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“Certainly, let us learn proving, but also let us learn guessing.”
- G. Polya, Mathematics and Plausible Reasoning






Theory Exploration

Automated Conjecturing for Programs and Proofs
SOLRUN HALLA EINARSDOTTIR

Department of Computer Science and Engineering
Chalmers University of Technology | University of Gothenburg

Abstract

Theory exploration is an approach to automating the discovery of interesting
and useful properties about computer programs and mathematical structures.
Such properties can be used to guide automated and interactive reasoning.
Coming up with new lemmas is often crucial in proof automation, and can
provide vital assistance to a user of an interactive proof system. Generating
properties that specify the behavior of a program is beneficial for software
verification, testing, and debugging. Automated conjecturing is a challenging
endeavor due to the vast search space and the difficulty in identifying the most
interesting and useful properties. Developing effective conjecturing techniques is
therefore critical for advancing both automated and interactive formal reasoning
about programs and proofs.

In this thesis, we present novel symbolic and neuro-symbolic methods for
theory exploration, along with the design, development, and evaluation of
associated tools. First, we present a coinductive lemma discovery tool, the first
system designed to automatically discover and prove lemmas about potentially
infinite structures. Then, we integrate theory exploration and automated
theorem proving in a state-of-the-art inductive proof system. Next, we introduce
template-based theory exploration, which narrows the conjecturing search space
and makes theory exploration faster and more targeted. In addition, we provide
empirical evidence for the effectiveness of template-based theory exploration in
finding interesting and useful lemmas for mathematical formalizations. Finally,
we use Large Language Models (LLMs) for lemma conjecturing, both directly
and as part of a neuro-symbolic template-based tool. We present the first
neuro-symbolic lemma conjecturing tool that can automatically conjecture
lemmas across all formalization domains.

Keywords

Theory Exploration, Conjecturing, Theorem Proving, Formalization, Auto-
mated Reasoning, Functional Programming, Proof Assistants, Al for Math,
Induction, Coinduction
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Chapter 1

Introduction

How can we automate the discovery of interesting and useful properties about
computer programs and mathematical structures? Why would we want to
know about such properties? And what do we mean by interesting and useful?

The topic of this thesis is automated conjecturing through theory exploration.
Theory exploration is an approach to automatically discovering interesting
and useful properties about the functions and data structures that appear
in computer programs and mathematical theories. In the work presented
in this thesis, we use theory exploration techniques to discover lemmas for
mathematical formalization and proof automation, and to discover specifications
for functional programs.

Mathematical formalization is the process of defining mathematical concepts
and proving theorems about them within a formal computer system, where
the system verifies that each step of reasoning is logically valid. In the context
of mathematical formalization and theorem proving, automatically coming
up with new conjectures and lemmas can help with proof automation or to
guide an interactive proof process. In the context of software development,
a program specification is necessary in order to verify program correctness
using formal methods. Knowing what properties hold about the functions and
data structures in a program can help us with specifying, verifying, testing,
debugging, and extending the program.

1.1 What makes a conjecture interesting or
useful?

To define what makes a conjecture interesting, we draw inspiration from the
measures of interestingness suggested by Colton, Bundy, and Walsh in their
survey on the notion of interestingness in automated mathematical discovery [22]
from 2000, and consider the following characteristics:
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1. Empirical Plausibility and Applicability. We are primarily interested in
conjectures that are actually true and satisfied by a non-trivial subset of
their domain. The more easily a counterexample that falsifies a conjecture
can be found, the less interesting it is. Conversely, if a conjecture has
preconditions, the more seldom they are satisfied the less interesting it is.

2. Nowelty and Surprisingness Interesting conjectures should introduce new
knowledge or present knowledge in a novel way. If a conjecture is re-
dundant or trivial with respect to previously discovered conjectures, we
deem it uninteresting. Instances of tautologies are totally unsurprising
and therefore make for uninteresting conjectures.

3. Comprehensibility If the conjecturing system is intended to output conjec-
tures for a user to read, conjectures that are easier to read and understand
are of more interest.

4. Utility. If the user of a conjecturing system explicitly expresses interest in
particular concepts or a particular kind of conjectures, conjectures about
those concepts and of that kind must be interesting.

These characteristics guide the design of the conjecturing methods presented
in this thesis. All of these methods are designed to generate conjectures
about specific concepts, ensuring the utility of generated conjectures. The
QuickSpec conjecturing tool [77], which we use in Papers 1 and 2, uses term
generation and equivalence testing to establish the plausibility and applicability
of generated conjectures. QuickSpec incorporates pruning methods to boost
novelty and surprisingness and heuristics to improve comprehensibility. The
template-guided method implemented in our tool RoughSpec, presented in
Paper 3, places increased emphasis on the utility of generated conjectures by
only searching for conjectures of specified shapes. This may in turn generate
conjectures that are somewhat less novel, surprising, or applicable. In Paper 5
we present a neuro-symbolic conjecturing tool, LEMMANAID, which relies on a
Large Language Model to implicitly capture notions of interestingness from its
training data, without explicit guidance.

In a theorem proving setting, a conjecture’s usefulness can be defined in
the following way: If the conjecture holds, does adding it as a lemma enable
the proof of a goal theorem that we couldn’t prove without it with the available
proof methods? We make use of this definition in Papers 1 and 2 included in
this thesis, where our conjecturing system is embedded in a theorem prover.
But how can we evaluate the quality of conjectures that are generated in a
context where there is no goal of proving specific theorems? A measure we
use to evaluate interestingness and usefulness throughout the work in this
thesis is the following: Does a human expert consider it interesting or useful?
We assume that the lemmas included in a formalization by an expert user
were considered interesting or useful by that expert. If our system manages
to automatically rediscover a lemma that an expert user chose to include in
their formalization, we judge that it has succeeded in synthesizing some of the
intuition and motivation that led the expert user to include that lemma.
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1.2 The Conjecturing System

We present our vision of a conjecturing system: A user is working on a mathe-
matical formalization, or writing a program, and has defined some functions,
some datatypes, perhaps some theorems about those functions and datatypes.
Our conjecturing system takes these definitions as input, and outputs con-
jectures that are likely to be true and useful lemmas in this context. These
conjectures help the user to make progress in their formalization, or better
understand the behavior of the program they’ve defined. Such a conjectur-
ing system, alongside automatic proof methods for the conjectured lemmas,
could be an important piece of a formalization copilot system, where human
mathematicians and Al systems can collaborate to formalize mathematical
theories (and discover new mathematical theories) efficiently and effectively, as
envisioned by mathematician Terence Tao and others [29].

Functions,
Datatypes, Theorems

Conjecturing
System

Formalization

Lemma Suggestions

User

Figure 1.1: Our vision of a conjecturing system.

As a simple example, when asked to generate conjectures about addition
and multiplication on natural numbers, our theory exploration system Rough-
Spec will produce the output shown in Figure 1.2 in less than half a second.
The generated conjectures include identity, commutativity, distributivity, and
associativity properties. In Paper 2 we show how RoughSpec can be used
to discover not only simple arithmetic properties, but specifications for var-
ious Haskell software, such as a window manager and a large library of list
operations.
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Searching for fix-point/id properties...
1. x*x0=0

Searching for left-id-elem properties...
2. 0 +x =
3. 1 *x =

Searching for right-id-elem properties...
4. x+ 0 =x
5. x x 1 =x

Searching for commutative properties...
6. x+y=y+x
7. x*xy =y %X

X
X

Searching for operator-commutative properties...

8. x+(y+2) =y + (x+2)

9. x * (y * z) =y * (x *x z)
Searching for distributive properties...
10. x * (y +2) = (x xy) + (x * 2)
Searching for associative properties...
11, x+y) +z=x+ (y +2)

12. (x *xy) *z=x % (y * 2)

Figure 1.2: Arithmetic properties discovered by RoughSpec.

For further examples, consider some of the lemmas conjectured by our
neuro-symbolic conjecturing tool LEMMANAID, which conjectures lemmas for
formalizations in the Isabelle proof assistant. Given the function symbols,
definitions and types used in a verified implementation of Schonhage-Strassen
multiplication and verified proof of its asymptotic complexity [72], LEMMANAID
conjectures the correctness of the multiplication implementation, as well as
various lemmas that are used in the proofs of the implementation’s correctness

and its complexity, a few of which are shown in Figure 1.3.

to-nat (schoenhage-strassen-mul a b) = to-nat a * to-nat b

Idiz{m} N Idiz{n} = Idlz{lem m n}

a € nt-lsbf- fermat. fermat-non-unique-carrier m —

b € nt-lsbf-fermat. fermat-non-unique-carrier m —

val (schoenhage-strassen-tm m a b) = schoenhage-strassen m a b

n > 0= real (bitsize n) <log 2 (real n)+1

Figure 1.3: Some lemmas conjectured by LEMMANAID.
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1.3 Research Questions

The overarching research questions addressed in this thesis are the following:

1. How can we develop and apply theory exploration techniques to discover
interesting and useful properties in the context of programming and
proving?

2. Can template-based theory exploration be used effectively for functional
program specification and mathematical formalization?

3. How can we combine neural and symbolic methods for theory exploration?

1.4 Contributions of this thesis

In the work compiled in this thesis, we design, develop, and evaluate tools
to automatically discover interesting and useful properties. We present novel
methods, both symbolic and neuro-symbolic. We demonstrate how our tools can
be used to discover the lemmas needed to automate inductive and coinductive
proofs, to automatically specify properties of functional programs, and to
discover lemmas in formalizations for a wide variety of domains. We use large
language models (LLMs) for lemma conjecturing both directly and as part
of a neuro-symbolic tool in a novel approach, and develop the first neuro-
symbolic lemma conjecturing tool that can automatically conjecture lemmas
for any theory formalized in Isabelle/HOL. The contributions of the five papers
included in the thesis are listed below:

The first coinductive lemma discovery tool

In Paper 1, we present Cohipster, a coinductive lemma discovery tool for the
Isabelle proof assistant. Cohipster uses theory exploration to discover equational
lemmas about corecursive functions and proves them using automated proof
tactics. Cohipster is the first system to automatically discover and prove
coinductive lemmas. Its design and implementation required the development
of new techniques for automatically testing the equivalence of infinite structures,
as well as for automating coinductive proofs.

A state of the art inductive proof system

In Paper 2, we integrate the state-of-the-art theory exploration system Quick-
Spec with the state-of-the-art automated theorem prover Vampire to create a
hybrid inductive proof system. We present a method that adds lemmas con-
jectured by theory exploration to inductive problems as part of an automated
proof pipeline. We train strategy schedules specialized for inductive proofs with
and without auxiliary lemmas to optimize the prover’s parameter selection.
By combining strategy training and theory exploration we achieve state of the
art performance on inductive proof benchmarks, finding more proofs than any
previous method.
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Template-based theory exploration

In Papers 3-5 we present and develop template-based theory exploration, where
the search space is restricted to specific shapes of properties. A template is an
abstraction describing a family of properties that have a particular common
shape, such as distributivity or commutativity. Limiting the search space to
specific shapes of properties makes theory exploration faster, more tractable,
targeted and versatile.

e In Paper 3 we present template-based theory exploration and the tool
RoughSpec. RoughSpec is a template-based theory exploration system
for Haskell programs that allows users to specify what kinds of properties
they are interested in finding by using templates. RoughSpec generates
specifications that are small and easy for the user to understand. It allows
the user to target specific families of properties they are interested in, or
use built-in default templates to quickly generate a rough specification
of their program’s behavior. RoughSpec scales up to larger APIs much
better than previous systems. RoughSpec is also complementary to
the previous theory exploration system QuickSpec, and using them in
combination efficiently produces specifications of a manageable size that
contain interesting properties.

e In Paper 4 we provide a more robust empirical foundation for template-
based theory exploration and move in the direction of a data-driven
approach to finding good templates. We compile a collection of over
20,000 lemmas from the Isabelle Archive of Formal Proofs (AFP) and
their corresponding templates. The AFP contains formalizations on a
wide range of topics from mathematics, computer science, and logic,
developed by experts, and is therefore a good source of interesting and
diverse lemmas. The assumption behind RoughSpec was that certain
lemma shapes are common and can be used to efficiently conjecture many
(but not all) lemmas by analogy to known shapes. Our analysis of the
dataset supports this assumption.

Neuro-symbolic theory exploration with an LLM

In Paper 5, we combine template-based theory exploration with LLMs in the
neuro-symbolic lemma conjecturing tool LEMMANAID. We fine tune an LLM to
come up with a good template for a given set of definitions, using a training data
set similar to the one presented in Paper 4. We develop a new symbolic tool,
similar to RoughSpec as presented in Paper 3, but implemented in the Isabelle
proof assistant, to generate lemmas using the template from the LLM. We
also develop a purely neural baseline, by using the LLM to directly conjecture
lemmas instead of templates.

LEMMANAID successfully discovers interesting and useful lemmas in a wide
variety of formalization domains from mathematics, computer science, and
logic. It can be used to automatically generate conjectures about any set of
Isabelle definitions and unlike our previous tools it is not restricted to generating
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equational properties, nor does it require user supplied templates. LEMMANAID
outperforms both purely neural and purely symbolic methods on our test sets,
demonstrating the value of a neuro-symbolic approach.

1.5 Structure of thesis

The remainder of this thesis is organized as follows: In Chapter 2 we introduce
relevant background material. In Chapter 3 we review the existing literature
on lemma discovery and identify research gaps addressed by our work. In
Chapter 4 we summarize the included papers. In Chapter 5 we summarize
our main conclusions and discuss some ideas for future research directions.
The papers are appended in the second part of this thesis, ordered as listed in
Section 1.4.
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CHAPTER 1.

INTRODUCTION




Chapter 2

Background

2.1 What is Artificial Intelligence?

Traditionally, artificial intelligence (AI) has been divided into two approaches.
On the one hand, there are symbolic methods, which are explicitly programmed
to reason about their input to come up with a correct output. They are
explicitly embedded with symbolic representations of knowledge and reasoning,
in the form of logical inference rules and logical encodings of facts. One example
of this is classical automated theorem proving, where the prover attempts to
use a system of logical inference rules to deduce a proof of a given logical
statement based on a set of logical axioms. On the other hand, there are
data-driven machine learning methods. Such methods learn to solve tasks
without explicit instructions about how to find the correct outcome, by using
statistical algorithms to recognize patterns in a large set of examples.

In recent years much of the discussion of Al, both in popular media and
in the research community, has been centered around a particular category of
machine learning systems, namely generative Al models and in particular Large
Language Models (LLMs). These models use deep neural networks based on the
transformer architecture [85] to learn patterns from huge amounts of training
data, and use the learned patterns to generate new output data based on given
input prompts. They have achieved very impressive results in generating all
kinds of text output as well as images, audio and video.

LLMs have also shown a capability to solve reasoning tasks, particularly
when chain-of-thought prompting [93] is used to generate a series of intermediate
reasoning steps, when continued pre-training on specialized technical datasets
is used [56, 3], or when the model is fine-tuned for specific reasoning tasks with
supervised fine-tuning on relevant data. More recently we have seen the release
of so-called Large Reasoning Models, specialized LLMs specifically trained
for reasoning tasks using reinforcement learning [67, 24]. Models specialized
for reasoning are often modified to spend more time performing multi-step
reasoning internally before outputting a response compared to a standard
LLM. There is a great deal of ongoing development in improving the LLM
performance on reasoning tasks, and they have already achieved remarkable

11
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results in code generation tasks [46] as well as mathematical reasoning [91] and
theorem proving [57].

Training a large generative Al model requires a huge training data set and
a significant amount of computing power. For example, consider DeepSeek-
V3 [25], a state of the art LLM released in December 2024. It contains 671
billion parameters, was trained on a dataset of 14.8 trillion tokens and consumed
56,000 petaflop/s-days of compute during its training. Each query to the model
also incurs a computational cost, so larger scale or more complex querying is
only available through a paid API or to users with access to the computational
resources and know-how to host their own version of the model.

In contrast, specialized symbolic tools usually require very little compu-
tational power for their implementation and usage, but have a much more
limited utility. For example, the tools we present in Papers 1 and 3 run on a
standard laptop and produce results in a matter of seconds, and did not require
any specialized hardware for their development. However, they are highly
constrained in the kinds of output they can generate and the kind of input they
can process. The input must be provided in a specific syntax and belong to
the input space the tool is designed to reason about, and the output will never
come from outside the predefined search space of outputs. For example, the
tool Cohipster we present in Paper 1 will only produce equational properties
of a limited size, about the subset of Isabelle/HOL functions and datatypes
that can be translated to Haskell and for which we can automatically generate
test data.

While large neural models are powerful and impressively versatile, they can
not provide correctness guarantees for their results. They will come up with
the most likely output based on the given input and the patterns learned from
the training data, without verifying that the output is in fact correct. In order
to guarantee correct output they must be combined with symbolic methods for
verification. Various neuro-symbolic approaches have been developed to leverage
deep neural models while using symbolic tools to verify output, particularly
for mathematical reasoning and theorem proving tasks.

What then is the best approach to design an Al system that comes up
with interesting and useful properties or lemmas? In the work presented in
this thesis we use several different approaches ranging from mostly symbolic to
using a LLM, detailed in Section 2.3. In Chapter 3 we examine approaches to
lemma discovery from the literature.

2.2 Al for mathematics and theorem proving

In 1955, AT pioneers Newell and Simon presented a specification of the logic
theorist [65], a system that generated proofs for logic theorems using heuristic
methods “similar to those that have been observed in human problem solving
activity” that could successfully prove many theorems from Principia Mathe-
matica [94]. Newell and Simon were very optimistic about the development of
AT that would surpass human abilities in mathematics as well as other domains,
as were many of their peers at the time. In 1958 they predicted that “within ten
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years a digital computer will discover and prove an important new mathematical
theorem.” [73].

This prediction certainly did not come true in the ten following years. Even
now, 70 years later, it has not yet been realized in its entirety, although various
qualified versions of the statement have come true. The early Al visionaries
believed it would be straightforwardly possible to create systems that could
simulate the reasoning abilities of a human, by programming them with the
correct heuristic rules. This turned out not to be the case.

Despite not realizing Newell and Simon’s prediction, many great advance-
ments have been made since 1955 in how computers can be used to automate
and assist mathematical reasoning. In Chapter 3 we examine previous ap-
proaches to lemma discovery more thoroughly. Here we briefly introduce some
other concepts relevant to the work in this thesis.

2.2.1 Automated theorem proving

Automated theorem provers (ATPs) are systems designed to check whether a
given logical conjecture follows from a given set of axioms. In Paper 2 we work
with Vampire, a saturation-based ATP [81, 53|. Vampire is a state-of-the-art
ATP and has won many awards CADE ATP System Competition (CASC) [82],
the world cup of ATP systems, winning at least one division every year since
1999. In the 2025 CASC, it won first place in all eight theorem proving divisions
for the first time. While Vampire was originally built to prove theorems in
first-order logic, it has been extended for various other applications including
inductive reasoning [39], which we make use of in our work.

2.2.2 Interactive theorem proving

While ATPs can reason very efficiently, the expressivity of the logic they can
reason about is limited, so using them to prove more advanced mathematical
theorems is a challenge. An interactive theorem prover (ITP), also called a proof
assistant, is a tool for formalizing proofs about mathematics or other topics
that can be expressed in a formal language. The ITP provides an interface
between the user and a logical verification engine. This allows the user to define
concepts, such as datatypes and functions, and verify statements about these
concepts by building a proof of logical steps verified by the system. In this
way the user can build verified formalizations about advanced mathematical
concepts.

In Papers 1, 4 and 5 we work with the ITP Isabelle [66]. The instance we
work with, Isabelle/HOL, includes built in tools and libraries for specification
and reasoning in higher-order logic. A vast and constantly growing collection
of Isabelle formalizations is available in the Archive of Formal Proofs [2]|, which
makes a great source for data-driven applications which we take advantage of
in Papers 4 and 5.
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2.2.3 LLMs for math

Since the emergence of LLMs in this decade, we have a new way of using Al
systems to engage with mathematical reasoning. We can give an LLM a query,
in natural language, asking for a solution to a given problem or the proof of a
given theorem, or even a formal proof in the language of an ITP like Isabelle.
This has lead to some impressive results, for example an Al system achieved
gold medal performance on the International Mathematical Olympiad [58]
for the first time this year, which seemed far out of reach only a few years
ago. If the rate of progress continues as it has, perhaps LLMs will be making
advancements in research mathematics soon enough.

Much of the research on using LLMs for mathematical reasoning has been
focused on autoformalization [92, 79, 95, 44], or translating natural language
statements to a formal proof language used by an ITP. Another line of research
is the generation of proofs in a formal language, either incrementally [45, 70],
or by generating whole proofs at once [34]. However, there has not been much
work on lemma discovery and conjecturing using LLMs. Although some success
has been made on generating lemmas in a constrained setting [36, 68], based on
a seed statement [28], and building a library of lemmas based on encountered
proof goals [89], our tool LEMMANAID is the first to conjecture lemmas in a
generalized setting and without any seed statement.

2.3 Owur Al approach

The work in this thesis showcases a few different flavors of Al, ranging from
fully symbolic to using LLMs. In Papers 1 and 3, we use Al for conjecturing
with an approach that is not machine learning but also not purely symbolic,
described in more detail in Section 3.1.3. It is in part data-driven but does not
require us to provide a dataset for training and testing — rather we generate
random test data using methods that are fast and efficient. A great benefit
of this approach is that it allows us to generate new knowledge while using
tools that can be run on a normal laptop and come up with results in seconds.
In Paper 1 we also use purely symbolic methods to automatically prove the
discovered lemmas.

In Paper 2, we combine the previous approach to conjecturing with the
strong symbolic Al built in to the Vampire ATP, as well as a data-driven
approach using random sampling and optimization to find an optimal strategy
schedule for Vampire. Combining these methods made for a powerful automated
inductive proof system.

While we achieved good results with these symbolic techniques, we were
constrained to conjecturing equational properties. We could only generate
conjectures about functions and datatypes that could be expressed in Haskell
and for which we could automatically generate test data. We were therefore
motivated to develop more versatile neural and neuro-symbolic conjecturing
methods, to expand the range of concepts we could conjecture about and the
shapes of conjectures we could generate. We hypothesized that the learned pat-
terns embedded in deep neural models could help us find interesting and useful
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conjectures, without us having to explicitly define what makes a conjecture
interesting.

In Paper 4, we move in the direction of machine learning based conjecturing
by compiling a potential training data set and examining the patterns that
occur in the data. In Paper 5, we use an LLM to generate lemma conjectures
directly, and also to generate lemma templates in combination with a symbolic
system that instantiates templates into well-formed lemma conjectures.
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Chapter 3

Literature on lemma
discovery

There are many different possible approaches to the challenging task of dis-
covering lemmas. A major dichotomy is whether the approach is top-down or
bottom-up [48]. A top-down approach starts from a goal conjecture and aims
to discover lemmas that will aid in the proof of that conjecture. A bottom-up
approach is what we refer to as theory exploration, where lemmas about a given
set of concepts are constructed without an explicit goal. Here the aim is rather
to create a richer theory with new lemmas that may be useful in future proofs
or help to unveil new theorems and concepts.

Another dichotomy is whether the approach inherently generates only true
lemmas or whether it generates conjectures that may actually be false. The
first case, where reasoning from known facts is used to generate provably true
lemmas, we refer to as lemma synthesis. The second, where the generating
system does not know whether the generated statements are true and they
must be verified or falsified later on, we refer to as conjecturing.

Following is an overview of systems that generate conjectures and lemmas
using various different methods, developed over the past 50 years. We discuss
the conceptualization of these systems, how they determine what properties
are interesting, and what they have been used for. We identify research gaps
that are addressed by the work in this thesis.

3.1 Symbolic methods

First we consider various symbolic approaches to lemma discovery. We divide
these up into purely symbolic methods based on heuristics and reasoning,
methods that generate conjectures matching specific templates, and those that
enumeratively generate terms or properties. Filtering out false conjectures by
testing is commonly done in all three categories.

17
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3.1.1 Conjecturing with heuristics and symbolic reasoning

Various systems have implemented purely symbolic conjecturing techniques.
Many of these techniques use heuristic rules to mutate known facts or proof
goals to generate new conjectures. Others involve logical deduction used to
reason forward from given facts to synthesize new lemmas.

Bottom-up

The AM system [55] was an Al system designed to develop new mathematical
concepts, developed in the 1970s. Guided by a large body of heuristic rules,
it incrementally extends its knowledge base, eventually rediscovering various
mathematical concepts and theorems. For example, starting with knowledge
about elementary concepts such as sets, operations, and equality, AM discovered
concepts corresponding to natural numbers, multiplication, and factors, and
conjectured known relationships including the unique factorization theorem.

The GT system [30] for automating research in graph theory could discover,
conjecture and prove theorems about properties of graphs. The conjectures
were limited to certain set-theoretic relations between classes of graphs that had
certain properties, such as one property subsuming another or two properties
being equivalent. It could operate both independently, inventing properties
from scratch starting from a graph definition, or with interactive guidance,
conjecturing and proving theorems about user-defined properties.

Bagai et al. presented a discovery program for plane geometry in [4].
Geometric diagrams, involving points and lines and relations between points
and/or lines, were represented with first order logical statements. Starting from
an empty set, the system would add new points and relations to a previous
diagram, and conjecture that the diagram resulting from each added relation
was impossible to draw. The conjecture was sent to a theorem prover, and if the
prover could not prove the conjecture the diagram was considered consistent
and used to develop further concepts.

The HR system [21] was designed to generate concepts and conjectures
in mathematical domains. It used a model finder combined with heuristic
search rules to generate conjectures of interest, starting from a set of axioms.
Its applications included lemma generation as well as generating benchmark
theorems to test automatic theorem provers. It displayed some ability to invent
interesting new mathematical knowledge, for example when applied to number
theory it discovered interesting and previously undefined sequences [20].

MATHsAID [60] is an automated theorem-discovery tool designed to assist
a working mathematician, which has mainly been applied in the context of
abstract algebra. It takes a set of axioms and definitions provided by the user
and discovers new knowledge using a forward reasoning process, instantiating
templates called theorem shells and generating theorems in parallel with their
proofs. It uses a variety of heuristics constructed to reflect human mathematical
intuition and knowledge. This system managed to rediscover a known but
nontrivial theorem on Zariski spaces.
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Top-down

Many automated theorem provers have incorporated goal-directed lemma
discovery, in particular for proof by induction. Inductive proofs often require
the introduction of auxiliary lemmas in order to be proved by automated proof
methods. The reasoning required to prove the induction step, given the base
case and the induction hypothesis, is often too complex for the automated
proof techniques. The right lemma, often itself requiring a proof by induction,
can bridge the gap by being more easily provable from the given facts, while
enabling the proof of the original inductive step. In many cases a modified
version of the inductive step proof goal makes for a useful lemma.

Boyer and Moore introduced the waterfall model to automate inductive
proofs [9] and implemented it in their prover in the 1970s. The model includes
lemma conjecturing by generalization, or replacing subterms in open proof goals
by fresh variables. Generalization heuristics have been improved and refined in
various systems [1, 42, 78]. These heuristics are used to determine when in the
proof process generalization should be applied and which subterms should be
generalized. Counterexample checking can be used to filter out false conjectures
before trying to prove them. The waterfall model is the core concept in the
design of the industrial inductive prover ACL2 [52].

Proof planning [13] was introduced by Bundy, as a method of planning a
strategy of when and how various heuristics should be applied in a proof search.
When a proof attempt fails, a proof critic technique is triggered to analyze the
failed proof and try to come up with a useful lemma. The rippling [14] method
for planning inductive proofs, implemented in the OYSTER-CLAM system [15,
43], includes lemma discovery critics that go beyond the capabilities of sub-
term generalization. These critics enable the construction of generalizations
containing an additional new variable, as well as speculating lemmas more
broadly if the proof gets stuck before applying the inductive hypothesis. These
lemma discovery techniques were also implemented in the IsaPlanner system
for automating inductive proofs in Isabelle/HOL [26, 27], but experimental
evaluation found that they were rarely applicable and often inefficient [50].

The PGT system [63] is a goal-oriented conjecturing tool for Isabelle/HOL.
Starting from a proof goal, generalization and mutation of the goal’s subterms
are used to generate conjectures. Counterexample checking is then used to
filter out false conjectures.

Several approaches have been taken to extending saturation-based first-order
theorem provers to support inductive reasoning [23, 87, 39]. These techniques
have used generalization to conjecture lemmas. In [38], Hajdu et al. further
improve the inductive reasoning capabilities of the saturation-based theorem
prover Vampire by extending the superposition calculus with rewriting-based
techniques. This method slightly relaxes the efficiency requirements of the
calculus, allowing for equational rewriting to conjecture more lemmas that are
proved by induction during the proof search by equational rewriting and proved
by induction. However, this conjecturing method is still quite limited.
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3.1.2 Template-based conjecturing

Several systems have incorporated some form of template-based conjecturing,
where conjectures are based on user-provided or built-in templates. This is a
straightforward approach to limiting the search space of bottom-up conjecturing.

Bottom-up

Graffiti [31] was a conjecture generation system for graph theory, developed
in the 1980s. It attempts to generate conjectures of specific predetermined
shapes, comparing them against a library of graphs such that a formula for
which none of the library graphs provides a counterexample is considered a
conjecture. Various heuristics are used to trim away trivial and uninteresting
conjectures.

Buchberger [11] introduced the term “theory exploration” (earlier work used
the term “theory formation”) to describe the process of a mathematician at
the beginning of work on a new theory, and his team implemented it in the
Theorema [12] system. Theorema provides tools to assist the user in their
theory exploration but does not automate the process, rather it is intended as
a framework for mathematicians to more effectively work with an interactive
theorem prover. Theorema introduced the concept of knowledge schemas that
represent interesting mathematical knowledge and could be instantiated in new
theories, but did not automate the instantiation process.

IsaScheme [61] is a theory exploration system for Isabelle/HOL. It makes use
of user-provided templates (schemas) similarly to our approach in RoughSpec,
presented in Paper 3. Users provide the schemas as well as a set of terms to
instantiate the schemas with, and the instantiation is performed automatically.
The generated conjectures are then automatically refuted using Isabelle/HOL’s
counter-example finders, or proved using the IsaPlanner [26, 27] prover.

The TBC system for template-based conjecturing [64] is another Isabelle tool
that comes up with lemmas from an inductive proof goal. There, conjectures
are generated by instantiating a template from a list of 16 predefined templates,
using the functions that appear in the goal or those that appear in their
definitions. The conjectures are refuted using counterexample checking, or
proved using automated proof tactics.

3.1.3 Conjecturing by term generation

A number of systems have incorporated methods of conjecturing by enumer-
ating terms or equations, often in combination with testing to filter out false
conjectures.

Bottom-up — QuickSpec and Hipster

The work presented in this thesis builds on two theory exploration systems
developed at Chalmers, QuickSpec [77] and Hipster [51, 47].
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QuickSpec QuickSpec [77, 17] discovers equational properties about Haskell
programs. It takes in a set of functions given by the user and generates all
correctly typed terms, up to a given size limit, as potential left- or right-hand
sides of equational properties. The terms are evaluated for a large set of
randomly generated inputs, using the QuickCheck [16] property based testing
tool. Terms that have the same value for every test input are then conjectured
to be equal. While QuickSpec does not provide proofs that the generated
properties hold, the extensive and sophisticated testing that takes place in the
discovery process means that they are unlikely to be falsifiable.

Several clever design features help QuickSpec to be efficient and avoid
generating redundant output. Pruning is interleaved with testing — a property
that follows from previously discovered properties by equational reasoning will
be pruned away before testing the relevant terms. QuickSpec imports the
functionality for this reasoning from the equational theorem prover Twee [76].
QuickSpec also uses schemas to prioritize testing the most general versions
of properties before considering their more specific instances. In this way
QuickSpec avoids generating and considering redundant terms and avoids
testing redundant properties, helping it live up to its name and work very
quickly in many cases. The pruning also limits the amount of output so the
user is not overwhelmed by redundant output properties, and each output
property is more likely to be interesting to the user.

While QuickSpec was originally intended to help functional programmers
generate formal specifications, it has demonstrated usefulness in a theorem
proving context in the HipSpec [18] and Hipster systems. In HipSpec, QuickSpec
is integrated into an inductive theorem prover. HipSpec uses QuickSpec to
conjecture lemmas about the functions occurring in a given theorem statement
and proves the lemmas before attempting to prove the goal theorem with the
help of the lemmas. HipSpec achieved state of the art results on inductive
proof benchmarks.

Hipster Hipster is a theory exploration system for Isabelle/HOL that uses
QuickSpec as an external tool. Hipster comes up with conjectures about a set
of functions given by the Isabelle user, and then uses proof tactics implemented
in Isabelle to attempt to prove the generated lemma. The discovered lemmas
and their proofs can then be imported into the user’s formalization and used
in further proofs.

Hipster discards a lemma as too trivial to be of interest if its proof is “too
easy” or if it’s a consequence of a previously discovered lemma. The definition
of simple and complicated proof can be set by the user by selecting a suitable
proof tactics to represent simple and complicated reasoning. For example,
proofs that only require rewriting might be considered simple while proofs that
require induction are considered to indicate an interesting lemma.

Other Bottom-up Approaches

IsaCoSy [49] is a theory exploration systems for Isabelle/HOL that uses term
generation and testing. It generates equational terms iteratively, starting from
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a minimal size and increasing to a given maximal size. In each iteration, it
generates all possible type-correct terms of the current size that cannot be
reduced by rewriting using known equations. At the end of the iteration, the
generated conjectures are refuted using Isabelle/HOL’s counter-example finders
or proved using the IsaPlanner [26, 27] prover. Those that are proved are used
to generate constraints for the next iteration. IsaCoSy demonstrated the ability
to generate many useful and interesting lemmas, but often had a long runtime.

The SMT solver CVC4 [7] was extended to support inductive reasoning [71],
including the generation of subgoals or lemmas in the proof search. The lemma
conjecturing method is inspired by an older version of QuickSpec [17]. Potential
equalities are enumerated and those that are irrelevant, trivial, or contradictory
to known facts are filtered out. This extension was inherited by the current
version cveb [6].

Speculate [10] is a theory exploration system designed to discover interesting
properties about Haskell programs, like QuickSpec. It enumerates expressions
involving a given collection of functions and uses testing to separate them
into equivalence classes, using enumerative testing methods [59] rather than
random testing. Speculate does not have built-in support for polymorphism
like QuickSpec does, and has somewhat less effective pruning methods causing
its performance to be slower. However, Speculate has better support for
discovering inequalities and conditional properties than QuickSpec.

The TheSy [74] system uses comprehensive term generation to come up
with equational conjectures. However rather than using testing their system is
purely symbolic, evaluating the terms on symbolic inputs to form conjectures.
It then uses an inductive theorem prover to attempt to prove the generated
conjectures.

Top-down

The Ifind system [75], implemented as a tactic in the Rocq proof assistant,
generates conjectures using data-driven program synthesis techniques. Starting
from a stuck proof, the proof goals are generalized, mutated, and evaluated
on random concrete values in order to generate input-output examples for an
example-guided synthesizer. The numerous candidate lemmas produced are
then passed through several filters, including counterexample search to filter
out false conjectures. The remaining candidates are ranked using an automated
prover, with lemmas that can be used to automate the proof goal getting the
highest ranking.

The CCLemma prover [54] uses goal-directed conjecturing to generate lem-
mas for equational inductive proofs. By using e-graphs and equality saturation
to represent the space of all stuck proof states, their methods only suggest
lemmas that will lead to progress in the proof.

3.1.4 Research Gaps

e While many of the methods listed above deal with the discovery of induc-
tive lemmas and automating inductive proof, none of them are designed
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to handle codatatypes and corecursive functions. Paper 1 addresses this
gap and presents the first theory exploration system capable of handling
infinite structures and discovering coinductive properties about them as
well as generating coinductive proofs. Paper 1 also presents an approach
to testing codatatypes and corecursive functions, the challenges of which
are not addressed in previous work.

e In the above sections we list various systems that have been used to auto-
mate inductive proofs. However, improving the automation of inductive
proof is still an open problem, with one of the main challenges being
finding the right lemmas. The systems listed above all have limitations
that cause them to fail to prove some relatively simple benchmark prob-
lems. In particular, while the cutting edge ATP Vampire has recently
added support for inductive proving, it has very limited built-in support
for lemma conjecturing. Paper 2 addresses this gap, presenting a hybrid
automated inductive prover we created by combinining a state-of-the-art
theory exploration system (QuickSpec) with the state-of-the-art ATP
(Vampire) to create a hybrid inductive proof system. Our hybrid Vam-
pireSpec inductive prover manages more proofs from benchmark sets
than any other prover we’re aware of, including HipSpec, CVC4, Vampire
without external lemma conjecturing, TheSy, and CCLemma.

e Previous theory exploration systems for Haskell programs, namely Quick-
Spec and Speculate, have lacked support for user control over the kinds
of properties they find, and scaled poorly due to search space growth.
We address this gap in Paper 3 with RoughSpec, which solves the prob-
lem of determining what conjectures are interesting by only considering
conjectures matching templates defined by the user. RoughSpec is far
more tractable and scales better to larger libraries than QuickSpec and
Speculate.

Previous methods for template-based conjecturing, described in Sec-
tion 3.1.2, have been implemented within proof assistants. RoughSpec
instead targets functional programs written in Haskell, and makes use of
existing tool QuickSpec’s highly optimized techniques for term generation,
testing, and pruning. RoughSpec includes a library of default templates
in addition to allowing the user to define their own templates, while
previous template-based approaches have done one or the other.

e The methods for template-based conjecturing described in Section 3.1.2
are based on the assumption that templates are useful for lemma conjec-
turing, but lack empirical evidence supporting this hypothesis. They rely
on user-provided templates without providing assistance to the user in
knowing what template will be useful, or use a small set of default tem-
plates that may not generate the most interesting or useful conjectures.
We address this gap in Paper 4 by compiling and analyzing a large and
diverse dataset of lemmas and their corresponding templates. In Paper
5, we further address the open problem of knowing what template will
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generate useful lemmas in a particular setting, by using a fine-tuned LLM
to predict a useful template for a given setting.

e Symbolic lemma discovery methods as described above are generally
restricted in the kinds of lemmas they can find, by heuristics as in
Section 3.1.1, templates as in Section 3.1.2, or in the size and shape
(mostly equational) of conjectures as in Section 3.1.3 We address this gap
in Paper 5 with Lemmanaid, a conjecturing system that is unrestricted
in the size and shapes of conjectures it can discover.

3.2 Methods based on machine learning

As machine learning techniques have improved and become ubiquitous in the
past 15 years, various approaches to lemma discovery by machine learning
have been developed. Here the distinction between top-down and bottom-up
approaches becomes less clear, since a machine learning algorithm may in many
cases be easily modified to either include or not include a proof goal in its input
when it is trained to generate a lemma as output.

3.2.1 Conjecture generation by statistical machine learn-
ing

Top-down

Heras et al. [40] present a conjecturing method based on statistical machine
learning, implemented in the ACL2(ml) system [41], an extension to ACL2 [52].
Clustering algorithms are used to create families of similar theorems from
a proof library based on the term structure of the theorem statements. A
symbolic lemma analogy system will conjecture lemmas that may be useful
in the proof of a given theorem statement, based on lemmas that were used
in proofs of similar theorem statements, called source lemmas. A mapping
between symbols present in the current proof context and those in the source
lemma is created with the help of clusters of the available definitions. The
symbols in the source lemma are replaced by the analogous current symbols
according to the mapping, with some potential mutations to the source lemma’s
term structure. Counter-example checking is used to filter out false conjectures.
A user attempting to prove a goal theorem can let the system suggest auxiliary
lemmas that are analogous to lemmas used in proofs of theorems similar to
their goal.

Gauthier et al. [35] experimented with using statistical concept matching for
conjecturing. The most similar sets of concepts in a given library were found
by concept matching, and conjectures were generated by replacing concepts
in a given theorem with their matching counterparts. This resulted in some
useful lemmas for automated first-order theorem proving.
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3.2.2 Conjecture generation by neural networks

Since deep neural networks have shown a great ability to recognize all kinds of
different patterns, various approaches have been used to train such models to
capture the intuition of what makes a useful lemma in a proof or what makes
an interesting lemma about a given set of concepts.

Bottom-up

Urban and Jakubitiv [84] trained the language model GPT-2 on four different
formats of the Mizar Mathematical Library [5]. They generated some novel and
well-typed conjectures but the output also included duplicates from the training
set as well as false statements. They found that the output was sensitive to
temperature settings. When the temperature was low (i.e. less randomness
in predictions) the model output only known lemmas from the training data,
when the temperature increased the model started to also come up with novel
true lemmas, but making the temperature too high lead to statements that
were not syntactically valid.

Rabe et al. [69] trained a language model with a transformer architecture
on mathematical formulas with a novel skip-tree training method, where
the formulas are viewed as trees of subexpressions and the model’s task is
to predict a missing subset of a given tree. They attempted mathematical
reasoning tasks such as generating a missing precondition for a given conditional
statement, generating one side of an equation given the other side, and “free-
form” conjecturing where the model is simply asked to generate an entire
theorem statement. Between 13-30% of statements their system generated
were both provable and new, while the remainder were either false or trivial
consequences (ie. alpha-renamings or even exact copies) of statements from
the training set.

Top-down

LEGO-Prover [89] builds a library of lemmas to improve the formalization
capability of an LLM-based prover. A system combining two LLMs, the prover
and the evolver, has the goal of generating formal Isabelle proofs based on a
formal theorem statement paired with an informal natural language statement
and a human-written informal proof. The prover model decomposes a goal
theorem into possible subgoal lemmas and generates a proof step by step,
potentially retrieving lemmas from the skill library. The evolver generates
lemmas to store in the library, either by refining a subgoal lemma generated by
the prover to make it more general and reusable, or by augmenting a lemma
from the library.

Synthesizing theorems for training data

Since a lack of training data is often an obstacle for training a neural theorem
prover in a particular domain, theorem synthesis has been used as a source of
data to train on. One approach to this is to randomly generate parameters
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to instantiate predefined templates for the relevant kinds of theorems. For
example, Zombori et al. [97] randomly generate arithmetic statements of a
specified shape, and Fawzi et al. [32] randomly generate graphs about which
their prover learns to prove polynomial equalities.

Another approach is to synthesize theorems by inferring new statements
from a given set of facts. Firoiu et al. [33] generate synthetic training data
for a first order theorem prover. Their forward proposer algorithm infers new
clauses from a given set of axiom clauses, using random sampling to select a
branch of the deduction tree. Wang and Deng [90] propose a neural generator
that learns to synthesize both theorems and their proofs, and evaluate it in the
setting of intuitionistic logic and set theory in the Metamath proof language.
The synthesized theorems are generated via forward reasoning from previously
known theorems, using neural networks to select suitable proof trees and
substitutions for the generation.

The synthesized training data for the AlphaGeometry system [83] for proving
theorems about Euclidean geometry combined constrained random selection
and symbolic logical deduction. A dataset of 100 million synthetic theorems
and their proofs was constructed by randomly generating theorem premises
from a set of possibilities, inputting them into a specialized symbolic deduction
proof engine, and then extracting a theorem statement and its proof from
the resulting dependency graph. Constructs that appear in the proof but are
independent of the extracted goal theorem statement are identified as auxiliary
constructs. Auxiliary construct definitions are moved from the theorem’s set
of premises to its proof, in order to train a generative model to come up with
such constructs based on the relevant premises.

3.2.3 Reinforcement-based conjecturing

Several recent works use reinforcement learning to train a conjecturer. Such a
system must implement a reasonable reward function to reward the generation
of good (interesting or useful) conjectures.

Bottom-up

The Minimo system [68] learns conjecturing and proving as a reinforcement
game. Using a language model to generate conjectures and a Monte Carlo
Tree Search to search for proofs, the system bootstraps a mathematical theory
from a set of basic axioms. The conjecturing agent is rewarded for generating
lemmas that are challenging to prove but still provable by the proving agent.

The STP system [28] also uses a reinforcement loop to train a conjecturer and
a prover. The conjecturer, based on a fine-tuned LLM, generates a conjecture
from a given seed statement and its proof. The conjecturer’s reward function
is designed to reward conjectures that are provable while also challenging,
diverse, and relevant. The goal of the conjecturer-prover loop is to improve the
performance of the prover, and the end product is a whole-prove generating
neural prover. Different instances of the system were trained on Lean syntax
and Isabelle syntax and evaluated on theorem proving benchmarks.
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Top-down

Gauthier and Urban [36] use a self-learning loop to train a neural machine
translation model to generate useful lemmas for inductive proofs. Their domain
is a large dataset of problems where the goal is to prove the equivalence of
two different programs synthesized to describe the same integer sequence from
the Online Encyclopedia of Integer Sequences [37]. They train the model
to propose useful predicates for a given problem, based on a training set of
problems paired with the predicates that lead to their successful proof. If the
generated predicates enable a proof to be found using an SMT solver, the
problem and predicates are added to the training data for the next iteration
of the self-learning loop. This algorithm finds proofs for many more of the
benchmark problems than comparable baseline proof methods.

3.2.4 Research Gaps

Conjecturing with neural methods is a fairly young and underexplored research
area. A position paper published earlier this year, authored by several experts in
the field of AI for mathematical reasoning [96], identified learning to construct
new abstractions, such as lemmas, as a challenge and a promising future
research direction. Previous work on neural conjecturing using LLMs has
generated lemmas in a specialized setting, such as reasoning about programs
that generate integer sequences [36] or bootstrapping mathematical theories in
a simple proof environment [68]. Other recent work has used LLMs to generate
related conjectures based on a given seed statement [28, 89].

In [84], the (somewhat primitive compared to available models now, 5 years
later) LLM GPT-2 was used for bottom-up conjecturing in the Mizar language
with some success. Since then, there has not been further work on broad
neural conjecturing about mathematical formalizations in a bottom-up theory
exploration setting. We address this gap in Paper 5 with our tool LEMMANAID,
the first to conjecture lemmas in a generalized setting across all Isabelle/HOL
formalizations and without any seed statement.
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Chapter 4

Summary of Included Papers

4.1 Paper 1: Into the Infinite - Theory Explo-
ration for Coinduction

We present an extension of theory exploration to coinductive theories, and
a tool called Cohipster that can discover and prove coinductive properties
in Isabelle/HOL. Cohipster is the first lemma discovery system designed to
handle codatatypes and coinductive properties. We also present an approach
to testing codatatypes and corecursive functions, the challenges of which are
not addressed in previous work.

Coinduction and corecursion are the mathematical duals of induction and
recursion and allow the specification of potentially infinite structures, for exam-
ple streams, and functions that operate on such structures. They have many
applications in theoretical computer science, having been used to define and
verify the behavioral equivalence of processes, Hoare logic for non-terminating
programs, total functional programming in the presence of non-termination,
and properties of lazy datatypes in functional languages like Haskell. Develop-
ing techniques to test and reason about corecursive functions and coinductive
properties is therefore a contribution to further enable the development and ver-
ification of such programs. The Isabelle codatatypes and corecursive functions
have also been considered convenient for use in mathematical formalizations of
complex numbers, so our techniques can also be used to further develop such
formalizations.

Cohipster builds on and extends the framework of the previous theory
exploration system Hipster in Isabelle/HOL. Prior to this work Hipster only
had capabilities to discover properties about recursive functions and prove them
by induction. As the underlying conjecture finding method relies on testing,
we had to extend the testing methods involved to enable evaluating and testing
data structures that are potentially infinite in size. To prove the conjectured
properties, we developed automated proof methods for coinductive properties.
For this we made use of the coinduction tactics built-in to Isabelle/HOL, with
added techniques to automatically determine the correct parameters and to

29



30 CHAPTER 4. SUMMARY OF INCLUDED PAPERS

automate the proofs of subgoals.

QuickSpec
(discovery)

: (co)datatypes, (co)functions,
: theorems, lemmas

QuickCheck

<+——— Conjectures

'
:

Routine ' (testing)
Reasoning !
'
'
'

Figure 4.1: The architecture of the (Co)Hipster system.

Cohipster takes a set of functions as an argument and generates conjectures
of equational properties. It then attempts to prove the generated conjectures
automatically, discarding those that are trivial to prove, presenting the con-
jectures it finds nontrivial proofs of to the user as lemmas, and any unproved
conjectures are left for the user to try to prove or disprove.

For example, when we call on Cohipster for a theory of infinite binary
trees, containing a function mirror for reflecting a tree and a function tmap for
mapping a function over the tree elements, Cohipster will discover the lemmas

mirror (mirror t) =t

and
tmap f (mirror t) = mirror (tmap f x)

Cohipster has conjectured these lemmas with the use of QuickSpec, generated
formal machine-checked proofs in Isabelle, and determined that the lemmas are
not too trivial to be of interest. This process takes just under a minute. The
Isabelle user can then import these lemmas into their theory with a mouse-click.

We evaluate Cohipster on several theories about different codatatypes found
in the literature: lazy lists, extended natural numbers, streams, and two kinds
of infinite trees. Cohipster demonstrates the ability to automatically and
efficiently discover and prove useful and interesting properties about these
codatatypes. Cohipster is the first theory exploration tool to be capable of
handling infinite structures and discovering coinductive properties about them
as well as generating coinductive proofs.
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4.2 Paper 2: Lemma Discovery and Strategies
for Automated Induction

Automating inductive proofs is a long standing challenge for automated theorem
provers. One of the reasons for the difficulty is that inductive proofs often
require auxiliary lemmas in order to complete the proof. Proof by induction
is commonly used in mathematics to reason about natural numbers and in
computer science to reason about inductive datatypes. Improved techniques for
automated inductive proving are therefore needed to achieve further automation
in mathematics and software verification.

We combine the state-of-the-art theory exploration system QuickSpec with
the state-of-the-art automated theorem prover (ATP) Vampire to create a
hybrid inductive proof system. QuickSpec has previously been used to discover
useful lemmas for inductive proofs in the specialized inductive prover HipSpec
and in the Isabelle/HOL lemma discovery system Hipster. Vampire is primarily
aimed at proving theorems in first-order logic but has been extended to also
perform various other tasks, including proofs by induction in recent years.
Vampire is a very powerful and efficient prover but has very limited built-in
support for lemma conjecturing, so combining it with an external conjecturing
tool is a promising prospect. We also employ specialized strategy schedule
training to optimize the parameter selection for Vampire, which can have a
great effect on whether or not a proof is found.

Starting from a goal theorem intended to be proved using induction, we
have QuickSpec conjecture lemmas about the relevant functions and datatypes.
These conjectures are added to the problem file given as input to Vampire,
using a special keyword to notify Vampire that any lemma that is used in the
result proof must itself also be proved. This kind of speculative lemma use is
straightforward and efficient in Vampire. The whole process — starting from the
original problem, conjecturing lemmas with QuickSpec, adding conjectures to
the problem file and attempting to prove the modified problem with Vampire —
is automated.

Another important piece of the puzzle when optimizing ATP performance
is choosing the right strategy for the problem. A strategy is an assignment
of concrete values to the various parameters or options that control how an
ATP like Vampire searches for a proof. Vampire has more than 100 options
(parameters) to configure the proof search, so there are very many strategies to
choose from, and different strategies work well on different problems. A strategy
schedule is an arrangement of different proving strategies of complementary
characteristics into a sequence with assigned time budgets, to be executed
in sequence (or in parallel). A good strategy schedule can greatly improve
ATP performance. In this work, we constructed a strategy schedule specifically
targeting inductive theorem proving on the TIP benchmarks [19], following the
recipe for strategy discovery pioneered by the Spider system [86] and using a
novel approach presented in [§].

In this work we compare the number of proofs found by Vampire on the
TIP benchmark problems using six different approaches:
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1. Our default strategy for Vampire had flags for structural induction active.
This was meant to simulate what kinds of results a non-expert user who
wanted to use Vampire to prove these inductive problems might achieve.

2. We then added lemmas conjectured by QuickSpec to the problems before
sending them to Vampire, to see what benefits we could get by adding
externally conjectured lemmas.

3. We gave Vampire a specialized strategy schedule for inductive problems,
trained on the TIP problems.

4. We used the strategy schedule from 3. and added lemmas conjectured by
QuickSpec to the problems before sending them to Vampire.

5. We gave Vampire a specialized strategy schedule for inductive problems,
trained on the TIP problems with conjectures from QuickSpec added.

6. Finally, we used the strategy schedule from 5. and added conjectured
lemmas to the input problems.

Default | Trained Schedule
Strategy | Strategy | trained with

Schedule lemmas
no lemmas 102 236 237
with lemmas 143 263 288
Total proofs found H 153 \ 269 289

Table 4.1: Number of proofs found using different strategies.

The results of these experiments can be seen in Table 4.1. We can see that
adding conjectured lemmas improves the performance of the default strategy
by 40% (from 102 to 143 proofs). Strategy schedule training alone improves
the performance greatly, by 130% (from 103 to 236 proofs). Our best method
was the strategy schedule trained on problems with lemmas, when given the
problems with added lemmas, which found 288 proofs, an improvement of 183%
compared to the baseline.

Certain subsets of the TIP benchmark set have been used in previous work
to evaluate the inductive proof performance of CVC4 [71] and HipSpec [18].
Our best method, which leveraged conjectured lemmas and strategy schedule
training in combination, outperformed both of these previous state-of-the-art
approaches.

Shortly after this paper was published, [54] presented the CCLemma in-
ductive prover, previously described in Section 3.1.3. The authors evaluate
their tool on a subset of the TIP benchmark set, while also introducing some
new benchmark problems meant to provide a greater challenge, and provide a
comparison other inductive proof systems including CVC4 and HipSpec. On
the common evaluation benchmarks, CCLemma found slightly fewer proofs
than HipSpec, and is therefore also outperformed by our best hybrid method.
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4.3 Paper 3: Template-based Theory Exploration:
Discovering Properties of Functional Pro-
grams by Testing

We introduce RoughSpec, a tool for template-based theory exploration. Previ-
ous state-of-the-art theory exploration tools do not scale well to larger libraries
of concepts, and may produce too much output that is uninteresting to a
user. RoughSpec makes theory exploration more tractable and scalable, and
solves the problem of determining what conjectures are interesting, by only
considering conjectures matching templates defined by the user.

A template is an expression describing a family of properties such as
commutativity or distributivity. We represent a template as a Haskell equation
containing functions, variables, and metavariables. For example the following is
a template for commutative properties (in our syntax, variables are written in
uppercase, and a metavariable is written as a variable with a leading question
mark): ?F X Y = 7F Y X.

RoughSpec takes in a set of functions along with a set of templates, and
generates conjectures about the functions that match one of the given templates.
For each given template, RoughSpec instantiates the metavariables in the
template with the functions in scope to create type-correct equations which
are then tested. For example, if we call RoughSpec using the above template
along with addition and subtraction on integers it will come up with the
conjecture x+y = y+x (and no further output), in less than 0.1 seconds. In
the example shown at the beginning of the chapter in Figure 1.2 we used this
commutativity template and an additional six templates describing identity
properties, distributivity and associativity, shown in Figure 4.2:

7F(7X) = 7X 7F(7G (X)) = 7G(7F(X))
7F(?Y,X) = X 7F(?7G(X,Y)) = 7G(?F(X),?F(Y))
7F(X,?7Y) = X ?F(?F(X,Y),Z2) = ?F(X,?F(Y,Z))
7F(X,Y) = 7F(Y,X)

Figure 4.2: Templates used for the example in Figure 1.2.

RoughSpec builds on the previous theory exploration tool QuickSpec, mak-
ing use of QuickSpec’s highly optimized techniques for term generation, testing,
and pruning. Since RoughSpec only generates terms and tests conjectures
that match the given templates, it potentially has a much smaller search space
than QuickSpec and is well suited to exploring larger libraries of functions and
performing fast and targeted searches for properties. We have also combined
RoughSpec with QuickSpec, using QuickSpec to perform a complete search for
smaller term sizes, while using templates for larger, more complex properties,
in order to leverage the strengths of both systems.

We evaluate RoughSpec in case studies on several Haskell libraries. We
demonstrate that RoughSpec can be useful in understanding an unfamiliar
library, it can be used to target specific kinds of useful properties, and that
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it makes theory exploration tractable on larger libraries that were previously
infeasible to explore. We find that a hybrid approach combining QuickSpec
and RoughSpec often produces higher-quality output than either tool manages
on its own.
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4.4 Paper 4: LOL: A Library Of Lemma tem-
plates for data-driven conjecturing

Previous work on template-based conjecturing has relied on the hypothesis
that a small number of templates can be used to generate interesting and
useful conjectures in various different contexts, without providing empirical
evidence for the hypothesis. This paper describes a dataset of lemmas and
their structural templates extracted from Isabelle’s Archive of Formal Proofs
(AFP) [2], and data analysis showing that a small number of templates can
be used to generate many different lemmas. This dataset can be used for
data-driven template generation, in place of relying on user provided templates
or a limited number of built in templates as previous methods have done.

We extract lemma statements and their corresponding templates from the
Isabelle/HOL theory files in the AFP. We analyze the frequency of different
templates among the assembled lemmas and examine the most commonly
occurring templates. The entries in the AFP consist of proof formalizations
related to various topics in Computer Science, Logic and Mathematics. Since
the lemmas found in the AFP are invented by human experts as part of
proofs that those experts found reason to formalize, we believe they make
good examples of lemmas that are interesting and useful in a wide variety of
contexts.

Our dataset contains 22767 equational lemmas captured by 6567 different
templates. They were extracted from 2169 different theory files from 611 AFP
entries. The 10 most frequent templates together describe 3057 lemmas or
13.5% of the lemmas in our set, while more than 50% of the lemmas can be
described using only 266 of the 6567 templates. This supports our hypothesis
that a smaller number of templates is sufficient to discover many interesting
and useful lemmas using template-based conjecturing.
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4.5 Paper 5: Lemmanaid: Neuro-Symbolic Lemma
Conjecturing

We present LEMMANAID, a neuro-symbolic lemma conjecturing tool designed
to discover conjectures by analogy. Previous symbolic lemma discovery tools
have been restricted in the shapes of lemmas they can discover and the input
they can handle. Previous neural lemma discovery methods have also been
limited in their application scope. LEMMANAID combines Large Language
Models (LLMs) and symbolic methods to conjecture lemmas about any given
Isabelle formalization.

Formalization Lemmanaid

" theory x Functions, Neural Engine
\ context
,SUP' a’ datatype a
\a Gq!" /3
&& / function T
function g Templates

"lemma 11 Symbolic Engine

ilemma 12
'

‘ Conjectures

Figure 4.3: High-level overview of LEMMANAID.

LEMMANAID uses a fine tuned LLM to generate lemma templates that
describe the shape of a lemma, given some function symbols along with their
definitions. A symbolic engine implemented in Isabelle then takes the generated
template as input, along with the function symbols and definitions. Instantiat-
ing the template using the given function symbols, the symbolic engine outputs
lemma conjectures.

For evaluation, we measure the percentage of unseen test-set lemmas that
can be discovered by LEMMANAID given the relevant functions and definitions.
Our training and test data is extracted from Isabelle’s HOL library and from
formalizations in the Archive of Formal Proofs (AFP) [2]. Using human-written
formalizations as a gold-standard gives us a good approximation of how many
interesting lemmas LEMMANAID can produce for a novel theory. To compare
our neuro-symbolic approach to fully neural conjecturing, we fine-tune the
same LLM used in LEMMANAID’s neural engine to instead generate complete
lemma statements, bypassing the symbolic engine.

LEMMANAID outperforms both purely neural and purely symbolic methods
on our test sets, discovering between 34.6-48.2% of the gold standard human
written lemmas, which is 8.5-14% more lemmas than the neural-only method.
LEMMANAID greatly outperforms the symbolic conjecturing tool QuickSpec
in our comparison case study, discovering more than 3 times as many of the
relevant gold standard lemmas. By leveraging the best of both symbolic and
neural methods we can generate useful lemmas across a wide range of domains,
facilitating computer-assisted theory development and formalization.



Chapter 5

Concluding Remarks and
Future Directions

In this thesis, we show that theory exploration can be used effectively to
conjecture interesting and useful lemmas in a variety of settings. Our techniques
can discover valuable lemmas for users of proof assistants, generate program
specifications, and help to achieve state-of-the-art results in automated inductive
theorem proving. We demonstrate the potential of a template-based approach
to limit the conjecturing search space and thereby make theory exploration
faster and more tractable. We demonstrate the feasibility of using an LLM for
theory exploration, both on its own and as a component of a neuro-symbolic
template-based conjecturing system. Lemma conjecturing is a challenging task.
Developing useful conjecturing techniques is a crucial aspect of advancing both
automated and interactive formal reasoning about programs and proofs.

The research represented in this thesis was completed over a span of years
from 2017-2025. During this time we saw the arrival and evolution of LLMs,
and the impressive results they achieved in all sorts of domains, including
mathematics and theorem proving. These new technological advancements
have brought with them a new research frontier in exploring how LLMs can
be applied, extended, evolved, and combined with other techniques. It has
been a unique experience to work on research in this field in parallel to this
development. We believe that there is still much to learn and discover in how
to best harness the formidable capabilities of LLMs to develop tools that are
powerful and effective, but also safe and efficient.

5.1 Future Directions

We have identified several potential future directions to continue the work in
this thesis. Some are research ideas that could be examined in the near future,
while others are broader impact goals that could be pursued in the longer term.

37
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5.1.1 Next Steps

In Paper 5 we demonstrate the potential of a neuro-symbolic approach to
theory exploration. In the current work we focus solely on lemma conjecturing,
and not on proving the generated lemmas or other goal theorems. Combining
the LEMMANAID conjecturing tool with automated proof techniques, either
symbolic or neural, would make for a more holistic tool and enable evaluation
on proof benchmarks.

Recent work has shown the potential of combining LLMs, reinforcement
learning and formal proof methods to automate complex reasoning tasks [88].
In [36], a self-learning loop combining a neural machine translation (NMT)
model and an SMT solver successfully generates lemmas that enable many
challenging inductive problems to be proved. Further exploring the application
of reinforcement learning in automated neuro-symbolic lemma conjecturing is a
promising direction. Integrating LEMMANAID with proof techniques would also
enable the creation of a reinforcement loop that rewards conjectures for being
provable or useful in proofs, but a an alternative reward function based on the
interestingness measures described in Section 1.1 could also be examined.

Another interesting direction for future work would be extending the LEM-
MANAID approach to more languages and different proof assistants such as
Lean [62] and Rocq [80]. The current work only considers Isabelle formaliza-
tions and is fine-tuned on Isabelle syntax. A multi-lingual approach has shown
promise in the context of autoformalization [44], and could potentially be useful
to create a more robust and flexible conjecturing tool.

In Paper 2 we demonstrate how theory exploration with QuickSpec can be
combined with Vampire’s automated induction methods to achieve top results on
inductive benchmark problems. Developing this approach further and applying
it to more advanced and specialized inductive problems is another promising
direction. An interesting place to start would be a to combine the approaches
from Papers 2 and 3, and apply template-based theory exploration to inductive
problem sets, perhaps incorporating the neuro-symbolic approach from Paper
5. Our method in Paper 2 only conjectures equational lemmas, and many
inductive proofs require conditional lemmas. Better support for conditional
conjecturing is likely to improve outcomes and increase the applicability of our
methods.

5.1.2 Further Prospects

Looking to the future, we pose some bigger goals for researchers and engineers
to work towards in coming years. We would like to see theory exploration made
more usable and useful to users working on both mathematical formalization
and software development. We also believe theory exploration techniques could
be used to improve automated reasoning methods, which in turn would be
beneficial to automated techniques for software verification.

One goal is the development of theory exploration tools that are useful
to a mathematician working on developing and formalizing a new theory.
This requires smooth integration with a proof assistant and a user-friendly
interface. User studies could help to better define what kinds of lemmas and
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conjectures would be the most helpful in this context, and further development
of conjecturing methods may be needed to fulfill those wishes.

Another goal is to develop tools that integrate theory exploration methods
in a software development workflow. In this context, theory exploration can be
used to generate software specifications and tests. The ongoing escalation of
Al-assisted software development and the use of generative Al to generate code
brings with it an increased need for usable methods for specification, testing,
and verification, to ensure that the generated code works as intended.

Third, improved automated reasoning methods incorporating theory ex-
ploration could be advantageous to further automation in both mathematical
proof and software verification. These kinds of automated methods could be
integrated with interactive tools as described above, or used in fully auto-
mated systems. Stronger and more widely applicable automation in software
verification would lower the bar for developing robust and secure software.
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