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Continuously higher integration levels in (opto-)electronics require new solutions and materials for thermal
management of excess heat. Here we investigate the integration of graphene-based heat spreader films with
printed circuit board (PCB) assembled, high-power light emitting diodes (LEDs), as used in modern automotive
lighting, using industrially highly scalable screen printing and stencil printing of the graphene-based films. We
compare screen/stencil printing of graphene heat spreaders on the PCBs from archetypical water- and ester-based
inks and characterize the resulting graphene heat spreaders with respect to printing fidelity and resolution, film
microstructure, electrical and thermal properties and their performance in lowering LED temperatures during
LED operation. Importantly, we use only comparatively low graphene film curing temperatures (150 °C) that are
compatible with industrial PCB/surface-mounted-device (SMD) LED integration processes. We find that screen-
printed, ester-based graphene heat spreaders result in a modest reduction of LED temperature during operation of
on average — 2 K with a maximum reduction of —4 K. Generally, our work establishes the feasibility of scalable
screen and stencil printing for integration of graphene films with state-of-the-art PCB/SMD assemblies.

light output and shortened lifetime when operated at elevated junction
temperatures [3,4]. Therefore efficient solutions for thermal manage-

1. Introduction

Continuous miniaturization and ever higher integration densities
pervade all aspects of (opto-)electronics incl. solid state lighting tech-
nology. In particular high power light emitting diodes (LEDs) are
currently being integrated at increasing areal densities to facilitate new
functionalities such as smart or adaptive lighting [1,2]. Increased inte-
gration of LEDs is however associated with the requirement to efficiently
distribute the excess heat from the high density, high power LEDs’
operation. This is necessary since LEDs inherently suffer from limited

ment of integrated LEDs incl. heat sink and heat spreader materials are
highly sought after [5-9].

Graphene is a sp>-bonded monolayer of carbon. For isolated, high-
quality monolayer graphene crystals record thermal conductivity
(~5000 W/mK), that surpasses diamond and copper, has been reported
[10,11]. Consequently graphene is a currently highly investigated
building block for next-generation thermal management solutions
[10,11]. Key requirement for use of graphene and graphene-based films
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in thermal management in (opto-)electronics is however the need for
scalable fabrication routes for graphene-based heat spreaders and
thermal interface materials (TIMs) [10,11]. While graphene’s record
thermal conductivity has been measured on isolated, atomically-thin
monolayers, actual device integration for thermal management
currently focusses on pm-thick graphene-based films which are assem-
bled from graphene flake building blocks [10]. For such films, thermal
conductivities are drastically reduced (to a few to tens of W/mK) [10]
compared to the isolated monolayers due to introduction of interflake
junction interfaces and scattering pathways [10,11]. These graphene-
based films’ thermal conductivities are however nevertheless still high
enough to make them interesting for thermal management applications
[10] such as heat spreaders in high-power LEDs [8,9,12-28], in partic-
ular since graphene-based films can offer additional advantages over
competing materials incl. mechanical stability and flexibility, chemical
stability, low weight, potentially very low cost and optical translucence,
and lack of environmental and health concerns [10]. Consequently,
graphene-based heat spreaders have been integrated into LEDs at
various device levels [8] incl. packaging [9,12-18], on chip [19-22],
phosphor layer [23-26] and extraneous cooling [27,28].

For fabrication and device integration of graphene-based films,
various potentially scalable fabrication routes are being investigated
[10]. In particular for LED integration processes, printing techniques are
promising. For instance, stencil printing is a well-established standard
process in surface-mounted-device (SMD) production flows for solder
paste printing [29] and jet dispensing is for various tasks also finding
widespread adoption [30]. These techniques allow cost-effective high-
volume manufacturing of printed circuit board (PCB) assemblies. To
date a lot of work on printing of graphene and graphene-based films has
focused on additive manufacturing techniques like inkjet or aerosol jet
printing [31-33]. Compared to the specifications of these novel additive
manufacturing techniques in terms of required ink viscosity, limited
solid carbon content, limited throughput and higher cost [31-33], more
traditional but also more scalable and inexpensive printing techniques
are screen and stencil printing [34-37]. Typically in screen printing,
inks of suitable viscosity (~10,000 cP) are pressed on patterned meshes
(“screen”) with the help of a so called “squeegee” in order to obtain the
predesigned pattern of interest on top of various substrates [34]. Stencil
printing is a related printing technique in which no mesh is used but the
ink is pressed onto the substrate directly through templating stencils
[38]. Screen printing allows very high versatility in possible patterns but
mesh clogging can become a problem. For stencil printing, clogging is
not an issue however geometry of printing patterns is restricted (e.g.,
isolated (inverse) “islands” are difficult to achieve in stencils) [38]. Both
screen and stencil printing are established technologies in state-of-the-
art (opto-)electronics manufacturing incl. high-power LED manufac-
ture. Despite this, to date research on graphene printing has somewhat
focussed on more exotic inkjet and aerosol jet printing [31-33]. In
particular only very little work has employed screen and stencil printing
of graphene-films as components in realistic (SMD) device demonstra-
tors [34-371, let alone for graphene heat spreader LED integration using
screen or stencil printing.

Towards filling this gap, we here integrate graphene-based film heat
spreaders via screen and stencil printing with real-world surface-mount
PCB-mounted [39] state-of-the-art high-power LEDs, as used in modern
automotive lighting [40,41]. We compare screen printing and stencil
printing from archetypical water- and ester-based inks and characterize
the resulting graphene heat spreaders in terms of printing fidelity,
microstructure, electrical transport and their performance in lowering
LED temperatures during operation. In particular, we ensure to only use
curing temperatures at comparatively [10] low 150 °C that are
compatible with industrial PCB/SMD LED integration processes.
Notably, we find that application of screen-printed, ester-based gra-
phene heat spreader films on the PCBs results in a modest reduction of
LED temperature during operation of —2 K to —4 K. In a wider context,
our work shows the feasibility of using screen and stencil printing for
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integration of graphene films with state-of-the-art PCB/SMD stacks.
2. Results and discussion

Fig. 1 shows the device layout for our graphene heat spreaders. In
Fig. 1a the device layout without a heat spreader is shown, in which a
surface-mount LED (OSLON® Compact CL) is soldered onto the elec-
troless nickel immersion gold (ENIG) or immersion tin (ImmSn) plated
copper solder pads spanning across the isolation gap (air) on the PCB
(FR4) [39]. In Fig. 1b the same assembly is used with the addition of a
printed graphene heat spreader film that spans from the solder pads over
a short region of insulting laminate (with low thermal conductivity) to
the copper area adjacent to the LED. In this layout it is hypothesized that
in particular via the graphene heat spreader “tongues” from the solder
pads over the insulting laminates to the adjacent copper areas additional
efficient lateral heat transport pathways are established, that can spread
heat outwards from the LED into the PCB and subsequently the heat sink
onto which such PCBs are mounted on [42]. In this concept, via these
additional heat transport pathways the temperature of the LEDs under
operation are envisioned to be reduced.

In Fig. 2 we compare typical optical micrographs for screen printing
(180 mesh) and stencil printing of graphene heat spreader films (as
illustrated in Fig. 1b) directly on PCBs (before LEDs are manually sol-
dered onto the copper solder pads) from a water-based ink and an ester-
based ink. Such screen and stencil printing of graphene heat spreader
films directly onto PCBs has to date not been investigated in the litera-
ture on graphene heat spreader LED integration [8,9,12-28]. For the
water-based ink, we used polyvinylpyrrolidone (PVP) as the surfactant
and sodium polyacrylate (SPAA) as the resin. Typically, 20 g graphene
powder was firstly dispersed in 1 L PVP/water solution (1 %) with
ultrasonication for 1 h. Then the mixture was centrifuged at a relative
centrifugal force (RCF) of 5000 g for 30 min to remove extra water, and a
graphene paste with a solid content of ~15 % was collected from the
bottom of the centrifuge bottles. 100 g of graphene paste was mixed with
30 g 0.5 % sodium polyacrylate/water solution and 20 g glycerol. The
mixture was milled with a three-roller grinding miller to get the water-
based ink with fineness lower than 10 pm. This results in an ink with
viscosity of ~8000 cP. The ester-based ink is synthesized using aliphatic
dibasic esters (DBE, Dupont) as solvent and vinyl chloride-vinyl acetate
copolymer (VCVA, Wacker VINNOL E22/48A) as the resin. Typically,
20 g graphene powder was firstly dispersed in 300 g DBE with high-
shear disperser (Fluko FA25), then 50 g VCVA/DBE solution contain-
ing 30 g VCVA was mixed into the graphene/DBE dispersion. The
mixture was milled with a three-roller grinding miller to get the ester-
based ink with fineness lower than 10 pm, resulting in a viscosity of
~15,000 cP. Printing is undertaken on a desktop prototype printing
setup with custom-built silk screen and stainless-steel stencil. After
printing, graphene films have been cured under atmospheric conditions
in an oven at 150 °C for 5 min before LEDs and other components were
manually placed and reflow soldered (using a heating plate and SAC305
solder paste) onto the contact pads of the PCB. These curing conditions
are based on industrial PCB/SMD LED-integration process flows of the
industrial partner in this study to ensure eventual compatibility with the
industrial process lines. Higher curing temperatures or longer curing
would limit compatibility with the industrial integration processes. We
note that the here employed curing conditions are very mild (150 °C, 5
min) in comparison to often employed much higher temperature treat-
ments for curing of graphene-based heat spreaders and TIMs [10].
Further details on materials and methods can be found in the Supple-
mentary Information.

The optical micrographs in Fig. 2a reveal that water-based ink and
screen printing resulted in good and homogeneous transfer of desired
features onto the PCB, incl. well deposited graphene heat spreader
“tongues”. In particular no graphene film has deposited over the isola-
tion gap between cathode and anode contact for the LEDs. Such gra-
phene film deposition over the isolation gap is highly undesirable as it
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Fig. 1. (a) Schematic illustrations of PCB layout and LED mounting without (a) and with (b) the screen/stencil printed graphene heat spreader in top view (top) and
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Fig. 2. Optical micrographs of graphene heat spreaders on the PCBs (before the LED assembly) as function of (a,b) water- and (c,d) ester-based ink usage and (a,c)
screen and (b,d) stencil printing.
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would short-circuit the LED and thus render the device inoperable. A
partial transfer of mesh features is observed in the deposits in Fig. 2a,
evident by the mesh appearance of the graphene-based film surface
morphology.

In contrast to the high fidelity of printed features for water-based ink
with screen printing, the results for water-based ink with stencil printing
in Fig. 2b show significant lateral flow of the graphene deposits,
rendering the printing quality from this combination inferior. In
particular, we observe that the graphene heat spreader “tongues” are
rather undefined. In addition, undesired, partial graphene film deposi-
tion across the isolation gap is clearly observable. A smooth surface
morphology of the graphene deposits is observed (in keeping with
absence of a mesh in stencil printing).

Fig. 2c shows the results of screen printing with the ester-based ink.
Good fidelity of printed features and only very little lateral flow is
observed. Heat spreader “tongues” are well developed and no graphene
deposition on the isolation gap is observed. In comparison to the water-
based ink, the surface morphology from screen printing with the ester-
based ink is comparatively smooth with no mesh feature transfer
visible in the optical micrographs in Fig. 2c.

Fig. 2d shows the results of stencil printing with the ester-based ink.
Fidelity of printed features is high with well-developed “tongues” and no
graphene deposition over the isolation gap. The surface of the graphene
film appears smooth.

Across our depositions, we also compare two different PCB copper
surface finishes, namely electroless nickel immersion gold (ENIG) and
immersion tin (ImmSn) [39]. Notably, when comparing the same
printing conditions on both surface finishes we find no significant dif-
ferences in printing results between ENIG and ImmSn PCBs. Also
printing directly on the laminate of the PCB yields printing results of
similar definition (not shown), suggesting that graphene screen and
stencil printing on ENIG, ImmSn and PCB laminate is feasible.

In terms of clogging, we find that with both water- and ester-based
inks the screen printing results with the 180 mesh degrade after ~3 it-
erations due to clogging. The meshes can however readily be cleaned
from both inks, restoring initial printing quality as in Fig. 2. For stencil
printing clogging is no issue.

Fig. 2 indicates some advantages of the ester-based ink over the
water-based ink for both screen and stencil printing: For screen printing
the water-based ink suffered from unplanned impression of mesh fea-
tures on the graphene deposits (Fig. 2a) and for stencil printing massive
lateral flow drastically limited printing fidelity and resolution for the
water-based ink (Fig. 2b). Both shortcoming were not detected for the
ester-based ink (Fig. 2c,d), suggesting that the ester-based ink may be
more suitable for the here studied integration process flow. We attribute

water-based ink/screen (180)
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the lack of significant lateral flow of the ester-based ink to its higher
viscosity (~15,000 cP) compared to the water-based ink (~8000 cP).

Fig. 3 investigates the microstructure of the graphene deposits from
water-based (Fig. 3a) and ester-based ink (Fig. 3b) by optical microscopy
and SEM. Via Dektak profilometer measurements over film edge steps
we measure graphene film thickness after drying to ~10 pm for the
screen printed films (from mesh thickness ~ 45 pm) and to ~20 pm for
the stencil printed films (from stencil thickness ~80 pm), respectively.
Average roughness (R,) values are measured to ~4 pm for the screen
printed and ~3 pm for the stencil printed films, respectively. We also
measure the electrical sheet resistance of the films using a multiple-
contact two-terminal transmission line model (TLM) method [33,43]
which facilitates an order of magnitude estimation of sheet resistance
(we estimate relative uncertainty in our sheet resistance measurement to
~20 % [33]). To this end, test graphene films are deposited onto
insulting laminate sections of the PCBs (i.e. no conductive ENIG and
ImmSn regions under the graphene films. Sheet resistance of laminate
>2 MQ/[].). Likewise, we measure in-plane thermal conductivity of
screen-printed, quasi-freestanding films from the two inks by a Joule
heating method (see Supporting Information) [44-46]. We note that this
approach cannot yield exact thermal conductivities for all sampled
conditions on the PCBs but generally allows an order-of-magnitude
assessment of thermal conductivities and would thus highlight severe
differences between films from the two inks.

For the water-based, screen-printed films, higher magnification op-
tical microscopy (Fig. 3a, left) confirms the mesh impressions, consistent
with Fig. 2a. SEM imaging (Fig. 3a, middle) shows that the water-based
graphene film has a compact, dense appearance and predominantly
consists of flakes with lateral dimensions on the order of few pm. In
cross-sectional SEM images in Supplementary Fig. 1, the graphene flakes
appear predominantly oriented in the film with their basal planes par-
allel to the substrate. Corresponding Raman spectroscopy in Fig. 3a,
right reveals a 2D/G intensity ratio (G peak at ~1580 cm™}; 2D at
~2707 em™ 1) of ~0.37 which suggests that these flakes are graphene
nanoplatelets or few- to multi-layer graphene crystals [47,48]. Notably,
we also find a sizable defect-related D peak (at ~1345 em ™) in the
Raman data with a D/G ratio of ~0.21 for the water-based film. This is
comparable to crystalline defect levels as in prior reports of screen
printed graphene [34]. Additionally, the SEM data in Fig. 3a, middle
reveals also particulate agglomerates of tens to hundreds nm large
particles that are adhering to the graphene flakes. We attribute these
particles to the PVP and SPAA from water-based ink preparation. For the
water-based film we measure a sheet resistance of ~3.5 Q/[], which
translates to a resistivity of ~3.5 x 10~> Qm and a conductivity of ~3 x
10* S/m, respectively. An in-plane thermal conductivity of ~5 W/mK is

Intensity (arb. u)

s00 o0 1R00 7000 2% aon
Raman shift (')

Intensity (arb. u)

500 000 1300 2000 2500 8000
Raman shift (')

Fig. 3. Optical micrographs (left), SEM images at various magnifications (middle) and Raman spectra (right) for (a) water-based screen printed and (b) ester-based

stencil printed graphene films on PCB substrate.
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measured for a film from the water-based ink.

Fig. 3b shows similar optical microscopy, SEM and Raman data for a
stencil printed film from the ester-based ink. In keeping with Fig. 2d, we
find a smooth surface morphology in Fig. 3b, right. In terms of micro-
structure analysis, the SEM data (Fig. 3b, middle) reveals a compact film
consisting of few-layer graphene flakes with predominant orientation of
basal plane parallel to the substrate (Supplementary Fig. 1) which are
decorated with particle agglomerates, ascribed to VCVA resin, in the
ester-based film. Raman spectroscopy (Fig. 3b, right) with a 2D/G ~
0.24 and an even more appreciable defect level (D/G ~ 0.72) suggests a
nature of graphene nanoplatelets or multi-layer graphene for the ester-
based film. [47,48] For the ester-based film we measure a sheet resis-
tance of ~0.8 Q/[1, which corresponds to a resistivity of ~1.5 x 107>
Qm and a conductivity of ~6 x 10* S/m, respectively. An in-plane
thermal conductivity of ~5 W/mK is measured for a film from the
ester-based ink.

The data in Fig. 3 together with the TLM electrical measurements
and in-plane thermal conductivities indicates that microstructures of
water-based and ester-based inks are similar. Defect levels and sheet
resistance from both our inks are on par with prior reports for screen-
printed graphene films [34,35,49-52]. We attribute the defect levels
detected in Raman spectroscopy to the edges of the graphene flakes [53]
as well as defects in the basal plane arising during the production pro-
cess, in particular the three-roller grinding miller process. The measured
thermal conductivities are moderate and consistent with similar gra-
phene heat spreader films that also underwent only such low tempera-
ture curing [10].

After screen/stencil printing and curing, LEDs are manually assem-
bled onto the graphene heat spreader integrated PCBs. This is done via
manual soldering of the LED contacts onto the copper solder pads. An
exemplary, completed LED/PCB structure incl. a graphene heat spreader
is depicted in the optical micrograph in Fig. 4a. We find that soldering
can be readily achieved if solder pads are free from graphene deposits,
which should be the case for high fidelity printed features according to
our planned device layout with the graphene heat spreader “tongues”
leaving enough room on copper solder pads for LED contact soldering
(compare layout sketch in Fig. 1b and actual realization in Fig. 4a). Thus
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assembled LED/graphene heat spreader/PCB structures are then tested
for functionality over multiple LED assemblies. We find that LEDs in our
test structures with the graphene heat spreaders are fully operational, as
depicted in the photo of an array of multiple LED/graphene heat
spreaders on a PCB (Fig. 4b) that is successfully switched on with all
LEDs fully illuminating. The data in Fig. 4 thereby indicates that the here
investigated graphene heat spreader printing is fully compatible with
the fabrication flow and operation of modern LED/PCB assemblies,
which to date had not been investigated in the literature on graphene
heat spreader integration with LEDs [8,9,12-28].

Finally, we measure via an infra-red (IR) camera the temperature of
the LEDs in on-state, as shown in an example in Fig. 5 (assembled PCBs
mounted onto an aluminium metal heat sink). The LED string is driven
by a forward current of 700 mA, and temperatures are measured after an
equilibration time of 10 min, whereby temperatures are always
measured via hottest spot on the individual LED phosphor layer. Stated
temperatures are averaged over 11 LEDs per sample condition and
stated uncertainties are standard deviations. We assess the thermal de-
vice performance with vs. without the graphene heat spreader “tongues”
by directly measuring the temperatures via IR camera of the surface-
mounted LEDs’” phosphor layers that are mounted over/next the gra-
phene heat spreaders which itself are on the PCB level below the LEDs
(layout Fig. 1, photo in Fig. 4) [54]. The advantage of this approach is
that the LEDs therefore do not have any graphene coating applied on
top. Therefore, the emissivities of the LEDs’ phosphor layers remain
unaltered and are not expected to change for conditions with vs. without
graphene heat spreader tongues, as emission in all cases comes from the
same type of phosphor layer of the LEDs unhindered. This allows us to
directly compare LED temperatures (without having to correct for
graphene-induced changes for emissivities) for LED/graphene heat
spreader/PCB assemblies, benchmarked against the same LED/PCB as-
semblies but without an extraneous graphene heat spreader. Thereby we
can disentangle the effect of the graphene heat spreaders on LED tem-
perature under operation and thus measure a directly LED-integration-
and applicant-relevant performance indicator (maximum LED temper-
ature) for our graphene heat spreader films [15,16,18].

Interestingly, we find no temperature reduction effect by the

- i)

Fig. 4. (a) Optical micrograph of graphene heat spreaders on the PCBs with the LEDs mounted. (b) Illuminating string of LEDs with integrated water-based screen-

printed graphene heat spreaders driven at 700 mA.
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temperatures of the individual LEDs are indicated.

application of the graphene heat spreaders for the water-based/screen
printed, water-based/stencil printed and ester-based/stencil printed
films. We find however a modest reduction in LED temperatures under
operation for the ester-based/screen printed graphene heat spreaders
(Fig. 5) of on average —2.0 K (+ 0.9 K, standard deviation) with a
maximum value of temperature reduction by —4.0 K.

From an application perspective, the obtained heat spreader per-
formance is only modest and will require further optimization (e.g., to
heat spreader layout design). Also higher curing temperatures would
likely improve thermal performance [10] but are hard to implement
when wanting to ensure compatibility with industrial PCB/SMD LED
integration processes. Beyond final heat spreader performance, on a
materials integration process technology level, our study however
particularly demonstrates that screen and stencil printing can be readily
utilized for integration of graphene films on PCBs, while still allowing
subsequent functional mounting of SMD devices, as here demonstrated
for SMD LEDs on PCBs.

3. Conclusions

In summary, we here investigated integration of graphene-based
heat spreader films with PCB-mounted high-power LEDs as used in
modern automotive lighting. To this end, graphene heat spreader films
were deposited using industrially compatible screen and stencil printing
onto the PCBs before LED assembly. We compared water- and ester-
based inks and characterized the resulting graphene heat spreaders
regarding printing fidelity, film microstructure and electrical and ther-
mal properties. We use only comparatively low curing temperatures
(150 °C) to ensure compatibility with industrial PCB/SMD LED inte-
gration processes. Notably, we also tested the graphene heat spreaders’
performance in lowering LED temperatures during operation, whereby
we found that ester-based, screen-printed graphene heat spreaders
resulted in a modest reduction of LED temperature during operation of
—2Kto —4 K. Notably, no prior literature on graphene heat spreader and
LED integration [8,9,12-28] has before demonstrated such integration
of graphene heat spreader films on the PCB level with high-power LEDs
using screen or stencil printing, despite the clear industrial merit of both

printing techniques. Our work establishes the feasibility of using screen
and stencil printing for integration of graphene films incl. graphene heat
spreaders with state-of-the-art, industrially assembled PCB/SMD stacks
incl. PCB/LEDs.
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