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Pauli blocking in Fermi liquids imposes strong phase-space constraints on quasiparticle lifetimes,
leading to a well-known quadratic-in-temperature decay rate of quasiparticle modes at low temperatures. In
two-dimensional systems, however, even longer-lived modes are predicted (dubbed “odd-parity” modes)
that involve a collective deformation of the Fermi distribution. Here, we present an efficient method to
evaluate the full spectrum of relaxational eigenmodes of a Fermi liquid within kinetic theory. We employ
this method to study the experimentally relevant case of a Fermi liquid with screened Coulomb interactions
and map out the decay rates of quasiparticle modes beyond the asymptotic low-temperature limit up to the
Fermi temperature, thus covering the entire temperature range of typical experiments. We confirm the
existence of anomalously long-lived odd-parity modes and provide a comprehensive classification and
detailed analysis of the relaxation spectrum. In particular, we find that (i) the odd-parity effect in the decay
rates extends to temperatures as large as T = 0.15T , (ii) there is only a small number of long-lived odd-
parity modes, with an infinite number of remaining modes that show standard Fermi-liquid scaling, and
(iii) the ratio between the odd- and even-parity lifetimes is tunable with the Coulomb interaction strength, in
addition to temperature, which reflects a difference in the microscopic relaxation mechanism of the modes.
Our findings provide a comprehensive description of the nonequilibrium relaxation behavior of two-

dimensional electron gases and bridge a significant gap in our understanding of these systems.

DOI: 10.1103/1y37-5gdw

I. INTRODUCTION

While transport in conventional metals is governed by
momentum-nonconserving relaxation processes like impu-
rity or phonon scattering, it has recently become possible to
create exceptionally clean two-dimensional electron gases
in which binary electron-electron scattering dominates. The
rate of such binary collisions is expected to scale with the
square of the temperature at low temperatures, y ~ T? /AT ¢
[1,2], where T is the Fermi temperature, which points to
the suppression of quasiparticle interactions at low temper-
atures and justifies the surprising effectiveness of a quasi-
particle description of electron transport [3]. It also implies
that as the temperature is increased to a sizable fraction of
the Fermi temperature 7', electron interactions become
sufficiently strong in clean materials that the system crosses
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over from a ballistic or diffusive regime to an interaction-
dominated hydrodynamic regime. Signatures of hydro-
dynamic electron behavior have now been reported in
many materials [4—17], at temperatures that are typically
100-150 K for monolayer [4] and bilayer [9] graphene and
30 K for Ga[Al]As heterostructures [14]. Seen in relation to
the Fermi temperature 7 in these materials, more recent
experiments even report hydrodynamic transport at temper-
atures as low as T = 0.027; [18-20].

Fundamentally, the quadratic-in-temperature Fermi-
liquid scaling of relaxation rates at low temperatures is a
consequence of a phase-space constraint that allows inter-
actions only between excitations close to the Fermi surface.
Here, at low temperatures, the relaxation to the equilibrium
distribution is described by angular dynamics on the Fermi
surface. This is illustrated in Fig. 1 for a generic quasi-
particle distribution f(z, p) in momentum space (indicated
by the shaded area) that deviates from the Fermi-Dirac
distribution (indicated by the black circle that marks the
Fermi energy). Energy and momentum conservation,
together with the Fermi surface constraint in two dimen-
sions, impose strong restrictions on possible relaxation
channels, since binary forward or exchange scattering
processes do not relax the distribution at this order.
However, direct head-on processes, which create final

Published by the American Physical Society
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Even-parity mode:
O(1) head-on scattering

Odd-parity mode:
small-angle scattering

FIG. 1. Microscopic origin of the odd-even effect in the
relaxation of the quasiparticle distribution. Sketched are two
nonequilibrium distributions in momentum space with a de-
formed Fermi surface and a small broadening of the Fermi edge
of width O(T'), where the first distribution (blue) has even and the
second (orange) odd parity. At low temperatures, relaxation
corresponds to angular dynamics on the Fermi surface (black
circle). Even-parity deformations of the quasiparticle distribution
(blue) relax by head-on scattering, which gives the canonical
Fermi-liquid dependence ¥.yeq ~ (T/T)?. Odd-parity deforma-
tions (orange), by contrast, relax by small-angle scattering, which
leads to a much smaller relaxation rate at low temperatures

Yoda ~ (T/Tr)*.

states rotated by any angle on the Fermi surface, affect
opposite points on the Fermi surface equally and can thus
relax deformations that are parity even, i.e., that are
described by the symmetric part of the distribution
feven = [f(P) + f(—p)]/2. This type of process, exempli-
fied for the blue Fermi surface deformation in Fig. 1, gives
rise to the quadratic-in-temperature Fermi-liquid scaling.

Such a quadratic-in-temperature scaling of the relaxation
rates of the collective Fermi surface deformation f .,
already represents a striking deviation from the expected
relaxation rate of a single quasiparticle in two dimensions,
which at low temperatures scales as  yg, ~
T?In(Ty/T)/(ATF) [21,22] with an additional logarithmic
temperature factor. Crucially, it is the relaxation rate of
collective quasiparticle deformations (and not that of single
quasiparticles) that will determine the magnitude of transport
coefficients: Such transport coefficients describe the relaxa-
tion of a particular deformation of the quasiparticle distribu-
tion in response to an external perturbation, and will involve
very different moments of the distribution function, with
potentially very different relaxation rates. For example, the
structure factor and bulk viscosity will depend on the s-wave
density projection, [ d6 f(p) (where 6 is the angle of the p
vectorin polar coordinates), charge and heat currents on the p-
wave current projection, [ d@(cos @, sin@)f(p), or the shear
viscosity on the d-wave projection, | df sin 20 (p), all with
an additional specific dependence on the magnitude p of the
momentum. It is therefore essential to gain a complete
understanding of the full spectrum of relaxational modes in
a Fermi liquid without making approximate relaxation-time
assumptions or relying, for example, on self-energy
calculations.

Odd-parity deformations, by contrast, which are
described by the antisymmetric part of the distribution
foaa = [f(p) = f(—p)]/2, are not expected to decay by
head-on collisions but have a much longer lifetime
[23-25]. On a microscopic level, such modes are pre-
dicted to relax in a different way compared to the even-
parity decay by repeated simultaneous head-on and small-
angle scattering [26], as is shown for the orange Fermi
surface deformation in Fig. 1. This process is interpreted
as subdiffusive electron dynamics on the Fermi surface,
and it leads to a much smaller decay rate that scales with
the fourth power of temperature at low temperatures,
Yoaa ~ T*/AT% [27,28]. The argument relies on the pres-
ence of a sharp Fermi surface, and the odd-even effect in
the quasiparticle relaxation is thus expected to vanish at
higher temperatures where the Fermi distribution broad-
ens. The intricate dependence of decay rates on the odd or
even parity of deformations shows that there are many
aspects of interaction-dominated Fermi liquids that remain
to be understood.

In particular, the odd-even effect in the quasiparticle
lifetimes implies that interacting two-dimensional Fermi
liquids are expected to show a much richer behavior with
temperature than a simple crossover between a ballistic and a
hydrodynamic regime. To see this, recall that in the hydro-
dynamic regime interactions are so strong that typical life-
times are much shorter compared to the timescales at which
the system is observed, such that only long-lived modes (i.e.,
modes corresponding to densities of conserved quantities)
contribute. However, the vastly different odd and even decay
rates allow for an intermediate regime at timescales
Vewen << 1 << yods» Where even-parity modes have decayed
but odd-parity modes must be included in an extended
hydrodynamic picture, sometimes referred to as tomographic
transport. Such a new transport regime could be accessed in
experiments at intermediate temperature scales, and there is
currently intense research to establish signatures of this odd-
even effect in transport [26-32]. Excitingly, recent exper-
imental works report signatures of tomographic flow and
long-lived odd-parity modes [18,33,34].

However, even when discussing the basic relaxation
times of a Fermi liquid, many questions are still open. First,
since the interaction-dominated Fermi-liquid regime exists
only once the temperature reaches a sizable fraction of the
Fermi temperature (where interactions dominate over impu-
rity scattering), the temperature dependence of the decay rates
must be understood beyond the asymptotic low-temperature
scaling discussed above. The central question is whether the
odd-even effect will persist in an experimentally relevant
regime. In a previous study we have computed the Fermi-
liquid decay rates with a constant interaction potential, for
which the odd-even effect exists below temperatures 7 <
0.15T 1 [28]. However, quantitative predictions for the exper-
imentally relevant case of a screened Coulomb potential, for
example, are missing. Such an interaction takes the form
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where krp = 2m*e?/h? is the Thomas-Fermi wave vector,
with a dimensionless interaction strength r, =krg/(2+/7n),
where 7 is the electron density and m* the effective mass [35].
A second open point is that, for any interaction, the odd-even
effect is discussed so far in terms of lowest-lying modes, and
the full excitation spectrum of a Fermi liquid within kinetic
theory has not been established. A central question here is if
there exists an isolated set of modes with anomalously long
lifetimes, or if odd-parity modes are generically long-lived. To
identify the long-lived modes would be particularly relevant
for effective beyond-hydrodynamic theories. Third, the
Coulomb interaction, Eq. (1), provides an entirely separate
modification of small-angle scattering processes due to the
increased matrix element at small momentum transfer k. Such
an enhancement typically leads to logarithmic corrections to
the Fermi-liquid temperature scaling, but is expected to affect
odd and even modes in a different way, as the decay of odd-
parity modes is already controlled by small-angle processes.
The magnitude of the odd-even effect could thus be tuned by
the interaction strength.

In this paper, we answer these questions and provide a
comprehensive discussion of collective quasiparticle life-
times in a two-dimensional electron gas including the
screened Coulomb interaction Eq. (1). We observe the
odd-parity effect in quasiparticle lifetimes over a large and
experimentally detectable temperature range below 7.
Remarkably, we find that the odd parity of the mode is
not sufficient to have an anomalously suppressed decay
rate: We classify every long-lived odd-parity mode by a
corresponding symmetry of the Fermi surface deformation
and find that for each class the modes separate by a large
gap from higher-order modes in the same sector, which are
found to decay with standard Fermi-liquid scaling.
Furthermore, we find that odd-parity modes do not follow
the standard Fermi liquid O(r?) dependence on the
interaction strength, which reflects the different micro-
scopic relaxation dynamics and which indeed shows that
the separation between modes of even and odd parity is
tunable with the interaction strength.

For definiteness, we focus on simple Fermi liquids with a
parabolic single-particle dispersion &(p) = h%p?/2m*, as is
appropriate, for example, for GaAs or doped graphene. In
general, the odd-even effect exists as long as the Fermi surface
is symmetric under point inversion p — —p, which implies
e(p) = e(—p), which is the case for any time-reversal
invariant material. The key quantities that we compute are
the relaxation rates of collective deformations in the quasi-
particle distribution. These relaxation rates describe how small
deviations from the equilibrium Fermi-Dirac distribution
fo(p) = 1/(exp[B(e(p) — )] + 1) (where § = 1/T with
kg = listheinverse temperature and u the chemical potential)
relax back to equilibrium due to binary collisions with the

interaction potential Eq. (1) (cf. Fig. 1). Formally, each
collective decay mode is an eigenfunction of the collision
integral,

. dp,dp’,dp’,
Jf(t.p1)] ——/%W(pﬁspélplpz)

. [f(pl)f(pz)[l @I - £ ()]

—fPDf)[L = fp)I[l - f(p)]|.  (2)

where W(p/, p5|p;p>) is the Coulomb scattering matrix that
enforces energy and momentum conservation. Here, the first
term in the square brackets accounts for a loss of quasipar-
ticles with wave vector p; due to scattering off another
quasiparticle with wave vector p, as p; + p, = p} + pb.
while the second term describes the reverse gain as two
quasiparticles scatter into the states with momenta p; and p,.
The collision integral vanishes identically if f(z,r,p) is
equal to the Fermi-Dirac distribution, and we are interested in
small deviations f(z,p) = fo(p) + 6f (¢, p), which we para-
metrize as

or(t.0) = (~7%02 ) w.p)
= fo(@)[1 = fo(P)lw(t.p). (3)

The function y(z,p) that parametrizes the quasiparticle
deviation can be thought of as a time- and momentum-
dependent variation of the chemical potential. The sym-
metry of  in momentum space then sets the symmetry of
the Fermi surface deformation. For the particular case of a
circular Fermi surface, the perturbations may be expanded
in angular harmonics labeled by an angular mode number
m as

wnlp) = [ 5rewip) @

with @ the polar angle in the p plane and p the magnitude of
the momentum. A constant y,, then describes a rigid
deformation of the Fermi surface, and an additional energy
dependence accounts for a thermal or interaction-induced
broadening. The symmetry of different Fermi surface
deformations is illustrated in Fig. 2 for a rigid deformation
of the zero-temperature Fermi surface. For rotationally
invariant interactions, where decay rates y,, in different
angular channels decouple, odd-parity modes are described
by odd m (orange color in Fig. 2) and even-parity modes by
even m (blue color in Fig. 2). The different deformations that
determine different transport coefficients discussed above
correspond to different angular-mode sectors; for example,
m = 0 for the structure factor and bulk viscosity, m = 1
for charge and heat currents, and m =2 for the shear
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FIG. 2. Symmetry of Fermi surface deformations ordered by
the angular harmonic index m [cf. Eq. (4)]. The black circle
indicates the Fermi surface. Note that the full relaxational
eigenmodes of the collision integral, Eq. (2), are labeled by
the angular symmetry, but they are in general not sharp
deformations of the Fermi distribution as sketched here [i.e.,
Eq. (3) with yw = const]. Instead, they have a thermal and
interaction-induced broadening, where higher eigenmodes have
an increasing number of radial nodes in the function y,,(p) [cf.
Egs. (22) and (23) for the low-temperature case]. Deformations
with m = 0 symmetry determine the density response and bulk
viscosity, m = 1 to charge and heat currents, and m = 2 to the
shear viscosity, for example, and higher modes contribute to a
finite wave vector response.

viscosity [36]. Furthermore, a coupling to higher angular
modes exists in the response to a perturbation at finite
wavelength. Likewise, collective sound or plasmon modes
contain a superposition of different angular components
[30]. Beyond the angular mode decomposition, the func-
tional dependence of an eigenmode y,,(p) on the momen-
tum (corresponding to an energy dependence of the mode)
does not separate further, and in general there is an infinite
set of eigenmodes in each angular momentum channel.

The key advance that allows us to present results beyond
the asymptotic low-temperature limit described in the
classical literature [37] is a general basis expansion for
the energy dependence of eigenmodes, which allows us to
compute the entire spectrum of decay rates across a wide
temperature range for modes of different angular harmon-
ics. We note that our framework extends classical works on
the basis expansion of classical gases by Enskog [38],
Chapman and Cowling [39], and others [40,41], dating
back to the early 1900s, and the formalism outlined in this
work can be used to describe interacting Fermi liquids
beyond the asymptotic low- or classical high-temperature
limit. We focus here on temperatures 7 < T relevant for
the odd-even effect, and we leave the exploration of more
general potentials W in Eq. (2) (such as the full RPA-
Lindhard function, or adapted to capture the Wigner crystal
transition) to future work.

This paper is organized as follows. We begin in Sec. II by
presenting and collecting the central results for the collec-
tive quasiparticle decay rates. Section II A establishes the
odd-even effect and discusses the dependence on the
angular index m. In particular, we show that there exists
an isolated band of long-lived odd-parity modes that is
separated by a gap in the same angular sector from the
remaining odd-parity modes with Fermi-liquid behavior.
This is followed in Sec. IIB by a detailed study of the
temperature dependence of the relaxational eigenmodes.
Section II C studies the dependence of the decay rates on

the interaction strength and establishes that the odd-parity
modes are nearly independent of it. Section III outlines in
detail the numerical diagonalization of the linearized
collision integral (Sec. III A), which is based on a basis
expansion of quasiparticle deformations (Sec. III B).
Section III C provides details on an efficient numerical
implementation followed by a discussion of zero modes in
Sec. I D. The paper concludes with a summary and
outlook in Sec. IV. Details of analytical calculations are
collected in four appendixes.

II. RESULTS

In this section, we present results for the relaxation
spectrum of quasiparticle deformations as obtained from
our numerical diagonalization of the collision integral,
Eq. (2), which is the main result of this paper. Section II A
compares the spectrum of relaxation rates for different
temperatures and demonstrates that there is an odd-even
effectin the lowest eigenmodes but not for higher excitations.
This is followed in Sec. II B by a discussion of the temper-
ature dependence of the lowest eigenmodes, establishing
both Fermi-liquid as well as anomalous temperature scaling.
Finally, in Sec. II C, we show that the lowest even- and odd-
parity modes also differ in their functional dependence
on the interaction strength, which reflects the different
microscopic relaxation mechanisms of the lowest odd- and
even-parity modes and points to a tunability of the odd-
even effect with interactions. The general solution method
for the Fermi-liquid collision integral with binary scattering
used to obtain these results is discussed in detail in Sec. III,
and analytical limits are discussed in Appendixes A and B.

A. Relaxation spectrum and the odd-even effect

We begin by discussing the general structure of the
relaxation spectrum. Figure 3 shows level diagrams of the
relaxation rates y,, for r, = 1 ordered by the angular index
0<m<20 at three different temperatures
T/Tr=10"*10"2, and 0.5 [Figs. 3(a)-3(c)]. In each
angular harmonic channel, we show the lowest eight
eigenvalues and use the same axes range to compare
spectra at different temperatures. Higher relaxational
eigenmodes are indicated by the shaded gray area.
Relaxation rates for negative harmonics —m are equal
to positive m and not shown here. We mark even-parity
modes in blue (even m > 2) and odd-parity modes in
orange (odd m > 3). The m =0 and m = 1 sectors are
black and gray, respectively, since they contain zero
modes for which the discussion of the odd-even effect
does not apply. (The m = 0 sector contains two zero
modes, arising from particle number and energy conser-
vation, while the m = %1 sectors each contain one zero
mode, arising from current conservation, cf. Sec. III D.)
These modes are therefore not visible in Fig. 3 since their
decay rates vanish, while relaxation rates of higher modes
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FIG. 3.

Spectra of decay rates y,, as a function of angular mode number m for r; = 1 at three different temperatures (a) T/Tr = 1074,

(b) T/Tp =102, and (c) T/Tr =0.5. We show the lowest eight relaxational eigenmodes for each angular channel, where
compressional modes (m = 0) are black, current modes (m = 1) gray, and remaining even-parity modes blue and odd-parity modes
orange, respectively, and we indicate higher modes by the gray shaded area. We use the same range in each plot to compare spectra at
different temperatures. As the temperature decreases, Pauli blocking becomes increasingly important with a phase-space constraint on
scattering that increases the lifetime, where the magnitude of most relaxation rates asymptotically follows a Fermi-liquid scaling with
Ym ~ T?/ (AT ). Crucially, however, there is an odd-even effect in the relaxation rates at low temperatures, with a band of isolated odd-

parity modes (the number of which increases at low temperature as ~+/7T(/T) that decouple from the remaining spectrum with
anomalously long lifetimes and an asymptotic scaling y,, ~ m*T*/(hT3) [highlighted by the blue shaded area in (a) and (b)].

in the same sector are finite. All temperatures shown are in
the degenerate low-temperature regime below T, with a
Fermi surface that increasingly softens when going from
the left-hand to the right-hand panel and a concomitant
weakening of Pauli blocking.

The first striking feature of Fig. 3 is the separated lowest
band of orange odd-parity modes, which have anomalously
small relaxation rates (highlighted by the blue shaded area).
These are the long-lived odd-parity modes discussed in the
Introduction. As is apparent from the figure, these modes
have a strong m dependence and are seen to join the
remaining spectrum at large m. The number of decoupled
modes increases as the temperature is lowered, roughly as

\/Tr/T, with an increasing suppression of the relaxation
rates compared to higher-lying modes. The second remark-
able feature is that the odd-even effect exists only for the
lowest relaxational eigenmodes: The overall magnitude of
all higher eigenmodes decreases at smaller temperatures
with a temperature dependence that in scale follows a
standard Fermi-liquid form y,, ~ T?/AT; in all angular
sectors, where the overall level spacing also has Fermi-
liquid scaling and increases at low temperatures. These
higher modes show no pronounced anomalous behavior,
with the only exception visible for the second-lowest
relaxation rates at the lowest temperature T/Tp = 1074,
which show a weak remaining odd-even staggering [thin
gray line in Fig. 3(a)]. In addition, higher-lying modes are
almost independent of the angular index, but they do show
a pair bunching for relaxation rates in the same angular

sector. At the highest temperature 7/T; = 0.5 shown
[Fig. 3(c)], the effect of Pauli blocking is reduced and
the gas crosses over to a nondegenerate regime. As is seen
most clearly for the highest values of m in Fig. 3(c) (right-
hand inset), the level separation between the modes is then
increasingly equidistant. At this temperature, there is no
longer an odd-even effect, with Pauli blocking affecting
modes with smaller angular index m more strongly com-
pared to large-m modes (left-hand inset).

Quantitatively, we find that the anomalous lowest odd-
parity modes at low temperatures are very well described
by

An3Tp - T\*4
= V2 (=) m*, 5

shown as a black line in Fig. 3(a). The expression applies for

angular indices m < /T /T, where as discussed for higher
angular momenta the odd-even effect disappears and odd-
parity modes show standard Fermi-liquid scaling. In Eq. (5),
|V|? = (m*/2xh*)?[V?(0) + V*(2kr) — V(0)V (2kg)] is the
(dimensionless) matrix element of Eq. (1) symmetrized over
the direct and exchange scattering channel. [Formally, Eq. (5)
is asymptotically valid, and the plot in Fig. 3(a) uses the local
temperature scaling exponent (7/T ;)*%3, which applies for
T/Tp = 10—, and evaluates the Coulomb matrix element at
a small momentum transfer k = 0.2ky; see the next section
for details.] The quartic m* scaling of Eq. (5), which is very
accurately seen in the data at low temperature [cf. Fig. 3(a)],
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FIG. 4. Relaxation rates as a function of temperature for the (a) lowest, (b) second-lowest, and (c) third-lowest relaxational eigenmodes
(left to right) in each angular sector up to m < 20. We show compressional modes [m = 0, (c)] in black, current modes [m = 1, (b) and
(c)] in gray, and remaining even-parity modes in blue and odd-parity modes in orange, respectively. The insets show the local
temperature scaling exponent « for each mode, y,, ~ (T/T)?%, as determined from a logarithmic derivative of the numerical data in the
main figures. The relaxation rate of all modes decreases with decreasing temperature, reflecting the enhanced lifetime due to Pauli
blocking. For blue even-parity modes in (a) and all higher eigenmodes [(b) and (c)], the relaxation rates are suppressed at low
temperatures with standard Fermi-liquid scaling, y,, ~ T?/(AT ), corresponding to & = 2. The odd-even effect is present only in the
lowest eigenmode of each angular momentum sector (a): Here, with decreasing temperature, a successively increasing number of order

O(\/Tp/T) of odd-parity modes decouple from the Fermi-liquid scaling with an asymptotic temperature dependence y,, ~ T4,

corresponding to a = 4.

reflects subdiffusive behavior [26]: Written as an effective
model for the angular relaxation of the odd-parity distribu-
tion foaa = > modafme™’, Eq. (5) describes a dynamics,

(6)

With Yoqd = Vm.odd|me1 the m coefficient of Eq. (5). The
equation implies that an initial localized deformation of the
quasiparticle distribution spreads as 7'/4, which is much
slower than diffusion (which would have y,, ~ m?> with an
exponent 1/2), hence subdiffusive. Equation (5) is in agree-
ment with an analytical prediction by Ledwith et al. [27].
Reference [27] contains an additional logarithmic depend-
ence on m that is not present in our results.

Turning to the lowest even-parity modes, they follow a
standard quadratic-in-temperature Fermi-liquid scaling,

27 T? ) V2 V2
Ymeven™ 577 I's IOg I+— ) ———
: 3hTF rg \/§+ r

shown as a gray dashed line in Fig. 3(a). This result is
derived in Sec. II C and Appendix A, and is applicable for
ry 2 0.5 [cf. Sec. IIC]. The result is valid to leading
logarithmic order, and we include a parameter ¢ to parametrize
the subleading corrections; for r; = 1 and T/Tp = 107* as
applies to Fig. 3(a), we have ¢p = 1.23. Note that Eq. (7) has
a logarithmic correction in m but not in temperature, in
contrast to a quasiparticle relaxation time obtained from the
imaginary part of the self-energy [22,42,43]. Formally,

0:f odd = ~Y0dd0%f odd:

Inmg
In2¢°

(7)

such a single-quasiparticle excitation corresponds to a
localized excitation at a fixed momentum above the
Fermi surface, and is a superposition of modes with
arbitrarily high angular index.

B. Temperature dependence of relaxation rates

Having established the odd-even effect and the scaling of
relaxation rates with the angular harmonic index m, we
proceed in this section to discuss the temperature depend-
ence of the eigenmodes. Figure 4 shows the lowest [Fig. 4
(a)], second-lowest [Fig. 4(b)], and third-lowest [Fig. 4(c)]
eigenvalues (left- to right-hand panel) at a fixed interaction
strength r, = 1 as a function of temperature. Different lines
indicate different angular indices, and we again use a color
coding that shows odd-parity modes in orange and even-
parity modes in blue. In addition, the first nonzero mode in
the m = 0 sector (which has two zero modes from particle
and energy conservation) is included in black in Fig. 4(c),
and the first two nonzero modes in the m = 1 sector (which
has one zero mode from momentum conservation) are
shown in gray in Figs. 4(b) and 4(c).

As established in the previous subsection, the lowest
modes [Fig. 4(a)] show the odd-even effect: In the
degenerate regime below the Fermi temperature, 7 < T,
where the Fermi statistics becomes important and Pauli
blocking restricts the phase space for quasiparticle scatter-
ing, the blue even-parity modes follow the quadratic-in-
temperature Fermi-liquid scaling, asymptotically described
by Eq. (7) with a weak logarithmic-in-m dependence of the
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magnitude. By contrast, the decay rates of odd-parity
modes are much more strongly suppressed, and asymp-
totically described by Eq. (5) with a pronounced m* scaling
with the angular index. Note that the successive decoupling

of an increasing number m < y/Tr/T of anomalous odd-
parity modes [also visible in Figs. 3(a) and 3(b)] is directly
apparent in Fig. 4(a): At higher temperatures, the orange
odd-parity modes follow the blue Fermi-liquid modes
before they cross over into the asymptotic odd-parity
scaling described by Eq. (5) at low temperatures. The
temperature at which the odd-parity modes deviate from
Fermi-liquid scaling is strongly suppressed with increasing
mode index m. To illustrate this further, we show in the
inset of Fig. 4(a) the exponent of the logarithmic derivative
of y,, with respect to temperature, which gives a local
scaling exponent y,,, ~ (T /T)*: Even-parity modes follow
Fermi-liquid scaling with @ = 2, while odd-parity modes
reach the @ = 4 scaling only at asymptotically low temper-
atures, with higher angular indices even having an inter-
mediate plateau at a = 2. The large separation between odd
and even modes is seen to remain up to 7 < 0.157 .

The absence of a pronounced odd-even staggering in
the decay rates for the higher eigenmodes noted in the
previous section is clearly visible in the plots for the
second-lowest [Fig. 4(b)] and the third-lowest [Fig. 4(c)]
eigenvalues. Leaving aside a small logarithmic spread, the
eigenmodes are almost independent of the angular index
and follow Fermi-liquid scaling at low temperatures. The
higher eigenvalues in the m = 0 and m = 1 sectors, which
are not zero modes, also follow the same Fermi-liquid
scaling as the rest of the higher even and odd modes.
Interestingly, when considering the local scaling exponent
shown in the insets, we find an improved fit with an
additional logarithmic correction y,,~(T/Tg)*logT /T
and y,,~(T/Tg)*logT/2T in the second- and third-
lowest sectors, respectively, a result which is reminiscent
of a self-energy calculation [22].

C. Interaction-induced enhancement
of the odd-even effect

Contrasting the low-temperature forms Egs. (5) and (7)
for the decay rates of odd- and even-parity modes, it is
apparent that even-parity modes have a complicated
dependence on the interaction strength r, while the odd-
parity scaling depends on the matrix element |V|?, which
has a much weaker r; dependence. This dependence is
linked to the fact that odd-parity modes relax by repeated
small-angle scattering, for which the Coulomb interaction
Eq. (1) is overscreened and weakly dependent on r,
[35,44], whereas even-parity modes involve momentum
transfers of order O(kj), which depends on the density and
thus on r,. In this section, we discuss this dependence on
the interaction strength in more detail. We confirm that the
interaction strength strongly affects the strength of even-

s

10—10 -

I's

FIG. 5. Lowest m =2 decay rate (blue points) and m =3
decay rate (orange points) at T/T = 10~* as a function of the
Coulomb interaction strength r,. The continuous blue line is the
analytical even-parity result Eq. (8), and the dashed black line
includes only the direct contribution in Eq. (9). The latter
expression becomes exact only at asymptotically small r, as
illustrated in the inset, which shows the ratio between the
exchange and direct scattering contributions. The continuous
orange line is the exact odd-parity result Eq. (5) with a
momentum-dependent Coulomb scattering amplitude, and the
dashed black line is the decay rate for a constant matrix element at
large r, for comparison. Overall, there is a strong odd-even effect
for all r,, but the separation in the decay rates is strongly
dependent on the interaction strength r,.

parity damping but not that of odd-parity modes, such that
the odd-even effect is widely tunable with interactions.
Figure 5 shows the decay rates of the lowest-lying m = 2
modes (blue points) and m = 3 modes (orange points),
respectively, as a function of the interaction strength r, at
a fixed small temperature 7/T; = 10™*. We focus here on
the dependence of the decay rates on the Coulomb interaction
parameter and neglect possible low-temperature phase tran-
sitions at large r,; out of the Fermi-liquid phase [45,46].
Indeed, while the even-parity decay rate varies by several
orders of magnitude, the odd-parity rates remain almost
constant. Discussing the odd-parity modes first, we show as a
black dotted line the asymptotic limit of Eq. (5) for large r,,
where the matrix elementin Eq. (5)is |V|> = 1/4, whichisin
excellent agreement with the numerics. At decreasing r,, a
small decrease in the odd-parity relaxation rate is captured
by the r, dependence of the matrix element and by allowing a
small nonzero momentum transfer k [k = 0.2k for
r¢ = 1], which indicates a small deviation from strict
small-angle scattering processes that contribute to the
relaxation. The fit of y,_; from Eq. (5) is shown in
Fig. 5 as a solid orange line, and is again in excellent
agreement with the data in the range 1 < r; < 100. Indeed,
at the temperature 7/T» = 10~* shown in the figure, this is
the same r, interval over which we find odd-parity temper-
ature scaling with @ = 4. For smaller r; <1 the scaling
exponent a begins to decrease from its low-density value
a = 4. The interaction strength thus not only controls the
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relative strength of the odd-even effect but also the onset
into the asymptotic odd-parity 7* regime.

For the even-parity decay rate at low temperatures, we
obtain the following analytical result valid for (T/T¢) < r,
(cf. Appendix A):

47 T?

ET_FI’"’ 1, = 13" + I, (8)

Vm.even —

where, for m = 2,

| 2 2
1, = 2 {iog (14 Y2) -2
o) V2

7 P \/i
J—— 5 log| 1+ Y2
n=2 =" oz Ty [°g< * rs>

LR (=)0

s

’

]
© 1o

This result sets the low-temperature quadratic scaling of the
shear viscosity [36]. The two terms in Eq. (8) are the direct
and exchange contributions, and we show the full expres-
sion as a continuous blue line in Fig. 5, in excellent
agreement with the numerical results (blue points). For
comparison, we show as a dashed black line only the direct
contribution, which sets the full result only in the extreme
high-density limit r; << 1. We show the ratio between the
direct and exchange contributions in Eq. (8) in the inset of
Fig. 5, where it is apparent that even at small r, the
exchange term gives an important nonanalytic correction
that quickly saturates to the maximum value 1/2, which
reflects a fundamental bound [35]. At higher r,, the
exchange term thus subtracts half of the direct contribution,
such that the direct contribution alone overestimates the
correct result by a factor of 2. Note that Eq. (7) is exactly
half of the direct contribution and thus applies at r; = 0.5.
Additional results for the asymptotic high-density limit
re <(T/Tr) < 1 are listed in Appendix B.

Overall, the m = 2 decay rate in Fig. 5 increases as
Ymen = —4aT?r In(r,e't%/*/\/2)/3RT . for small inter-
action strengths (7/Typ) Srg << 1, consistent with the
functional dependence at low r; in Refs. [36,47], but
quickly deviates from this limit and crosses over to a
constant y,,_, = 2aT?/3hT at large r,. This behavior is
understood from the head-on scattering kinematics that sets
the even-parity decay (cf. Fig. 1), which at low temper-
atures involves scattering under any angle of the Fermi
surface with a general momentum transfer of order
O(kr) = O(ry'). For high densities, r; < 1, screening
is no longer efficient and the matrix element decreases with
momentum, where the logarithmic correction reflects the
divergence of the unscreened Coulomb interaction at zero
(or 2kr) momentum transfer, which favors small-angle
scattering [48]. In the low-density limit, r, > 1, the

Coulomb matrix element is approximately constant with
a magnitude set by the wave vector krg. In this case, the
Thomas-Fermi wave vector cancels with the overall mag-
nitude of the interaction, such that the overscreened
interaction is a constant that depends on the density of
states and is independent of r;.

In summary, the different dependence of the lowest odd-
and even-parity decay rates on the Coulomb interaction
strength r, provides a direct signature of the distinct micro-
scopic relaxation processes for these modes. Moreover, it
allows us to tune the strength of the odd-even effect not only
by varying the temperature but also by changing the
interaction strength (for example, by doping). Here, even
small changes in r, have a strong effect: For example, an
increase from r; =1 to ry =2 increases the difference
between the odd and even decay rates in Fig. 5(a) by
40%. For 2D GaAs parameters, this corresponds to decreas-
ing the doping density from 3.3 x 10'! to 0.8 x 10! cm~2,
which is readily accessible in experiments [49].

III. FERMI-LIQUID KINETIC THEORY

In this section, we discuss in detail the structure of the
collision integral, Eq. (2), and the formal basis expansion
framework used to diagonalize the collision integral and to
derive the collective quasiparticle decay rates presented in
the previous section.

The main object of interest in a Fermi-liquid description
is the (single-particle electron) quasiparticle distribution
function f(t,r,p), the evolution of which is described
semiclassically by the transport equation,

0 0 0 2
(EH.WF.%)m,r,p):J[f(nnp)], (10)

where v = Ap/m* is the quasiparticle velocity and F is an
external force. The left-hand side contains the streaming
term that describes free phase-space evolution, and the
right-hand side is the collision integral stated in Eq. (2),
which describes the rate of change of the distribution
f(t,r,p) due to two-body collisions with other quasipar-
ticles. Formally, the collision integral 7 depends on the
two-particle distribution, which in turn obeys its own
dynamical equation dependent on the three-particle distri-
bution, and so on. Assuming that incoming states are
uncorrelated, this hierarchy may be truncated at first order,
which gives Eq. (2) with a scattering matrix:

2
W(p}. p2lp1p2) = —- V2 (27)%5(p; + P> — P} — P))
X 8(ep, + &, — &y —eprz), (11)

where the delta functions enforce energy and momentum
conservation. The collision integral is then a Fermi golden
rule expression for the change in the quasiparticle
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occupation f. For a two-component Fermi gas with spin-
independent Coulomb interactions, the matrix element in
Eq. (11) reads

= 1P2 1P2 = 1~ P1 1~ P2
V2 = [(p|p5|VIPip2)|* = V(D] — 1) + V(D) — P2)
- V(P’1 - P1)V(P/1 - Pz), (12)

where V is the interaction potential stated in Eq. (1). The
first two terms in Eq. (12) are the direct contribution and the
last term is the exchange contribution [35].

The next section, Sec. III A, discusses the linearized
collision integral and its mathematical properties, focusing
in particular on its scalar product structure. The subsequent
Sec. III B presents the basis expansion used to determine
the eigenmodes of the linearized collision integral, which
set the relaxation rates presented in the previous section.
Finally, Sec. III C illustrates the rapid convergence of the
basis function expansion, and Sec. III D discusses the zero
modes of the collision integral.

A. Linearized collision integral

As discussed in the Introduction, to describe small
deviations from the equilibrium Fermi-Dirac distribution
fo(p), we linearize the collision integral as

f(t.p) = fo(p) +6f(t.p), (13)

where we further separate a Fermi factor from the small
deviation §f and parametrize it by a deviation function y,
cf. Eq. (3). To linearize the collision integral, Eq. (2), it is
helpful to introduce the center-of-mass and relative
momentum variables for the initial-state momenta,

q:pl_pZ, (14)

P=p; +py, 3

and likewise for the final-state momenta P’ and q’. The
delta functions in the matrix element in Eq. (11) then imply
a conservation of the center-of-mass momentum P = P’
and the magnitude of the relative momentum, ¢’ = gq.
Furthermore, the product of Fermi factors in the collision
integral may be written as

Frary=fo(P1)fo(P2)[1=Ffo(P)I[1=Ffo(p?)]

1
:4[cosh(X) +cosh(éP-q)][cosh(X)+cosh(EP-q')]
(15)
with & = fzzﬂ/2m* and
- h2p2 h2q2
X_ﬂ<8m*+2m*_u>' (16)

Using the parametrization Eq. (3), this brings the collision
integral to the form

F16100) =~ 55 [ 1 [ 4@V Frarz
x [w(p1) +w(p2) —w(p)) —wpy)], (17)

where Q denotes the angle between the relative momenta q
and q’ before and after the collision.

Even in linearized form, the collision integral remains a
computational challenge. The computation of the electron-
electron lifetime is therefore often limited to the relaxation-
time approximation [1,2,35], or to the quasiparticle lifetime
obtained from self-energy methods in the zero- or low-
temperature limit [21,22,50]. For a direct diagonalization of
the collision integral, we introduce a scalar product that is
induced by the Fermi-Dirac distribution,

2
wh) =4 | (;17">2f0<p>[1 — @7 (D) (P)
= [ ot 0. (18)

where the latter equality is valid for isotropic functions and
we define the dimensionless energy variable,

2.2
w = ﬁ(f;nf* —ﬂ)- (19)

Analytical results for the scalar product of simple mono-
mials are collected in Appendix C. Note that the first line in
the definition Eq. (18) applies equally well for general
(anisotropic) dispersions through the Fermi-Dirac func-
tions, while the second line is specific to a parabolic
dispersion. In the absence of external forces or thermal
gradients, the streaming term in Eq. (10) vanishes and we
obtain the eigenvalue problem,

R  =Tsf(p)]
Ll = 2= folo

N rw(p).  (20)

for the linearized collision operator L, where an eigenmode
v decays exponentially with time as w(7,p) = e "y (p).
With respect to the scalar product Eq. (18), matrix elements
of the operator L then take the form

[VI*F1a12

R m* 22 [ dPdqdQ
Ul Llw) = 16 s / (2n)"

x [7(p1) +7(p2) —x(p}) — 7(P3)]
x [w(p1) +w(p2) —w(p)) —w(ps)]. (21)

where we have implemented the change of variables in
Eq. (14) and wused the (anti)symmetry under 1 <> 2
(12 <> 1’2") to symmetrize the term in the first square
bracket, which introduces an additional factor 1/4.
Written in this way, Eq. (21) defines a manifestly positive
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semidefinite Hermitian operator [which follows from
Fiop > 0, as seen in Eq. (15)], which implies that all
eigenvalues y are real and non-negative, as required for decay
rates. Note that the mathematical structure of the linearized
collision integral discussed here including the positive
semidefiniteness is not specific to parabolic dispersions
but also applies for general anisotropic dispersions.

B. Basis expansion

We systematically describe quasiparticle deformations in
a given angular sector with angular index m by expanding
the residual radial basis function as

walp) = Y cin(w) 22)

up to a basis dimension N, where the basis polynomials u; (w)
are orthonormal with respect to the scalar product Eq. (18);
i.e., they obey (u;|u;) = &;;. Using the analytical result for
the scalar products between monomials listed in Appendix C,
itis straightforward to determine these basis polynomials by
a Gram-Schmidt procedure. Note that the presence of the
Fermi factors in the scalar product Eq. (18) implies that the
basis polynomials depend on temperature. In particular, in
the low-temperature limit 7/7 — 0, we obtain

ur(w) =1,
V3
MZ(W)Z7W,
3v5 , V5
Ms(W):TEZW R
5V 5 TV
u4(w):Tﬂ_3W _EW’
35 65 27
1) =g "W e
2111 4911 407v/11
ug(w) = \/?ws— \/3—W3+7\/—W, (23)
3207 967 9607

and so on. As discussed in the Introduction, the constant basis
function u;(w) describes a rigid shift in the chemical
potential, and higher corrections account for a broadening
of the Fermi surface. In the high-temperature limit, the
basis polynomials are Laguerre (or Sonine) polynomials
up(w) = Lo (w+ ).

What remains for an evaluation of Eq. (21) is then a
matter of evaluating the N X N matrix of scalar products
between different matrix elements,

M= (u;e™|L]u;e™?), (24)

where the matrix elements are defined in Eq. (21). Note that
the matrix elements themselves do not depend on N. The

{7%\[)} converge to the true decay rates {y,,} from above as
the basis size N is increased.

C. Numerical implementation and convergence

As discussed, we determine the eigenvalues {yﬁ,ﬁv)} of the
linearized collision integral by diagonalizing the N x N
coefficient matrix Eq. (24). Here, the numerical challenge
is the evaluation of the matrix elements Eq. (21), which are
multidimensional integrals. Furthermore, at low temper-
atures, the integrand is strongly peaked in a small subdomain
of the integration region due to Pauli blocking [enforced by
the Fermi factors Fj,;o, Eq. (15)]. In our calculations, we
use an adaptive multidimensional integration routine con-
tained in the Cuba library [51], which was developed to
evaluate higher-loop Feynman diagrams in high-energy
physics (for applications to diagrammatic calculations in a
condensed matter context, see Refs. [52-54]). The compu-
tation speed at low temperatures is greatly improved by using
the Divonne algorithm, which allows the Monte Carlo
sampling to bias the integration points in regions where
the integrand is peaked. This allows us to achieve rapid
convergence on standard computers. We provide further
details of the numerical implementation and a dimensionless
form of Eq. (21) in Appendix D. In this section, we illustrate
the convergence of the eigenvalues with increasing basis
dimension N.

Figure 6 illustrates the convergence for selected
eigenmodes yﬁ,iv ) as a function of basis dimension N, where
Fig. 6(a) shows the lowest eigenvalue for m = 2, 3, 19, and
20, and Fig. 6(b) shows the second-lowest eigenvalue for
m =1, 2,3, 19, and 20. [The lowest eigenvalue for m = 1
is excluded from Fig. 6(a) since it is a zero mode. It is

discussed separately in the next section, Sec. I1I D.] We plot

the relative deviation of y%v ) compared to y%v :16), which we

take as the converged value, as a function of N. Data shown
are for r, =1 and T/T; = 0.01, where we do not see a

8% 40%
s X (a) (b)
Il -45%
s 6% 30% e m=1
>~ = m=2
o — m=3
v rs=1 m=19
S 4% - T/Te=0.01| [ 20% 4 :: m=20
5} .
9] .
2 2% 4 ° 10% 4
: |
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FIG. 6. Convergence of the numerical results for selected
(a) lowest eigenmodes and (b) second-lowest modes. Shown is

the error of the decay rate y,,llv computed with basis size N

relative to yﬁ,,N:m) at low temperature 7/T; = 0.01 and inter-

action strength r, = 1.
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pronounced difference in the convergence rate for other
temperatures below the Fermi temperature. Lower (higher)
interaction strengths lead to a minor improvement (reduc-
tion) of the convergence. As is apparent from the figure, for
all eigenvalues we see uniform rapid convergence, which is
fastest for the lowest eigenvalue. In particular, for N = 6,
the decay rates of the m = 2 mode are within 1% and 6% of
the converged value in the lowest and second-lowest sector,
respectively, and we use this basis dimension to generate
the results shown in Figs. 4 and 10. For the remaining
figures, we have used N = 10. The rapid convergence of
these results demonstrates that our choice of orthogonal
basis polynomials in Sec. IIIB is very well suited to
diagonalize the Fermi-liquid collision integral. An open
question left for future work is if a different choice of basis
functions could improve the convergence even further.

An interesting feature of Fig. 6(a) is that the onset of the
T*-scaling regime and the odd-even effect is mirrored in the
convergence pattern: For the m = 3 mode, which admits a
scaling exponent @~ 4 for T = 0.01Ty [cf. the inset of
Fig. 4(a)], the first basis function alone (N = 1) provides a
poor description that differs by 45% [as marked in the inset
of Fig. 6(a)], while including the first two basis functions
(N = 2) gives a dramatic improvement in accuracy. This is
in line with the explicit calculation of the lowest matrix
element at low temperatures in Appendix A, which
vanishes for odd m. By contrast, the m = 19 mode, which
still follows Fermi-liquid scaling at T = 0.017 ¢, exhibits a
similar convergence pattern to the even modes with good
convergence even for N = 1.

D. Zero modes

The linearized collision integral Eq. (17) possesses four
zero modes, which are associated with the conservation of
particle number, energy, and the x and y components of the
total momentum in binary collisions:

_ [ 9
N= [ GEsrtp)

E= [ G2 D).

P= [ Goaftpim. 25)

Using the kinetic equation Eq. (10) and symmetrizing, the
time derivative of these quantities is expressed in terms of
the linearized collision integral,

d N

0= (AP)ILIy). (26)

for a general deformation y, where O = {N, E, P} and
A(p) = {1, e(p), hp}, respectively. As can be seen directly
from the definition Eq. (21), this scalar product vanishes

due to energy and momentum conservation in binary
collisions [55]. From the hermicity of the linearized
collision integral, it follows then that perturbations of
the form y(p) = A(p) are zero modes of the linearized
collision integral. As already discussed in Sec. II B, the
two zero modes corresponding to particle and energy
conservation, which take the form w(p)=1 and
w(p) = pe(p) = w + Pu, respectively, have m =0 sym-
metry. These modes include the first two basis functions
u; (which is constant in w) and u, (which is linear in w)
at any temperature, which implies that the first two
rows and columns of the coefficient matrix /\/lf'}zo are
identically zero.

The situation is slightly more involved for the two current
zero modes, which take the formy(p) = pe* inthe m = +1
sector, and which have a nonanalytic dependence on the
dimensionless energy variable w since p ~ v/w + pu. Given
our choice of basis functions, which are polynomials in the
energy deviation w, there is thus an overlap of the zero mode
with basis polynomials of any order. For this reason, the
diagonalization of the coefficient matrix Eq. (24) at any finite
N will not give an eigenvalue that is identically zero butrather
afinite lowest eigenvalue that decreases without lower bound
as N isincreased. We illustrate this in Fig. 7, which shows the
lowest eigenvalue yan:) , for r; =1 as a function of temper-
ature, where lines from top to bottom correspond to an
increasing basis dimension V. The decay is most pronounced
at low temperatures, again indicating the suitable choice of
basis functions. In addition, we show in the inset the overlap
of the numerically obtained eigenvector with the true zero
mode as a function of N, which is very large even at small V.

105 - re=1
N/
w —
= 10710 - -
;_ N 5 _.'o...
N 15 N43 ?10710 7 ..'
10 ] 21075 Ly
123456
N
10—20 T
1072 1071

TITr

FIG. 7. Relaxation rate of the lowest current mode yffl\/:)l for
finite basis dimension N = 1,...,9 as a function of temperature
T/Tr. Lines from top to bottom (darker to lighter colors) show
the decay rate with increasing basis dimension N. The mode
rapidly converges to the current zero mode with increasing N.
The inset illustrates the overlap between the eigenvector of
./\/lZf:1 for a given basis size N and the first N elements of
the true zero mode Ap (both modes are normalized to unity). At
both temperatures shown, T/T = 0.03 (dark green points) and
T/Tyr = 0.22 (pink points), we find rapid convergence.
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IV. CONCLUSION AND OUTLOOK

In summary, we have provided a comprehensive dis-
cussion of nonequilibrium collective quasiparticle relaxa-
tion in two-dimensional electron gases with a screened
Coulomb interaction, which is made possible by the exact
diagonalization of the linearized Fermi-liquid collision
integral. The focus of our work is the description of
anomalously long-lived odd-parity modes with decay rates
that are much more strongly suppressed than predicted by
Fermi-liquid theory. Just as for regular Fermi-liquid decay,
the lifetimes of these modes are increased by Pauli block-
ing, but their microscopic relaxation mechanism differs:
Instead of variable-angle head-on collisions, relaxation
proceeds by repeated small-angle scattering on the Fermi
surface, which is manifest by a strong dependence O(m*)
on the angular harmonic index m. We find that the parity-
effect in the quasiparticle decay rates is restricted to the
longest-lived eigenmode in a given odd-parity channel, and
higher modes show standard Fermi-liquid behavior. There

is a finite set of order O(\/Tx/T) of isolated long-lived
eigenmodes, where each mode has a separate crossover
temperature below which it decouples from the Fermi-
liquid continuum. We show furthermore that the crossover
point also depends on the Coulomb interaction strength r,
and that the separation between odd- and even-parity decay
rates is strongly dependent on the interaction strength,
which reflects the different relaxation processes. Our
numerical calculations demonstrate that the odd-even
anomaly is not just an asymptotic result valid at unreal-
istically small temperatures, but should be readily acces-
sible in current experiments.

While our work quantifies the odd-even effect and
systematically determines the collisional eigenmodes as
well as their decay rates, a natural follow-up question is
how the long-lived modes affect the dynamics of the
electron gas, in particular how they can be incorporated
in a hydrodynamic description. In view of the strong
separation of an isolated set of odd-parity modes reported
here, such a description should be robust, and our results
provide input parameters for an effective description in
terms of hydrodynamic densities and odd-parity modes.
Here, recent work has provided a systematic description of
tomographic transport in finite geometries using a Knudsen
expansion [56,57]. This expansion reveals significant
deviations for tomographic flow compared to a hydro-
dynamic description in the form of rarefaction corrections
to the bulk Stokes-Ohm equation, an anomalously large
extended tomographic boundary layer, and additional
velocity slip at the boundaries. These effects must be
included when describing electron flow in realistic devices.
Moreover, even weak magnetic fields will interfere with the
anomalously long-lived odd modes and suppress tomo-
graphic transport effects, thus providing a hallmark sig-
nature of this regime [58]. A further tantalizing prospect
given the strong suppression and near conservation of

odd-parity modes is that methods from integrable systems
that incorporate an infinite number of conserved modes in a
generalized hydrodynamic framework could be applied to
the present problem [59].

On a technical level, we have presented a numerically
exact method to diagonalize the Fermi-liquid collision
integral, which is necessary since other means of comput-
ing the electron relaxation, for example, using self-energy
methods, are not sensitive to the odd-even effect. Such a
direct solution is often avoided due to the numerical
complexity, and our work provides an efficient algorithm
to address this problem. In particular, the calculation of
general linear-response transport coefficients, which as
discussed in the Introduction are linked to particular
superpositions of the eigenmodes discussed here, is an
immediate prospect for future work. With regard to the odd-
even effect, with the disparity between odd and even modes
most pronounced for m < /T /T, the focus should be on
transport coefficients that couple strongly to harmonics
with low values of m that are not dominated by an even
Fermi-liquid mode. Likewise, the generalization of the
present description to anisotropic Fermi surfaces is a
prospect for future work.
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APPENDIX A: LOW-TEMPERATURE
APPROXIMATION OF EVEN-PARITY
RELAXATION RATES

In this appendix, we compute the asymptotic low-
temperature scaling of the lowest even-parity decay rates
analytically. To this end, we evaluate the matrix elements of
the linearized collision integral,

Ymeven & <W*|£|W*>v (Al)
for the leading perturbation y, (p) = ¢, i.e., the lowest-
order basis function that describes a rigid shift of the
chemical potential. As discussed in Sec. III C and high-
lighted in Fig. 6, this provides a good approximation of the
decay rate for modes with even m. Explicitly, the collision
matrix element reads
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. 273 dp,dp,dp’,dp}
(Wil Llyy) = 4hT//// ! (22ﬂ>81 21V|%5(ep, + £p, — ep — splz)(Zn)zzs(pl +p,—p) —pb)
X Fiopy s (P1) + vs(P2) = w () — v (p3)]*- (A2)

Instead of the center-of-mass and relative momentum variables used in the main text, here we choose as integration variables
the momentum and energy transfer, splitting the energy and momentum delta functions as [48]

O(ep, +&p, — ep = 8P’z) = /dco&(spl — &y — w)5(ep, — ep, + o),

5(py +p> =Py —Ph) = /dk 5(py —py —k)d(p> — p; + k), (A3)

where k = p; — p| = p}, — p, is the momentum transfer and || ~ T < T'- is the energy transfer. The delta functions then
constrain the final momenta p| = p; —k and p, = k + p,. In the following, we express the angles 0; and 6, of the
remaining initial momenta p; and p, with reference to the direction of the momentum transfer k, as illustrated in Fig. 8.

The integral over the initial angles 6, and 6, is evaluated using the energy delta functions,

2z
/) do,5(ep, — &y —@)|[...]

2r 1
/0 d6,5(e,, — &, + @)[...] = Zm[...],

where we used p/? = (k — p;)? and v; = m*Ap,. Each sum
runs over the two angles 6 for which the argument in the
energy delta functions vanishes, i.e., which fulfill

k w
COS(QT) = 2—]91 + m B
y k 0]
cos(6;) = “2, + ok (AS)

Energy and momentum conservation in combination with
the Fermi surface constraint give two different scattering
combinations. The first one is a direct or exchange
scattering process with k =0 or k = 2kp, respectively,
where p; = p},p, = p5 (or interchanged final momenta).
For these configurations, the matrix element Eq. (A2) of the
collision integral vanishes, as expected and already dis-
cussed in the Introduction. The second possible process is
head-on scattering with p; = —p,, p; = —p5 (Fig. 8).

FIG. 8. Example of a head-on collision process (P = 0) at low
temperatures, where scattering momenta are at the Fermi surface.
At zero energy transfer w = 0, cos @ = k/2p;.

1
- Zvlhk|sin(9’f)| o)

o

(A4)
z

In other words, only two of the four terms that come from
combining the sums in Eq. (A4) actually contribute, which
gives a factor of 2.

For k along the x axis, if p; is in the upper (right-hand)
plane, pj must be in the upper (left-hand) plane (cf. Fig. 8).
Furthermore, the relation k = p; — p| = p; + p} implies
that 8y = —0,, so 0y = 0y + n = n — 6,. The factor in the
matrix element of Eq. (A2) becomes (for even m)

—Yx (plz) |2
— 2] |2

Wi (P1) + ¥ (P2) — Wi (P))
—_ |eim91 [1 + eimm _ eimﬂe—ZimGI

= 16sin’md,, (A6)
but vanishes for odd m, as discussed in the Introduction.

At this point, the expression for the matrix element
Eq. (A2) reads for even m:

A A2
<ll/*|£|ll/*>:WI%(/dCOdPlszPlszlzl’z’)

o 2z 16sin’m0;
([ ak [ ag v L)),
<A A VI hzkvlvz|sin0’[sin9§|)

(A7)

where F ;o is defined in Eq. (15) and we neglect the
dependence on the momentum transfer & in the product of
Fermi functions as well as the dependence of 6] on the
energy transfer as w~ O(T). We transform the wave
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vectors p; into dimensionless energies w; [cf. Eq. (19)] with
n’p;dp; = m*de; = m*Tdw;, which in the zero-temper-
ature limit have integration range w € (—o0, ), and use the
exact result for the first factor in Eq. (A7),

272

/°° daw dW] dW2F|21’2f - T s (AS)

where W = w/T. For the second factor in Eq. (A7), we
parametrize the k integral using 67, where Eq. (AS5) gives
k = 2kp cos 07 such that 0 < k < 2kp. Approximating the
velocities in the denominator in Eq. (A7) by the Fermi
velocities and performing the integral over @} gives

4z T?
3aT ™

7m even ~

(A9)

where we define the integral,
2%r sin’m@;
I, = dk LIV
" A ksin?g; |

_ /fr/Z a0 1 — cos2m0;
0 sin 26}

(A10)

with the dimensionless interaction potential V = V/A2T
and we use |sin@5| = |sin6;|.

For a constant matrix element V, the integrand peaks
roughly at angles @7 where the ingoing (p; = —p,) and
outgoing (p} = —p5) momenta connect a peak and a valley
in the Fermi surface deformation. The fact that the maxima
are not exactly located at 07 = [(z + 2¢)/2m|,¢ = 0,1, ...,

11 a
. &
& 0.75 +
o b
9
£
E 0.5 A c
©
£ 0.25
B ®

0 1 1 1 T

0 /8 /4 3mn/8 /2
61

FIG. 9. The integrand (normalized by its maximum value) in
Eq. (A10) for m = 8. As long as r, is relatively large, the matrix
element | V|? is approximately constant over the integration range.
The peaks of the integrand roughly correspond to scattering from
(black arrow) a peak in the Fermi surface perturbation to (gray
arrow) a valley, shown to the right. As r; decreases, the
contributions from small-angle scattering become increasingly
dominant.

is due to the sin 26} factor in the denominator from energy
conservation. We illustrate the integrand for m = 8 in Fig. 9.
The Coulomb matrix element changes this picture by
enhancing small-angle scattering and suppressing large-
angle processes. To see this, we express the matrix
element as

|V|?> = V(cos @) + V(sin0})> — V(cos 07)V(sin &),

(Al1)

with the dimensionless form of Eq. (1),

Ty

V) = o)

(A12)

For small ry, the matrix element is sharply peaked near
07 =0, 7/2 and enhances small-angle scattering. Only at
large rg 2 10 is the matrix element roughly constant with
V> =1/4+ O(1/r?), and we recover the scenario dis-
cussed above.

Equation (8) in the main text stems from the integral
I,,—>, which can be performed analytically for all r,, as
shown in Eq. (9). Closed expressions exist also for m = 4,
6, 8, with decreasing convergence radii in r,, and are not
stated here. The parameter ¢ in Eq. (7) is obtained from a fit
to 1,, for the first 200 values of m.

APPENDIX B: EVEN-PARITY RELAXATION
RATES IN THE HIGH-DENSITY LIMIT

In this appendix, we briefly discuss the asymptotic high-
density limit, r;, — 0, for which we can derive a separate
analytical result for the even-parity decay rates. By expand-
ing the integrand in /,, [cf. Eq. (A10)] to lowest order in r
and assuming that the angular integral is cut off by
temperature, we regain a logarithmic cutoff in 7/T -, which
gives

N |>,\,

[ (——log—) T (1= m?)(rg + log 2m)
+r T+0 i
4 Tp T2" ’

which we find to be valid for ry ST/Tp <« 1. The
logarithmic enhancement in ry seen in Eq. (9) therefore
drops outat ry S (T/Tr), where the decay rate scales only
as r2. Hence, the first term (in square brackets) is the
dlrect contribution, and the second (7-linear) term is the
exchange contribution. The quadratic m dependence is
indicative of diffusive dynamics, as can be seen by writing
Feven = D omevenS me™, which obeys a diffusion equation,

(B1)
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FIG. 10. Relaxation rates as a function of m at T/T; = 10~ for
three different values of the interaction strength r,. The solid blue
line corresponds to the decay rate obtained from Eq. (Bl),
illustrating that the even modes asymptote to m? scaling in the
r¢ — 0 limit. Note that the decay rates have been normalized by
r? for visibility.

0:f even = Yeven afz)f even» (B2)
with y..., set by the quadratic term in Eq. (B1). Such a
quadratic-in-m scaling in Eq. (Bl) aligns with that in
Ref. [47], but it is attained only for asymptotically small r;
as illustrated in Fig. 10, which shows the numerical
relaxation rate at T/T = 107* for three small interaction
strengths 7, = 0.1, 0.01, and 10~>. The scaling of the even
modes agrees very well with the analytical result Eq. (B1),
but the effective m scaling is superdiffusive with local
exponents for m” with g = 1.7, = 1.6, and p = 0.93,
respectively, and interpolates between a quadratic and a
logarithmic m scaling as r, is increased. For T /Ty = 1074,
the full logarithmic m scaling is reached at r; = 1, and
much earlier at higher temperatures. We note that at small
ry, there is an intermediate regime with linear-in-m scaling
of the relaxation rates. Such a scaling is predicted for near-
intrinsic graphene, where the relaxation dynamics is
interpreted as Lévy flights on the Dirac cone [60,61].

APPENDIX C: EXACT RESULTS FOR THE
SCALAR PRODUCT

In this appendix, we list exact results for the scalar
product Eq. (18) evaluated for monomials of the form w”,
from which all basis functions are composed, where 7 is an
integer and w = B(p?/2m* — u). These formulas both
speed up numerical computations and improve the accuracy
of our results. In particular, they allow the computation of
arbitrary products of polynomials and thus enable the
efficient determination of the basis functions. A numerical
evaluation is then required only for scalar products that
contain nonanalytic expressions (like the velocity

VW + pu). Defining (w") = (w", 1), we have

(o) = {- z:og—!:(/fu)kun_k(_e-ﬁ,l) .

where Li,(z) is the polylogarithm function. In the zero-
temperature limit, this expression simplifies to

(w) =

{ 0 nodd ()

—2n!Li,(—1) neven.

APPENDIX D: DIMENSIONLESS FORM OF THE
COLLISION INTEGRAL

In this appendix, we list the dimensionless form of the
matrix elements of the collision integral Eq. (21) that is
used in our numerical implementation. We express the
collision integral, which has dimension of frequency, in
units of #/T and choose dimensionless wave vectors,

(D1)

as well as a dimensionless interaction potential V (k) =A2TV.
In addition, we transform to polar coordinates for the center-
of-mass and relative momentum. The center-of-mass angle
integral is trivial as neither the Fermi factors nor the Coulomb
matrix element depend on 6p. We remark that this integral
ensures that the matrix elements are diagonal in the angular
harmonic component m, i.e., Mmm' . smm' - Note that this
diagonal structure in the angular component is no longer
present for anisotropic Fermi surfaces. Here, matrix elements
of the collision integral with a general C,-symmetric Fermi
surface will couple angular modes modulo p, i.e., m and
m=+ p, m=*2p, and so on. Aligning the center-of-mass
momentum with the coordinate axis and denoting the angles
between P and the relative momenta q and q’ by 6, and 6/,
respectively, we introduce the notation

[(V(@.2)NP=Vi+Vi=VV,.

V=V (Z] \/2|1 —cosf,cosf, —sinb, sian/|> ,

V,= V(Z] \/2|1 +cosd,cosf, +sind, sin94/|> ,
(D2)

to obtain the following dimensionless form of the collision
integral:
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T 1 © _ S 2r 2z _
m—(_—)— [ PdP [ adg [ do e, |(V (g
M <TF> 4ﬂ/0 /O q qA qA V(g
1/2 1/2

7))

X - _
cosh(w) 4 cosh(P g cos 6,,) cosh(w) + cosh(Pg’ cos )

X {ﬁj(w + Pgcosf,)e™ ™ +ii;j(w— Pgcos,)e” ™" — it;(w+ Pg cos0,)e ™% — ii;(w + PG’ cos Gq/)e‘i’”(’;}

x {ui(w + PgcosO,)e™ + u;(w—Pgcosd,)e™” — u;(w+ Pg cos0)e™ — u;(w— Pg' cos Hq/)eim"'z] i

where w = P?/4 + g* — pu [cf. Eq. (16)]. The basis func-
tions have here been written in their explicit form,

(N)(

w(p) =u; (p)e™. (D4)

where ul(.N> is the ith basis polynomial (i < N), cf. Sec. III B.
Finally, the angles 8, 0, are related to the integration
variables as

01, =0p + f(P/2, £, 0,),
9’1!2 =0p +f(P/2, +q, Gq/),

= _ gsinf

P,q,0) = arctan| ——— |. D5
f(P.q.0) arcan<P+Ezcos6> (D3)
As discussed in Sec. III, £ is a Hermitian operator, so N(N +
1)/2 different overlap integrals need to be computed in order
to obtain the full N x N matrix M7].

Note that at low temperatures, the product of Fermi
functions is a sharply peaked function in the radial
coordinate p> = P?/4 + g*. For this reason, it is helpful
in numerical implementations to perform a final change of
integral variables as P =2pcos@ and g = psin@. The
advantage of this parametrization is that numerical adaptive
Monte Carlo methods (for example, the Divonne algorithm;
see Ref. [51]) may be supplemented with a peak-
finder routine, allowing greater numerical accuracy at low
temperatures.
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