subtrees of a new node. Note that, by definition, for all 𝑛 ≥ 0, 𝜏∞𝑛  is binary, 
i.e. all its words are made on the alphabet {1, 2}.

We only make the following simple observation about this model:

Proposition 5.1.  For all 𝑛 ≥ 1 we have E[|𝜏∞𝑛 |] ≥ 𝑛−1
2 log2(

𝑛−1
e ).

Proof.  For all 𝑛 ≥ 0 and 𝑢 ∈ 𝜏∞𝑛 , we let 𝑠𝑛(𝑢) be the number of (strict) descendants of nodes 𝑢 in 𝜏∞𝑛 . Also recall that |𝑢| is the height 
of node 𝑢 (i.e. the number of strict ancestors of 𝑢). Note that, if at step 𝑛 + 1, we select node 𝑢 ∈ 𝜏∞𝑛 , then |𝜏∞𝑛+1| = |𝜏∞𝑛 | + 2 + 𝑠𝑛(𝑢). 
Indeed, the tree rooted at 𝑢 (which contains 1 + 𝑠𝑛(𝑢) nodes) is replaced by a node to which are attached two copies of 𝑢 and its 
subtree (which contains 1 + 2(1 + 𝑠𝑛(𝑢)) nodes in total). Thus, for all 𝑛 ≥ 0,

E[|𝜏∞𝑛+1| ∣ 𝜏
∞
𝑛 ] = |𝜏∞𝑛 | + 1

|𝜏∞𝑛 |

∑

𝑢∈𝜏∞𝑛

(

2 + 𝑠𝑛(𝑢)
)

= |𝜏∞𝑛 | + 2 + 1
|𝜏∞𝑛 |

∑

𝑢∈𝜏∞𝑛

∑

𝑣≺𝑢
1 = |𝜏∞𝑛 | + 2 + 1

|𝜏∞𝑛 |

∑

𝑣∈𝜏∞𝑛

|𝑣|.

The last term is the expected height of a node chosen uniformly at random in 𝜏∞𝑛 . Since 𝜏∞𝑛  is a binary tree, for any 𝑘 ≥ 0 the number 
of nodes at height at most 𝑘 is at most 2𝑘+1. Thus, at least half the nodes of 𝜏∞ have height at least log |𝜏∞| − 2 ≥ log 𝑛 − 2. This 
𝑛 2 𝑛 2
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implies that, almost surely,
E[|𝜏∞𝑛+1|] ≥ E[|𝜏∞𝑛 |] + 2 + 1

2 (log2 𝑛 − 2) ≥ E[|𝜏∞𝑛 |] + 1
2 log2 𝑛.

By induction,

E[|𝜏∞𝑛+1|] ≥
1
2

𝑛
∑

𝑗=1
log2 𝑗 ≥

𝑛
2 log2(

𝑛
e ). □

Remark 5.2. Proposition  5.1 says that, in expectation, the size of the tree that ‘‘doubles everywhere’’ is superlinear in the number 
of steps. By definition, |𝜏∞𝑛 | ≤ 2𝑛, where the upper-bound is attained on the event that all doubling events happen at the root. What 
is the exact order of E[|𝜏∞𝑛 |] as 𝑛 ↑ ∞? Can we find asymptotic equivalents for |𝜏∞𝑛 | itself, either in probability, or almost surely? 
We leave these as open problems.
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