
Lifelong Reinforcement Learning for Health-Aware Fast Charging of
Lithium-ion Batteries

Downloaded from: https://research.chalmers.se, 2025-11-02 18:00 UTC

Citation for the original published paper (version of record):
Yuan, M., Zou, C. (2025). Lifelong Reinforcement Learning for Health-Aware Fast Charging of
Lithium-ion Batteries. IEEE Transactions on Transportation Electrification, 1.
http://dx.doi.org/10.1109/TTE.2025.3625421

N.B. When citing this work, cite the original published paper.

© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)



IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, OCTOBER 2025 1

Lifelong Reinforcement Learning for Health-Aware
Fast Charging of Lithium-ion Batteries
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Abstract—Fast charging of lithium-ion batteries remains a
critical bottleneck for widespread adoption of electric vehicles
and stationary energy storage systems, as improperly designed
fast charging can accelerate battery degradation and shorten
lifespan. In this work, we address this challenge by proposing
a health-aware fast charging strategy that explicitly balances
charging speed and battery longevity across the entire service
life. The key innovation lies in establishing a mapping between
side-reaction overpotential and the state of health (SoH) of
battery, which is then used to constrain the terminal charging
voltage in a twin delayed deep deterministic policy gradient
(TD3) framework. By incorporating this SoH-dependent voltage
constraint, our designed deep learning method mitigates side
reactions and effectively extends battery life. To validate the
proposed approach, a high-fidelity single particle model with elec-
trolyte is implemented in the widely adopted PyBaMM simulation
platform, capturing degradation phenomena at realistic scales.
Comparative life-cycle simulations against conventional CC-CV,
its variants, and constant current–constant overpotential methods
show that the TD3-based controller reduces overall degradation
while maintaining competitively fast charge times. These results
demonstrate the practical viability of deep reinforcement learning
for advanced battery management systems and pave the way
for future explorations of health-aware, performance-optimized
charging strategies.

Index Terms—Lithium-ion battery, fast charging, reinforce-
ment learning, battery degradation.

I. INTRODUCTION

L ITHIUM-ION batteries (LIBs) have emerged as the cor-
nerstone of modern energy storage systems, powering

applications ranging from portable electronics to electric ve-
hicles (EVs) and grid-scale renewable energy integration [1].
Despite their dominance, EVs continue to face two persistent
challenges, limited driving range and prolonged charging
durations, which remain critical barriers to their widespread
adoption and the push for energy-efficient electrification [2],
[3]. The energy density, charge and discharge kinetics of LIBs
are primarily determined by their electrochemical composition,
including cathode and anode materials and electrolytes, as
well as their structural design, such as particle morphology
and electrode architecture [4]. While advancements in battery
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chemistry continue to push theoretical limits of battery, so-
phisticated battery management systems (BMS) have shown
promise in optimizing charging protocols to achieve fast
charging without exceeding intrinsic material constraints [5].
Though effective in reducing charging time, unconstrained
high-current charging accelerates capacity fade through mech-
anisms such as lithium plating and solid-electrolyte interphase
(SEI) growth [6]. To address this dilemma, advanced control
algorithms capable of dynamically balancing charging speed
and longevity, through multi-physics-aware current modulation
and degradation-predictive interventions, are urgently required
to unlock the full potential of LIBs [7]. In this context,
we approach fast charging from a lifelong, health-aware
perspective. Unlike prior studies that emphasize only short-
term speed or implicitly account for degradation, we explicitly
incorporate long-term battery health into the charging problem.
This high-level perspective highlights the novelty of our work
and motivates the methodological development described in
the following sections.

Accurate battery modeling is essential for designing health-
aware fast charging control algorithms. One widely used
approach is the equivalent circuit model (ECM), which sim-
ulates voltage dynamics using simplified resistor-capacitor
networks and offers computational efficiency ideal for real-
time embedded systems [8], [9]. However, without modeling
the first principles underlying intercalation reactions and the
diffusion process within battery cells, ECMs often struggle to
capture locally distributed behavior, particularly those related
to safety and aging. In contrast, electrochemical models,
such as the Doyle-Fuller-Newman (DFN) model, explicitly
describe ion transport and reaction kinetics across electrode
microstructures, enabling physics-based predictions of degra-
dation modes [10]. Yet, the significant computational burden
of solving the coupled partial differential equations (PDEs)
inherent in the DFN models limits their practical application
in advanced control methods that also demand high computa-
tional power. To address these challenges, the single particle
model (SPM) has emerged as a pragmatic simplification. By
assuming a uniform electrolyte concentration, the SPM re-
duces PDEs to a set of ordinary differential equations (ODEs)
while still capturing essential electrochemical behavior [11].
Recent work has extended the SPM to incorporate various
capacity fade mechanisms and integrated it into a model
predictive control (MPC) framework to optimize charging
profiles and minimize intra-cycle capacity fade [12]. However,
the conventional SPM neglects electrolyte dynamics and leads
to significant voltage prediction errors at high C-rates, which
has motivated the development of extensions such as the single
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particle model with electrolyte (SPMe) for improved accuracy
[13], [14].

Conventional lithium-ion battery charging typically employs
the constant current–constant voltage (CC-CV) method, where
the battery is first charged at a fixed current until a set voltage
is reached, and then held at constant voltage while the current
gradually decreases. Although fast charging can be achieved
by increasing the current or target voltage, such measures tend
to accelerate battery degradation phenomena such as lithium
plating, thereby reducing battery life [15]. To solve this issue,
researchers turned to health-aware fast charging strategies that
integrate battery degradation models with advanced control
techniques. In [16], a side-reaction overpotential based PID
controller is designed to mitigate the risks of lithium plating
while increasing the speed of charging. In [17], Yang et al.
proposed a constant-overpotential based fast charging strategy
for Li-ion batteries and show that this constant-overpotential
control outperforms the traditional CC-CV protocol in both
charging speed and lithium-plating suppression. Similarly, Lu
et al. developed a MPC framework that incorporates real-time
lithium plating detection and adaptive parameter updates to
optimize the balance between fast charging and long-term
battery health [18]. While model-based strategies like MPC
are powerful for constrained optimization, their application to
lifelong fast charging presents significant challenges. Specif-
ically, the performance of MPC is critically dependent on
model fidelity, requiring robust online parameter estimation
to track the changing dynamics of the battery as it ages.
As demonstrated in [19], an optimal control strategy based
on a non-adaptive model can paradoxically accelerate aging
compared to a standard CC-CV protocol. The complexity of
integrating a high-fidelity aging model, an adaptive estimation
scheme, and real-time optimization is a considerable barrier
to practical deployment of MPC in this application.

Moreover, the side-reaction overpotential is hard to be
measured in practical application, which hinders the imple-
mentation of overpotential based method. This challenge has
inspired the development of various approaches including
machine learning-based methods, to estimate lithium plating
[20]. Beyond LIBs, accurate operando detection of lithium
plating during high-rate charging has also been demonstrated
in lithium-ion capacitors. Although the chemistry differs, these
results underscore the importance of plating-aware diagnos-
tics at extreme C-rates and motivate detection-informed or
constraint-based charging strategies [21].

To address the challenges of model mismatch and param-
eter drift as batteries age, learning-based methods have been
introduced in the field of battery charging. In [22], a deep
reinforcement learning (RL) based approach has been designed
for the fast charging of battery, and two cases considering
if the side-reaction overpotential is measurable are discussed
in the design of the controller. While the method shows
promise for rapid charging, it models battery aging solely as
an increase in film resistance, and the controller design does
not integrate long-term battery degradation considerations. In
[23], Wei et al. propose a deep RL-based strategy for the fast
charging of lithium-ion batteries, specifically targeting thermal
safety and health-conscious charging. The multiphysics-related

constraints are implicitly incorporated into the reward design
of the RL. However, the agent is trained on a per-episode
basis, with the battery model initialized at the beginning of
each epoch, overlooking the long-term aging dynamics that
recent work has identified as critical for developing lifelong
strategies [24], [25]. In [26], an adaptive model-based RL
strategy leverages Gaussian processes to capture the battery
environment and enforce operational constraints during charg-
ing, but its primary focus is on minimizing charging time
rather than extending battery life.

Based on the discussion above, our work addresses the
challenge in fast charging by taking battery degradation into
explicit account throughout the entire lifespan. We employ
a twin delayed deep deterministic policy gradient (TD3)
method for health-aware fast charging. To mitigate battery
degradation, we first establish a mapping between the side-
reaction overpotential and the charge cut-off voltage and then
integrate it as health-related constraint into the training of our
RL agent. The SPMe coupling degradation is employed as the
battery environment to capture electrochemical behavior. The
contributions of this work are summarized as follows:

• Unlike previous RL-based approaches that focus solely on
minimizing charging time with implicit health constraints,
or that train the RL agent by resetting the battery to a
fresh state after each training episode, this work intro-
duces the first explicit formulation of a lifelong battery
fast charging problem. This is achieved through a new
training procedure where the RL agent was trained on a
battery model that ages continuously, enabling a strategy
that truly reduces charging duration while extending
battery longevity over its entire service life.

• A mapping between the charge cut-off voltage and
SoH was established using a constant current (CC)–
constant overpotential (COP) approach. This mapping
leverages the intrinsic relationship between the side-
reaction overpotential and battery degradation, and can be
integrated into both CCCV-based charging and learning-
based advanced charging, allowing directly incorporation
of battery health into charging control.

• By integrating the obtained mapping between the voltage
and SoH, a TD3-based charging strategy is designed to
explicitly optimize the fast charging process.

• The proposed TD3-based strategy is trained and tested
through comprehensive life-cycle simulations using the
battery simulator Python Battery Mathematical Modeling
(PyBaMM) [27] with a SPMe-aging model. Superior
performance is demonstrated over CC-CV charging and
its variants.

The remainder of this paper is organized as follows.
Section II defines the health-aware fast charging problem.
Section III presents the TD3-based reinforcement learning
approach. Section IV reports modeling details, experimental
setup, and charging results, including analysis of aging effects
and lithium plating. Finally, Section V concludes the paper.

II. HEALTH-AWARE FAST CHARGING PROBLEM

A battery is considered to have reached its end of life
when its SoH falls to a specified threshold, such as 75-80%
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for EV applications. Within this health-aware fast charging
framework, we aim to minimize the charging time needed
to reach the desired SoC while maximizing the number of
equivalent full cycles (EFCs) of battery until the SOH reaches
80%. The cost function for this problem is defined as:

J(t) = w1CSoC(t) + w2Cside(t), (1)

where w1 and w2 are weighting factors. The first part of the
cost is designed for SoC setpoint tracking, aiming to minimize
charging duration. The cost function is defined as:

CSoC(t) = |SoC∗ − SoC(t)| , (2)

where SoC∗ denotes the target state of charge, and SoCt repre-
sents the current state of charge. Considering that lithium plat-
ing is the main degradation mechanism here, the degradation-
related cost is defined as:

Cside(t) = |ηside(t)− ηmin| , (3)

where ηmin is a predefined threshold overpotential, below
which battery degradation becomes excessively rapid. We can
interpret this threshold as follows: when the side-reaction
overpotential ηside falls below this value, further reducing it to
achieve faster charging is no longer beneficial, as the resulting
acceleration in battery degradation outweighs any additional
gains in charging speed.

The constraint of this problem involves that the input current
is limited by the battery charger as:

0 ≤ I(t) ≤ Imax. (4)

Then, the health-aware fast charging problem is formulated
as

min
u(t)

∫ te

0

J(t)dt

s.t. Battery dynamics: ẋ(t) = f(x(t), u(t)),

Input constraints: (4),
SoC(tf ) = SoC∗, ∀ cycles,
SoH(te) = SoHend, (5)

where x denotes the state of battery dynamics, u is the
charging current serving as the system input, tf is the charging
completion time for each cycle, which can vary over the
lifespan of battery, te represents the end-of-life time of the
battery, and SoHend is the specified battery SoH at end-of-life,
set to 80% in this study.

This optimization problem is formulated to minimize the
overall cost function over the battery lifetime from initial time
0 to its end-of-life time te. Each charging cycle within this
period terminates at time tf when the SoC reaches the target
SoC∗.

A. Constant current constant overpotential based control

To solve the fast charging problem as shown in (5), one
intuitive idea is to design the controller based on side-reaction
overpotential feedback. This constant current-constant over-
potential (CC-COP) method mirrors the traditional CC-CV

approach by initiating with a constant current phase, followed
by dynamically regulating the side-reaction potential to a small
positive value using real-time feedback. This method has been
shown to effectively reduce the risk of plating by maintaining
the side-reaction overpotential at a safe, constant level after
the initial current phase [17], [20].

However, the CC-COP control in fast charging faces two
significant limitations: Firstly, measuring electrode potentials
directly in commercial batteries is challenging as it requires
advanced sensors typically used only in laboratory settings,
making it impractical for widespread application. Secondly,
determining the appropriate side-reaction overpotential thresh-
old is not straightforward. While setting a high threshold can
help reduce lithium plating, it may result in overly conservative
charging corresponding to very long charging times. The need
to finely tune the side-reaction overpotential threshold adds
complexity to real-world implementation, further complicating
the adoption of CC-COP control strategies in commercial
battery charging systems.

III. REINFORCEMENT LEARNING BASED FAST CHARGING
ALGORITHM

To overcome the aforementioned limitations of CC-COP
control, a data-driven alternative based on RL is adopted.
Unlike model-based strategies that depend on the development
and calibration of accurate physical models, RL learns opti-
mal charging policies directly through interactions with the
environment, using observable signals and reward feedback.
This paradigm enables the development of adaptive charging
strategies that can incorporate battery health indicators without
requiring explicit physical modeling.

Fast charging control requires a continuous, bounded charg-
ing current and is trained in a high-fidelity environment where
samples are costly. For safe deployment in BMS, we also
prefer low-variance, smooth actions and stable long-horizon
learning. These requirements favor an off-policy, sample-
efficient deterministic actor–critic method with mechanisms
that curb Q-value overestimation. We therefore adopt TD3
[28], a stabilized successor of DDPG that combines twin
critics [29], target-policy smoothing, and delayed actor updates
to improve stability and precision in continuous control.

In this work, we design a controller that builds upon the
insights of CC–COP and implement it within the above TD3
framework to solve the health-aware fast charging problem
defined in (5). Fig. 1 illustrates the overall system structure,
which comprises three main components.

The first component is the battery environment, which may
represent either a real battery system or a high-fidelity lithium-
ion battery model that captures degradation dynamics. Since
the side-reaction overpotential is challenging to be measured in
practical applications, we aim to acquire a correlation between
the cut-off voltage and SoH based on the CC-COP controller,
as detailed in Section II-A. The maximum terminal voltage
of the battery cell, Vcut-off, during each charging process that
consistently aims for the SoC setpoint, SoC∗ is recorded
during charging. This voltage identification continues until
battery SoH falls below 80%, signaling the end of its lifespan.
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Fig. 1: Structure of the proposed method.
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Fig. 2: Experimental setup for CC-COP battery cycling.

This step can be experimentally performed using the setup
shown in Fig. 2, where a PAT-Cell system from EL-CELL is
employed for testing three-electrode cells, or via a high-fidelity
simulation. The resulting correlation between charge cut-off
voltage and SoH provides important battery health information
to the environment, enabling the generation of reward signals
for the battery charging agent. The third and core component
of our system is the TD3-based charging agent, which re-
ceives state and reward information from the environment and
computes optimal charging actions accordingly. The detailed
formulation and implementation of this agent is presented in
the following sections.

For practical implementation of the proposed method, build-
ing the Vcutoff–SoH map using the CC-COP strategy requires
a direct measurement of the side-reaction overpotential. Al-
though such a measurement may not be available in some com-
mercial two-electrode cells, the challenge can be addressed
by performing a one-time, offline characterization using a
representative three-electrode laboratory cell. For this process,
electrode materials can be harvested from commercial cells
inside a glovebox and subsequently reassembled. This enables
the precise, direct measurement of ηside, which is otherwise
inaccessible. By cycling this laboratory cell, we obtain a
high-fidelity Vcutoff–SoH map that serves as the ground truth

for deployment. While this characterization must be repeated
for each new battery type, we identify machine learning,
particularly transfer learning, as a promising direction for
future work to accelerate map generation and reduce the
experimental workload.

A. TD3 method overview

To address the charging problem specified in (5), the TD3
algorithm, an enhanced version of the DDPG framework, aims
to rectify the Q-value overestimation issue inherent in DDPG.
It introduces targeted improvements that boost the learning
stability and accuracy. The architecture of the TD3 algorithm
is illustrated in Fig. 3. Within the Actor-Critic framework,
TD3 incorporates two types of networks: the critic network
Q(s, a|θQ) with parameter θQ and the actor network µ(s|θµ)
with parameter θµ. To mitigate the overestimation of the Q-
value, TD3 employs a technique that calculates the target Q-
value by selecting the lesser value from the two target critic
networks, effectively reducing potential overestimation:

yt(r, s
′) = r(s, a) + γmin

i=1,2
Q′

i(s
′, a′|θQ′

i), (6)

where yt is the target Q-value for given state s and action
a; a′ is the next action chosen by the policy based on next
state s′; γ is the discounting factor; θQ

′
i is the parameter of
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target critic. The critic network updates its parameters based
on gradient descent applied to the loss function as follows:

L(θQi) = E
[(
yt −Qi

(
s, a|θQi

))2]
, (7)

∇θQiL(θ
Qi) = E

[(
yt −Qi(s, a|θQi)

)
∇θQiQi(s, a|θQi)

]
,

(8)
where E(·) denotes the expectation operator, θQi is the param-
eter of Qi. As indicated in Fig. 3, the parameter is updated
(Update 1) according to:

θQi ← θQi − α∇θQiL(θ
Qi), (9)

where α is the learning rate of the critic network. Moreover,
TD3 reduces instability by postponing updates to its actor
network relative to its critic. In practice, the critic is updated
frequently to accurately capture the dynamics of environment,
while the actor is adjusted only after a fixed number of critic
updates. This delay minimizes error propagation and keeps the
policy changes smoother, resulting in more stable and reliable
learning outcomes. The actor network is updated (Update 2)
with parameters using gradient ascent of the objective function
as:

JQ(θ
µ) = E [Q1(s, µ(s))] , (10)

∇θµJQ(θ
µ) = E

[
∇aQ1(s, a|θQ1)∇θµ µ(s|θµ)

]
, (11)

θµ ← θµ + β∇θµJQ(θ
µ), (12)

where θµ is the parameter of actor network, J(θµ) is the
defined objective function, ∇θµJ(θµ) is the gradient of ob-
jective function with respect to θµ, β is the learning rate of
the policy network. As denoted as Soft update 3 in the Fig. 3,
the parameters of the target critic and the target actor network
are updated as:

θQ
′

i ← τθQi + (1− τ)θQ
′

i , (13)

θµ
′ ← τθµ + (1− τ)θµ

′
, (14)

where the soft updating factor is denoted by τ and θµ
′

is the
parameter of the target actor network.

Furthermore, TD3 introduces truncated normal noise to the
actions produced by the target policy network, mitigating the
trade-off between bias and variance. This added noise serves
as a form of regularization, which helps prevent overestimation

of Q-values and reduces the risk of overfitting. By smoothing
the target updates in this manner, TD3 achieves more stable
learning and enhances the reliability of policy evaluation:

at+1 ← µ′(s′|θµ′
) + ε, ε ∼ clip

(
N (0, σ2), amin, amax

)
,

(15)
where amin and amax define the valid range of actions, rep-
resenting the lower and upper bounds of the battery charging
current, respectively.

1) Battery application: For the TD3-based fast charging
algorithm, the battery SoC and voltage are chosen as the state
variables:

s(t) = [V (t),SoC(t)]⊤. (16)

In deployment, SoC can be provided by an onboard esti-
mator, and recent work based on adaptive cubature Kalman
filters has demonstrated strong robustness to non-Gaussian
disturbances, making such estimators suitable for production
BMSs [30]. Similarly, SoH, which is crucial for determining
the voltage constraint in our framework, can be accurately
estimated using advanced data-driven techniques [31], [32].
Currently, the multi-cell monitor integrated circuits used in
EVs can provide millivolt-level cell-voltage accuracy. The
production BMSs already measure cell voltage, pack current,
and temperature as primary inputs. At the same time, our
proposed TD3 controller is robust to moderate sensor noise
due to features like target-policy smoothing and twin-critic
minimization. These points make our proposed method ap-
plicable in real-time deployment without requiring additional
specialized sensors.

The action of the agent is the charge current value:

a(t) = I(t), s.t. (4). (17)

With the established voltage-to-SoH mapping and the TD3
algorithm described above, we define the reward function
to address the optimization problem in (5), achieving fast
charging while minimizing battery degradation:

r(t) = rSoC(t) + rvol(t) + rsmooth(t). (18)

To encourage fast charging, the SoC-related reward is
defined as:

rSoC(t) = λSoC |SoC∗ − SoC(t)| , (19)
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where λSoC is a weighting factor that quantifies the importance
of rapidly reaching the target SoC. To mitigate risks associated
with lithium plating, the terminal voltage is constrained by the
SoH-dependent upper bound, Vmax(SoH):

rvol(t) =

{
λvol |V (t)− Vmax(SoH)| , V (t) > Vmax(SoH),

0, otherwise,
(20)

where λvol is a weighting factor representing the importance
of adhering to the voltage limit.

Additionally, to encourage gradual variations in the charging
current and prevent abrupt control actions that may stress the
battery, we introduce a smoothness term:

rsmooth(t) = λsmooth |a(t)− a(t− 1)| , (21)

where λsmooth is a tuning parameter that penalizes rapid
changes in the control input.

It is important to note that, despite the value of SoH being
used to update the voltage constraints, it does not appear as
a direct term in the reward function. Instead, the influence of
SoH is embedded within the dynamic adjustment of Vmax and
the value of Vmax ensuring that the reinforcement learning
policy naturally adapts to the aging mechanism of battery
without penalizing the agent explicitly for changes in SoH.

Having established the design of the TD3-based controller,
we now proceed to evaluate its performance in the next section.

IV. HEALTH-AWARE FAST CHARGING RESULTS

In this section, we aim to evaluate the proposed RL-based
charging strategy using high-fidelity simulations and compare
it against widely adopted charging control strategies, such as
CC-CV and CC-COP control. To evaluate the effectiveness of
incorporating the Vcutoff–SoH mapping described in Section III,
we enhanced the CC-CV method in which the voltage value
during the constant-voltage stage is dynamically adjusted
based on the SoH-dependent mapping. This modified approach
is termed as the CC-CV with varying voltage (CC-CV-V)
method, which aims to account for the SoH during battery
charging. Furthermore, we introduce another RL benchmark.
termed V-constrained RL. This controller utilizes the same
TD3 architecture and training approach as our proposed
method but operates with a fixed voltage constraint at Vmax =
4.15 V throughout the lifespan of the battery, representing a
more conventional RL charging approach. By comparing our
method against V-constrained RL, we can directly quantify the
benefits of dynamically adapting the voltage related reward
based on SoH.

Additionally, we investigate the constant current–constant
overpotential (CC-COP) method as a benchmark controller,
using two reference values for the side-reaction overpotential
to reflect different charging scenarios. For a conservative
strategy (η∗side = 0.01 V), a small positive safety margin is
applied to stringently avoid lithium plating by accounting for
possible dynamic undershoots in the control loop. Motivated
by experimental evidence that graphite anodes can tolerate
negative voltages before lithium plating occurs [33], we also
test a small negative reference (η∗side = −0.05 V) to examine

Load
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Positive electrode

- +

Ln

Electrolyte

Separator

Ls

0

Lp

L

Fig. 4: The internal structure of a lithium-ion battery cell
(modified from [14]).

the trade-off between accelerated charging and battery degra-
dation. These variants are denoted CC-COP-slow and CC-
COP-fast, respectively, and are used for comparative analysis.

The proposed approach does not require a physical model
for implementation as long as the state and reward can
be obtained. However, in the context of health-aware bat-
tery charging, conducting full-lifetime experiments to collect
sufficient data is highly time-consuming. As the primary
aim of this work is to introduce and validate an RL-based
charging framework, we employ a high-fidelity single-particle
model with electrolyte dynamics for training and performance
demonstration. The details of the model are provided below.

A. Battery environment for health-aware fast charging

1) Single particle model with electrolyte: To provide a
reliable and computationally efficient simulation environment
for training and evaluating the proposed RL-based charging
strategy, this work adopts the SPMe. While the DFN model,
or called pseudo-two-dimensional (P2D) model, is a widely
used and high-fidelity framework for simulating lithium-ion
battery behavior [34], it involves a large number of parameters
and intensive computational costs. Moreover, many of its
parameters are difficult to measure and calibrate accurately,
limiting its practicality in control-oriented applications [35].
In contrast, the SPMe offers a simplified yet sufficiently
accurate representation by reducing both the parameter space
and computational demand [13]. These features make the
SPMe particularly suitable for simulating long-term battery
performance and degradation, which are essential considera-
tions in this study.

The structure of a lithium-ion battery is illustrated in Fig. 4,
where the negative electrode, separator, and positive electrode
have thicknesses Ln, Ls, and Lp, respectively. The SPMe
model approximates each electrode as a single spherical parti-
cle, assuming that the solid-phase concentration is uniformly
distributed along the thickness direction, denoted by x. Under
this assumption, the diffusion process inside the spherical
particle is governed by

∂cs,i
∂t

(r, t) =
Ds,i

r2
∂

∂r

(
r2

∂cs,i
∂r

(r, t)

)
, i ∈ {n, p}, (22)

where r represents the distance from the center of the spherical
particle, t is time, cs,i is the solid-phase lithium-ion concentra-
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tion, and Ds,i is its diffusivity. The electrolyte concentration
in all domains are defined as ce,n, ce,sep, and ce,p.

The electric potential in each electrode i is given by

ϕs,i(x, t) = ηi(t) + ϕe,i(x, t) + Ui (css,i(t)) + FRf,ijn,i(t),
(23)

where ηi is the reaction overpotential, ϕe,i is the potential
in the electrolyte phase, and Ui is the open-circuit potential,
which is a function of the solid-phase lithium-ion concentra-
tion at the particle surface, css,i. The final term, F Rf,i jn,i(t),
represents the ohmic potential drop across the SEI film, where
F is Faraday’s constant, Rf,i is the resistance of the SEI film,
and jn,i is the molar pore-wall flux of lithium ions.

The nonlinear output of terminal voltage V (t) is computed
as:

V (t) = ϕs,p(L, t)− ϕs,n(0, t). (24)

2) Battery degradation mechanisms: Battery performance
and lifetime are limited by several degradation mechanisms
[36]. In this study, two dominant degradation processes,
namely the SEI layer growth and lithium plating are consid-
ered. The idea is that suppressing them during fast charging
may significantly extend battery lifetime.

The SEI layer forms on the anode particle surface and
significantly affects the lifetime of lithium-based batteries.
SEI growth is primarily a diffusion-limited process, in which
solvent molecules react with lithiated graphite. To accurately
capture this process, we utilize a two-layer diffusion-limited
SEI growth model described in [37]. In this model, the inner
and outer SEI layers are assumed to grow simultaneously at
the same rate.

Recent studies have indicated that degradation mechanisms,
particularly lithium plating, are strongly influenced by the
side-reaction overpotential and can significantly limit battery
performance and lifespan [38], [39]. This side-reaction over-
potential is described as:

ηside(x, t) = ϕs,n − ϕe,n − Uside, (25)

where Uside is the equilibrium potential of the side reaction,
assumed to be zero for lithium plating [40].

The initial partial differential-algebraic equation (PDAE)
model that couples the SPMe and the aging model can be
reformulated and reduced as a DAE model by suitable numer-
ical methods, such as finite difference and spectral methods
[41], [42]:

ẋ = f(x, z, u), (26)
y = h(x, z, u), (27)
0 = g(x, z, u), (28)

where x = [cs,n, cs,p, ce]
⊤ ∈ Rnx is the state vector,

z = [ϕs,n, ϕs,p, ϕe, ie,n, ie,p]
⊤ ∈ Rnz is the algebraic variable

vector, y = [V,SoC,SoH]⊤ is the output and u ≜ I is the
applied input current.

B. Experiment and simulation configurations

The open-source PyBaMM software (version 24.5), is em-
ployed as the simulation platform [27], in which the SPMe-
aging model from Section IV-A is implemented. As detailed
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Fig. 5: Extraction and comparison of Vcutoff-SoH mapping from
(a) experimental data and (b) simulation.

in Section IV-A, the battery model features a single parti-
cle model with an electrolyte component, which facilitates
efficient and comprehensive analysis of cycle aging. The
investigated battery is an LG M50 cell, with electrochem-
ical parameters obtained from [37]. The main degradation
mechanisms are characterized by an SEI solvent diffusivity
of 2.5 × 10−22 m2/s, a lithium plating kinetic rate constant
of 1 × 10−11 m/s, and an irreversible condition for lithium
plating.

To obtain the mapping between cut-off voltage and SoH, we
first configure the experimental setup as illustrated in Fig. 2.
The process relies on a three-electrode cell configuration, such
as the EL-CELL PAT-Cell system. This type of cell incor-
porates a reference electrode in the middle of the separator,
which makes the voltage between each current collector and
the reference electrode measurable. As a result, the voltage of
each individual electrode can be approximately determined.
For our specific tests, the positive electrode consists of nickel
manganese cobalt (NMC) oxide of type 811, and the negative
electrode uses artificial graphite. All assembly was conducted
in an argon-filled glove box, and cycling was performed in
a temperature-controlled chamber at a constant 25◦C. Then,
the mappings derived from both experimental measurements
and high-fidelity simulation are compared as shown in Fig. 5.
Although different battery cells are used in the experiment and
simulation, the trend between the charge cut-off voltage and
SoH remains consistent across both domains.
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In practice, the Vcutoff–SoH map may be dependent on
operating temperature and cell chemistry, as illustrated by the
results shown in Fig. 6, which were the simulation results
using PyBaMM. For real-world deployment, this implies that
a condition-aware prediction model for Vcutoff would be neces-
sary, taking SoH, temperature, and chemistry as inputs. How-
ever, in applications like EVs, thermal management systems
typically narrow the range of temperature excursions, which
would help mitigate these variations. For the performance eval-
uation in this study, we focused on the LG M50 cell at 25◦C
to align our work with a well-validated set of degradation
parameters from [37]. This choice was crucial for ensuring
the fundamental fidelity of our simulation environment.

We implement a unified framework to assess various charg-
ing strategies across the entire battery lifetime. The details of
this process are shown as Protocol 1. This protocol includes an
initial stage to obtain the actual battery capacity, followed by
repeated testing cycles using different charging controls. The
primary objective of this comprehensive battery life testing is
to evaluate the effectiveness of these controls in optimizing
the charging process and extending the operational lifespan of
the battery.

1) Controller configuration and training results: The pro-
posed controller employs an actor-critic neural network ar-
chitecture. The actor and critic networks each contain two
fully connected hidden layers with 200 units per layer. The
training hyperparameters are summarized in Table I. The
penalty coefficients in the proposed controller are chosen as
λSoC = −2, λvol = −10, and λsmooth = −0.5, respectively. The
maximum control input is limited as Imax = 10A. The lifelong
TD3 agent was trained on a consumer-grade desktop computer
equipped with an Intel i5-13400F CPU, 32 GB of RAM, and
an NVIDIA RTX 3060 GPU, running on Windows 11. The
entire training process, covering approximately 2000 episodes
as presented in our results, required about 22 hours. This
demonstrates that the proposed framework can be effectively
trained on widely available hardware without needing access to
specialized high-performance computing clusters, confirming
its feasibility for practical implementation.

The training performance of the proposed charging algo-
rithm is presented in Fig. 7, illustrating the evolution of four

Protocol 1 Battery cycling protocol for controller investigation

1: Initialize: Discharge the battery to 0% SoC.
2: Charge to 100% SoC using CC-CV.
3: Discharge the battery completely to determine actual

capacity.
4: repeat
5: Charge the battery from 0% SoC to 20% SoC using

low-current CC strategy.
6: Rest for one hour.
7: Apply the target charging strategy to charge the battery

to 80% SoC.
8: Discharge the battery to 0% SoC.
9: Rest for one hour.

10: Check SoH; if SoH falls to SoHend (e.g., 80%), end
test.

11: until battery SoH ≤ SoHend
12: Evaluate performance based on total cycles in terms of

the average charging time and the equivalent full cycles.

TABLE I: Hyperparameters of the proposed TD3 algorithm

Hyperparameters Values
Actor network learning rate 0.0001
Critic network learning rate 0.0001

Discounting factor 0.99
Experience replay buffer size 1.0× 106

Minibatch size 256
Soft update factor 0.005
Delay frequency 1

critical metrics across approximately 2000 episodes. The eval-
uations were conducted at 20 episode intervals. Fig. 7a shows
the cumulative reward, which initially fluctuates significantly
around −2000 due to the exploration of highly conservative
charging strategies but stabilizes near −60 after approximately
1000 episodes, indicating convergence to a policy effectively
reducing charging time while extending battery life. The large
initial negative values result from assigning a substantial
negative reward (−1000) whenever the charging time exceeds
480 minutes. Fig. 7b depicts the charge cut-off voltage, which
initially oscillates around 3.5 V but stabilizes around 4.2 V
after 1000 episodes, demonstrating the ability of algorithm
to maintain an optimal voltage threshold guided by the Vcutoff-
SoH mapping. Additionally, Fig. 7c illustrates the convergence
behavior of the minimum side-reaction overpotential, showing
that its value stabilizes around −0.145 V. Fig. 7d demonstrates
that, in general, higher cumulative rewards during training
correlate with reduced charging times. The charging time
ultimately stabilizes near 27 minutes in later episodes.

C. Fast charging results

With the TD3 agent successfully trained and its convergence
confirmed as shown in Fig. 7, we now proceed to evaluate
its lifelong charging performance. Following the battery cy-
cling protocol as described in Protocol 1, we conducted the
battery charging tests using six different strategies: the CC-
CV strategy, the CC-CV-V strategy, two CC-COP strategies,
the V-constrained RL, and the proposed approach. A finer
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Fig. 7: The training performance of the proposed method: (a)
cumulative rewards; (b) maximum end voltage; (c) minimum
side-reaction overpotential ηside; (d) charging time.

sampling resolution can better capture the transient dynamics
of batteries, but at the expense of computational efficiency. In
this study, the primary metrics of interest are battery lifetime
and charging time. Considering these factors, the sampling
time for the lifelong implementation of all these strategies was
set as 20 s. The EFCs and the average charging time for these
approaches are summarized in Table II.

1) Overall analysis on charging time and lifespan: Among
the methods, the CC-COP controllers rely fully on the mea-
surement of side-reaction overpotential, and demonstrate per-
formance variation depending on the tuning of the desired

TABLE II: Battery charging performance based on different
methods

Maximum
EFCs

Average
charging

time (mins)

Relative
lifespan

extension

CC-CV 572 24.15 -
CC-CV-V 611 24.18 6.82%
CC-COP slow* 1316 36.02 130%
CC-COP fast* 1009 22.40 76.4%
V-constrained RL 664 24.34 16.1%
Proposed method 703 24.12 22.9%
* Requires side-reaction overpotential measurements.
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Fig. 8: Comparison of SoH degradation among different charg-
ing methods.

side-reaction overpotential reference. The CC-COP-fast strat-
egy achieves the shortest average charging time of 22.40 min-
utes and significantly extends the battery lifetime compared
to CC-CV methods, with 1009 EFCs. In comparison, the CC-
COP-slow strategy attains the longest battery lifespan, which
is 1316 EFCs, yet requires the longest charging time of 36.02
minutes, reflecting a very conservative strategy.

Different from CC-COP strategies, the proposed approach
along with CC-CV, CC-CV-V and V-constrained RL exhibit
more practical applicability and deployability. The variation
in battery SOH with respect to EFCs for these four methods
is presented in Fig. 8. The baseline CC-CV method, despite
achieving a competitive charging time of 24.15 minutes,
suffers from the shortest battery lifespan with 572 EFCs. This
limitation stems from its rigid voltage and current thresholds
during the charging process, which fail to adapt to battery
degradation dynamics. The CC-CV-V strategy addresses this
weakness by incorporating Vcutoff-SOH mapping to dynam-
ically adjust the charge cut-off voltage. This modification
yields a modest lifespan improvement with 611 EFCs while
maintaining near-identical charging speed with 24.14 min-
utes. However, the 6.8% improvement of EFCs over CC-
CV suggests that static parameter mapping alone cannot fully
capture complex aging mechanisms. The V-constrained RL
benchmark shows a greater lifespan improvement than the CC-
CV variants. It achieves 664 EFCs, a 16.1% extension over the
baseline, while maintaining a competitive average charging
time of 24.34 minutes.

In contrast, the proposed method achieves a significant im-
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Fig. 9: Charging time based on different charging approaches.

provement in performance, where battery lifespan is extended
to 703 EFCs with a marginally reducing charging time to 24.12
minutes. This represents a 22.9% improvement over CC-CV
baseline and a notable improvement over the V-constrained RL
benchmark. This breakthrough results from its health-aware
control architecture, which integrates indirect degradation in-
dicators to dynamically optimize charging protocols.

In summary, compared to CC-COP strategies, the pro-
posed method achieves enhanced practicality for real-world
deployment by eliminating the need for specialized overpo-
tential sensors, despite its slightly longer charging time and
fewer equivalent full cycles than CC-COP-fast and CC-COP-
slow approaches. In contrast to CC-CV and its variants, the
proposed approach maintains comparable charging efficiency
while largely extending battery lifespan, demonstrating that
lifespan enhancement can be achieved without compromising
charging speed.

2) Charging time dynamics over battery aging: While
the aggregate results in Table II provide a clear summary
of lifespan and average charging time, it is also crucial to
understand how charging dynamics evolve as the battery
ages. Fig. 9 compares six charging strategies in terms of
charging time versus SoH. Overall, the CC-COP-slow method
exhibits the longest charging durations across the SoH range,
starting at approximately 40 minutes when the battery is fully
healthy and dropping to around 30 minutes when SoH reaches
80%. The charging times of all methods decrease as SoH
declines, primarily because less energy or charge capacity is
absorbed by the battery for the same SoC change. The CC-CV,
CC-CV-V, V-constrained RL, and proposed methods exhibit
generally similar trajectories, though CC-CV-V notably shows
a substantial peak at the beginning and subsequently decreases
more rapidly than the CC-CV and the proposed method. By
contrast, the proposed method maintains a relatively stable
decrease in charging time compared to the other methods.

3) Evolution of current and overpotential profiles: To fur-
ther investigate why the proposed learning-based method ef-
fectively extends the battery lifespan compared to CC-CV and
its variants, the battery current and side-reaction overpotential
profiles during a single charging process are plotted for two
distinct aging stages. Specifically, results from the 1st cycle
(new battery) and the 200th cycle (aged battery) are presented
in Fig. 10.

0 5 10 15 20 25 30

Time (mins)

0.5

1

1.5

2

C
u
rr

e
n
t 
(C

 r
a
te

)

CCCV new

CCCV aged

CCCV-V new

CCCV-V aged

(a)

0 5 10 15 20 25 30

Time (mins)

0.5

1

1.5

2

C
u
rr

e
n
t 
(C

 r
a
te

)

Proposed method new

Proposed method aged

(b)

0 5 10 15 20 25 30

Time (mins)

-0.15

-0.1

-0.05

0

S
id

e
-r

e
a
c
ti
o
n
 o

v
e
rp

o
te

n
ti
a
l 
(V

)

CCCV new
CCCV aged
CCCV-V new
CCCV-V aged

(c)

0 5 10 15 20 25 30

Time (mins)

-0.15

-0.1

-0.05

0

S
id

e
-r

e
a
c
ti
o
n
 o

v
e
rp

o
te

n
ti
a
l 
(V

)

TD3 based method new
TD3 based method aged

(d)

Fig. 10: Current and side-reaction overpotential profiles of the
studied cell at different aging levels under different control
methods.

Fig. 10 illustrates distinct shifts in side-reaction overpoten-
tial profiles across different charging methods when comparing
new and aged cells. For aged cells, a clear downward and left-
ward shift in the side-reaction overpotential curves is observed,
indicating that the same charging current results in lower
overpotential as the cell ages. This phenomenon is particularly
pronounced in the CC-CV and CC-CV-V charging methods.
In contrast, the current profiles of the proposed method behave
like a multi-stage constant-current scheme that results in
smoother current and side-reaction overpotential transitions in
both new and aged cells. The TD3-based method significantly
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Fig. 11: Relative difference in capacity loss due to lithium
plating by comparing CC-CV and CC-CV-V to the proposed
method. The positive value in y-axis means the least plated
lithium triggered by the proposed method.

reduces the difference in side-reaction overpotential between
new and aged cells, indicating its ability to attenuate the effects
of battery aging.

Regarding overpotential levels, the proposed approach only
remains at a relatively low negative value for a short period
before moving the side-reaction overpotential closer to zero.
By contrast, the side-reaction overpotential under CC-CV and
its variants methods remains below −0.05 V for most of the
charge and lasts for nearly 15 minutes. This prolonged negative
overpotential may thermodynamically favor lithium plating,
thereby increasing the risk of degradation and reducing long-
term battery health compared to the proposed method.

These results not only facilitate a comparison between the
different controllers but also highlight the discrepancies in
performance of the same controller at different stages of
battery aging. Such insights are especially meaningful for
researchers and engineers seeking to optimize fast charging
strategies.

4) Capacity loss due to lithium plating: Finally, we analyze
the relative difference in capacity loss for CC-CV and CC-CV-
V, compared to the proposed method, as a function of SoH, as
shown in Fig. 11. This difference is expressed as a percentage
of the baseline capacity loss for each strategy. Positive values
indicate that the proposed method yields a lower capacity loss
than conventional strategies, highlighting its effectiveness in
extending battery life.

V. CONCLUSION

In this paper, we present a novel health-aware fast charging
strategy for lithium-ion batteries, based on a deep learning ap-
proach. Unlike conventional charging methods that primarily
focus on minimizing charging time, our proposed approach
explicitly considers the trade-off between fast charging and
extending battery life. By utilizing a mapping between the
charge end voltage and the SoH of the battery from a con-
stant current and constant overpotential control, the proposed
method incorporates SoH-dependent voltage into the optimal
control decision-making process, effectively mitigating ad-
verse degradation phenomena.

To demonstrate the effectiveness of the proposed method,
we utilized a high-fidelity single particle model with elec-
trolyte implemented in PyBaMM. This model served as the
test environment, capturing realistic degradation behaviors
and allowing for robust evaluation across a full life-cycle
simulation. Comparisons with benchmark controllers demon-
strate that the TD3-based policy successfully reduces overall
degradation without significantly compromising charge speed,
showing clear promise for practical implementation. Moreover,
we believe that machine learning methods such as transfer
learning can significantly reduce the experimental workload
required to generate the Vcutoff–SoH maps for new battery
types, which can further enhance the applicability of this
approach.
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