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Boundary-preserving numerical schemes for
stochastic ordinary and partial differential equations

Johan Ulander

Division of Applied Mathematical and Statistics
Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg

Abstract

This thesis contributes to the development of boundary-preserving numerical
schemes for the strong and weak approximation for stochastic ordinary and
partial differential equations (SDEs and SPDEs, respectively). Several of the
considered equations model a physical quantity with an inherently restricted
range, such as temperature (positive values), stock prices (positive values) or
fractions (values in [0, 1]), referred to as the invariant domain of the equation. A
numerical scheme is said to be boundary-preserving if its numerical approxima-
tions are guaranteed to remain within this domain. Boundary preservation is
important for the physical interpretability and stability of the numerical approx-
imations. Some established approaches to constructing boundary-preserving
schemes are surveyed in the first part of the thesis, and the appended papers
explore and develop new methods to guarantee this property.

Paper I combines the Lamperti transform with a Lie-Trotter time splitting
to construct a family of boundary-preserving numerical schemes for some
scalar SDEs achieving strong convergence of order 1. Paper II constructs
boundary-preserving numerical schemes for scalar SDEs by introducing aux-
iliary stochastic processes to convert the considered SDE into an associated
reflected SDE. Paper III constructs a positivity-preserving temporal numerical
scheme for some semilinear stochastic heat equations perturbed by tempo-
ral white noise. The proposed scheme employs a Lie—Trotter time splitting
method, allowing the deterministic and stochastic parts of the equation to be
treated independently. Paper IV combines the ideas from Paper III with a
tinite difference spatial discretisation to obtain the first positivity-preserving
numerical scheme for some semilinear stochastic heat equations perturbed by
space-time white noise. Paper V combines the ideas from Paper IV with exact
simulation for SDEs to obtain the first boundary-preserving numerical scheme
for some semilinear SPDEs perturbed by space-time white noise with bounded
invariant domain.



v

Keywords: Stochastic ordinary differential equations, stochastic partial dif-
ferential equations, geometric numerical integration, boundary-preserving,
positivity-preserving, Lie-Trotter time splitting, strong convergence, weak
convergence.
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1 Introduction

Mathematical models are used to describe phenomena ranging from the grand-
scale evolution of the universe to the behaviour of sub-atomic particles (see, e.g.,
Wald (1984); Elliot and Lira (1999); Meriam et al. (2014, 2020)). Mathematical
models are important because they enable us to formulate the dynamics of
the studied phenomena in a precise and consistent way. Furthermore, they
allow us to analyse different aspects of the phenomena without the need for
potentially costly or infeasible physical experiments.

To make the discussion more concrete, imagine that we wish to throw a tennis
ball into a basket. Sge Figiire 1.1 for an illustration. If we have several tennis
balls at our disposal, then we could make initial guesses (based on, e.g., experi-
ence) for the angle to the ground and the speed at which we should throw the
tirst ball to hit the basket. If we hit the basket, then great. If we do not hit the
basket, then we adjust the angle or the speed to make the next throw closer to
the basket than the previous one. Based on classical physics and mathematics,
we can, however, hit ilij basket without the need to waste a lot of tennis balls.

Newtonian physics can be formalised into a mathematical model that describes
and predicts the motion of macroscopic objects, such as tennis balls, where the
time evolution is governed by ordinary differential equations (see, e.g., Meriam
et al. (2014, 2020)). This model enables us to determine the angle and the speed
at which the tennis ball should be thrown to hit the basket with the first attempt,
assuming the basket’s relative position to us is known. This holds provided
that the angle and speed of the ball can be adjusted with-sufficient precision,
and that the model constitutes a reasonable representation of the real world.

Certain types of mathematical models involve quantities with fundamental
boundaries. For instance, let us consider the Standard and Poor’s 500 (S&P
500) index prices from March 2015 to March 2025 as shown in Figure 1.2
together with a deterministic model of the long-term trend in red. The S&P
500 index is a stock index consisting of 500 stocks of big dompanies on the
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L

Figure 1.1: Illustration of how to use Newtonian physics to hit a basket when throwing
a ball. Some assumptions: The angle 6 at which we throw is assumed to be fixed at 7 /4
(45 degrees) and we neglect the drag from the air on the ball with mass m. The distance

2
covered is L = “5—'9 + % % + %, where g ~ 9.8 is the free fall acceleration.

New York Stock Exchange (NYSE) or on the National Association of Securities
Dealers Automated Quotations (NASDAQ). As the S&P 500 index is a positive
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Figure 1.2: Time evolution of the Standard and Poor’s 500 (S&P 500) index in blue and
a deterministic model of the long-term trend in red.

weighted sum of stock prices that are inherently positive, the S&P 500 index
must also be positive. Negative values of a stock index would make investors
instantly doubt the index. In other words, positivity is a fundamental boundary
of any data set of or model for stock indexes. The red trend line in Figure 1.2
is generated using a deterministic model that tries to capture the long-term
growth of the index. This deterministic model is a reasprjable model for the
long-term evolution of the index, but it cannot capture the%ort—term variations
in the index.



As most realistic mathematical models are too complicated to be solved with
pen and paper, we often have to resort to computer simulations. A possible
issue with computer simulations is that they may fail to preserve properties of
the underlying model. The study of this behaviour in simulations is part of a
branch of mathematics called geometric numerical integration. We refer to Hairer
et al. (2010) for a classical textbook on the topic. Returning to the S&P 500
index example, a computer simulation for future predictions of the index might
produce negative values. To address this, we study computer algorithms—sets
of instructions that determine a computer simulation—that are guaranteed to
produce only physically meaningful results (e.g., positive values in the case
of index prices). We call such computer algorithms boundary-preserving. We
illustrate this terminology using the S&P 500 index. The physically admissible
domain of index prices is [0, 00), and the boundary of this domain is 0 (there is
no upper boundary). A boundary-preserving algorithm has the same admissi-
ble-domain, [0, c0) in this case, and therefore shares the same boundary, 0 in
this case.

In practical applications, uncertainties should be incorporated into determinis-
tic models. Such uncertainties may arise from data errors, measurement noise
or external disturbances, and are collectively referred to as noise. Chapter 1 in
©ksendal (2003) provides several motivational examples illustrating the need
to go beyond deterministic models. We integrate such effects by employing
stochastic models; that is, models in which the dynamics evolve according to
probabilistic rules. Returning to the example with the S&P 500 index, if we
wish to account for the seemingly unpredictable short-term variations of the
index, then a stochastic model for the time-evolution of the S&P 500 index
may be a reasonable choice. Typically, such models are described by stochastic
differential equations. See Figure 1.3 for an illustration of how a stochastic model
can account for short-term variations in the S&P 500 index price.

Preserving fundamental boundaries of models in computer simulations be-
comes even more challenging in the presence of noise. A widely used example
in practice is that of n following a normal density, referred to as Gaussian
noise. See Figure 1.4 for an illustration of the normal density. The value of the
normal density function at a point = indicates how likely that value is relative
to other values. Gaussian noise can, however, with very small probability, take
arbitrary large positive and negative values. Therefore, in traditional computer
simulations of index prices, there is a non-zero probability of obtaining neg-
ative values at each simulation step. Consequently, according to Murphy’s
law, such computer simulation will eventually yield negative index prices.
In summary, ensuring that computer simulations for stochastic models are
boundary-preserving is essential to guarantee meaningful results.
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Figure 1.3: Time evolution of the Standard and Poor’s 500 (5&P 500) index in blue, a
deterministic model of the long-term trend of the S&P 500 index in red, and a stochastic
model of the short-term variations of the S&P 500 index in yellow.
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Figure 1.4: Plot of the standard normal density: p(z) = \/Lie 2, x € [-5,5]. The
standard normal density is also known as the bell curve for its shape.



This thesis is a contribution to the research topic of boundary-preserving nu-
merical schemes to approximate the solutions of complicated mathematical
models given by stochastic differential equations. This refers to the construc-
tion of numerical schemes that are guaranteed to preserve the boundary of
the admissible domain of the equation. Classical numerical schemes are, in
general, not boundary-preserving.

This thesis consists of a comprehensive introduction to the research topic
referred to as a kappa and five appended papers. The kappa provides the back-
ground necessary to understand the importance of boundary-preserving nu-
merical schemes for stochastic differential equations and the main approaches
to their construction. In particular, the intention is that the reader will be able
to understand the summaries of the papers in Section 3 based on the material
presented up to that point. The focus is not to present all rigorous mathematical
details, but to convey my own understanding of the topics in a personal style.
References to classical and rigorous works are provided throughout the kappa.
The reader is assumed to have mathematical knowledge corresponding to
undergraduate studies in mathematics.

The rest of thesis is organised as follows.eaection 2.1 introduces stochastic ordi-
nary differential equations (SDEs) and presents the properties of their solutions
most relevant for our purposes. Section 2.2 is devoted to time discretisations
of SDEs. In this section, we first define and discuss convergence of numerical
schemes, and then introduce two classical numerical schemes to approximate
solutions of SDEs. We then present the Lie-Trotter time splitting method and
some current approaches to constrycting boundary-preserving schemes for
SDEs. The summaries of Papers I and II can be read after completing Sec-
tion 2.1 and Section 2.2. Sectﬁ 2.3 introduces stochastic partial differential
equations (SPDEs) and discusses their solutions. Section 2.4 is dedicated to
spatial discretisations, with a focus on the finite difference method, of SPDEs.
Sections 2.1- 2.5 provide the necessary background to read the summaries of
P@ers HI-V. Iﬁtly, we ﬁ)vide the references and the appended papers.

[]
10



1. Introduction




2 Background

2.1 Stochastic ordinary differential equations

In this section, we introduce the background on stochastic ordinary differential
equations (SDEs) needed for the summaries of the appended papers. To avoid
repetition, we let 7" € (0, co) denote a fixed finite end time and ¢ € [0, 7] denote
the time variable.

In the following, we introduce and focus on the stochastic calculus known as
It6 calculus, as this is used for the appended papers. In contrast to standard
calculus, there are choices to be made in the set-up for a stochastic calculus
resulting in different frameworks. The most common other choice of stochastic
calculus is the Stratonovich calculus, introduced in Stratonovich (1964). This is
used in, for example, physics and in stochastic analysis on manifolds (see, e.g.,
Hsu (2002)).

Let us start with an illustrative example of an ordinary differential equation
(ODE) with solutions that remain in aldomain D| © Rlthat we call the invariant
domain of the ODE. The susceptible-infected—susceptible (SIS) ODEs form a
family of ODEs whose solutions represent the fractions of populations that are
susceptible to diseases or viruses. The simplest SIS ODE can be expressed as

dy(t) _
TR y(@)(L —y(t)), t € (0,77, 2.1)
y(0) =wo € [0,1].
The SIS ODE in (2.1) admits a closed-form solution given by
et
- u(t) = ———, te 0.7] 22)

et — 14y,

7



8 2. Background

for yo € (0,1], and by y(t) =0, t € [0, T}, for yo = 0. In other contexts, (2.1) is
referred to as the logistic equation. As seen from (2.2), the solution y(t) of (2.1)
satisfies y(t) € [0,1] for all ¢ € [0,7T]. Hence, we refer to D = [0, 1] as the
invariant domain of (2.1). A value outside D = [0, 1] cannot be interpreted as a
fraction of a population. We refer to Chapter 1 in Lépez-Flores et al. (2021) for
more details on SIS ODEs.

The SIS ODE in (2.1) is an example of an ODE of the form

W~ ), te 0,71,

0) = ¢ R, L]

where f : R L~_r][R is sufficiently regular—A-wide range of phenomena can be
modelled using ODEs of the form (2.3). Applications are found in epidemiology,
chemical reactions, the motion of particles and bodies and many other areas.
We refer to-Tenenbaum and Pollard (1985); Arnold (2006) for classical textbooks
on ODE theory, and to Chapter 1.1 and Chapter 3, respectively, for applications.

(2.3)

ODEs cannot, in certain scenarios, fully capture the behaviour we observe
in physical systems. In such cases, it is reasonable to add noise to the ODE,
yielding an SDE. The tion of an SDE is given by a stochastic process that
depends on time ¢ € [0, T 5121[]Jand an additional parameter, typically denoted by w,
which represents the randomness. |For clarity of presentation, we omit this
parameter. To this end, we first recall that a Brownian motion B : [0,7] — R is
a zero-mean continuous Gaussian process with covariance given by

E [B(t)B(s)] = min(t, s), t,s € [0,T],

where £ denotes the expected value operator. Brownian motions exhibits
erratic behaviour-they are nowhere differentiable, with probability one. We
can quantify this irregular behaviour using a Holder continuity condition: A
Brownian motion is, with probability one, Holder continuous with exponent
v = 1/2 — € for every € > 0, meaning that there exists a constant C' > 0 such
that

[B(t) = B(s)| < C[t —s[7,

forall ¢, s € [0, T, with probability one. This rough behaviour is illustrated by
the five sample paths (2-dimensional visualisations for different choices of w)
shown in Figure 2.1. We refer to Chapter 2 in Karatzas and Shreve (1988) for a
comprehensive treatment of Brownian motion.

Heur15t1c@7 we aim to perturb the OPE-in(2:3) by noise having no correlation
dB(?) -

—3 is the formal

in time called temporal white nolﬁ Temporal white noise
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Figure 2.1: Five sample paths of a Brownian motion.

derivative of Brownian motion. However, due to the low regularity of the
sample paths of Brownian motion, the integral version of (2.3) that reads

—y0+/ Fly(s))ds, t € [0,T], (2.4)

is the preferred starting point to introduce noise driven by Brownian motion
to the ODE in (2.3). Therefore, we now instead include a second integral term
in (2.4) to obtain ]

_a;0+/ F(X ds~|—/ g(X(s))diis) ds, t[0,7], (25)

where z0[€]R is the non-random initial value replacing yo and g : R — R is

ficiently regular. To make the distinction clear between ODEs and SDEs, we
use the notations y(¢) and z(¢) to denote solutions of ODEs and we use X (¢),
Y (t) and Z(t) to denote solutions of SDEs.

dB(t)

Suppose, for the time being, that is well-defined. Then we could equate

t dB( ) t
[ axenTitas = [ o(x () anie). te .7

in the sense of Riemann—Stieltjes integrals. In other words, if we can make
sense of the stochastic integral fg g9(X(s)dB(s), then we could represent (2.5) as

= ¢ +/ F(X(s))ds + /tg(X(s))dB@ te0,T].  (26)

To make sense of (2.6), It6 (1944) defined the stochastic integral in (2.6) for piece-
[] []



10 2. Background

wise constant integrands and then extended to a broader family of stochastic
processes using limits. For this, the stochastic integral in (2.6) is now known as
the It0 integral and (2.6) is known as an It0 integral equation first introduced in
Ito (1951). On a historical note, the construction of the integral of real-valued
functions with respect to Brownian motion was first introduced by Paley and
Wiener in 1934 (see Paley and Wiener (1987) for the reprint).

Usually, the stochastic integral equation in (2.6) is written in It6 differential
form as
{dxm = F(X(M)dt +g(X (1) dB(t), t € (0,T], 27

X(0) =z € R. -

This should belunderstood as the integral equation in (2.6). The expression (2.7)
isteferred to as an Itd stochastic ordinary differential equation (SDE). Intuitively,
over a small time interval of length d¢, the solution X (¢) of (2.7) changes
by a random amount that is norﬁally distributed with mean f(X(¢))dt and
variance g(X (t))? dt.

The noise term ¢g(X (¢)) dB(t) in (2.7) is called additive if g(r) = C for some
constant C' and it is called multiplicative otherwise. In general, SDEs with
additive noise are known to be easier to-handle than SDEs'with multiplicative
noise. ]

Commonly, f is called the drift coefficient function and g is called the diffu-
sion coefficient functio&i}f (2.7). If f and g are globally Lipschitz continuous
functions; meaning thatthere exists a constant C' > 0 such that

[f(r) = f()[ +1g(r) = g(s)| < Clr — ],

for all r, s € R, then-there exists a unique stochastic process X (¢) that satis-
ties (2.6), with probability one; this process is called the solution of the SDE
in (2.7). Such a stochastic process is typically referred to as a strong solution,
emphasising that the driving noise B(t) is specified in advance. In contrast, if
the driving noise B(t) is part of the solution (that is, not specified a priori), then
thé solution is called a weak solution. We refer to Chapter 5 in Jksendal (2003)

[ahd to Chapter 5 in Karatzas and Shreve (1988) for more details. Moreover, the
solution X (¢) of (2.7) is Holder continuous with exponent 1/2—, with probabil-
ity one, the same property as for Brownian mgtior. I jffand g are not assumed
to be globally Lipschitz continudus, then the situation is more involved. See
Chapter 3loflBorodin and Salminen (2002) and Chapter 5 of Hutzenthaler et al.
(2011) for collections of such results.

were first introduced in It6 (1944). The Itd integral is a zero-mean martingale
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satisfying the fundamental properties known as the It0 isometry, stating that

E [( / tg(X@)dB(S))Q] |/ tg(X(s»?ds] tel0T],  @8)

and Ito’s formula, which we discuss next.

The chain rule plays a fundamental role in many areas of mathematics and
its applications, but the chain rule assumes that the involved functions are
differentiable. Stochastic processes arising as solutions of SDEs are nowhere
differentiable, with probability one, and the classical chain rule does therefore
not apply. Itd6’s formula can be seen as a generalisation of the classical chain
rule to non-differentiable stochastic processes

In the context of this thesis, It6’s formula is used to derive the Lamperti transform,
which forms the basis for a class of boundary-preserving numerical schemes
in Section (2.2.4). The Lamperti transform is a key component in Papers I and
V. We now illustrate this procedure. Let D C R be the invariant domain of the
solution X (¢) of (2.7), meaning that

P(X(t) € D, forallt € (0,7]) =1,

whenever xy € D, where P denotes the probability measure. Furthermore, let
® : D R be a function of class C? (twice continuously differentiable). It6’s
formula staﬁ that the transformed process ®(X (t)) is the solution of the SDE

{d@(X(t)) = f(X(t)dt + §(X(t))dB(t), t € (0,77, 2.9)

where the coefficient functions f and § are given by

Fr) = (10190 + Ja(rP8'0))  reD.

and
g(r) =g(r)®'(r), r € D.

If ¢ is chosen in such a way that g(r) = 1 for all € D, then the noise in the
SDE in (2.9) reduces to additive noise. This choice specifies ® (up to a constant)
as

] ®(r) = / ﬁ dw, r € D, (2.10)

and is referred to as the Lamperti transform, named after Lamperti (1962).
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Inserting the first and second derivatives of ® in (2.10) into the SDE (2.9), we
see that the transformed process Y (t) = ®(X (¢)) is the solution of the following
SDE with additive noise

dY (t) = a(Y (t))dt +dB(t), t € (0,T], 2.11)
Y(0) = ®(zo), '
where the drift coefficient function « is given by
_ f(q)_l (r) 1
a(r) = T ljg ) e R (2.12)

For the above to be well-defined, we require that g(r) > 0 for all » € D and that
¢ is invertible. The latter is, for example, true if g, in addition, is continuous.

To make the discussion more concrete, let us consider an SDE with a closed-
form solution that can be obtained using the Lamperti transform. The SDE for
geometric Brownian motion is typically written as

(2.13)

dX(t) = pX (t)dt + o X (t)dB(t), t € (0,7,
X(0) = 20 € D = (0, 00),

where 1 € R is called the drift parameter and o € R is called the diffusion
parameter. The invariant domain of (2.13) is D = (0, c0). The solution of (2.13)
is often denoted by S(¢) in financial contexts—to emphasise that it models
a stock price-we use X (t) for consistency with our notation. The Lamperti
transform associated with the diffusion term in (2.13) is given by

" 1
:/wogwgw:;(l — In(wy)) TEOOO

for any choice wy € (0, 00), with interde given by
®H(r) = wee”", r € R.

Let us choose wg = 1 for simplicity. We insert the drift and diffusion coefficient
functions from (2.13) into (2.11) to see that the transformed process (X (¢)) is
the solution of the following SDE

L fotx) _<——%a)dt+d3(t),t€(0,T],

B (X(0)) = éln(azo) €R.

(2.14)
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The solution of the SDE in (2.14) can be written in closed-form as
1 w1

O(X(t) = —In(zo)+ | = — -0 | t+ B(t), t €[0,T].
o o 2

The solution of the original SDE in (2.13) can then be obtained by

X(t)=o (é tn(zo) + (g - %0) t+ B(t>> = zeln=37)1HoB®) (2 15)

fort € [0,7]. ]

Let us now come back to the SIS ODE in (2.1). By introducing multiplicative
noise with g(r) = r(1 — r) to (2.1), we obtain a SIS SDE of the form

dX(t) = 1—X%%;)dt+X )(1—X(t))dB(t), t € (0,77, (2.16)
X(0) = 20 € [0,1]. '
With probability one, the solution X (t) of (2.16) remains within the same
domain as the solution of the S@)DE in (2.1):

IP()%) € D=10,1], forallt € [0,T]) = 1.

We refer to Gray et al. (2011) for more details on SIS SDEs. In other words, by
introducing noise of a certain form, we can make sure that the invariant domain
of the SDE coincides with the imﬁﬁ\t domain of the ODE. In contrast, if we
introduce additive noise to the ODE in (2.1), then the invariant domain would
be all of R. Put differently, additive noise is (in many cases) incompatible with
D C Rbeingastrict;subset of R. Thus, if the modelled phenomena represents a
physical quantity only taking values in an invariant domain D C R, then we
have to consider multiplicative noise.

The study of SDEs of the form (2.7) with invariant domains D C R goes back to
the early works Feller (1951, 1952) and is usually referred to as Feller’s boundary
classification for SDEs. We refer the interested reader to Chapter 15 in Karlin
and Taylor (1981) for ﬁetaﬂed treatment of Feller’s boundary classification,
and to Chapter-2-in-Berodin and Salminen (2002) for a collection of such
results. Without going too much into details, Feller’s boundary classification
charadterises the behaviour of the solution of (2.7) near and at the boundary
points of D in terms of the drift and diffusion coefficient functions f and g. Of
particular interest in this thesis is deii[e_pfnining whether the boundary points 0D
of D are attainable or unattainable fof the solution process. This corresponds
to D being closed or open, respectively, as a set.
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Typically, the invariant domain of an SDE reflects the domain of a physical
quantity, and it is desirable for numerical approximations to preserve this
domain. How can we construct numerical schemes with this property? This
question is a focus of the next section.

2.2 Time discretisations

This section reviews time discretisations of SDEs, covering convergence, classi-
cal and modern numerical schemes, and established approaches to construct
boundary-preserving numerical schemes.

As most interesting SDEs do not have closed form solutions, simulations or vi-
sualisations of solutions of such SDEs have to rely on numerical approximation.
In this thesis, we are concerned with numerical time approximations obtained
from discretising the time variable, referred to as time discretisations.

The study of time discretisations of SDEs dates back to Maruyama (1955)
introducing the classical scheme known as the Euler-Maruyama (EM) scheme.
Since then, it has remained an active area of research. We also mention the
work Milstein (1974) where the author derives the Milstein scheme achieving
more accurate approximations than the EM scheme. The presented material
can be found in well-known textbooks on numerical analysis for SDEs; we
mention Kloeden and Platen (1992); Milstein (1995);| Milstein and Tretyakov
(2021) as a selective list.

considered SDE

SO ) dtg )y dB ()10, T,

To € R,

LLetus recall'th

¢)

dX (¢

\
X(0

T~

(2.17)

~—|

—

where f,g : R — R are sufficiently regular. We let M € N denote the dis-
cretisation parameter determining the number of time grid points and we let
At =T /M denote the (uniform) time step size. The generated time grid points
are denoted by t,, = mAtform =0,..., M.

By a numerical approximation of the solution X (¢) of the SDE in (2.17), we
mean a sequence of random variables X, X1, ..., X/ generated by a numeri-
cal scheme such that X,,, = X(t,,), for all m = 0, .. =44, in some probabilistic
sense. The convergence order of a numerical scheme quantifies how rapidly X,,,
form = 0,..., M, approaches X(t,,) as M increases, and is the focus of the
next section.
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2.21 Convergence of numerical schemes

In this section we introduce the notions of strong and weak convergence needed
for the remaining part of the thesis. We define convergence for the end time
point ¢t = T', the generalisation to any ¢ € [0, T is straightforward.

Other common notions of convergence in stochastic numerics include, but
is not limited to, almost sure convergence and convergence in probability.
Almost sure convergence requires that a sequence converges to a limit, with
probability one. Heuristically speaking, convergence in probability formalises
the idea that events with small probability become increasingly rare as the
sequence progresses. Further details on the different notions of convergence of
random variables can be found in standard textbooks on probability theory and
stochastic processes, such as in Chapter 7 of Grimmett and Stirzaker (2020).

Let Xy, ..., X be a sequence of random variables generated from a numerical
scheme to approximate the solution X (¢) of the SDE in (2.17) at time ¢t = T
corresponding to the time grid ¢y < ... < t); with time step size At = T/M.
We say that X, converges p-strongly (for p > 1) of order v; > 0 to X (7') if

(E[1Xn — peRr < ean); (218)
for some constant C' that is independent of M/. We say that X,; converges
weakly of order vy, > 0 to X (T) if [ ]

[E[F (X)) — E[F(X(T))]| < CAt™, (2.19)

for every test function F' in a suitable test function space and for some constant
C that is independent of At. Strong convergence requires the approximating
sequence and the limit to be defined on the same probability space while this is
not required for weak convergence. The regularity of the coefficient functions
f and g in the SDE in (2.7) is closely linked to the strong and weak convergence
orders of numerical schemes used to approximate the solution X (¢).

If X »s converges p-strongly to X (7'), then X s also converges weakly v, to X (T)
with respect to bounded continuous test functions. For a globally Lipschitz test
function F, we can immediately obtain that the weak order is at least that of
the strong order

E[F(Xan)] = E[F(X(T))| < C(E[| X — XD,

where C'is a constant that depends on the Lipschitz constant of /. However,
the order of weak convergence is sometimes strictly higher than the order
of strong convergence. As is true in many cases, the rule of thumb of weak
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convergence states that the order of weak convergence is twice the order
of strong convergence. See, for example, Debussche and Printems (2009);
Andersson and Larsson (2016) for such results. The order of weak convergence
may, however, depend on the regularity of the chosen test functions. For the EM
scheme in the SDE case, smooth test functions and merely bounded measurable
test functions yield the same order of weak convergence and is twice the order
of strong convergence (see, for instance, Talay and Tubaro (1990); Bally and
Talay (1995)). As is shown in Bréhier (2020), this is not the case for stochastic
partial differential equation (SPDEs), the order of weak convergence for SPDEs
for bounded globally Lipschitz continuous test functions is equal to the order
of strong convergence while the rule-of thumb-heldsfor more regular test
functions:

In practice, the expected values in (2.18) and in (2.19) have to be estimated
from finitely many samples of X, — X (7T'). A classical approach known as the
Monte Carlo method is to generate K € Nindependent samples { X%, — X*(T) :
k=1, ..., K}, each having the same distribution as X, — X(7'), and use

K
E(Xu — X))~ 2 S [ - X (1))
k=1

] ]
to estimate the left hand side of (2.18). The left hand side of (2.19) can be
estimated in a similar manner. We refer to Robert and Casella (2004) for a
well-known reference on Monte Carlo methods.

2.2.2 Classical nurhetical schemes [ |

In this section, we first introduce the forward Euler scheme and the backward
Euler scheme, two of the most well-know time integrators for ODEs, and then
discuss the extensions of these numerical schemes to SDEs of the form (2.17).
The presented material can be found in well-known textbooks such as Siili
and Mayers (2003); Iserles (2009); Griffiths and Higham (2010) for numerical
treatment of ODEs and such as Kloeden and Platen 2); Milstein (1995);
Milstein and Tretyakov (2021) for numerical treatment sf-5DEs.

The numetical schemes for SDEs preserited irn this section are sometimes re-
terred to as lowef-order schemes due to their strong convergence order of 1/2 and
weak convergence order of 1. Higher-order schemes include, but is not limited to,
higher-order stochastic Itd6-Taylor and Runge-Kutta schemes. The reader can
find treatments of higher-order numerical schemes in, for example, Parts V-VI
of Kloeden and Platen (1992), Chapter 1 of Milstein (1995), and Chapters 1-2 of
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Milstein and Tretyakov (2021).

Let us first recall the considered ODE

WO _ fy). 1e 0.1,

y(O) =Y € [R7

(2.20)

where f : R — Ris sufficiently regular. By integrating the ODE in (2.20) over
the mterval [ m+1] for some m = 0,...,M — 1, we obtain the following

Y(tme1) = yltm) + / " f(s) ds. (2.21)

m

We obtain the forward Euler method for (2.20) by approximating f(y(s)) ~
fly(tm)), forall s € [ty tma], in (2.21). The forwar ler method reads

ym+1:ym+f(ym)At, mzoa"wM_lv

initialised with the initial value y(0) = yo. The value y,, is a numerical approxi-
mation of y(t,,). Since the next value y,,,4+1 can be explicitly computed from y,,,
the forward Euler scheme is a sofcalled explicit scheme. Similarly, the backward
Euler method for (2.20) {s obtained by approximating f(y(s)) ~ f(y(tm+1)),
forall s € [ty,, tim+1], in (2.21). The backward Euler method reads

Ymt1l = Ym + [ (UYma1)At, m=0,..., M — 1,

initialised wﬁ;the initial value y(0) = yo. In contrast to the forward Euler
scheme, the tielt_]lue Ym+1 of the backward Euler scheme has to be deter-
mined from an implicit equation, and is hence referred to as an implicit scheme.

Explicit numerical schemes are usually more easy to implement and are com-
putationally faster, but some explicit numerical schemes suffer from step size
restrictions which limits their practical usefulness. Implicit numerical schemes,
on the other hand, can be more difficult to implement and require more com-
putational time, but they are often more widely applicable and, in some cases,
enjoys useful properties.

We now extend these classical numerical schemes to the SDE in (2.17). To this
end, let AB,,, = B(tm+1) — B(tm), form = 0,..., M — 1, be the increment of
the Brownian motion over [t,,, t;,+1]. Comparing @considered SDE in (2.17)
to the ODE in (2.20), the natural extensions of the torward Euler method to

[ ]
[ ]
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SDEs would be
X1 = Xom + F(X)At + g(X)ABp, m=0,..., M —1, (2.22)

initialised with Xy = zg. The scheme defined in (2.22) is called the Euler—
Maruyama (EM) scheme and is an explicit scheme. The natural extension of
the backward Euler method would be

Xm_|_1 = Xm + f(Xm_|_1)At + g(Xm+1)ABm, m = O, ceey M — 1, (223)

initialised with Xy, = x¢. However, as shown in Milstein et al. (1998), the
definition in (2.23) cannot be used due to infinite moments of the scheme. To
solve this issue, one usually defines the semi-implicit Euler-Maruyama (SEM)
method as ]

Xim+1 = X + f(Xona1) At + g(X,)AB,,, m=0,...,M — 1,
and is an implicit scheme.

If f and gare globally Lipschitz continuous functions, then the EM and SEM
schemes are 2-strongly convergent of order 1/2 with respect to At. Moreover,
if f and g are sufficiently regular, then the EM and SEM schemes are weakly
convergent of order 1. We refer to the well-known textbooks Kloeden and
Platen (1992); Milstein (1995); Milstein and Tretyakov (2021) for more details. If
we relax the assumptions on f and g for strong convergence, then the EM and
SEM schemes might not convergence. In fact, it was shown in Hutzenthaler
et al. (2011) that the moments of the EM scheme blow up in finite time for some
SDEs that violate the globally Lipschitz continuity assumption. The search for
eonvergentnumerical-schemesfor SPEs-with non-globally Lipschitz coefficient
functions has been an active research topic ever since, and the literature on this
topic is now extensive. We mention the works Higham etlal. (2002); Milstein
and Tretyakov (2005); Tretyakov and Zhang (2013); Hutzenthaler and Jentzen
(2015); Mao (2015); Mickel and Neuenkirch (2025) as a selection.

2.2.3/| TLie=Trotter time Spﬁlittilng

This section introduces time splitting schemes, which are used in Papers I,
III, and IV. Such schemes have a long history for ODEs and have, in recent
decades, gained popularity for SDEs and SPDEs. We mention the works Moro
and Schurz (2007); Cohen and Vilmart (2022); Berg et al. (2021); Kelly and Lord
(2023); Bréhier et al. (2023) in this direction for SDEs and the works Liu (2013);
Bréhier et al. (2019); Bréhier and Goudenege! (2019): Bréhier and Goudenege
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(2020); Bréhier and Cohen (2023) in this direction for SPDEs.

The idea of time splitting schemes is to decompose a "difficult”" problem into
subproblems that, separately, can be more easily numerically or exactly inte-
grated. Splitting schemes are important in the field of geometric numerical
integration where important properties of the equations are preserved in nu-
merical approximation. See, for example, Hairer et al. (2010) for a classical
textbook on geometric numerical integration, and McLachlan and Quispel
(2002); Blanes et al. (2024) for works focusing specifically on splitting schemes.

For simplicity, we iliustrate the idea of time splitting in the context of ODEs, re-
stricting the discussion to two subproblems and, in particular, to the Lie-Trotter
splitting scheme. To this end, let us consider an ODE of the form

dy(t)
F = f1 (”y’(t)) + f2 (y(t))’ t e (O7T]’ (224)
y(0) =yo € R,

where fi, fo : R — R are sufficiently regular. Suppose that, for some m =
0,...,M — 1, an approximation y,, of y(t,,) is given. The next value y,,+1
approximating y(t,,+1) is computed as follows: We decompose (2.24) into two
subproblems

T — fi0), 1€ (bt 025
Zl(tm) = YUm,
and
. 1]
d ;t(t) = fZ(ZQ(t))v te (tmatm—i-l]’ (226)

Z9 (tm) =21 (tm+1 ) .

We let y,+1 = 22(tim41). If either of (2.25) or (2.26) cannot be solved exactly,
then numerical discretisations have to be employed. Lie-Trotter time splitting
schemes for SDEs and SPDEs are used in Papers I, III, IV, and V.

Iy
2.2.4 Boundary-preserving numerical schemes
This thesis concerns the construction of numerical schemes that preserve the in-
variant domain of the underlying differential equation, referred to as boundary-

preserving schemes. This section formalises and provides an overview of explicit
boundary-preserving schemes for SDEs.

Historically, implicit numerical schemes were the first proposed boundary-



20 2. Background

preserving schemes. More precisely, it was first noted and explored in Schurz
(1996) that certain so-called balanced implicit methods are boundary-preserving.
We do not cover implicit schemes in this section, but we mention the works
Dangerfield et al. (2012); Dereich et al. (2012); Alfonsi (2013); Neuenkirch and
Szpruch (2014); Liu et al. (2025a); Jiang et al. (2025) as a selection of boundary-
preserving numerical schemes based on implicit techniques.

We are interested in the cases of SDEs with an invariant domain D C R, as
any numerical scheme that does not blow-up is boundary-preserving if D = R.
Typically, if the invariant domain is D = [0, 00) or D = (0, 00) then the solutions
are said to be positive and strictly positive, respectively. In this case, the term
boundary-preserving is often referred to as positivity-preserving.

YAl aall o hbaan Az anl o als qanald Vo v Al it s s dian ~ L] 1
VvO Camar e ICa - 5CRCme =y, 7y, approXiiniatiiig me solution X(t) to

the SDE
{dX(t) = f(X () dt + g(X (1)) dB(t), t € (0,T), (2.27)

X(0) =z € D,
with invariant domain D, boundary-preserving if
P(X,, €D, foralm=0,...,M) =1.

The term boundary-preserving is sometimes instead referred to as preserving
the invariant domain. For SDEs with invariant domain that represents a physi-
cal quantity with physical boundaries (e.g., prices, temperature, concentration
or fraction of something), boundary-preserving numerical schemes are crucial
to obtain physically interpretable results.

The EM and SEM schemes discussed in Section 2.2.2 are known to not preserve
the invariant domain of SDEs, in general. This behaviour is illustrated in, for
example, Appleby et al. (2010) and in the appended papers. To illustrate this,
consider the SIS SDE given by

(2.28)

IdX(
-

B = X(1)(1 — X (8) dt 12500 (1 — X (8) dB(), t € (0,04],
)
LX(0)

0J9
7

with invariant domain D = (0, 1). That is, we choose f(r) = r(1—r) and g(r) =
4r(1 —r) in (2.27). Figure 2.2 shows sample paths generated by the following
schemes, applied to (2.28): EM, SEM, tamed Euler (TE) (see Hutzenthaler et al.
(2012)),_and the Lamperti-splitting (LS) scheme proposed in Paper 1. As is
seen inFigu ~the EM, SEM and TE schemes preduce values outside the
invariant domain D = (0, 1) of (2.28) and are hence not boundary-preserving.
In other wérds, the EM, SEM and TE schemes produce approximations of (2.28)
that cannot be interpréted as a fraction of a population that the solution of (2.28)
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represents. In contrast, the LS scheme is boundary-preserving and produces
only values in the invariant domain D = (0,1) of the SDE in (2.28). The
boundary-preserving property of the LS scheme is proved and empirically
verified in Paper L.

1.15
+EM %/\
1.1r - SEM 7

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
t

Figure 2.2: Illustration of boundary-preserving. Sample paths of the Euler-Maruyama
(EM) scheme, semi-implicit Euler-Maruyama (SEM) scheme, tamed Euler (TE) scheme
and Lamperti-splitting (LS) scheme applied to the SIS SDE in (2.28). The reference
0D = 1is the upper boundary of the invariant domain D = (0, 1).

Going one step further, numerical schemes that are not boundary-preserving
may fail to remain stable under modiﬁcati?]of the SIS SDE that leave the
solution unchanged. To illustrate this, consider the following modification of
the SDE in (2.28)

{dX(t) F(X (@) dt +5(X (1) dB(?), t € (0,0.4], (2.29)
X(0)=0.9,
where L]
e’ — 61, r = 17
fry=<r(1—7), re(0,1),
e " —1, <0,
and

In comparison to (2.28), the drift coefficient in (2.29) is set to exponential

[ 1] [ 1]
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\V]

-
(63}
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Figure 2.3: Comparison of the drift coefficient functions (1 —r) in (2.28) and fin(2.29).

1 ]
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[9)]
5 0
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Figure 2.4: Comparison of the diffusion coefficient functions 4r(1 — r) in (2.28) and g
in (2.29).

]
]
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functions outside D = (0, 1) and the diffusion coefficient in (2.29) is set to 0
outside D = (0, 1). Figure 2.3 and Figure 2.4 compares the coefficient functions
of the modified SIS SDE in (2.29) with the coefficient functions of the original
SIS SDE in (2.28).

The coefficient functions in (2.28) and in (2.29), respectively, are equal whenever
r € [0,1]. AsD = (0,1) is the invariant domain of (2.28), and the coefficient
functions agree on this domain, D = (0, 1) is also the invariant domain of (2.29).
This implies that the solution of (2.28) and the solution of (2.29) coincide. See
Figure 2.5 for an illustration of sample paths generated by the EM, SEM, TE
and LS schemes applied to the SDE (2.29). Adislseen in Figure 2.5, the LS
scheme produces %;yjj/alues the invariant domain D = (0, 1) and the EM,
SEM a E schemesdiverges once outside D = (0,1). We say that the LS
scheme has the same domain ﬁ%rizzﬂuence as the solution of (2.28) and of (2.29).

In contrast, the EM,-SEM an sche do not have the same domain of
influence as the solutlon of (2.28) and of(2:29). ]
] ]
[]
3 L - :
+EM

X"l

05 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

t

Figure 2.5: Illustration of domain of influence. Sample paths of the Euler-Maruyama (EM)
scheme, semi-implicit Euler-Maruyama (SEM) scheme, tamed Euler (TE) scheme and
Lamperti-splitting (LS) scheme applied to the modified SIS SDE in (2.29). The reference
0D = 11is the upper boundary of the invariant domain D = (0, 1).

]

We now briefly discuss the most common approaches to constructing explicit
boundary-preserving numerical schemes for SDEs; they are based on trans-
formations, time splittings, approximation by geometric Brownian motion
(gBm), and truncation (or projection). Note that some numerical schemes com-
bine two or more of the mentioned approaches. We also provide examples of
boundary-preserving numerical schemes based on the different approaches.
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The transformation-based approach

Transformation-based numerical schemes aim to transform the SDE in (2.27)
with an invariant domain D C R into another SDE (2.9) with an invariant
domain that is easier to construct boundary-preserving numerical schemes
for. Typically, D = R for the transformed SDE, as any numerical scheme that
does not blow-up in finite time is boundary-preserving in this case. Since
transformation-based numerical schemes require the use of Itd’s formula
in (2.9), the transformation has to satisfy some regularity assumptions. Two
commonly used transformations for this approach are the Lamperti transform
in (2.10) and the logarithmic function. For instance, combining the Lamperti
transform @ in (2.10) with the EM scheme in (2.22) to[approximate the SDE
in (2.11) yields the boundary-preserving(niimerical scheme defined by

Xm-l—l - (I)_l (®(Xm) + o ((P (Xm)) At + ABm) )

E?r m =0,...,M—1,where o : R — Ris given in (2.12). We mention the works
y Alfonsi (2013); Neuenkirch and Szpruch (2014); Chen et al. (2021); Yang and
[Hiiang (2&3}; Kelly and Lord (2023); Liu and Wang (2023); Liu et al. (2025b) as
elective,buit non-exhaustive, listtefboundary-preserving numerical schemes
t are transformation-based. The schemes proposed in Papers I and V belong

to this class.

[
The time splitting approach

The idea of using time splitting schemes to construct boundary-preserving nu-
merical schemes for SDEs is to decompose the SDE in (2.27) into sub-problems
consisting of SDEs to be treated separately. Each sub-problem has the same
invariant domain as the original SDE in (2.27). If each sub-problem can be
solved or numerically integrated while preserving the invariant domain, then
the full time splitting scheme will also gresgerve the invariant domain.

In Section 2.2.3, the Lie-Trotter{ timje splitting scheme was discussed for ODEs.
Let us apply the same idea to the considered SDE in (2.27), and split the SDE
into its deterministic and stochastic parts. Let the previous value X, € D (with
probability one), for some m = 0,..., M — 1, be given. Suppose, for ease of
presentation, that the ODE part of the SDElin (2.27); that is,

dy(t) _
F - j@]t))a te (tmatm—l-l]a

y(tm) - Xm>
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with invariant domain D admits a closed-form solution y : [t,, ;1] — D, and
that the diffusion part of the SDE in (2.27); that is,

dY (t) = g(Y (1)) dB(?), t € (tm; tma],
Y(tm) = y(tm),

with invariant domain D admits a closed-form Y : [t,,, t;,41] — R with
P(Y(t) € D, forallt € [t,, tmi1]) = 1.

We compute the next valu Xm+1 = Y (tm+1), and this yields a boundary-
preserving numerical sch Xo,...,Xy. We mention Moro and Schurz
(2007); Halidias (2016); Kelly and Lord (2023) for works on boundary-preserving
numerical schemes for SDEs based on time splitting. The schemes in Papers I,
III, IV, and V all belong to this class.

The gBM-based approach

Theideabehind the gBm-based approach to construct boundary-preserving
numerical schemes for SDEs is to rewrite the SDE under consideration in (2.27)

as
F(X(@)) 9(X(®))
X1 dt + X (t) X1 dB(t), t € (0,T].

Under suitable assumptions on f and g, with the quotients f(r)/r and g(r)/r
interpreted as limits for » = 0, this makes the considered resemble the SDE
for gBm in (2.13). Typically, in this case, the invariant domain is D = (0, co) and
we will therefore also refer to boundary-preserving as positivity-preserving.
Exponential Euler schemes is another term used in the literature to refer to gBm-
based schemes. See Bossy et al. (2021); Bossy and Martinez (2024); Erdogan
and Lcﬂ2025) for some recent uses of this approach.

dX(t) = X (t)

Suppose now that f(0) = g(0) = 0 and f, g € C! (continuously differentiable)
with bounded [derivatives. Then the quotients f|(r) /7 and g(r)/r are continuous
and bounded functions, and we can regard f(X (¢))/X () = f(X(tm))/X (tm)
and ¢g(X(t))/X(t) = g(X(tm))/X (t,,) as approximately fixed during a small
interval [t,,, t;,+1], for some m = 0,...,M — 1. We say that we freeze the
quotients at the previous time step ¢,,,. Next, let the previous value X,,, € (0, c0),
for some m =0, ..., M — 1, be given. Taking inspiration from the closed-form
solution of gBm in (2.15), we compute the next value as

] Xy = Xme(u—é)At—i—aABm'
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where u = f(X,,)/ X and 0 = g(X,,)/ X, are introduced to resemble the drift
and diffusion constants in the SDE for geometric Brownian motion in (2.13).
This yields a positivity-preserving numerical scheme Xy, ..., Xs. Recently,
Erdogan and Lord (2025) applied the above approach twice to obtain numerical
approximation guaranteed to preserve hypercubes D C R%. Papers IIl and IV
uses this approach to construct positivity-preserving schemes.

The truncation-based approach

Lastly, we mention boundary-preserving numerical schemes based on trun-
cation or projection. The first use of truncation or projection schemes was to
avoid blow-up of numerical approximations in Mao (2015). This is particularly
important for SDEs with drift and diffusion coefficient functions that do not
satisfy the globally Lipschitz condition. In some sense, this could be viewed as
preserving the "boundary" at infinity of numerical approximations. Further on,
in e.g. Mao et al. (2021), truncation was then used to preserve the boundary at
0. The idea of truncation-based schemes is to combine a truncation mapping of
the form

ITa¢(r) = min (At‘l,maX(At,r)) , 1 eR, (2.30)

with a classical numerical scheme to ensure that X,, € (0,00), for all m =
0/..., M, lwith probability one. For example combining the truncation map-
ping in (2.30) with the EM scheme in (2.22) yields a positivity-preserving
numerical scheme defined by

Xm—H = HAt (Xm + f(Xm)At + g(Xm)ABm) € (07 OO)’ (2-31)

for m:l 0,...,M — 1. Note th%he exact form of the truncation mapping I,
is often a variation of the form (2.30). If D = (a,b) C R, then we can guarantee
that X,,,41 € D = (a,b) in (2.31), forallm = 0, ..., M — 1, with probability one,
by replacing the right hand side of (2.30) with min (b — A¢, max (a + At,r)).
Lastly, we also mentlmmetrzsed schemes, studied for example in Berkaoui
et al. (2008); Boss 0 (2018), where the truncation map in (2.30) is
defined as IIa¢(r |r| ﬁax (r,0). We mention-Mae-et al. (2021); Deng
etal:(2024) for workg prrboundary- preserving numgrital schemes based on
the truncation approach. Paper II develops a framewcark that includes certain
truncation-based boundary-preserving numerical schemes.
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2.3 Stochastic partial differential equations

This section provides the background on stochastic partial differential equa-
tions (SPDEs) for understanding the summaries of the appended papers. The
aim is to gradually build up to the definition of mild solutions to SPDEs driven
by space-time white noise.

There are different approaches to defining and studying SPDEs. Two of the
main approaches are the so-called random field setting with well-known refer-
ences such as Walsh (1986); Dalang (1999); Dalang et al. (2009); Khoshnevisan
(2014); Dalang and Sanz-Solé (2024) and the so-called Hilbert space formula-
tion with well-known references such as Prévot and Rockner (2007); Da Prato
and Zabczyk (2014). We also mention Walsh (1981); Funaki (1983) for early
works on the former and Cabana (1966); Curtain and Falb (1971); Kuo (1972)
for early works on the latter. Intuitively speaking, the random field setting can
be viewed as perturbing a PDE by noise and the Hilbert space formulation can
be regarded as extending finite-dimensional Itd SDEs discussed in Section 2.1
to SDEs-taking-valuesin-anrinfinite-dimensional 'space-These two approaches
have similarities and differences and they arejuseful i their own regard. As
it turns out, these two approaches yield fthe same objects in many situations.
We refer to the early paper Jetschke (1986) and the more recent paper Dalang
and Quer-Sardanyons (2011) for more details on this connection. We focus on
the random field approach in this thesis, as it is well-suifeq for constructing
boundary-preserving numerical schemes for SPDEs.

To keep the presentation simple, we first consider a semilinear reaction-diffusion
PDE (reducing to the classical heat equation when f =0)

(2.32)

for (t,x) € (0,7] x (0,1), where f : R — R, vg : [0,1] — R are sufficiently
regular and vy(0) = v9(1) = 0. The requirement that v(¢,0) = v(t,1) = 0,
for every t € 0,77, in (2.32) is known as homogeneous Dirichlet boundary
conditions. For simplicity, the presentation is for one spatial dimension.

A classical solutibn{o (2.32) is a function v € C*2((0,T] x [0, 1]) (continuously
differentiable in ¢ € (0,7 and twice continuously differentiable in z € [0, 1])
such that the differdntial equation in (2.32) is satisfied for every (¢,z) € (0,7 x
[0, 1] and such that the inii%condition is satisfied as a limit as ¢t — 0. The
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notion of a classical solution is too restrictive in some cases, as it requires
differentiability. To resolve this, we introduce the notion of a mild solution of
the PDE (2.32).

To this end, we introduce the Green’s function (also known as the heat kernel)
corresponding to the homogeneous part (that is, f = 0) of (2.32). The Green’s
function is given by

G(t,x,y) = ZZe_jQ’TQtsin(jﬁx) sin(jmy), =,y € [0,1], t € (0,7].  (2.33)
j=1

We calhja jointly continuous, in time and space, function v € C((0,77] x [0,1]) a
mild solution to (2.32) if v(¢, z) satisfies the following integral equation (also
known as Duhamel’s principle or the variationlﬁonstants formula)

v(t,x):/o G(t,z,y)vo(y dy+/ / —s,x,y)f(v(s,y))dyds, (2.34)

for every (t,z) € (0,T] x [0, 1]. If f is globally Lipschitz continuous, then there
exists a unique mild solution to (2.32) that is also a classical solution of (2.32).
We refer t ans (2010); Brezis (2011) for classical textbooks on PDE theory.

As an intermediate step towards an SPDE perturbed by space-time white
noise, we first add temporal white noise introduced in Section 2.1 into the PDE
in (2.32). More precisely, we aim to define solutions to the following SPDE

. 2 :]
{2‘?“@) ; 5 (t ) + flu(t, @) + g(u(t, a:))if(t)
u(t,0) = u(t,1) =0, ] (2.35)
L[] u(0,2) = up(x),

for (t,z) € (0,7]x(0,1). Here g : R — R, ug : [0, 1] — R are sufficiently regular,
uo(0) = up(1) = 0, and B(t) is a Brownian motion as introduced in Section 2.1.
To make the distinction clear between PDEs and SPDEs, we use the notation
v(t, z) to denote solutions of PDEs and we use u(t, x) to denote solutions of
SPDEs. ]

Similarly to the deterministic case in (2.32), we say that v € C((0,7] x [0,1])
is a mild solution to (2.35) if u(t, z) satisfies the following stochastic integral

[ ]
[ 1]
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equation
1 t ol
u(t,xr) = G(t,z,y)u d G(t - s,z, u(s,y))dsd
(o) = [ Gttt i+ [ [ 6= safuls) dsay

/ / — 5,2, y)g(u(s,y)) dy dB(s),

for every (¢,x) € (0,7] x [0, 1], almost surely. The integration with respect to
dB in (2.36) is in the It0 sense discussed in Section 2.1. If f and ¢ are globally
Lipschitz continuous, then there exists a unique mild solution to (2.35). We
refer to, for example, Krylov (1999) for more details.

(2.36)

A key difference between the deterministic problem in (2.32) and the stochastic
problem in (2.35) is that It6 calculus is needed to treat and analyse the SPDE
in (2.35). The mild solution of (2.35) has lower regularity (merely Holder con-
tinuous with exponent 1/2— in time and with exponent 1— in space) compared
tot ild solution of (2.32). This is ca by the irregularity of the noise. The
setting for Paper Ill is (2.35) with f = 0 generalised tg d > 1 spatial dimensions.

We next aim to perturb the PDE in (2.32) by npise having no correlation in time
and no elation in space. Such noise isg;;'led space-time white noise. To this
end, we Tirst recall thgtajWiener sheet W : [0,7] x [0,1] — R is a zero-mean
continuous Gaussian random field with covariance given by

E [W (¢, (s, y)] = min(¢, s) min(z, y), t,s € [0,T], z,y € [0, 1].

Wiener sheet W (t, z) is the generalisation of Brownian motion B(t) to space-
time {(¢,z) € [0,7] x [0, 1]}. Similarly to Brownian motions, Wiener sheets are,
with probability one, nowhere differentiable (except along the coordinate axes).
We refer to Chapter 5 in Khoshnevisan (2002) for more details on the Wiener
sheet.

Let us now consider the following semilinear reaction-diffusion SPDE

W t0) = 02 (0,0) + Flult,2)) + gu(t,2) S (1),
U(, 0) =u(t, 1) =0, (2.37)
u(0, ) = uo(z),

for (t,x) € (0,T] x (0,1). The term gtgv (t, z) represents space-time white noise
and is the formal mixed space-time derivative of the Wiener sheet V.

As before, we say that a function v € C((0, 7] x [0, 1]) is a mild solution of (2.37)
[ 1]
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if u(t, z) satisfies the following stochastic integral equation

u(t,z) = [ G(t,z,y)uo(y)dy + Gt —s,z,y)f(u(s,y))dsdy
/ ’ /0 /0 (2.38)

/ / —s,2,y)g(u(s,y)) dW (s,7),

for every (t,x) € (0,7] x [0, 1], almost surely. The last integral in (2.38) is a
stochastic integral with respect to a so-called worthy martingale measure in the
Walsh-Dalang sense. For a rigorous construction of the Walsh-Dalang integral,
see, for example, Chapter 2 in Walsh (1986) or part 1 in Dalang et al. (2009). See
also Walsh (1981); Dalang (1999) for its early development. For the purpose of
this thesis, it is enough that the reader has in mind the It6 integral in (2.6) but
generalised to space-time.

If f and g are globally Lipschitz continuous, then there exists a unique mild
solution of (2.37). We refer to Funaki (1983); Walshr{1986) for such results.
Moreover, the solution of (2.37) is Holder continuous with exponent 1/4—

time and 1/2— in space (see, e.g., Chapter 5.2 in Khoshnevisan (2014)). Note the
difference in regularity between the solution of (2.3%)perturbed by temporal
white noise and the solution of (2.37) perturbed b ace-time white noise.
This difference in regularity of solutions implies that the order of convergence
of nu al schemes is-expected to be lower for (2.37) compared to (2.35). The
settin IﬁPaper I@ (2:38) with f=0and the setting for Paper V is (2.38).

Similarly to invariant domains for SDEg defined in Section 2.2.4, we call D C R
an invariant domain of SPDE in (2.37) if

%L(t ,z) € D, forall{t]z) € [0, T] %):1,

whenever ug(r) € D for every z € [0,1]. fi5Bhefore, we are interested in the
case D C R.

Examples of SPDEs with invariant domains arise naturally from stochastic
versions of PDEs with invariant domains. Consider, for example, the well-
known Allen—-Cahn PDE

ov 9%v ,
5t (be) =5 2 (tx) + v(t,z) — v(t, x)?,
v(t,0) = v(t,1) =0, (2.39)

t
v(0,x) = vo(z) € [-1,1],

for (t,z) € (0,T] x (0,1), with invariant domain D = [—1, 1]. The Allen—-Cahn
PDE (2.39) was introduced in Allen and Cahn (1979) as a model for phase

[ ]
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separation in multi-component alloys. If we perturb the Allen-Cahn PDE (2.39)
by additive noise, then the solution will not remain in the invariant domain
D = [—1, 1] of the PDE in (2.39). Let us, instead, perturb (2.39) by multiplicative
noise with g(r) = 1 — r2. Then we obtain the following Allen—-Cahn SPDE

?9_1;(75, x) = %(t, z) +u(t,x) — u(t,z)® + (1 — ult, x)z)gtg; (t, x),
u(t,0) = u(t,1) =0, (2.40)
u(0,z) = up(x) € [—1,1],

for (t,x) € (0,T] x (0,1). This SPDE has the invariantJ;o]main D = [-1,1],
which is the samgas|for the Allen-Cahn[PDE in (2.39). In other words, the
invariant domain of the PDE carries over to the SPDE when perturbed by
particular types of noise.

The analogue of Feller’s complete boundary classification for SDEs is not
developed for SPDEs. There are, however, some results in this direction that
we now briefly discuss. One of the first results on invariant domains for
SPDEs was Mueller (1991) where strict positivity for times ¢ > 0 of (1 + 1)-
dimensional stochastic heat equation h as (2.37) (but defined for = € R)
was shown for f(r) = 0 and g(r) = |r|” for v > 1. Strict positivity means that
the invariant domain is (0, c0). This was subsequently extended to (2.37) for
some globally Lipschitz continuous g and for some non-zero source term f in
Shiga (1994) (also for unbounded domain z € R). Since then, many extensions
of thes¢ results have been established for stochastic heat equations. We first
mention Mueller and Sowers (1995) [conisidering the stochastic KPP equation
with invariant domain [0, 1]. Next, Tessitore and Zabczgi. 1998), Moreno Flores
(2014) and Han et al. (2024) generalises Mueller’s resuttto d dimensions with
spatiaily correlated noise, to initial Dirac delta measures and to more general
diffusion coefficient functions, respectively. Lastly, we mention Chen and Kim
(2020)-establishing a strict.comparison princjple, an equivalent concept to strict

i H 1 : PRSI MR B | SRS AU |2 Dk IR
pOSlthlty, in-d dimensions-with Dl)cltlcu.]._y correratea noise:

2.4 Space discretisations

This section provides an overview of the finite difference (FD) method used for
space discretisation in Papers III-V. For concreteness, we illustrate the method
by applying it to the SPDE in (2.37).

As most SPDEs do not@]ve closed-form solutions, we have to resort to numer-
ical approximation. In contrast to SDEs seen in Section 2.1, we have one time

[]
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variable ¢t and one space variable x for the SPDEs in (2.35) and in (2.37). There
are many different space discretisation methods available in the literature and
we mention the finite difference (FD) method, the finite element method (FEM)
and spectral methods. Which space discretisation method to choose depends
on the problem at hand and what types of questions are to be studied. After
any of these space discretisation methods have been employed, the resulting
equations form a finite-dimensional system of SDEs. The form and characteris-
tics of the system of SDEs depend, however, on the chosen space discretisation.
As Section 2.2 covered time discretisations of SDEs, the remaining task is to
discretise the SPDE in space. Since Pap I-v rmn the FD method for the
space discretisation, we restrict our atte n here is approach. We mention
the well-known references Lord et al. (2014); Kruse (2014) and some selective
works Debussche and Printems (2009); Andersson and Larsson (2016) on FEM
and spectral methods to approximate solutions of SPDEs similar to (2.37).

Convergence of space-discrete and fully discrete schemes for SPDEs are defined
in the-analogous way as convergence of time-discrete schemes for SDEs in
Section 2.2.1. More details can be found in the aboved-mentioned references.

[ 1]

2.4.1 Finite difference discretisations

Fitrite'difference (FD) methods approximate derivatives with finite difference
quotients and goes back to works by L. Euler. We mention the seminal paper
by Courant et al. (1967) (the English version, the original is from 1928) as the
starting point of the numerical analysis of FD methods for problems coming
from mathematical physics. We also mention Thomée (2001) that surveys the
historical development of space discretisation procedures with a special focus
on FD methods and FEM. Nowadays, a classical book that contains the content
presented below is LeVeque (2007) to which we refer the interested reader for
proofs and more details. As we hereare concerned with space discretisations,
we replace spatial derivatives in the SPDE with FD quotients.

The space discretisdtion of SPDEs by FD methods started in the beginning of
the 1990s. We mention Jetschke (1991) for an early work and Gyongy (1998);
Davie and Gaines (2001); Millet and Morien (2005) for a later works. We present
the idea of FD methods for the SPDE in (2.37) perturbed by space-time white
noise. The SPDE.in.(2.37).is second order in space, which means that we need
to-consider finite difference q[ﬁjlients up to order 2.

Suppose tha%]e mild solution u of (2.37) is sufficiently regular in the spatial
variable and let Az > 0 b&llle space grid size. The spatial derivative of u at
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€ [Az,1 — Az] can be approximated by the finite difference quotient

ou _u(t,r + Ar) — u(t, v)
%(tax) ~ Az )

which is commonly known as the forward difference quotient. In a similar
manner, the backward difference quotient

u(t,r) —u(t,z — Azx)  Ou
Az v PECEY

and the central difference quotient

u(t,z + Ar) —u(t,r — Az) _0Ou
2Ax ~ ox 7z b %)

Higher order derivatives can be approximated in a similar manner. For exam-
ple, the second derivative of u at  can be approximated by two repeated (each
with space grid size Az /2) central difference quotients as

32u(t 2) u(t,r + Az) — 2u(t,z) + u(t,z — A:U)
Ox? Ax?

Let us now use the finite difference quotients introduced above to spatially
discretise the SPDE (2.37). To this end, we let N € N denote the discretisation
parameter determining the number of space grid points and we let Az = 1/N
denote the space grid size. This yields the space grid points given by z,, = nAx
forn =0,..., N. There are two spatial derivatives in (2.37) to be approximated:

‘32“ nd gtg/ Thus, fort € [0,T] and for x = x,,, withn =1,...,N — 1, we

approximate [ ]

0%u u(t, v, + Az) —2u(t, v,) + u(t, v, — Az)
or 9.2 (t xn) ~ ;JAxQ
and
82W(t )~ o (W(t,x, +Ax) — W(t,z,)
otox " T ot Ax ’

ignoring regularity issues for the time being. By inserting the two approxima-
tions above into (2.37), we obtain the following

0 t,x, + Ax) — 2u(t,z,) + u(t,x, — A
8_?(t,u( x x) u(Amsg) u(t,x x)—i—f(u(t,a:n))

9 (W(tzn+ Az) = W(t, xn)
ot Ax

+ g(u(t, z,))

)
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forn = 1,...,N — 1. This motivates the following definition for the FD
approximation u® : [0,T] x {z1,...,2x_1} — R. The process u” satisfies the
equations

ou™N ulN (t, 1) — 2uN (8 2n) +ulN (t 20 ) N
ot e) = - + I (b 2,)

+ g(uN(t,:r:n))% (W(t’xnﬂig W(t’xn)) :

forn=1,...,N — 1, where we also replaced z,, + Ax with x,,41 and z,, — Ax
with z,,_;. Note that the valuesof uatx = 0(n = 0)and x = 1 (n = N)
need not be approximated, as the boundary conditions u(0) = u(1) = 0 are
prescribed.

(2.41)

We insert the values u™ (¢, x,,), forn = 1,..., N —1, into a vector that we denote
by u¥ (t) € RV 1, we define the matrix
-2 1 0 ... 0 0 O
1 -2 1 0 0 0
0 1 -2 0 0 0
DN = - o (2.42)
o 0 0 . =2 1 0
o o0 o . 1 -2 1
o o0 o0 ... 0 1 =2

and we let W (t) € RV~ be the vector with elements
(WN@), (t) = VN (W(t,zn41) = W(t,zn)), n=1,...,N — 1.

Note that this implies, in particular, that W (¢) is a vector of N — 1 independent
Brownian motions. Thus, we may rewrite (2.41) as the following (N — 1)-
dimensional system of SDEs

{duN (t) = N2DNuN (@) dt + f(uN (2) dt + VNg(u () dWN (2),
u™N (0) = ), ]

for t € (0,7T], where ul is the vector of size N — 1 with the discretised initial
value of the SPDE (2.37) with elements (u’) = ug(x,) forn=1,...,N —1.

(2.43)

If f and g are globally Lipschitz continuous, then the system of SDEs in (2.43)
has a uniq lution u?V that converges in the p-strong sense of order 1/2
(for every p > 2) to the mild solution of the considere¢ SFDE in (2.37). Weak
convergence holds true also for weaker regularity assumptions on f and g. We
refer to Gyongy (1998) for more details.
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2.5 Full discretisations

The final step to constructing a fully discrete approximation u*N ¢ RIM+1)x(N-1)

of the SPDE in (2.37) is to discretise the time variable in the (N —1)—dimensional
system of SDEs in (2.43). We emphasise that ™" isa (M +1) x (N — 1) matrix
with elements u)," ~ u(tpm,z,) form =0,...,M and forn =1,...,N — 1.
Classical choices of time discretisation procedures include the multidimen-
sional generalisations of the EM and SEM schemes discussed in Section 2.2.2.

If f and g are globally Lipschitz continuous, then the fully discrete approxima-
tion u-V obtained from either the EM or SEM time discretisations converges
in the p-strong sense of order 1/4 in time and of order 1/2 in space (for every
p > 2) to fhe]mild solution u of the SPDE (2.37). We refer to Gyongy (1999) for
more details[Weé also mention Anton et al. (2020) proving p-strong convergence
of in time (for every p > 2) for the fully discrete numerical scheme obtained
from discretising (2.43) using an exponential integrator. k convergence of
the above-mentioned schemes can be proved withoutthe global Lipschitz
condition, for this we also refer to Gyongy (1999); Anton et al. (2020)

We say that a fully discrete nurperical scheme wM-Nfor the SPDE

Bt ) = 55 (6.2) + F(u(t,2)) + glult0) 52 (1,2,

for (t,z) € (0,7] x (0, 1), with invariant domain D is boundary-preserving if
upN e Dforallm =0,...,M and foralln = 1,..., N — 1, almost surely. The
classical EM and SEM schemes to approximate the solution of (2.43) are not
boundary-preserving in general and can therefore yield non-physical results.

In contrast to the SDE case in Section 2.2.4, the research topic of boundary-
preserving numerical schemes for SPDEs is under loped. Part of this thesis
is dedicated to sparking interest in this by providing first contributions to
the development and analysiﬁboundary—preserving numerical schemes for
SPDEs.
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3 Summaries of the included
papers

In this section, we provide summaries of the appended papers. The central
research question of the papers is the construction and analysis of boundary-
preserving numerical schemes, as defined in Section 2.2.4 for SDEs and as
defined in Section 2.5 for SPDEs. The focus is on boundary-preserving time
discretisations of SDEs and SPDEs.

[ ]
L]

3.1 Paperl: Boundary-preserving Lamperti-splitting
scheme for some stochastic differential equa-
tions

Short summary

We propose and study a family of boundary-preserving numerical schemes
to approximate the solutions to some scalar Itd SDEs with open and bounded
invariant domain. The proposed numerical schemes combine the Lamperti
transform defined in (2.10) and a Lie-Trotter time splitting discussed in Sec-
tion 2.2.3. The Lie-Trotter time splitting decomposes the Lamperti-transformed
SDE in (2.11) infoan ODE, that is exactly or numerically integrated, and Brow-

ianjmotion. This approach achieves p-strong convergence of order 1 (for every
p >I1), while preserving the invariant domain of the considered SDE.

37
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Motivation

The Lamperti transform is a common tool for constructing boundary-preserving
numerical schemes that achieve a strong order of convergence higher than clas-
sical schemes such as the EM and SEM schemes (see Section 2.2.2). Under
suitable assumptions, the convergence order obtained for SDEs with additive
noise can be transferred to more general SDEs via the Lamperti transform.

Previously proposed boundary-preserving schemes based on the Lamperti
transform have typically been problem-specific (e.g., tailored to particular
choices of f and g¢) or have relied on indirect assumptions on the coefficient
functions. Such indirect assumptions may, for instance, concern the drift term
of the transformed process in (2.12).

The purpose of this paper is to develop a farlgy of boundary-preserving
schemes to approximate the solutions to a wide range of SDEs while requiring
only easily verifiable assumptions.

Contributions

The contributions of Paper I are:
¢ Construction of a family of boundary-preserving numerical schemes for
some SDEs with open and bounded invariant domain.

¢ Proof of p-strong convergence of order 1 (for every p > 1) of the proposed
boundary-preserving numerical schemes.

¢ Numerical verification of boundary-preservation and of 2-strong conver-
gence of order 1.

Detailed summary

Paper I studies scalar SDEs of the form

{dX(t) = f(X(1)dt + g(X (1)) dB(t), t € (0,T], (3.1)

X(0) =z € D,

where f : clD — RisC?, g : clD — (0,00) is C?, and f and g satisfy some
decay conditions near the boundary points of the open and bounded invariant
domain D C R of the SDE. Here, cl D denotes the closure of the invariant
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domain D. The decay conditions ensure that the Lamperti transform ® in (2.10)
is well-defined with a globally Lipschitz continuous inverse and that

P(X(t) € D, forallt € (0,7]) = 1.

We emphasise that the solution process X (¢) cannot reach the boundary points
0D of D, since D is open. Note that we do not impose any assumptions on
f and g outside clD. For instance, f and g may exhibit superlinear growth
outside cl D.

The proposed numerical schemes to approximate the solution X (¢) of (3.1) are
built in three steps. Step 1 is to transform the solution thiujof the SDE in (3.1)
using the Lamperti transform ® to obtain the process Y (t) = ®(X(t)) that
solves the following It6 SDE with additive noise (see also (2.11))

(3.2)

Ay () = a(Y (1)) dt + dB(?), ¢ € (0,T],
Y(0) = ®(x0) €R,

where o : R — R is given by (2.12). The assumptiong oh f and g implies, in
particular, that a is bounded, C!, and has bounded derivative.

In step 2, we apply a Lie-Trotter time splitt@ as follows. Suppose Y,,, for
somem = 0,..., M — 1, approximating Y (¢,,) is given. We first numerically or
exactly integrate the ODE

dal(t) = a(z1() dt, t € (tm, tmi], (33)
21 (tm) = Yma
and then integrate the SDE
dZy(t) = dB(t), t € (tm, tm+1],
{Zg(fm) =21 (tm+1). (34)

We define the next numerical approximation as Y,,+1 = Za(ty41) & Y (tt1)-

The third and final step is to compute the approximation of the solution X ()
of (3.1) at time t = t,, as X,,, = ®~! (V},,). The proposed numerical schemes
exhibits p-strong convergence of order 1 (for every p > 1) while preserving the
invariant domain of the SDE (3.1).

[]

Correction to proof of Theorems 3.5 and 4.4

The proof of the main theorems contain an error that I would like to highlight
and correct here. We refer to the paper for the notation. On page 11, the
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following estimate is used:

Y25 — Y (t)| < (Ly + |pl) LuTAt + (L + |p|) LuTAt

/ /(S)H dB(r) ds

+ LAt Z VS — Y ()]

+= LHTAt+

This estimate should be replaced with

‘Yﬂgs —Y(tm)| < (Lg + |p|) LuTAt 4+ (Lyg + |p|) LuTAt

/O (Y () dB(r) ds

1
+—LygTAt+ sup
2 o(s)

te[0,T]

m—1
+LuAt Y VS — Y (1)
k=0

To complete the proofs of Theorems 3.5 and 4.4, the statement of Lemma A.1
should be replaced with

p

/t ) H'(Y(r))dB(r)ds| | < C(p)LE, T2 AP,

[E[sup
£(s)

te[0,T]

where C(p) is the BDG constant. The above estimate is proved in the same
way as Lemma A.1, with the BDG inequality accounting for the additional
supremum.

3.2 Paper II: Artificial Barriers for stochastic differ-
ential equations and for construction of boundary-
preserving schemes

Short summary

We introduce the framework of artificial barriers to construct boundary-preserving
numerical schemes to approximate the solutions to scalar Itd SDEs with an
open invariant domain. The idea is to introduce auxiliary barrier processes to
convert the considered SDE into an associated reflected SDE (RSDE) to be dis-
cretised using a modified boundary-preserving numerical scheme for RSDEs.
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This approach achieves the same order of p-strong convergence as the used
modified numerical scheme for RSDEs (for every p > 2), while preserving the
invariant domain of the considered SDE.

Motivation

The search for generally applicable boundary-preserving numerical schemes
for SDEs is an active research area. The ultimate goal is to develop a boundary-
preserving numerical scheme with the same level of generality and convergence
order as general numerical schemes for SDEs ignoring the domain.

Let us examine the applicability of the four approaches to construct boundary-
preserving numerical schemes surveyed in Section 2.2.4. The transformation-,
time-splitting- and gBm-based approaches all rely on regularity assumptions
that limit the applicability. In contrast, truncation-based schemes are more
widely applicable. Truncation-based schemes can, in fact, be regarded as special
cases of artificial barrier methods. More precisely, combining artificial barriers
with projection schemes for RSDEs yields numerical schemes that coincide
with truncation-based ones.

The approach developed in this paper:]m inspired by the discretisation of
RSDEs, for which boundary-preservation is both crucial and well-developed.
By establishing a link between SDEs with invariant domains and RSDEs, we
can exploit existing boundary-preserving numerical schemes for RSDEs to
construct corresponding schemes for our setting.

Contributions

The contributions of Paper II are:

¢ A general problem-independent framework to construct boundary-preserving
numerical schemes for SDEs with an open invariant domain, leveraging
modified numerical schemes for RSDEs.

* Proof that the order of p-strong convergence is equal to the order of p-
strong convergence of the used modified numerical scheme for RSDEs
(for every p > 2). For coefficient functions that are globally Lipschitz
continuous on the invariant domain, we combine artificial barrier with a
modified projected EM scheme to achieve p-strong convergence of order
1/2— (for every p > 2).
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* Numerical verification of boundary-preservation and of 2-strong conver-
gence of order 1/2—.

Detailed summary

Paper II studies scalar SDEs of the form

X(0) =20 € D, (3:5)

{dX(t) = f(X(t))dt + g(X(t))dB(t), t € (0,71,
where f,g : D — R are globally Lipschitz continuous functions satisfying
the Feller condition for unattainable boundary points on the open invariant
domain D C R. Thus, D is such that

P(X(t) € D, forallt € [0,7]) = 1.

As in Section 2.1, we refer the interested reader to, for example, Chapter 15 in
Karlin and Taylor (1981) for more details on the Feller condition. We do not
impose any assumptions on f and g outside the domain D. In particular, f and
g may, for instance, be of superlinear growth outside D. In contrast to Paper I,
D can either be bounded or half-bounded in Paper II.

The copstruction of the framework that we call artificial barriers consists of
three-steps.—Instep 1, with R € N, we define a sequence of open domains
(DR) rew approaching D from the inside and we modify the coefficient func-
tions of (3.5) to obtain the auxiliary It6 SDEs

XRr(0) = zo € Dg. (3.6)

{dXR(t) = fr(XRr(t))dt + gr(Xr(t))dB(), t € (0,T],
[]

Here fr,gr : Dr — R are constructed such that Xz (t) € Dr € D for all
t € [0,7], almost surely, and such that Xp — X, as R — oo, in the p-strong
sense (for every p > 2). The reason for this modification of the invariant domain
is that most numerical schemes for RSDEs can reach the boundary points of
the invariant domain (to then be reflected into the invariant domain again), we
avoid this issue by moving the boundary points slightly inside D.

Step 2 introduces an auxiliary process £r that solves the RSDE obtained by
augmenting (3.6) with a barrier process

E{d&%(t) = fr(§r(t)) dt + gr(Er(1) AB(t) + dL(t), t € (0,T], (37)

£r(0) = x0 € Dp,
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where L(t) is a stochastic process that, intuitively, forces £g € c1 Dp = DrUIDp.
As Xp(t) € Dg forall t € [0,7], almost surely, it follows that Xr(t) = &r(?)
for all ¢ € [0, 7], almost surely, by uniqueness of solutions of RSDEs (see, for
instance, Pilipenko (2014)).

In step 3, we discretise the RSDE in (3.7) to approximate {r using a modified
version of a classical numerical scheme for RSDEs. These steps yields a p-
strongly convergent (for every p > 2) approximation procedure for SDEs of
the form (3.5) that is boundary-preserving. The proposed numerical schemes
inherit the order of p-strong convergence from the modified discretisation
procedure for the associated RSDE (for every p > 2). In particular, artificial
barriers combined with a modified version of the classical projected EM scheme
for RSDEs-yields p-strong convergence of order 1/2— (for every p > 2).

[]

3.3 Ei’aper III: Positivity-preserving schemes for some
nonlinear stochastic PDEs

Short summary

We propose and study a positivity-preserving temporal numerical scheme for
strong approximations of the solutions to some multidimensional stochastic
heat equations perturbed by temporal white noise (that is, (2.35) with f = 0 and
in any spatial dimension d > 1) with positive solutions. The proposed numeri-
cal scheme combines a Lie-Trotter time splitting discussed in Section 2.2.3 with
a gBm-based positivity-preserving numerical scheme discussed in Section 2.2.4.
The proposed numerical scheme achieves t@poral 2-strong convergence of
order 1/2 while preserving positivity of the considered SPDE.

[ ]
[ ]

Motivation

To the best of our knowledge, no previous temporal numerical schemes exist
that preserve the positivity of solutions of SPDEs of the form (2.35) (with f =0
and in any spatial dimension d > 1). We mention, however, the work Yang et al.
(2022) that constructs and analyses a positivity-pfeserving numerical scheme
for the special case f = 0 and g(r) = r in the SPDE in (2.35).

[ ]
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Contributions

The contributions of Paper III are:

¢ Construction of a positivity-preserving temporal numerical scheme for
the strong approximation of the solutions for some multidimensional
SPDEs perturbed by temporal white noise with solutions that are positive.

* Numerical verification of positivity-preservation and of 2-strong conver-
gence of order 1/2 in time.

Detailed summary

Paper III considers (1 + d)-dimensional SPDEs perturbed by temporal white

noise of the form
0 dB
= — A b
u(0,z) = ugp(z) > 0,

S

(3.8)

for (t,x) € (0,T] x (0,1)¢, subject to homogeneous Dirichlet boundary condi-
tions. Here g : [0,00) — R is C! with bounded derivative and satisfies g(0) = 0,
B(t) is a Brownian motion, and we assume that ug : [0, 1] — [0, o) is bounded,
globally Lipschitz continuous and satisfies homogeneous Dirichlet boundary
conditions. Note that the driving noise is not depending on the spatial variable
z € (0,1)?% We study time-discrete explicit approximations in Paper IIL.

The assumptions on g imply that
P (u(t,x) € D =1[0,00), forall (¢t,z) € [0,7] x [0,1]) =1

and enable us to apply a gBm-based positivity-preserving numerical scheme
for SDEs as discussed in Section 2.2.4.

The idea of the proposed scheme is to apply a Lie-Trotter time splitting intro-
duced in Section 2.2.3 E]ecompose (3.8) into Itd SDEs

— St ) = glu(t,2) g (0), (39)

subject to homogeneous Dirichlet boundary conditions, and the deterministic

heat equation

%(t, x) = Av(t, x), (3.10)
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also subject to homogeneous Dirichlet boundary conditions. Note that (3.9)
can be defined as an Itd SDE for each fixed z € (0,1)<.

We iteratively approximate (3.9) and solve (3.10) with the initial value for one
being the output from the other. This can be formulated as follows. Given
U 2 [0,1] = R, forsome m =0, ..., M — 1, approximating u(t,,-) : [0,1] = R,
we define the approximation at the next time point ¢,,; as

U1 () = / G(At,,y)
(0,1)4

. (%p <h<um(y>>ABm - Wimw)) dy, (3.11)
-

for z € (0,1)?, where G is the heat kernel defined in (2.33), h(r) = g(r)/r and
where AB,,, = B(t;n+1) — B(t,) denotes the Brownian increment. The integral
kernel without the heat kernel factor G(At, z, y) of (3.11) comes from express-
ing g(r) = rh(r) in (3.9) and approximation by a geometric Brownian motion
on the small interval [t,,, t,, 1] for each z € (0,1)¢. The representation (3.11) is
then obtained by integrating (3.10) with initial value at ¢,,, being the geometric
Brownian motion obtained from (3.9). It is clear from (3.11) that the sequence
uo, . . ., up defines positive spatial funcfions. Note that the first value in the
sequence uy is the initial value of (3.8). -

The proposec@umerieal scheme defined by (3.11) exhibits temporal 2-strong
convergence of order when applied to (3.8) and thisTs verified in one and
two spatial dimensions umerical expgfithents. This order of convergence
is expected since the solution of (3.8) is Holder continuous with exponent 1/2
in time. L]
[ ]
L]

3.4 Paper IV: Analysis of a positivity-preserving
splitting scheme for some semilinear stochas-
tic heat equations

Short summary

We propose the first fully discrete positivity-preserving numerical scheme for
strong approximation for some semilinear stochastic heat equations perturbed
by space-time white noise (that is, (2.37) with f = 0) with positive solutions.
Similarly to Paper III, the ]ﬁosed numerical scheme combines a Lie-Trotter
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time splitting discussed in Section 2.2.3 with a gBm-based positivity-preserving
numerical scheme for SDEs in the sense of Section 2.2.4 for the time discretisa-
tion. In contrast to Paper III, due to too low regularity of space-time white noise,
we can not apply a Lie-Trotter time splitting directly to the SPDE. Instead, we
first discretise the SPDE in space using an FD discretisation.

The proposed numerical scheme converges in the 2-strong sense of order 1/4
in time and of order 1/2 in space, under some assumptions. The 2-strong
convergence of order 1/2 in space follows from Gyongy (1998).

[ ]
I

Motivation

To the best of our knowledge, no previous numerical schemes exist that pre-
serve the positivity of solutions of SPPE-of theform (2.37) with f = 0. Paper IV
is continuing the work in Paper III, where we apply a similar time discretisation
to the SPDE perturbed by space-time white noise in (2.37) with f = 0 whose
solutions are positive almost surely.

Classical space and time discretisations for this problem have previously been
studied in, for example, Gyongy (1998, 1999), but these fully discrete numerical
schemes are not guaranteed to remain[pakitive for all times ¢ € (0, T7.

[ 1]

Contributions

The contributions of Paper IV are:

¢ Construction of the first positivity-preserving numerical scheme for the
strong approximation for some semilinear SPDEs perturbed by space-
white noise with positive solutions.

* Proof of positivity-preservation and of 2-strong convergence of order 1/4
in time.

* Numerical verification of positivity-preservation and of 2-strong conver-
gence of order 1/4 in time.
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Detailed summary

Paper IV considers (1 + 1)-dimensional semilinear SPDE of the form

)= o alt.w) + glult,m) 0o (),

(
u(,) (tl) 0,
u(0,2) = ug(x) € D = [0, 00),

t,

S

(3.12)

for (t,x) € (0,7] x (0,1). Here g : [0,00) — R is continuously differentiable
with bounded derivative and satisfies g(0) = 0, W (¢, x) is a Wiener sheet, and
up : [0,1] — [0,00) is C* and satisfies uo(0) = ug(1) = 0. These assumptions
imply that

P (u(t,z) € D =[0,00), forall (t,z) € [0,T] x [0,1]) =

and that we can apply a gBm-based positivity-preserving numerical scheme for
SDEs as discussed in Section 2.2.4. If g(r) = r for r € (0, 00), then (3.12) is the
well-known parabolic Anderson model. We refer to Carmona and Molchanov
(1994); Konig (2016) for treatments and applications of the parabolic Anderson
model. We study fully discrete explicit approximations in Paper IV.

The construction of the proposed positivity-preserving numerical scheme
for (3.12) consists of three steps. In step 1, we spatially discretise (3.12) us-
ing the standard FD method as introduced in Sectierl 2.4 with N € N as the
discretisation parameter. The RY ~!-valued sotutiorrprocessa” : [0, 7] — RV !
of the system of 1t6 SDEs

N N, N N
:]{du (t) = N2DVu ()dt+\/_9 DAVt (O.T] 513

approximates the mild solution u(¢,z) of (3.12) on the spatial grid points
T1,...,TN_1. Asin Section 2.4, N2D¥ is the discrete (N — 1) x (N — 1) Lapla-

cian matrix defined in (2.42) and W (¢) is a vector of size N — 1 consisting
of independent Brownian motionl%enerated from the Wiener sheet process

W(t,x). n

In step 2, we apﬂ@ Lie-Trotter time splitting as introduced in Section 2.2 to
split (3.13) into a diagonal (/N — 1)-dimensional system of It6 SDEs

— Ny = VNgN (@) dw™ () [ (3.14)

and a non-diagonal (N — 1)-dimensional system of ODEs

do™ (t) = N2DNo™N (¢) dt. (3.15)



48 3. Summaries of the included papers

The time integration of (3.13) by a Lie—Trotter splitting is given by iteratively
approximating (3.14) and integrating (3.15) with starting value for one being
the output value from the other one.

We initialise the approximating sequence with ug ,, = ug(z,) forn =1,..., N —
1. Suppose that (um,n)fj:_ll, forsomem = 0,..., M —1, approximating the mild
solution u(t,,, -) of (3.12) at time ¢ = t,,, on the spatial grid points z1,...,xn_1

is given. We define the approximation (um+17n)fj;11 of the mild solution

U(tm+1, ) at the next time point ¢,,,+1 as

L =
Um+1,n = Gri(At)
k=1
Nh(tum )2 A
X exp (\/ Nh(tm i) Ay n W — fo(u Q’k) t) Um ks (3.16)

N-1

forn=1,...,N — 1, where (Gf\;(t))i’j:l = exp (tN?D?Y) is the discrete heat

kernel associated with (3.15), h(r) = g(r)/r and where A,,, ,W = W (t,,41) —
WX (t,). The random variables (A, W) oc, car 1 1<n<n._ ar€ independent
and normally distributed with mean 0 and variance At.

The proposed positivity-preserving numerical scheme exhibits 2-strong tem-
poral convergence of order 1/4 and spatial convergence of order 1/2. This is
expected since ﬁ mild solution of (3.12) is Holder continuous with exponent
1/4 in time and With exponent 1/2 in space.

3.5 Paper V: Bogdary-preserving weak approxima-
tion for some semilinear stochastic partial dif-
ferential equations

Short summary

We propose the first boundary-preserving numerical scheme for weak approxi-
mation for some semilinear SPDEs with bounded invariant domains and with
coefficient functions that are only assumed to satisfy regularity assumptions
on the invariant domain. The behaviour of the coefficient functions outside
the invariant domain is of no importance and can, for instance, exhibit super-
linear growth. The proposed fully discrete boundary-preserving numerical
scheme consists of a FD discretisation in space and a Lie-Trotter time splitting
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combined with exact integration and exact sampling in time. This approach
enables us to guarantee that the numerical approximations are confined to the
invariant domain of the SPDE and it enables us to prove weak convergence
of order 1/4 in time and of order 1/2 in space, under some assumptions, for
globally Lipschitz continuous test functions.

Motivation

The first positivity-preserving numerical scheme for the SPDE in (2.37) with
f = 0 was proposed and studied in Paper IV. Many interesting SPDEs are not
of this form and there is therefore a need to construct boundary-preserving
numerical schemes for the general case (2.37).

As mentioned in the summary of Paper 1V, classical numerical schemes are
known to converge in the 2-strong sense to the mild solution (see Gyongy
(1999)) of the considered SPDE with bounded invariant domain (possibly with
truncated coefficient functions). However, these clgssi¢al numerical schemes
do not preserve the invariant domain of the SPDE.

[ ]

Contributions

The contributions of Paper V are:

¢ Construction of the first boundary-preserving numerical scheme for the
weak approximation for some semilinear SPDEs perturbed by space-time
white noise with a bounded invariant domain.

* Proof of boundary-preservation and of weak convergence of order 1/4 in
time for globally Lipschitz continuous test functions.

* Numerical verification of boundary-preservation and of weak conver-
gence of order 1/4 in time for globally Lipschitz continuous test functions.

Detailed summary

Paper V considers (1 + 1)-dimensional semilinear SPDEs of the form

%(t’ T) = %(t, x) + f(ult,x)) + g(u(t, x))%(t, ),
u(t, 0) = u(t, 1) = 0, (3.17)
u(0,2) = up(z) € D =[-1,1],
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for (t,z) € (0,7]x(0,1). Here f, g : D — R are C? and C? functions, respectively,
that satisfy some decay estimates near the boundary points of the invariant
domain D = [-1,1], W(t,z) is a Wiener sheet, and ug : [0,1] — D is of
class C? and satisfies uo(0) = ug(1) = 0. The specific choice of D = [—1,1]
in (3.17) is for ease of presentation. The generalisation of (3.17) to D = [a, b], for
—00 < a < b < oo, is straightforward. We study fully discrete approximations
in Paper V.

In Paper V, we propose to combine the ideas of Paper IV with exact sampling
for SDEs to construct a boundary-preserving numerical scheme that converges
weakly to the mild solution of (3.17). This approach enables us to treat a large
family of SPDEs of the form (3.17) with bounded invariant domains and to
obtain weak convergence with respect to globally Lipschitz continuous test
[Tdanctions. The first part of the numeridal 3cheme is the same as in Paper
IV (up to (3.15)). In contrast to Paper IV, both the diagonal system of SDEs
in (3.14) and the non-diagonal system of ODEs in (3.15) are solved exactly.
The former is solved in the weak stochastic sense using componentwise exact
sampling and the latter is solved deterministically using the matrix exponential
exp (AtN2DV), as i er IV. The assumptions on f and g enable us to apply
exact sampling as int ced by Beskos and Roberts (2005); Beskos et al. (2006).

The proposed boundary-preserving numerical scheme exhibits temporal weak
[convergence of order 1/4 and spatial convergence of order 1/2, under
some assumptions, for globally Lipschitz continuous test functions.
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