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Abstract
Conway’s Game of Life (GOL) is a cellular automaton that has captured the interest of hobbyists
and mathematicians alike for more than 50 years. The Game of Life is Turing complete, and people
have been building increasingly sophisticated constructions within GOL, such as 8-bit displays,
Turing machines, and even an implementation of GOL itself. In this paper, we report on a project
to build an implementation of GOL within GOL, via logic circuits, fully formally verified within
the HOL4 theorem prover. This required a combination of interactive tactic proving, symbolic
simulation, and semi-automated forward proof to assemble the components into an infinite circuit
which can calculate the next step of the simulation while respecting signal propagation delays. The
result is a verified “GOL in GOL compiler” which takes an initial GOL state and returns a mega-cell
version of it that can be passed to off-the-shelf GOL simulators, such as Golly. We believe these
techniques are also applicable to other cellular automata, as well as for hardware verification which
takes into account both the physical configuration of components and wire delays.
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1 Introduction

Conway’s Game of Life is a cellular automaton invented by John Conway and first publicly
described in an interview with the Scientific American in 1970 [14]. It was said to immitate
the rise and fall of societies. Since its initial publication, GOL has remained a curiosity
among hobbyists and mathematicians for its combination of simplicity and surprisingly
chaotic organic look as a model of computation. It has been demonstrated that one can
create order in the chaos and build interesting constructions in GOL such as, e.g., simple
computers, complete Turing machines, or even simulations of GOL in GOL [15, 19].

In this paper, we build infrastructure for formal reasoning about circuits in GOL and
design and verify a circuit in GOL that can simulate GOL itself. However, before we describe
our work, we provide the necessary background on GOL.
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Figure 1 Evolution of the glider (red, left) and the lightweight spaceship (LWSS) (blue, right).

1.1 A short introduction to Conway’s Game of Life
Conway’s Game of Life is a deterministic simulation that is performed on an unbounded
two-dimensional grid of cells. Each cell can be either alive or dead. Time passes in discrete
steps and, at each step, all cells simultaneously update to their next state. The state of a
cell at location (i, j) at time n + 1 is determined by its state at time n and its immediate
neighbours’ states at time n. Cell (i, j) is live at time n + 1, if and only if:

cell (i, j) is live at time n and two or three of its neighbours are live at time n, or
cell (i, j) is dead at time n and exactly three of its neighbours are live at time n.

The neighbours of a cell (i, j) are the eight cells that are adjacent to it, e.g., (i, j + 1), or
share a corner, e.g., (i + 1, j + 1).

The rules of the game do not restrict the initial state, i.e., the state at time 0. The
challenge is to find initial states that lead to interesting behaviour when the simulation is
run. There are numerous GOL simulators1 with which people can experiment with different
initial configurations of the GOL grid. Anyone who has tried drawing a busy initial pattern
in a GOL simulator will have observed that GOL quickly evolves into a chaotic mess that
often looks like a digital depiction of the evolution of a bacteria culture.

Gliders and spaceships
In this world of GOL chaos, there are however certain patterns that are well behaved and
can be used in interesting ways. The simplest kind of pattern, called a “still life,” is pattern
which stays unchanged on the next clock cycle. These patterns will simply remain static until
something else interacts with them. There are also oscillators which go through a sequence
of states before returning to the original state.

A slightly more interesting class of patterns are called “spaceships,” which are similar to
oscillators but with a spatial shift. The most famous spaceship is called the glider. If left
undisturbed, it will in four time steps transform itself into exactly its own original shape but
shifted one step diagonally. Over time, gliders move across the grid diagonally, at a speed
of 1/4 cells per clock cycle. Another spaceship is the lightweight spaceship (LWSS), which
move horizontally or vertically at a speed of 1/2 cells per clock cycle. Figure 1 shows how
the glider and LWSS move across the grid.

Useful behaviour through collisions
While gliders and spaceships are cute on their own, their real use comes into focus when
we observe that they can carry signals and these signals can be processed via well behaved
collisions of (streams of) gliders and spaceships. Collisions can have a variety of effects,
including destroying one or both of the incoming spaceships, producing other spaceships,

1 For example: https://playgameoflife.com/

https://playgameoflife.com/
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Figure 2 Collision between a glider and an LWSS which destroys the glider but leaves the LWSS
intact.

maybe in different directions, and making a big mess of chaotic shapes (we will be deliberately
avoiding this kind of collision). Figure 2 shows a collision between a glider and a LWSS
which destroys the glider, but the LWSS is unimpeded.

Because gliders are so small, it is not so difficult for them to be spontaneously created,
and a key component of our design (and indeed most GOL constructions) utilizes the Gosper
glider gun2, a pattern that produces a glider every 30 ticks. This is what enables us to have
steady streams to collide in the first place.

To get things larger than gliders, one can use gliders as a fusion reaction component. Not
all kinds of spaceships can be produced in this way, but the LWSS can be produced by three
gliders colliding in just the right way, and we will be using this to produce LWSS streams.

If we view a spaceship stream as carrying a timed sequence of bits with a 1 where a ship
is present and a 0 when one is absent, then a spaceship stream (ai) which is intercepted
by another stream (bi) which cleanly destroys both can be seen as computing the logical
operation (ai ∧ ¬bi), because the output sequence of (ai) survivors at position i is present
only if ship ai was present, and it was not knocked out by ship bi. (It also computes bi ∧ ¬ai

for the (bi) survivors, but usually we will only be interested in one output.)
Empty space gives us the constant sequence 0, and the glider gun or its variations give us

the sequence 1, so we can already see how we can get a NOT gate as 1 ∧ ¬a, an AND gate
using a ∧ ¬(1 ∧ ¬b), and so we seem to have a complete system of logic gates already. The
devil is in the details, but this basic intuition is broadly correct and the rest is engineering.

Nicholas Carlini [4] and others (e.g., [19]) have demonstrated that one can build digital
gates based on such collisions. In our work, we use Carlini’s gates and his circuit conventions
as a starting point. Figure 3 shows how one of his AND gates works. This particular gate
takes in streams of LWSSs travelling east and north, and essentially computes AND using
the formula a ∧ ¬(¬b ∧ 1) as we described.

An additional aspect of Carlini’s design is that the streams have period 60 instead of
period 30. In Figure 3 one can see a second glider gun (left, near the b input) which takes
out every other glider produced from the first gun (near the bottom right corner) so that the
1 stream has period 60. The reason for this convention is so that LWSS streams can pass
through each other without collision (Figure 3f), which gives us a “crossover gate”, a key
tool for building logic circuits in the plane.

In this paper, we describe how one can formally verify circuits in GOL, and in particular,
how we have designed and verified a GOL circuit that implements GOL itself. The work we
presented here has been carried out in the HOL4 theorem prover [18]. The final product is a
verified “GOL in GOL compiler” that, given a GOL configuration, produces a tiling of logic
gates implemented in GOL such that the overall behaviour of the circuit is a simulation of
GOL starting from the given GOL configuration.

2 Named after Bill Gosper who discovered it in 1970 [15].

ITP 2025
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(a) AND gate computing 0 ∧ 0 = 0. (b) AND gate computing 0 ∧ 1 = 0.

(c) AND gate computing 1 ∧ 0 = 0. (d) AND gate computing 1 ∧ 1 = 1.

(e) AND gate, symbolic simulation of a∧b (§5.1). (f) A crossover gate.

Figure 3 Illustration of some gates and their data flow behavior. Color key: a, b, ¬b, a ∧ b.
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2 Mega-Cell and Approach

The technical work for this project had as its goal to build a verified mega-cell as shown in
Figure 4. The purpose of this mega-cell is to implement one GOL cell in a space completely
tiled with copies of the mega-cell. As the entire grid is tiled with mega-cells performing
similar computations, this verified circuit built inside GOL simulates GOL itself. Each of
the gates and wires in the diagram are implemented by gates similar to Carlini’s gates.

The circuit in Figure 4 works as follows: at the heart of each mega-cell is a latch, i.e., the
little loop highlighted in yellow . This latch holds the state of the GOL cell this mega-cell
is simulating. The output of this latch is lead through wires to all neighbouring cells, as
can be seen by following the wires from the latch. Because all neighbouring cells have the
same circuit wiring, whenever it gives away its value to a neighbor in one of the outgoing
arrows from the cell, there is a corresponding input from the opposite side where the neighbor
shares its value to this cell, and ultimately the 8 incoming arrows provide the values of all
8 surrounding cells. These inputs are then lead through half-adders (H-A) to sum up the
number of neighbours that are alive at the moment.

While this computation is being performed, there is also a train of LWSSs cycling slowly
on the big loop around the perimeter of the mega-cell. This train of LWSSs is the clock, and
it is timed so that just as the value is finished computing, the clock pulse reaches the latch
input, and the latch updates its state to the next value this cell is supposed to represent.
The twisty wires make the clock signal go slowly enough to not tick the latch forward before
the next value is ready.

The mega-cell is laid out on a grid with components which are 1 × 1 or 2 × 2 tiles large,
and each tile in this grid is 150 × 150 GOL cells (Figure 3 shows a some of these tiles). The
mega-cell is 21 × 21 tiles large, meaning that the full construction is 3150 × 3150 GOL cells
in size. Proving the correctness of such a large object requires careful design of abstraction
layers in order to be manageable.

Our approach consists of several layers of abstraction. The work is organised into the
following high-level steps:
1. We formalise the rules of GOL, define the notion of a GOL pattern’s area of influence,

and show that two patterns evolve indpendently if their areas of influence are disjoint.
2. In order to locally prove properties of patterns that communicate with adjacent patterns,

we define GOL-IO, an alternative semantics for GOL that allows for input and output.
We prove composition and input-output internalisation theorems for these.

3. We then formalise the what it means for a pattern to implement a gate, such as Carlini’s
gates. This involves defining exactly how streams of inputs and result in streams of
outputs. Again, we prove composition theorems and input-output internalisation.

4. Next, we define the notion of signals that only carry meaningful values some of the time.
This is important since variations in wire delay cause signals to “jitter” for a while before
settling down to the correct value.

5. We then compose all of the gates in our mega-cell together to obtain a proof that it
calculates a specific logic formula, and does so within the time budget provided by the
clock signal.

6. Finally, we prove that the formula that is computed is the GOL step function, and
that therefore a complete tiling of the space with mega-cells results in the desired GOL
simulation.

While many theorems were proved using traditional goal-oriented tactic proofs, some of
the heavy lifting was done by automation, including in-logic computation.

ITP 2025
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Figure 4 A high-level circuit diagram representation of the mega-cell in our construction. There
are AND (&), OR (∨) and NOT (▷◦) gates, half-adders (H-A), and all of it is acyclic except for the
latch, highlighted in yellow , and the clock, which is a wire cycle forming the outer border of the
cell. The clock uses slow wires (visualized as switchbacks) in order to ensure that the main logic can
complete in time for the next clock cycle.
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1. We proved high-level specifications for individual gates using symbolic simulation of the
GOL rules.

2. We also automated the composition of all of the gate specifications that make up a
mega-cell. This automation computes how and when each wire will have a specific value.

Both of these, but particularly the former, made significant use of HOL4’s recently added
feature for fast kernel computation [1].

3 Formally reasoning about GOL

This section describes how we formalise the rules of GOL and our approach to modular
verification of patterns in GOL.

3.1 Rules of GOL
We define a GOL state as a set S ⊆ Z2, where (i, j) ∈ S means that (i, j) is alive in state S.
As the definition of GOL’s next-state function depends on counting the number of live cells
neighboring a cell, we use the live_adj function to count the number of live neighbours:

adj i j def= {(i′, j′) | max (|i′ − i|, |j′ − j|) = 1}
live_adj S i j def= card (S ∩ adj i j)

Now, given a state S, (i, j) will be alive in the next state if its number of live neighbors
is 2 or 3 if (i, j) is live, or exactly 3 if (i, j) is dead.

step S def= { (i ,j) | if (i ,j) ∈ S then live_adj S i j ∈ {2, 3} else live_adj S i j = 3}

3.2 Area of influence and compositionality
In order to enable modular reasoning about patterns in GOL, we need some notion of
non-interference. The intuition we follow is that two patterns in GOL will not interfere with
one another as long as they are sufficiently far from each other.

We formalise this intuition by defining a function infl which computes the area of influence
of a GOL state. Location (i, j) is in the area of influence of the patterns in GOL state S if it
is at most one step away from a live cell in S.

infl S def= { (i′, j′) | ∃ i j. (i, j) ∈ S ∧ max (|i′ − i|, |j′ − j|) ≤ 1 }

Using infl we can capture the intuition that, if two patterns s and t are sufficiently far
from each other, then they evolve independently of each other in the next step. “Sufficiently
far” can be asserted by simply requiring that their areas of influence are disjoint.

⊢ infl S ∩ infl S ′ = ∅ ⇒ step (S ∪ S ′) = step S ∪ step S ′

Note that, while infl S ∩ infl S ′ = ∅ is a sufficient condition, it is not the weakest condition
one can have on that theorem. We chose to use this simple condition because it makes proofs
easier than more fine-grained conditions.

3.3 GOL-IO
The patterns in GOL that we set out to verify communicate by sending spaceship patterns
to one another. For example, the AND gates shown in Figure 3 receive input from the left
and the bottom, and produce output to the right. The input and output consist of LWSSs
that they receive or hand over to surrounding patterns in GOL.

ITP 2025
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In order to verify each gate in isolation, we must therefore sever the links between the
gates and replace them by an interface. Because every gate will only interact with the
interfaces of its neighbors, the precise details of evolution inside the gate will not matter.
The way we express this is through a modified step relation called io_step:

io_step c S1 S3
def=

∃ S2.

infl S1 ⊆ c.area ∧ step S1 = S2 ∧
S2 ∩ c.assert_area = c.assert_content ∧
S3 = c.insertions ∪ (S2 − c.deletions)

This relation is functional, but unlike step it is not total. It is parameterized by a
“modifier” c which does several things at once:

c.area provides “guard rails” for the simulation. The initial state must stay within c.area
and must not touch the interior border.
c.assert_area and c.assert_content allow the modifier to assert that a particular pattern
appears in the simulation on this step, without otherwise modifying the behavior.
c.insertions and c.deletions actually change the state.

Inputs can be placed on the board at any time using c.insertions.
Outputs are cleanly zapped from the state using c.deletions.

For most steps, c.insertions, c.deletions, c.assert_area and c.assert_content are all empty.
However, at time points when an input is supposed to arrive, c.insertions will contain an LWSS
at an input port. Similarly, output is handled by a combination of c.deletions, c.assert_area
and c.assert_content — c.assert_area and c.assert_content ensure that the expected output was
produced, and c.deletions removes the output from our local simulation.

An important feature of io_step is that matching inputs and outputs cancel out. That
is, if c.assert_content = c.insertions and c.assert_area = c.deletions, then io_step c S1 S3 implies
step S1 = S3, i.e., that the insertions and deletions have no effect. This will be relevant later,
for the composition theorem.

3.4 GOL-IO runs
To reason about runs consisting of many GOL-IO steps, we define io_steps k which performs
k-steps of io_step. Since io_step requires a modifier c, io_steps requires a sequence of modifiers
c : N → modifier.

io_steps 0 c n S1 S2
def= S1 = S2

io_steps (Suc k) c n S1 S3
def= ∃ S2. io_step (c n) S1 S2 ∧ io_steps k c (n + 1) S2 S3

run c S def= ∀ k. ∃ S ′. io_steps k c 0 S S ′

The run c S function asserts that the execution starting from state S is able to run
indefinitely using and respecting the modifiers in c. Note that the assertions in c can be used
to assert that desired values appear at points of interest in the simulation. It is through
these assertions we record the behaviour of the verified circuits we build.

4 Verified Circuits in GOL

This section describes how we write specifications for logic gates built within GOL, the key
theorems for working with them, and the abstractions we build to reach the level where we
can construct the verified circuit that implements GOL itself.
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4.1 GOL-IO runs for circuit components
We state our circuit specifications in terms of circuit_run which is defined in terms of run
from the previous section. The meaning of the parameters, area, ins, outs, init, and helper
functions, circ_mod and circ_mod_wf, will be explained later.

circuit_run area ins outs init def=
run (circ_mod area ins outs) init ∧
circ_mod_wf area ins outs

To get a sense of what circuit specifications look like using an example, consider the AND
gate from Figure 3. We can prove the following specification theorem:

⊢ circuit_run {(0, 0)} {((−1, 0), E, a), ((0, 1), N, b)} {((1, 0), E, a[5] ∧ b[5]} and_gate_pattern

The coordinates and delays here are in a higher level coordinate system, where 1 unit
corresponds to 75 GOL cells (or 1/2 of a tile) and 1 tick of delay corresponds to 60 GOL
steps. The components of the specification are as follows:

area := {(0, 0)} asserts that this circuit uses one full tile centered at position (0, 0).
(Because the coordinate system here is in half-tile units, an adjacent gate would be at
(2, 0). Gates are always placed at double-even coordinates.)
ins := {((−1, 0), E, a), ((0, 1), N, b)} states that this gate has two inputs. The first one is
at position (−1, 0) (the left edge of the tile), moving east (E) into the tile, and carrying
some signal (at). Note that signals are functions from natural numbers to booleans, where
at is the value that arrives into this circuit on tick t. The second input comes from (0, 1),
moves north (N), and is carrying signal (bt).
outs := {((1, 0), E, a[5] ∧ b[5]} states that there is one output stream appearing at location
(1, 0), moving east out of the tile and carrying signal a[5] ∧b[5], where (a[n])t

def= t ≥ n∧at−n

delays a signal by n ticks, and (a ∧ b)t
def= (at ∧ bt) is pointwise AND on signals.

init := and_gate_pattern specifies that the initial configuration of the GOL cells of this
AND gate is the content of and_gate_pattern.

4.2 Input and output in GOL circuits
As can be seen in Figure 3, circuit tiles have a square geometry with little ports on the sides
through which communication happens. We will now discuss how the IO ports are handled.
A gate simulation involves the following stages:
1. The initial state is set up, as in Figure 3.
2. IO ports are included for E/W inputs and N/S outputs, and excluded for N/S inputs and

E/W outputs. (See Figure 3f.)
3. 30 GOL steps are performed, during which nothing must escape the bounds.
4. Deletions are performed at N/S output ports.
5. Insertions are performed at N/S input ports.
6. IO ports are included for N/S inputs and E/W outputs, and excluded for E/W inputs and

N/S outputs.
7. 30 GOL steps are performed, during which nothing must escape the bounds.
8. Deletions are performed at E/W output ports.
9. Insertions are performed at E/W input ports.

10. Steps 2-9 are repeated for each tick.3

3 For reasons we will get into in section 5.1, because of our use of symbolic evaluation we only actually
need to perform steps 2-9 once, but the described gate evolution repeats these steps on each tick.
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Figure 5 Composition of an AND gate and a wire. In step (a) → (b) we merge the gate areas,
resulting in an assembly with an internal input port overlapping an output, highlighted in yellow .
In step (b) → (c) the matching pair is canceled.

These steps are all expressible through a carefully chosen sequence of GOL-IO modifiers (see
Section 3.3).

In other words, for ports going N/S, the IO action scheduled to happen on this tick
happens at the end of 30 GOL steps (halfway through the tick), while for E/W ports the
action happens after all 60 GOL steps (right at the end of the tick period, before the start of
the next tick). The IO action itself is a handoff of an LWSS (or not, depending on the value
of the high level signal on that time step) at each output port, and a receipt of an LWSS (or
not) at each input port.

The reason for the flip-flopping IO port ownership in steps 2 and 6 is because the producer
gate must have ownership of the region prior to the handoff in order to get an LWSS to
migrate to that position, and once the deletions and insertions of steps 4 and 5 are performed,
the region must be given to the consumer so the LWSS can get out of the port area and into
the consumer gate. The phase difference between N/S and E/W ports is to enable crossovers
as demonstrated in Figure 3f.

4.3 Composing circuit tiles
Equipped with circuit_run and an understanding for how input-output ports work, we now
look at how circuit_run specifications can be composed.

We use the following theorem when composing two circuit_run specifications. The theorem
requires the areas owned by these specifications to be disjoint. Furthermore, input (resp.
output) port at the edge of one circuit to have a matching output (resp. input) port in the
other circuit. Here we overload notation: (0, 0) + E = (1, 0), and (0, 0) − E = (−1, 0).

⊢ circuit_run a1 ins1 outs1 init1 ∧ circuit_run a2 ins2 outs2 init2 ∧ a1 ∩ a2 = ∅ ∧
(∀ p d r .

((p,d,r) ∈ ins1 ∧ p − d ∈ a2 ⇒ (p,d,r) ∈ outs2) ∧
((p,d,r) ∈ outs1 ∧ p + d ∈ a2 ⇒ (p,d,r) ∈ ins2) ∧
((p,d,r) ∈ ins2 ∧ p − d ∈ a1 ⇒ (p,d,r) ∈ outs1) ∧
((p,d,r) ∈ outs2 ∧ p + d ∈ a1 ⇒ (p,d,r) ∈ ins1)) ⇒

circuit_run (a1 ∪ a2) (ins1 ∪ ins2) (outs1 ∪ outs2) (init1 ∪ init2)

The conclusion of the composition theorem above unions each component of the two
circuits. This means that matching input and output ports then appear both as input and
output ports of the resulting circuit_run specification (Figure 5b). The following input-output
internalization theorem allows us to delete matching IO ports.

⊢ circuit_run area ins outs init ∧ m ⊆ ins ∧ m ⊆ outs ⇒
circuit_run area (ins − m) (outs − m) init
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To illustrate, suppose we want to compose an AND gate and a wire, as depicted in
Figure 5.

1. ⊢ circuit_run {(0, 0)} {((−1, 0), E, a), ((0, 1), N, b)} AND gate spec
{((1, 0), E, a[5] ∧ b[5]} and_gate_pattern

2. ⊢ circuit_run {(0, 0)} {((−1, 0), E, a)} {((1, 0), E, a[5]} ∅ wire spec
3. ⊢ circuit_run {(2, 0)} {((1, 0), E, a)} {((3, 0), E, a[5]} ∅ translate (2)
4. ⊢ circuit_run {(2, 0)} {((1, 0), E, a[5] ∧ b[5])} substitute (3)

{((3, 0), E, (a[5] ∧ b[5])[5]} ∅
5. ⊢ circuit_run {(0, 0), (2, 0)} compose (1,4)

{((−1, 0), E, a), ((0, 1), N, b), ((1, 0), E, a[5] ∧ b[5])}
{((1, 0), E, a[5] ∧ b[5]), ((3, 0), E, (a[5] ∧ b[5])[5]}
and_gate_pattern

6. ⊢ circuit_run {(0, 0), (2, 0)} {((−1, 0), E, a), ((0, 1), N, b)} internalize (5)
{((3, 0), E, a[10] ∧ b[10]} and_gate_pattern

The AND gate specification is familiar from section 4.1. The wire is similar, but it
does not need any initial pattern because LWSSs can travel through empty space. We first
translate the wire by (2, 0) so it lies next to the AND gate, then substitute a to a[5] ∧ b[5] so
that it matches with the output of the AND gate. We can then compose them in step 5, and
the redundant input/output pair is cancelled in step 6, with the delay distributing into the
expression.

Here we used a binary version of the composition theorem but in our formalization we
also prove and use a more general form of the composition theorem which can compose an
arbitrary set of circuits. This is used in particular to tile Z2-many copies of a gate.

4.4 Approximate signals
The above-described composition process results in exact descriptions of the stream outputs
from a set of gates. However, we run into issues when taking into account delay mismatches
where the same signal travels via two paths, resulting in expressions like a[5] ∧ a[6] which we
cannot simplify to a[6], even though all we really care about is that the a signal arrives in at
most n ticks (in this case, n = 6).

In fact, this issue can even arise within a single gate. The half-adder is supposed to
calculate the XOR of two signals on one output and AND on the other output. However,
the actual circuit theorem we obtain looks like this:

⊢ circuit_run {(0, 0), (2, 0), (0, 2), (2, 2)} {((−1, 0), E, a), ((−1, 2), E, b)}
{((3, 0), E, (a[15] ∧ ((a[12] ∧ ¬b[18]) ∨ (¬a[12] ∧ b[15] ∧ ¬b[18]))) ∨ (¬a[15] ∧ (a[12] ∨ b[15]))),

((3, 2), E, a[17] ∧ b[15])}
half_adder_gate_pattern

If we could erase all the delays from the expression at (3, 0), we would be able to simplify
it to simply a[?] ⊕ b[?], but because the delays are different it is simply a somewhat arbitrary
function on four boolean values a[12], a[15], b[15], b[18]. To make matters worse, this self-delay
issue compounds as we push through more gates – if we were to feed this expression into
another XOR we would get even more mirror copies of the signals.

To resolve this, we weaken our constraints on signals. Rather than specifically asserting
that a signal is equal to a given value, each wire is associated to an element in a type value,
whose denotation is a set of possible signals. This amounts to a Hoare-triple-like precondition
at each “program point” (= IO port).
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We use s ⊢ A to assert that s : stream is in the denotation of A : value, where stream def=
Z2 → N → bool. A stream has values sz(t) saying whether there is an LWSS or not each tick,
parameterized over z ∈ Z2, which is the mega-cell index.

There are two main kinds of signals, exact signals and approximate signals. Most wires
in the circuit carry approximate signals.

avalue = cell(Z,Z) | ¬avalue | avalue ∧ avalue | avalue ∨ avalue | avalue ⊕ avalue
evalue = ck | ¬ck | this | this ∧ ck | this ∧ ¬ck
value = avalue[N] | evalue[Z] | ⊤

An approximate signal A[n] represents a signal that holds the value A : avalue after
n ticks, and can have any value before that point. Signals have a refinement relation
A ⊆ B

def= ∀s. s ⊢ A ⇒ s ⊢ B, and we have m ≤ n =⇒ A[m] ⊆ A[n].
Exact signals are much rarer, and they deal with all of the signals that are involved in

the latch and clock, where it is important that we do not allow garbage values to enter. In
order for exact signals to support a lossless (−)[n] delay operation, an exact signal denotes a
Z → bool stream, that is, one that extends into the past (even though our GOL simulation
normally only deals with N → bool streams). There are two main exact signals, which can
be combined in a limited way by logical operators:

ck, the clock signal, is 1 from tick 0 to 22 (the pulse width), and then 0 from tick 22 to
586 (the clock period), and then it repeats.
this is a signal which denotes the current mega-cell value GOL(z, 0) for 586 ticks, then
GOL(z, 1) (the next time step), and so on.

For example, the wire at the top of the latch in Figure 4 has the value this[−15], which
means that in the initial state it is holding the current value of this cell, and it will continue
to hold that value until tick 586 − 15, at which point it will switch to holding the next value
that this cell should have, and it will switch again 586 ticks later.

Approximate signals allow arbitrary boolean combinations of the variables cell(m, n),
which denote the value of a nearby cell GOL(x + m, y + n, t). Note that this[m] ⊆ cell(0, 0)[n]

provided that 0 ≤ m ≤ n, and we perform this “decay” operation early so that most of the
gates never have to see an exact signal.

The value ⊤ represents failure and any signal satisfies it; it is used whenever operations
go outside the expected bounds. For example, when applying the negation function to this,
since there is no evalue representing ¬this, the result is instead ⊤.

The upshot of this is that we now get much nicer provable gate specifications:

⊢ circuit_run’ {(0, 0), (2, 0), (0, 2), (2, 2)} {((−1, 0), E, A), ((−1, 2), E, B)}
{((3, 0), E, A[15] ⊕ B[18]), ((3, 2), E, A[17] ∧ B[15]}
half_adder_gate_pattern

A concern one might have at this point is that while we can now assert that things
eventually settle down, what about the circuit ensures that this actually happens? The idea
here is that we start with a budget of 586 ticks worth of stability, and this budget is cut
into every time we go through a gate (for example, the above half adder output as much as
18 ticks fewer of stability compared to its inputs). By the time we go through the whole
circuit, we have lines that are almost entirely noise but for a few ticks where they have the
computed value. The key that lets us turn back the entropy clock is the clock and latch,
and this rule (see section 5.2): ck[m] ∧ v[n] = (this ∧ ck)[m] provided n ≤ m + 586, m ≤ −22,
and v = nextCell. Here v[n] will be our computed output holding the avalue nextCell with only
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a few ticks left of juice, and the clock (which is only on for a short period) masks out all
the garbage, leaving an exact signal. The latch accepts and retains this value, resulting in a
clean signal for the next 586 ticks of computation.

4.5 Building the mega-cell
For the main part of the mega-cell construction, we build up a set of gates, respecting all the
inputs and output relations. For this, we will make use of the floodfill function.

The basic idea is that we will build up a state consisting of the following components:
area ⊆ 2Z × 2Z is a set of points which currently contain a gate or part of a gate. This
is to ensure new gates do not overlap existing gates. This set must also stay contained
within [0, 42)2 which is a single mega-cell (the extent of Figure 4).
ins : (Z2 × dir × value) list is the list of unmatched input ports, and the values that they
carry (treated up to permutation, i.e. as a multiset).
outs : (Z2 × dir × value) list is the multiset of unmatched output ports.
crosses : (Z2 × Z2 × dir) list is the multiset of unmatched crossovers, which are treated
specially because they do not yet have values associated with them.
gates : (Z2 × gate) list is the resulting gate list.

The definition of floodfill area ins outs crosses gates is somewhat complex, and it is easier
to understand it in terms of the theorems it satisfies (simplified for presentation).

floodfill_add_ins: Disjoint gate insertion.4 The side conditions assert that a1 + p is disjoint
from a and contained in [0, 42)2. Furthermore, the inputs in i1 must be exact and must
not collide with any other inputs or outputs.

floodfill a i o c gs, is_gate g a1 i1 o1, (∀(_, _, v) ∈ i1. is_exact v),
(a1 + p) ∩ a = ∅, (a1 + p) ⊆ [0, 42)2, (i1 + p) ∩ fst[i ++ o] = ∅

⊢ floodfill ((a1 + p) ++ a) ((i1 + p) ++ i) ((o1 + p) ++ o) c ((p, g) :: gs)

floodfill_add_gate: Adding a regular gate. The inputs to the gate must match pre-existing
outputs, which are removed from the list.

floodfill a i ((i1 + p) ++ o) c gs, is_gate g a1 i1 o1,

(a1 + p) ∩ a = ∅, (a1 + p) ⊆ [0, 42)2

⊢ floodfill ((a1 + p) ++ a) i ((o1 + p) ++ o) c ((p, g) :: gs)

floodfill_add_crossover. Matches one input and puts the other one on the work queue.

floodfill a i ((ia + p, A) :: o) c gs, is_crossover g a1 [ia, ib] [oa, ob],
(a1 + p) ∩ a = ∅, (a1 + p) ⊆ [0, 42)2

⊢ floodfill ((a1 + p) ++ a) i ((oa + p, A[5]) :: o) ((ib + p, ob + p) :: c) ((p, g) :: gs)

floodfill_finish_crossover. Matches its second input with a pre-existing output.

floodfill a i ((ib, B) :: o) ((ib, ob) :: c) gs
⊢ floodfill a i ((ob, B[5]) :: o) c gs

4 The expression area1 +p is used to mean translating the set area1 by p : Z2. Similarly, ins1 +p translates
the port positions by p.
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floodfill_teleport: “Teleports” an output by a multiple of 42 half-tiles, by reindexing the
underlying stream and changing the basepoint p to p + 42z to compensate. This is how
the mega-cell communicates with neighboring mega-cells. Here the operation A + z for
A : value, z : Z2 does cell p + z = cell (p + z) and distributes over boolean operations.

floodfill a i ((p, A) :: o) c gs
⊢ floodfill a i ((p + 42z, A + z) :: o) c gs

These lemmas enable the circuit to be built up by starting from the empty set, disjointly
inserting a gate at the clock and at the latch, then using floodfill_add_gate to add the rest
of the gates, in propagation order. The crossover handling is because floodfill_add_gate
requires all inputs to a gate to have their values assigned before the gate can be added, but
a quick glance at Figure 4 confirms that the wire leading out of the latch doesn’t get very
far before having to duck under a crossing wire which has not yet received a value. So in
these cases we put it on the crossover queue with floodfill_add_crossover, and pop it off with
floodfill_finish_crossover when we get the value for the other wire.

We will discuss is_gate g a1 i1 o1 further in section 5.1, but this specification is similar to
circuit_run’ from section 4.4, and in particular it is proved with variables for the input values,
so when we use floodfill_add_gate repeatedly we build up large expressions on the outputs
representing the resulting values.

4.6 Satisfying the floodfill lemmas
The advantage of the lemmas in section 4.5 is that they are easily computable – the expressions
area, ins, outs, crosses, gates are all concrete expressions, which makes it easy to compose
the lemmas by applying them and simplifying the results. However, they entail a rather
sophisticated logical structure for floodfill itself. So in this section we instead look at the
definition of floodfill, and how it connects to the circuit specifications from section 4.1.

For s : stream and v : value, let s ⊢ v mean that s is in the denotation of v as described in
section 4.4. Now floodfill area ins outs crosses gates holds if:

for all (p, g) ∈ gates, g is valid to be placed at p; and
there exist sin : stream list and sout : stream list such that:

∀i. (sin)i ⊢ insi and ∀i. (sout)i ⊢ outsi, and
for all scross : stream list such that |scross| = |crosses| and ∀i. ∃v. (scross)i ⊢ v,
floodfill_run ins′ outs′ holds, where
∗ ins′ def= (fst insi, (sin)i) ++ (in crossesi, (scross)i))
∗ outs′ def= (fst outi, (sout)i) ++ (out crossesi, (scross)i).

This part of the definition handles the delayed assignments to crossovers, and the
conversion from value assignments to stream assignments. At the core of it is another definition
floodfill_run ins outs, where ins, outs : (Z2×dir×stream) list. Let S∗ = {p+42z | p ∈ S, z ∈ Z2}.
Then floodfill_run ins outs holds if:

area ⊆ [0, 42)2 ∩ (2Z × 2Z);
for all (p, d, _) ∈ ins, p + d ∈ area; (1)
for all (p, d, _) ∈ outs, p − d ∈ area; (2)
map f ins and map f outs have no duplicates, where f(p, d, _) = ({p}∗, d); and
if

for all (p, d, v) ∈ ins, if p − d ∈ area∗ then ∃z. (p + 42z, d, v + z) ∈ outs (3)
for all (p, d, v) ∈ outs, if p + d ∈ area∗ then ∃z. (p + 42z, d, v + z) ∈ ins (4)

then circuit_run area∗ (f ins) (f outs), where
f ls def= {(p + 42z, d, v z) | (p, d, v) ∈ ls, z ∈ Z2}.
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Needless to say, this definition was tricky to discover, and much of the hard work of the
formalization was spent showing that all of the lemmas of section 4.5 hold for this definition.
The way this was done was to start from the theorems, as they represent the desired
computation strategy, and then reasoning out what properties we obtain after combining
them. The definition was refined several times in order to have enough to prove the theorems.

One interesting part of the definition above is the precondition (3,4) before circuit_run,
which means that it is possible for floodfill to allow adding a gate even if it has an output
which points at a gate with no matching input. Intuitively, this is okay because the outs
in floodfill are effectively proof obligations, and they cannot be discharged without adding
another gate on the other side of the output to match it.

Another important observation is that the circuit_run expression is over area∗, so it is an
infinite circuit, tiled over space. (This is how we are able to satisfy floodfill_teleport, which
moves an output by a multiple of the mega-cell, which amounts to a reindexing of the lattice
of copies of that particular wire.) When we add a gate, we first use the infinitary version of
the composition lemma from section 4.3 to duplicate the gate over all of space, then use the
binary composition lemma to combine that with the current floodfill area. The preconditions
(1,2,3,4) are used to prove the various side conditions in the composition lemma.

5 GOL Circuit Proofs via Computation

5.1 Symbolic evaluation of individual gates
We prove individual gate specifications (in terms of circuit_run from Section 4.1) by symbolically
simulating the steps a circuit and its IO interfaces cycle through (Section 4.2). That is,
rather than simulating concrete GOL states, in our simulator each GOL cell contains a bexp,
given by the following grammar:

bexp = ⊤ | ⊥ | varN | ¬bexp | bexp ∧ bexp | bexp ∨ bexp, var = A | B

Our symbolic simulations are set up to take two input streams, A and B. Variable A3 is the
value at index 3 of the input stream A. (We call this index the “age” of the variable.)

The goal of the symbolic simulations is to prove circuit specifications for individual gates
that describe all the states a gate can be in, including all the states the internal in-progress
LWSSs can be in. We do this in two steps:
1. Outside of the proof assistant,5 we run several ticks of symbolic simulation starting from a

completely concrete initial state but feeding in variables in the places where input LWSSs
are to arrive. We are done once these LWSSs have propagated through the entire gate
and the simulation reaches a “steady state” where stepping by one tick results in a state
equal to the previous state but with every variable aged by one, e.g., A3 becomes A4.

2. Inside the proof assistant, we run one tick of symbolic simulation according to section 4.2
on the symbolic state found outside of the proof assistant, and formally confirm its finding
that the resulting symbolic state is equal to the initial symbolic state, aged by one.

The final check shows that gates have stable behaviour over any number of ticks and function
like LWSS conveyor belts, with each LWSS making steady progress through the gate.

Figure 3e shows the verified symbolic state of the AND gate, using color to indicate the
cells with variable expressions. (Age is not represented in the diagram, but each LWSS in
the diagram has a different age. The leftmost LWSS is A4, and the rightmost is A0 ∧ B0.)

5 More accurately: in SML code in the script file, but not going through the kernel.
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The most interesting aspect of the symbolic simulation is how we determine the next
symbolic state of a GOL cell given the current symbolic state of it and its neighbors. The
approach we take is to:
1. collect all the variables appearing in any of the relevant symbolic cells,
2. for each possible assignment to those variables, we evaluate the GOL rules,
3. we summarize all results in one expression as a nested if-expression,
4. we simplify the if-expressions and represent it as a single bexp.
Step 3 can, for example, result in the following if-expression if a GOL cell and its neighbors
use two variables, A2 and B1, and only evaluates to true if both are true.

if A2 then (if B1 then true else false) else false

The expression above simplifies to A2 ∧ B1. This approach is exponential in the local variable
count, but this was not a significant issue because our simulation only goes as high as 4
variables in practice (see section 4.4).

5.2 Putting it all together
The floodfill lemmas of section 4.5 are designed so that the main part of the construction can
be done fully automatically.

An SML program takes as input an ASCII-art version of Figure 4.
It is parsed to get gate positioning and orientation, and the appropriate symbolic evaluation
theorem from section 5.1 is selected.
The initial gates (at the latch and clock), with their values, are additional inputs, and it
uses floodfill_add_ins to add these.
It then performs a depth first traversal of the diagram.

If an output is facing a gate which has all of its inputs in the output list, use
floodfill_add_gate.
If an output is facing a crossover, use floodfill_add_crossover, or floodfill_finish_crossover
if it is the second time we have visited this gate.
If an output is facing the edge of the tile, use floodfill_teleport to wrap it back in bounds.

These steps are repeated until nothing can make progress. In the process we work out all
of the formulas associated to each IO port.
The value type from section 4.4 has functions defined on it for ∧, ∨, ¬, which do the
obvious thing on avalue values, but there are a few interesting cases designed to handle
the latch area:

this[m] ∧ (¬ck)[n] = (this ∧ ¬ck)[n] provided n ≤ m ≤ n + 22
ck[m] ∧ v[n] = (this ∧ ck)[m] provided n ≤ m + 586, m ≤ −22, and v = nextCell
(this ∧ ck)[n] ∨ (this ∧ ¬ck)[n] = this[n]

Here nextCell : avalue is the specific formula that the mega-cell circuit computes.
nextCell is a boolean combination of cell(m, n) values for −1 ≤ m, n ≤ 1, and we prove it
is equal to the GOL step function from section 3.1 by enumerating the 512 possibilities.
The final floodfill theorem has only two outputs, which overlap the two inputs, and therefore
they cancel and produce a complete GOL (not GOL-IO) simulation. In particular, since
one of these inputs has value this[−15], we know that in the final simulation, if we sample a
particular pixel in this IO port at multiples of 586 ticks, it will be on iff the corresponding
mega GOL simulation pixel is on.
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In the end, the final theorem we obtain looks like this (gol_in_gol_circuit_thm):

⊢ ∀ n S. stepn S = read_mega_cells (stepn×60×586 (build_mega_cells S))

where step is the GOL step function; build_mega_cells s takes an input GOL state S and tiles
the plane with two versions of the mega-cell in Figure 4, which differ only slightly, in the
internal state of the latch; and read_mega_cells S = {p | 3150p + (1726, 599) ∈ S} performs
the aforementioned sampling.

6 Conclusion, Related Work and Future Work

In this paper, we have demonstrated that it is possible to formally verify circuits built in
GOL and we have verified a circuit that implements GOL itself inside GOL. To the best of
our knowledge, this is the first work to formally verify, in an interactive theorem prover (ITP),
constructions in a cellular automata. The formalization is roughly 9 500 LOC.

There has been significant prior work on formalizing more traditional models of com-
putation in ITPs, e.g., Turing machines [11, 2, 20, 6], register machines [12, 3], λ-calculus
[16, 13, 10, 9], µ-recursive functions [5] and more [17]. We refer to Forster [8] for more in
depth discussions on computability in ITPs. Rule 110 [7] is another simple universal CA.

In future work, it would be interesting to explore ITP proofs connecting GOL with more
traditional forms of computability. Also, the tools used here could be generalized to prove
other GOL circuits, other cellular automata, as well as low level hardware correctness proofs.
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