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HIGHLIGHTS GRAPHICAL ABSTRACT

e Fungal fermentation valorizes diverse
industrial residues into high value
products.

e Mycoproteins, enzymes and bio-
chemicals produced from waste derived

substrate. Industrial side-streams
and residues

High value added products

e Sequential SSF-SmF strategy enhances
fungal yield and process efficiency.

e Circular bioeconomy advanced through
integrated fungal valorization pathways.

ARTICLE INFO ABSTRACT
Keywords: The escalating generation of industrial side streams and organic residues presents both a challenge and an op-
Industrial side streams portunity for sustainable biotechnological solutions. Filamentous fungi, with their metabolic versatility and

Mycoprotein

Enzyme production
Waste valorization
Agro-industrial residues
Fungal biorefinery

ability to secrete a wide spectrum of enzymes, have emerged as promising agents for transforming diverse waste
substrates into high-value products within the biorefinery concept. This review explores the multifaceted ap-
plications of fungal fermentation (submerged, solid-state, and sequential) for valorizing agri-food, lignocellu-
losic, and marine residues into mycoproteins, enzymes, biochemicals, biomaterials, and agricultural applications.
Emphasis is placed on the scalability, functional diversity, nutritional potential, and environmental relevance of
fungal-derived products, particularly in addressing global protein demand, chemicals, materials and sustainable
biomanufacturing. Furthermore, challenges, substrate heterogeneity, safety concerns, and emerging tools, such
as Al and multi-omics, are discussed in the context of process optimization and regulatory acceptance. This paper
highlights fungal fermentation as a pivotal biotechnology tool in advancing circular bioeconomy goals by
contributing to sustainable food production, resource recovery, and the development of novel compounds of
interest.
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1. Introduction

Burgeoning environmental concerns and increasing public aware-
ness of the consequences of current consumption and production models
have propelled the circular economy and bioeconomy to the forefront of
scientific, industrial, and policymaking discourse, particularly within
EU legislations (European Commission, 2018). As a result, the circular
bioeconomy has emerged as a pivotal strategy for fostering sustain-
ability and ensuring economic activities remain within earth’s bio-
physical limits (Muscat et al., 2021). Built on the principles of waste
minimization and valorization, circular economy is a cornerstone in the
sustainable development frameworks. By embedding reduction, reuse
and recycling across the entire value chain, it aims to enhance resource
efficiency while mitigating environmental impact (Kumar et al., 2025).

Biorefineries play a pivotal role in translating these principles into
practice, providing a sustainable platform for converting biomass into a
diverse range of valued-added products, including food, feed, energy,
biomaterials, and chemicals (Ianda et al., 2024; Van Der Hauwaert et al.,
2024). They utilize biomass from various sources, such as forestry,
agriculture, aquaculture, and organic waste generated by industrial and
urban sectors (Ianda et al., 2023). Given that global municipal solid
waste generation is projected to reach 3.4 billion tonnes annually by
2050 (Kaza et al., 2018), with food waste alone accounting for nearly
1.05 billion tonnes per year (United Nations Framework Convention on
Climate Change (UNFCCC), 2024), biorefineries offer a crucial solution
for waste management and resource recovery. The biorefinery distri-
bution report indicate the existence of 803 biorefineries in the European
Union (EU), with the majority dedicated to production of bio-based
chemicals (507), while 363 focus on liquid biofuels and 141 specialize
in bio-based composites and fibers (European Commission. Joint
Research Centre., 2018). The potential for biorefineries is expected to
expand significantly in the coming decades, with the demand for bio-
products projected to reach 113 Mt/year by 2050, corresponding to an
estimated annual growth rate of 15 % (Arias et al., 2023).

Fungal fermentation, a robust and versatile biotechnological
approach has been utilized for centuries (Cairns et al., 2018). Its effec-
tiveness in biomass valorization makes it a key enabler of the biorefinery
concept, offering sustainable solutions for resource utilization. Fila-
mentous fungi can produce a wide range of enzymes including, cellulase,
xylanase, lignin peroxidase, laccases, among others (El-Gendi et al.,
2021; Liu and Qu, 2019). Leveraging this enzymatic capability and their
metabolic versatility, fungal technology can degrade a wide range of
complex substrates such as lignocellulosic residues, proteinaceous
byproducts, and lipid-rich waste, converting them into high-value
compounds (Dukare et al., 2024). Additionally, their capacity to accu-
mulate intracellular storage molecules and synthesize bioactive metab-
olites makes them highly suitable for applications in food, feed,
biopolymers, and bioenergy (Fan et al., 2025; Li et al., 2024a).

Beyond biotransformation efficiency, fungal fermentation offers key
advantages in sustainability and scalability. Operating under mild con-
ditions, it requires lower energy inputs than conventional chemical
processes while reducing waste accumulation and carbon emissions.
Moreover, several filamentous fungi are edible and hold generally
recognized as safe (GRAS) status, facilitating their use in food applica-
tions. Comparing fungal fermentation with bacterial or algal valoriza-
tion, it offers clear economic advantages primarily by reducing upstream
and downstream costs. Filamentous fungi can directly act on complex
substrates such as lignocellulose and agro-industrial residues, mini-
mizing pretreatment requirements and lowering capital and operational
expenses (Banerjee et al., 2023; Dhiman et al., 2024). Their superior
enzyme secretion capacity enables efficient substrate utilization and
faster lignin breakdown, while the easy separation of fungal biomass
from the fermentation medium simplifies downstream processing and
allows further valorization of proteins and lipids, enhancing circularity
(Varriale and Ulber, 2023). Simultaneous saccharification and fermen-
tation further decreases costs by combining enzymatic hydrolysis and
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fermentation in a single vessel, as demonstrated for lactic acid produc-
tion from industrial waste paper sludge using Rhizopus oryzae
(Dhandapani et al., 2021).

At industrial scale, fungal fermentation underpins diverse processes,
from mycoprotein production (e.g., Quorn™) to enzyme-assisted
biomass degradation (e.g. Carbios, Abengoa) and enzyme production
(e.g. Novozymes), demonstrating its broad commercial relevance. As
advancements in process optimization continue, fungal-based valoriza-
tion is poised to play a central role in the evolution of biorefineries and
low-carbon principles.

In light of the growing importance of circularity and a thriving
bioeconomy, this review explores the valorization of industrial side
streams and wastes through fungal fermentation, examining biomass
types, fermentation strategies, applications, challenges, and future
prospects. Fig. 1 exhibits a general overview of the feedstocks, fermen-
tation and products that are discussed in the coming sections.

2. Fungal fermentation

Fermentation, as first described by Pasteur, is a microbial process
that enables energy production in the absence of oxygen (Pasteur,
1879). Complex molecules are degraded and converted into simpler
ones such as alcohols or acids mediated by myriads of enzymes (Chai
et al., 2022a). This biological transformation has become a pillar of
modern industrial biotechnology, supporting applications in food,
medicine, energy, and environmental sustainability.

Fungal fermentation, in particular, offers distinct advantages due to
the metabolic versatility of filamentous fungi. Their ability to secrete
diverse enzymes and secondary metabolites enables the breakdown of
complex biomass, including cellulose, hemicellulose, and lignin, the
latter being particularly resistant due to its highly branched, aromatic
structure (Hsin et al., 2025; Ren et al., 2024; Zhang et al., 2024a; Liang
et al., 2025). Efficient biomass conversion hinges on maximizing the
utilization of each component, yet lignin degradation remains a major
bottleneck (Chai et al., 2022b). Unlike many microorganisms, fungi
possess specific ligninolytic enzymes that facilitate lignin breakdown,
improving cellulose accessibility and enhancing subsequent saccharifi-
cation (De Oliveira et al., 2023; Sun et al., 2014). Due to this charac-
teristic, fungal fermentation is not only a core bioconversion process,
but it can also serve as a powerful pretreatment step in other biomass
valorization processes. For instance, biological pretreatment of sugar-
cane bagasse with Trametes villosa 8216 has been found to selectively
degrade lignin, making cellulose more accessible for enzymatic hydro-
lysis. This process significantly enhances sugar recovery from bagasse,
ultimately improving ethanol production (Hartmann et al., 2022).

Beyond their enzymatic capabilities, fungi exhibit remarkable resil-
ience to environmental stressors such as pH, aeration and water activity,
further reinforcing their industrial applicability.

Filamentous fungi are predominantly saprophytic eukaryotes, which
means they obtain carbon from nonliving organic matter. Their struc-
ture is made up of thin, thread like units called hyphae, which together
form a larger network known as mycelium. Among the industrially
prominent filamentous fungi, we can mention Peniccillium, Fusarium,
Aspergillus, Rhizopus and Neurospora.

Fungal fermentation processes can be categorized as submerged,
solid-state or sequential method. Fig. 2, exhibits fungal fermentation
modes and position of polysaccharides and proteins in the hyphae cell
walls.

2.1. Submerged fermentation

Submerged fermentation (SmF), or liquid fermentation, involves
cultivating microorganisms in a liquid medium enriched with essential
nutrients such as carbon, nitrogen, and micronutrients (Amobonye et al.,
2023). This method is widely used in industrial-scale operations, due to
its precise control, efficient automation, and robust monitoring of
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Fig. 2. Fungal fermentation modes, structure of mycelia and hyphae cell wall.

parameters like pH, temperature, aeration, and dissolved oxygen
(Thakur et al., 2023). Typically performed in stirred-tank or airlift bio-
reactors, SmF is preferred for large-scale enzyme production as it en-
hances microbial growth and simplifies process control while
minimizing heat and mass transfer limitations. Beyond enzymes, SmF
plays a key role in the industrial production of citric acid, antibiotics,
vitamin supplements, flavoring agents, biopesticides, animal feed and
bioplastic for packaging production (Haque et al., 2024; Ksiazek, 2023;
Mascarin et al., 2024; Show et al., 2015).

2.2. Solid state fermentation

The other major mode of fungal fermentation is solid state fermen-
tation (SSF), with a moisture content between 34-75 % (Ahmad et al.,
2022). In SSF, microbes are grown with minimal free-flowing liquid on
moist, insoluble substrates which serves as both the source of nutrients
and physical support (Couto and Sanroman, 2006; Wang et al., 2023a).

While SmF remains more prevalent in bioprocessing, SSF is
increasingly getting valued for its advantages, including high produc-
tivity, reduced energy and water demands, lower contamination risks,
and minimal wastewater generation and lower operational costs
(Majumder et al., 2024; Wang et al., 2023a). Notably, SSF is becoming

favored for fungal cultivation, when maximizing biomass production or
secondary metabolite synthesis (Amobonye et al., 2023) for instance in
mycoprotein production (Wang et al., 2023b). However, despite its
potential, SSF has yet to be fully realized on an industrial scale due to
challenges in process monitoring and control, substrate heterogeneity as
well as heat and mass transfer (Bamidele et al., 2025; Jin et al., 2024).

2.3. Sequential fermentation

Coupling solid and submerged fermentations in a sequential SSF-SmF
strategy leverages the strengths of both techniques, creating a syner-
gistic effect that improves fungal fermentation efficiency. SSF facilitates
strong microorganism-substrate interactions, which leads to higher
enzyme concentrations (Gmoser et al., 2019). By providing a favorable
microenvironment with improved oxygen availability, SSF promotes
mycelial germination and enzyme synthesis (Cunha et al., 2012), mak-
ing it an effective pre-culture step. The subsequent transition to SmF
optimizes mass and heat transfer, ensuring effective substrate utilization
and nutrient diffusion, which maximizes fungal metabolism and enzy-
matic activity. This combined approach has demonstrated superior
performance in cellulase and glucoamylase production (Martau et al.,
2021), and improved bioconversion of lignocellulosic residues (Intasit
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et al., 2021). Combining SSF and SmF not only enhances fungal adapt-
ability and productivity but also optimizes resource utilization, making
it a highly effective strategy for industrial biotechnology applications.
However, despite its promising potential, the industrial deployment of
this dual-mode strategy remains limited. Existing bioprocessing infra-
structure is generally optimized for either SSF or SmF, and lacks the
flexibility to accommodate the sequential integration of both modes at
scale. Further technological innovation and process engineering are thus
required to overcome operational and scale-up challenges before the
SSF-SmF approach can be widely adopted in industrial biotechnology.
To achieve high fungal biomass yields, critical factors such as temper-
ature, pH, oxygen availability, and agitation must be carefully
controlled throughout the process. However, significant techno-
economic barriers remain. The intrinsic heterogeneity of SSF compli-
cates reactor design, scale-up, and automated control compared to the
more uniform conditions of SmF (Lopez-Gomez and Venus, 2021).
Challenges in ensuring efficient heat and mass transfer, maintaining
appropriate moisture content, supplying adequate aeration, and
achieving precise pH regulation further limit industrial adoption.
Moreover, the absence of scalable, rationally designed bioreactors sup-
ported by mathematical modeling and automated control systems pre-
vents robust aseptic operation under heterogeneous conditions (Arora
et al., 2018). Transitioning from the initial SSF phase to the liquid SmF
stage also poses difficulties, requiring careful coordination of nutrient
transfer, microbial dynamics, and metabolite stability (De Oliveira et al.,
2024). In addition, the physical and chemical complexity of solid sub-
strates often impedes efficient product recovery and integration into the
subsequent submerged phase. Beyond these technical barriers, realistic
scale-up is further challenged by increased contamination risks during
phase transfer (Abraham et al., 2013), difficulties in cleaning hetero-
geneous residues, and regulatory hurdles associated with food- and feed-
grade approval of waste-derived substrates.
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3. Industrial biomass as potential feedstocks

A wide range of organic side streams are generated across industries,
each varying in composition, structure and biodegradability. The
following subsections explore representative industrial side streams and
residues that have shown potential as suitable feedstocks for fungal
valorization. Table 1 summarizes the key characteristics of the main
feedstocks, including C/N ratio, lignin content, potential inhibitory
compounds, fungal strain compatibility, and commonly reported pre-
treatment methods. The data are compiled from multiple case studies to
provide a comprehensive comparative overview.

3.1. Food and beverage industry byproducts

The food and beverage industry is one of the world’s largest pro-
ducers of organic waste, contributing significantly to environmental
pollution, economic inefficiencies, and increasing burdens on waste
management systems (Hadj Saadoun et al., 2021). However, many of
these byproducts are rich in proteins, fibers, and carbohydrates, making
them highly suitable for bioconversion (Borkertas et al., 2025; Yu et al.,
2025). Fungal fermentation, in particular, offers a promising approach
to valorizing these residues.

The waste and side streams in food and beverage industries can
generally be categorized into two main groups; 1: Processing byproducts
and residues generated during or at the end of production, such as whey,
cheese, and milk residues. 2: Defective or discarded products including
faulty batches, expired, spoiled, or contaminated items.

Among these, dairy byproducts hold immense potential for
biotechnological valorization. Dairy waste streams contain high organic
loads, with chemical oxygen demand (COD) values reaching 1.13 kg for
lactose, 1 kg for protein, and 3 kg for fat per kg of waste (Ahmad et al.,
2019). In 2023, global cheese production reached 22.15 million metric
tons, with the EU contributing approximately 47 % (10.4 million metric
tons) (USDA Foreign Agricultural Service, 2024). Since 9-10 L of whey
are generated per kg of cheese produced, this results in vast amounts of

Table 1
Potential feedstock properties for using as substrate in fungal fermentation.
Feedstock C/N ratio Lignin Inhibitory Fungal strain compatibility Pretreatment Reference
content compounds/by
(%) products
Whey ~18-70 NA Lactose derived A. oryzae, A. Niger, P. Acid precipitation and thermal (Bansfield et al., 2024; De
inhibitors, salt chrysogenum, P. purpurogenum, denaturation if needed Carvalho et al., 2020; Usmani
et al., 2022)

Brewer’s 19.2 10-25 Phenolics, HMF A. niger, R. oryzae T. Physical, chemical (acid, alkaline, (Gmoser et al., 2020; Llimos
spent aurantiacus, T. reeseli, organosolv), hydrothermal, et al., 2022; Parchami et al.,
grain T. Neurospora, N. intermedia enzymatic 2023; Saldarriaga-Hernandez

et al., 2025)
Wheat straw 55-110 11-26 Phenolics, HMF, T. versicolor, P. ostreatus Physical, dilute acid, alkali, (Gao et al., 2016; Li et al..
furfural, acetic acid enzymatic 2025a,; Shamshitov et al.,
2025; Sun et al., 2025)
Rice straw 43-110 5-24 Silica, HMF, furfural, T. versicolor, Physical, thermal, and acid (Binod et al., 2010; Gao et al.,
phenolics C. subvermispora, P. ostreatus, 2026; Nozoe et al., 2025; Panda
A. niger, P. janthinellum, and Maiti, 2024)
T. reesei, S. cerevisiae
Corn stover 40-60 17-22 Furan aldehydes P. ostreatus, T. longibrachiatum Grinding, soaking in water, (Jazmin Edith et al., 2019;
organic acids, chemical Nichols et al., 2008; Wuaku
aldehydes, phenolics et al., 2025)
Rice bran 16.54-19.7 11.5-24.8 Lipids, phenolics, T. harzianum, A. oryzae, A. Milling, defatting, extrusion (Abduh et al., 2025; Hernaman
phytic acid niger, N. sitophila, et al., 2024; Huervana et al.,
2024; Nozoe et al., 2025)

Soybean 5.83 1.14-11.5 Phytic acid, lectins P. citrinopileatus, A. oryzae, A. NA (Devanthi et al., 2024; Joo

okara niger A. ficuum et al., 2023; Mok et al., 2019;
Thi Bich et al., 2024)

Sugarcane 66 10-26 Acetic acid, Wickerhamomyce, Aspergillus, Acid and alkali, hot water cleaning  (Bonfiglio et al., 2024;

bagasse phenolics, 5-HMF, Trichoderma, Rhizopus, Mucor, to remove sugar, steam explosion, Dhandapani et al., 2021; Mili

furfural

Penicillium, Fusarium

detoxification by liquid-liquid
extraction

et al., 2025)

HMF: Hydroxymethyl furfural

NA: not applicable.
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cheese whey, a byproduct with a high biochemical oxygen demand
(BOD) and COD. Some whey is processed into more valuable products,
such as whey protein concentrates, whey powder, whey permeate.
However, a significant portion of the liquid whey produced during
cheese manufacturing is still discarded or used as livestock feed (Tunick
et al., 2025). Rich in proteins and lactose, whey serves as an excellent
substrate for fungal fermentation, enabling the production of functional
and bioactive compounds (Malos et al., 2025; Pires et al., 2021; Usmani
et al., 2022).

Brewer’s spent grain (BSG) is among the abundant cereal-based
byproducts and waste. BSG, the primary by-product of beer produc-
tion, is the solid residue after the malting, mashing, and lautering stages
(Sibhatu et al., 2021). It accounts for approximately 85 % of total
brewing waste, with an average of 20 kg of BSG generated per 100 L of
beer (Qazanfarzadeh et al., 2024). Global BSG production is estimated at
36.4 million tons annually, with the EU contributing to approximately
3.4 million tons (Li et al., 2021; Pilafidis et al., 2024). Currently, BSG is
used mainly as low-quality animal feed, but its short shelf life and high
production volume mean that large amounts are instead managed
through landfilling or incineration, both of which pose significant
environmental challenges (Parchami et al., 2023). Rich in hemicellu-
lose, cellulose, protein, lignin, and phenolic compounds, BSG holds
significant potential for biorefinery applications (Qazanfarzadeh et al.,
2023).

3.2. Agro-industrial wastes and residues

3.2.1. Crop residues

Cereal crops such as wheat, rice, and corn account for a major share
of global crop residues, annually producing over 650 million tons of
wheat straw and 70 million tons of corn husks (Deshwal et al., 2021).
With global grain production projected to exceed 2.9 billion metric tons
in 2025, the accumulation of cereal residues is expected to rise signifi-
cantly, posing both a challenge and an opportunity for valorization
(Food and Agriculture Organization of the United Nations, 2024; Sta-
tista, 2025a). Cereal residues are utilized for multiple purposes,
including livestock feed (=19 %), domestic fuel in resource-limited
areas, soil carbon and nitrogen enrichment, and erosion control. How-
ever, about 10 % of these residues are still burned in the fields, causing
air pollution, nutrient loss, and potential pest problems. Current utili-
zation practices are often not economically optimal and may have
negative environmental and health impacts (Jafarzadeh et al., 2025).
Cereal straws are rich in cellulose, hemicellulose, lignin, and essential
nutrients, and can be considered as promising substrates for fungal
fermentation (Ying et al., 2024). Despite their recalcitrance, fungi,
particularly white rot species, excel at lignin degradation, enhancing
substrate accessibility. For instance, Trichoderma has been shown to
accelerate rice straw decomposition (Organo et al., 2022).

Similarly, corn stover (stalks, leaves, and cobs left after harvesting) is
a high-potential lignocellulosic feedstock, containing 35 % cellulose, 20
% glucuronoarabinoxylan, and 12 % lignin. Certain fungi, such as
Ustilago maydis, can utilize corn stover as a sole nutrient source, relying
on its sugar content for growth (Robertz et al., 2024).

Cereal bran, a byproduct of milling, is another abundant resource for
fungal cultivation that is composed of hemicelluloses, starch, poly-
phenols, and proteins. Rice bran alone contributes 5-15 kg per 100 kg of
milled rice (Kayalvizhi and Jacob, 2025). Currently, rice bran is mainly
used as animal feed, leading to a loss of valuable nutrients. To enhance
its utilization, processing methods such as fermentation, irradiation, and
extrusion are increasingly applied to improve its sensory and nutritional
qualities (Wu et al., 2024). Besides, it can be a potential feedstock for
mycelium-based biomaterials (Sisti et al., 2021).

3.2.2. Legume and oilseed residues
The legume and oilseed industries generate large volumes of
nutrient-rich residues, including oilseed cakes, soybean processing
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byproducts, and legume husks. These residues are primarily utilized as
an animal feed supplement, although incorporation levels are limited by
antinutritional factors and high fiber content. In practice, it is also
commonly applied as compost or fertilizer, while alternative routes
include its use for energy production or the extraction of protein iso-
lates/concentrates. Given its nutritional composition, oilseed cake also
provides a suitable substrate for various biotechnological processes
(Purohit et al., 2023; Sousa et al., 2023b). Fungal bioprocessing can
enhance nutrient availability, bioactivity, and protein quality, expand-
ing their potential in food, feed, and industrial applications.

In 2025, global oilseed production is projected to reach 679.37
million metric tons, generating 387.43 million metric tons of protein-
rich oilseed cakes (USDA, 2025). These residues contain carbon, pro-
teins, and bioactive compounds, making them promising substrates for
enzyme production, bioactive extraction, and fungal mycelium-based
materials.

However, some oilseed cakes contain anti-nutritional factors that
restrict their direct use. For instance, cottonseed cake contains gossypol,
a toxic compound, which can be reduced through fungal fermentation
using Candida tropicalis and Saccharomyces cerevisiae, improving lysine
content and feed quality (Mageshwaran et al., 2023). Similarly, fer-
menting flaxseed, mustard, and rice bran meal with Aspergillus species
increases protein and antioxidant content (Dutta et al., 2023). Addi-
tionally, oilseed cakes such as rapeseed and sunflower have been fer-
mented with Rhizopus oryzae, Aspergillus ibericus, and Aspergillus niger to
produce enzyme-rich extracts with high antioxidant potential (Sousa
et al., 2023a).

Soybean is a major legume and oilseed crop that generates okara, an
insoluble byproduct of tofu, soymilk, and soy nut production, at a ratio
of 1.1-1.2 kg per 1 kg of processed soybean (Asghar et al., 2023; Canaan
et al., 2022). Despite being nutritionally comparable to soy products,
containing 50 % carbohydrates, 20-30 % protein, and 10-20 % fat,
okara is often used as animal feed or otherwise discarded as waste
(Devanthi et al., 2024). Its high organic content makes it an ideal sub-
strate for fungal fermentation, enabling applications in enzyme pro-
duction, mycoprotein synthesis, and bioethanol production.

In addition to oilseeds, legume husks and pods remain underutilized,
despite their high cellulose, hemicellulose, and lignin content (Emenike
et al., 2024). Fungal fermentation of common bean pods using Trametes
versicolor has been shown to enhance laccase enzyme production, while
green bean peels fermented with Penicillium commune have been used to
produce tannase, which improves beverage quality by reducing tannins
and increasing reducing sugars (Caroca et al., 2022; Mostafa, 2024).

3.2.3. Sugarcane bagasse

Sugarcane bagasse is the fibrous residue from sugarcane juice
extraction. Global sugarcane production exceeded 2 billion metric tons
in 2023 (Statista, 2025). From each ton of processed sugarcane, 270 kg
of bagasse is generated (Toscano Miranda et al., 2021) which generally
contains 26-50 % cellulose, 24-34 % hemicellulose, and 10-26 % lignin
(Mili et al., 2025). Sugarcane bagasse is mainly combusted in sugar mills
for cogeneration of steam and electricity, but production often exceeds
energy needs. The surplus is typically stored which causes dust, land use,
and fire risks or inefficiently burnt for disposal (Matsueda and Antunes,
2024).

Fungal fermentation enables the bioconversion of bagasse into high-
value products, including biofertilizers, ethanol, and industrial enzymes
(Prajapati et al., 2020). Aspergillus niger, for example, has been used in
submerged fermentation, where sugarcane bagasse combined with
soybean meal resulted in xylanase and protease production. Enzyme
yields varied across different systems, with bubble column reactors
achieving the highest activities, 60.5 U/mL for xylanase and over 7 U/
mL for protease (Valladares-Diestra et al., 2021).
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4. Applications
4.1. Mycoproteins

The demand for animal protein is projected to reach nearly 470
million tons by 2050 (Lynch et al., 2018) with average meat consump-
tion per capita to rise from 40 kg to 52 kg per year by 2050 (Lumsden
et al., 2024). This growing pressure on global protein supply necessitates
the development of sustainable and scalable alternatives. One such so-
lution is mycoprotein, a protein-rich food derived from filamentous
fungal biomass, offering a nutritious and environmentally promising
substitute for meat (Majumder et al., 2024).

The origins of mycoprotein date back to the post-World War II era,
when global food insecurity prompted research into single-cell proteins,
exploring microorganisms such as fungi and bacteria as alternative
protein sources for human consumption and development of meat an-
alogues (Wood and Tavan, 2022). Mycoprotein emerged as one of the
most successful outcomes of these efforts, particularly through the in-
dustrial production of Quorn™ by Marlow Foods in the UK, starting in
1981. Since then, the growing market for meat alternatives has spurred
interest in fungal-based protein products.

Nutritionally, mycoprotein is recognized as a high-quality, “com-
plete protein”’, providing all nine essential amino acids. It exhibits a
protein digestibility-corrected amino acid score (PDCAAS) of 0.996,
comparable to that of eggs and milk (100 %) and surpassing beef (92 %)
(Derbyshire, 2022; Linder, 2024). Its essential amino acid content (21.1
g/100 g) exceeds that of lean beef (14.8 g/100 g) and skinless chicken
(14.1 g/100 g) (Derbyshire, 2022). Beyond protein, mycoprotein con-
tains p-glucans (dietary fiber), lipids, B vitamins, and essential minerals
such as zinc, selenium, and iron, with higher sodium and iron levels than
red meat, and also provides vitamin D (Derbyshire and Ayoob, 2019;
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Linder, 2024).

In addition to its nutritional profile, mycoprotein has been linked to
several health benefits, including improved immune responses,
enhanced lipid metabolism, and potential impacts on longevity (Lee
et al., 2024). However, assessments of its environmental sustainability
have yielded conflicting results. Some studies report greenhouse gas
(GHG) emission reductions of up to 81 % when mycoprotein replaces
conventional meat in the diet (Bakman et al., 2024; Shahid et al., 2024),
while others emphasize the high energy demand of the fermentation
process and reliance on refined carbon sources, such as glucose or other
sugars, offset these environmental gains (Smetana et al., 2023). Fig. 3
provides a schematic overview of the current state of fungal
mycoproteins.

Mycoproteins are among the most advanced fungal-derived foods,
exhibiting a combination of high nutritional value and demonstrated
consumer acceptance. However, their primary challenges include the
reliance on refined substrates and energy-intensive fermentation
(Akinsemolu and Onyeaka, 2025). Future advancements in this field
hinge on the integration of low-cost by-products and the enhancement of
process efficiency as well as further consumer acceptance.

Efforts are currently focused on improving the sustainability of
mycoprotein production, particularly through the use of alternative,
low-cost carbon feedstocks such as industrial side streams and food
processing residues. These substrates could reduce both production costs
and environmental impact, making mycoprotein a more viable compo-
nent of the future circular bioeconomy. Table 2 summarizes recent ad-
vances in alternative feedstocks for mycoprotein production.

To ensure consumer safety, it is important to distinguish between
established food-grade mycoprotein processes and emerging approaches
that use industrial side streams or residues as substrates. Commercial
products such as Quorn™ are manufactured under hazard analysis and

Mycoproteins

Feedstocks

¢ Agro-industrial byproducts
¢ Marine/algal residues

e Sugar beet pulp, glycerol

Downstream Processing

* Heat shock (RNA reduction)
» Centrifugation, drying, extrusion

Environmental impact

* 30-98% less land, water & GHGs
« Efficient circularity using waste
biomass

Fungal Fermentation
e SmF or SSF
« Controlled temperature, pH,
oxygen & agitation

Nutritional value
¢ Up to 60% protein, complete AA profile
« High fiber (chitin, B-glucans)
¢ Source of iron, zinc, B complex vitamins

Applications

¢ Meat analogues
¢ Functional food additives
e Animal feed

Current limitations & Future outlook

* Mycotoxin risk (strain &
substrate dependent)

* Energy intensive fermentation

¢ Price competitiveness

¢ Flexitarian & climate conscious
diets are rising

¢ new start-ups scaling low
biorefinaries

Fig. 3. Schematic overview of fungal mycoprotein production and its different aspects.
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Table 2

Advances in alternative feedstocks for mycoprotein production.
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Fermentation
mode

Substrate

Fungal species

Key parameters

Key Findings

References

SmF

SmF

SmF

SmF

SmF

SmF

SSF

Sea water

Sugarcane
molasses and corn
steep liquor (CSL)

Date waste

By products from
tomato, potato,
carrot.

Seaweed and
seaweed waste

Pea-processing
byproduct

Pea protein
extract

Fusarium venenatum

R hizopus microsporus var. oligosporus

Fusarium venenatum

Cordyceps militaris,

Ganoderma resinaceum, Lentinula
edodes, Pleurotus eryngii and Pleurotus
ostreatus

Paradendryphiella salina

Neurospora intermedia, Aspergillus
oryzae var. oryzae, Fusarium
venenatum and Rhizopus oryzae

Penicillium limosum

At 28°C

In 14 L airloop pilot
bioreactors at 25 °C, pH
5.5 for 96 h

3 L stirred tank
bioreactor at 28 °C, pH
5.6 for 72 h

Using insect-based
liquid media

at 25 °C, pH 5.5 for 8
days with 200 rpm
agitation

250 mL Erlenmeyer
flasks at 35 °C, pH 5.5
for 8 days with 150 rpm
agitation

50 L fermenter

Seawater fermentation increased iron (2.2 mg/
100 g wet weight) and calcium (27.9 mg/100 g
wet weight) while keeping sodium within safe
limits, with no plasticizers or heavy metals
detected. A unique metabolite (dihydroorotic
acid) was identified as a biomarker, and safety
tests showed no adverse effects. The method
saves ~ 50 % freshwater without reducing
biomass yield.

Achieved 38.3 g/L biomass with 70 % crude
protein (~52.15 g protein ton 'h~?). Process is
scalable, low-energy, and cost-effective,
exploiting agro-industrial by-products.
Supports potential application of R. microsporus
mycoprotein for animal feed and possibly
human food.

Produced 55 % protein in dried biomass with
fibrous, meat-like texture. No DON/ZON toxins
detected after 3 weeks; fumonisin genes
present but not expressed in short-term
fermentation. Prick tests showed no allergic
reactions. Heavy metals detected: Pb (659 pg/
kg, >EU meat limit), As (162 pg/kg), Cd (31
ng/kg), Hg (ND). Balanced essential amino
acids profile, UFA/SFA ratio ~ 2:1, and mineral
content (Ca, Fe, Mg, Zn) similar to those
recommended for daily use

Submerged fermentation on agro-by-products
enabled high yields; P. eryngii on black soldier
fly exuviae hit 23.1 g/L biomass with 51 %
protein. Antioxidant metrics peaked at total
phenolic content (TPC: 586.4 mg gallic acid
equivalents [GAE] per 100 g dry weight, in

P. ostreatus) and ferric reducing antioxidant
Power (FRAP: 15.14 mmol trolox equivalents
[TE] per 100 g dry weight, in L. edodes).

First report of insect-exuviae liquid media for
mushroom SmF, highlighting efficient
valorization of insect/vegetable side-streams
for protein-rich mycoprotein.

Fermentation increased protein (~141 % and
~ 131 %) and amino acids (4+73.5 %).
Carbohydrates reduced by 35-38 %); alginate
dropped by 1.5-fold and cellulose by 2.9-fold.
Fermented biomass showed the highest
phenolic content (+181 %) and antioxidant
activity (+86 %), enhancing nutritional and
functional value.

A. oryzae produced 0.26 g protein/g byproduct,
yielding ~ 680 kg fungal biomass and ~ 38 %
extra protein per ton of pea-processing
residues. This is the first demonstration of pea-
industry byproducts as substrates for vegan
mycoprotein production

A safe, protein-rich strain of P. limosum was
isolated and blended with pea protein isolate to
produce high-moisture meat analogues
(HMMA). At 5 % inclusion, mycoprotein
improved viscosity, chewiness, fibrous texture,
and protein digestibility (68.7 %), while
increasing oil absorption and slightly reducing
water absorption capacity; higher levels
weakened texture and digestibility.

(Yang et al.,
2024)

(Furlan et al.,
2024)

(Hashempour-
Baltork et al.,
2020)

(Ferrero et al.,
2024)

(Salgado et al.,
2021)

(Souza Filho
et al., 2018)

(Zhang et al.,
2024b)

critical control points (HACCP) protocols, which require strict moni-
toring of mycotoxins, allergens, and trace metals to comply with food

safety regulations. In contrast, side-stream-based processes may intro-
duce additional risks due to the variability and potential contamination

of raw materials. Therefore, pretreatments such as thermal or enzymatic

4.2. Enzymes

processing, detoxification steps, or separation of inhibitory compounds

are often necessary to ensure substrate safety and quality. Integrating

these safety considerations will be critical for translating side-stream
valorization into food-grade mycoprotein production.

The global industrial enzyme market is projected to grow from USD
7.9 billion in 2024 to USD 11.2 billion by 2029, at a compound annual
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growth rate (CAGR) of 7.2 % (MARKETS AND MARKETS, 2023). Fungal
enzymes are a major driver of this growth due to their high yields, ease
of extraction, and diverse catalytic capabilities (Das et al., 2024).

Among fungi, Aspergillus niger is particularly prominent, producing
commercially relevant enzymes such as amylase, lactase, cellulase,
pectinase, glucose oxidase, and acid protease, widely used in the food,
fermentation, and pharmaceutical industries (Zhang et al., 2025).
Optimizing media composition and physicochemical conditions is crit-
ical to enhancing enzyme yields and reducing production costs
(Bhattacharya et al., 2024).

Both SSF and SmF are employed for fungal enzyme production.
However, SSF is often preferred for filamentous fungi, as it more closely
mimics their natural habitat and can enhance enzyme productivity
(Correa et al., 2024). Lignocellulosic residues are frequently used as
substrates to produce lignocellulose-degrading enzymes, including cel-
lulases (e.g., endoglucanase, p-glucosidase), hemicellulases (e.g., xyla-
nase), and lignin-modifying enzymes, all of which are relevant to sectors
such as biofuels, paper, textiles, food, and animal feed (Andriani et al.,
2020; Bhattacharya et al., 2024).

In addition to cellulolytic enzymes, fungi synthesize other industri-
ally important enzymes: pectinases, used in juice and wine clarification
(Mukhopadhyay et al., 2024); amylases, essential in glucose syrup
production and baking (Silva et al., 2025); proteases, applied in food
processing, leather, detergents, and pharmaceuticals (Moussi et al.,
2025); lipases, with roles in biodiesel production, flavor enhancement,
and cleaning agents (Kumar et al., 2023).

Multiple fungal genera such as Trichoderma, Penicillium, Aspergillus,

Baking
Glucose syrup
Starch processing

I

Paper bleaching
Animal feed

Amylase

Biofuels

& X))

Xylanase

Bioremediation Lactase
Dye degradation
Paper pulp

y

Glucose
oxidase

Food preservation
Biosensors

Wi ﬁﬁ

Fungi
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Phanerochaete, Fusarium, and Trametes are noted for their capacity to
degrade both crystalline and amorphous cellulose (Leong et al., 2021).
Meanwhile, protease production has been reported from Aspergillus,
Penicillium, Rhizopus, Mucor, Humicola, Thermoascus, and Thermomyces
(Moussi et al., 2025).

For example, SSF using wheat bran and grape pomace with Trametes
villosa and Trichoderma asperellum yielded high levels of p-glucosidase
(218.91 U/gds), xylanase (170.28 U/gds), p-xylosidase (19.39 U/gds),
and laccase (16.5 U/gds) (Correa et al., 2024). Another study using
Trichoderma reesei MTCC 4876 on a waste sorghum grass—cottonseed oil
cake medium in a 6-L SSF-packed bed reactor reported significant pro-
duction of cellulase (20.64 + 0.36 FPU/g-ds) and xylanase (16,186 +
912 1U/g-ds). These enzymes improved apple juice clarity by reducing
turbidity and viscosity while increasing sugar release (Bhattacharya
etal., 2024). Fig. 4 illustrates fungal enzymes diversity and their various
applications.

A wide range of filamentous fungi and agro-industrial substrates
have shown potential for cost-effective enzyme production, offering
scalable solutions for various biorefinery and industrial processes. A
summary of some recent studies on fungal strains, fermentation condi-
tions, enzyme yields, and substrates is presented in Table 3.

Overall, fungal fermentation represents one of the most promising
strategies for sustainable enzyme production, with cellulases, hemi-
cellulases, proteases, lipases, and pectinases emerging as the most
commercially relevant product streams due to their wide application in
food, feed, detergents, textiles, pharmaceuticals, and biofuels. SSF on
agro-industrial residues offers a cost-effective approach, aligning with

Biomass degradation
Textile, paper, and pulp
Biofuels

L@

Cellulase Juice clarification

Fruit processing

Pectinase I @
|}y :

]

e S,

Food processing
Protease Detergents
Pharmaceuticals
Leather processing

X

Lipase

Flavor enhancement
Biodiesel
Detergents

e

'

Fig. 4. Diversity of fungal derived enzymes and their fields of applications.
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Table 3
Summary of recent studies on production of fungal enzymes using alternative feedstocks.
Enzyme Fungus species Fermentation condition Substrate Enzyme activity Reference
Lipase Aspergillus niger SSF C. inophyllum oil cake and coconut oil 127.5U/g (Al-Khattaf et al., 2024)
cake substrate
Cellulase Aspergillus terreus  SSF (30 °C for 8 days, pH 7) Moistened rice straw 16.466U/ mg (Hassan et al., 2024)
Xylanase protein
407.959 U/mg
protein
Aspartic Mucor racemosus Rotating drum-type SSF (flow rate of 1 L/min, =~ Wheat bran, sugar beet, and barley 35U/ mg (Qasim et al., 2025)
protease 20 °C for 5 days)
Lipase Penicillium SSF (55 % moisture, 27 °C for 96 h) Sunflower seed cake and rice husk 29.3U/g (Carvalho et al., 2024)
polonicum
Glucoamylase Aspergillus SSF (30 °C for 7 days) Mixed food waste 2.9 U/ml (Das et al., 2024).
fumigatus
Pectinase Aspergillus terreus  SmF (pH 6.0, 28 °C for 72 h) Sweet lime peel and yeast extract 450 U/mg (Mukhopadhyay et al.,
2024)
Protease Aspergillus SSF (PH 9, 24 °C for 8 days, 53 % moisture Wheat bran 3076.92 U/mL (Moussi et al., 2025)
candidus content)
Amylases Pleurotus SSF (PH 9, 28 °C for 3 days) Cocoa waste, husks, and cocoa bean peel ~ 83.90 U/gds. (Silva et al., 2025)
pulmonarius
Glucoamylase Aspergillus SmF (PH 6.5, 25 °C for 72 h) Starch, yeast extract, peptone, sodium 4.5 U/mL (Mendonca et al., 2023)
a-amylase clavatus phosphate buffer. 6.5-55 U/mL
Pectinase Aspergillus niger SmF (28 °C on a rotary shaker for 7 days) Apple juice ~27 U/mL (Wagh et al., 2022)
SSF (28 °C for 5 to 7 days)
Dried orange peel, banana peel and rice  36.39 U/mL

bran

circular bioeconomy principles while reducing substrate and waste
disposal costs. Nonetheless, several technical bottlenecks remain,
including the heterogeneity and recalcitrance of lignocellulosic feed-
stocks, challenges in scaling up SSF due to heat, aeration, and moisture
transfer limitations, and the high costs of downstream recovery and
purification to meet industrial enzyme quality standards (Borkertas
et al., 2025; Mansour et al., 2016).

4.3. Biopolymers and biochemicals

Fungi are prolific producers of a wide range of biopolymers and
biochemicals, including polysaccharides, biosurfactants, and small
bioactive molecules, many of which have applications in the pharma-
ceutical, food, cosmetic, and environmental sectors (Ali et al., 2024;
Wadhwa et al., 2024). These compounds are often synthesized using
low-cost agro-industrial residues, positioning fungi as key contributors
to their sustainable bioproduction.

Fungal polysaccharides, particularly p-glucans, have gained
increasing interest due to their nutritional, immunomodulatory, and
antioxidant properties (Pan et al., 2025a). Chitin is also widely distrib-
uted in fungi, occurring in Ascomycetes, Basidiomycetes, and Phycomy-
cetes. These biopolymers can be obtained from fruiting bodies, spores, or
fermentation processes, including SmF, which yields both intra- and
extracellular polysaccharides (Abdeshahian et al., 2021).

Fungal fermentation has been shown as a sustainable approach for
converting agro-industrial lignocellulosic waste into high-value bio-
chemicals and biopolymers, offering a viable alternative to
petrochemical-based production. In this regard, the Aspergillus strains (e.
g. A. oryzae, A. terreus and A. tubingensis) have been employed in SmF
and SSF to produce itaconic and fumaric acids from acid- or enzymati-
cally pretreated wheat bran and corn cobs (Jimenez-Quero et al., 2017,
2016; Jiménez-Quero et al., 2020). Fungi also produce biosurfactants, a
class of amphiphilic molecules with applications in bioremediation, food
processing, cosmetics, and pharmaceuticals due to their emulsifying,
foaming, and dispersing properties (Mahmoud et al., 2024). Structur-
ally, they consist of hydrophobic (e.g., fatty acids) and hydrophilic (e.g.,
carbohydrates, amino acids, phosphate groups) moieties. Various fungi,
including Trichoderma spp., Fusarium fujikuroi, Aspergillus niger, and
Penicillium chrysogenum, have shown the ability to produce bio-
surfactants using low-cost substrates such as agricultural and industrial
waste (Asgher et al., 2020; Mahmoud et al., 2024). For instance, A. niger

produced biosurfactants during SSF on banana stalk powder, yielding up
to 5.5 g/L with an emulsification index of 62.3 % after optimization
(Asgher et al., 2020). Other feedstocks such as crude oil sludge (Othman
etal., 2022), waste cooking oil (Fernandes et al., 2023), and black cumin
cake (Ciurko et al., 2023) have also been successfully used to produce
biosurfactants with environmental and industrial applications.

In addition to biopolymers, fungi synthesize and release a diverse
array of low-molecular-weight bioactive compounds such as alkaloids,
polyketides, terpenoids, meroterpenoids, and peptides, many of which
are used in pharmaceuticals, agrochemicals, and cosmetics (Pan et al.,
2025b; Ramadan et al., 2024). These compounds are often produced via
fungal enzymatic transformation of complex feedstocks. For instance,
fungal pretreatment of oil palm empty fruit bunches using Serpula
lacrymans facilitated lignin depolymerization, enabling the release of
phenolic compounds such as vanillin, with an extraction yield of 3.48
ug/g after 42 days (Guo et al., 2025). This treatment also enhanced
biomethane potential during subsequent anaerobic digestion, demon-
strating both biochemical and bioenergy co-benefits.

Pretreatment strategies are often needed to improve biochemical
yields, particularly when dealing with recalcitrant lignocellulosic sub-
strates. A recent study applied fungal delignification using A. niger and
white rot fungi, followed by mild acid hydrolysis, to improve sugar
availability for xylitol production from detoxified de-oiled rice bran.
This sequential method achieved a final concentration of 23.56 g/L
xylitol with a yield of 0.48 g/g xylose after 96 h of fermentation using
Pichia fermentans (Kayalvizhi and Jacob, 2025). Table 4 provides a
summary on fungal-derived compounds, their sources, and production
conditions.

In general, fungi represent a versatile platform for sustainable bio-
production, with the most promising product streams including poly-
saccharides (notably f-glucans), biosurfactants, and low-molecular-
weight bioactive compounds for applications in food, pharmaceuticals,
cosmetics, and environmental remediation. The use of agro-industrial
side streams as low-cost substrates offers a sustainable route to scale-
up, but broader commercialization still faces several technical bottle-
necks. Among these are the high production costs, particularly in
downstream processing, which can account for up to 60 % of total costs,
as well as purification and recovery methods that remain inefficient and
resource intensive (Luft et al., 2020).
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Table 4
Recent advances on fungal derived biopolymers and biochemicals using alternative feedstocks.

Biochemicals Fungus species Fermentation condition Substrate Yield Reference

Perylenequinone derivative Alternaria SmF (28 °C for 14 days) Rice and water as substrate NA (Lietal., 2025b)

alstroemeriae

Diketopiperazines Aspergillus SmF (25 °C for 16 days) Rice and distilled artificial seawater. NA (Wu et al.,
(versicoines) puulaauensis 2025)

Prenyl quinone compounds Panus lecomtei SmF (40 °C for 7 days, 200 r/min) Yeast extract, Magnesium sulfate NA (Wang et al.,

heptahydrate, water 2025)

Vanillic acid Trichoderma SSF (22 °C for 12 days in darkness) Fruit waste (orange, apple, banana, kiwi) 0.45 (Bulgari et al.,
Nomilin glucoside asperellum and wood sawdust 1.12 2024)
Trimethoxybenzaldehyde 2.89
Phenol glucuronide 1.80

(mg/100 g)
e-poly-L-lysine Streptomyces albulus SmF (10 % v/v inoculum, 5-L, pH 6.8, Cassava starch as substitute for glucose in 27.56 g/L. (Lietal., 2024b)
30 °C, aeration of 0.5 vvm) medium (glucose, yeast extract, nitrogen,
and inorganic salts)

Methyl ferulate and oleic Aspergillus SSF (pH 7.0, 30 °C for 10 days) Wheat bran and sodium nitrate 0.18 g/1g (Ramadan et al.,
acid pseudodeflectus substrate 2024)

Phenolic compounds Aspergillus niger SSF (pH 5.5, Flourensia cernua 43.440 mg (Usme-Duque

30 °C for 2 days) GAE/g et al., 2025)

Chlorogenic acid Aspergillus oryzae SSF (30 °C for 8-13 days, forced Spent coffee ground 76.1 mg/g (Arancibia-Diaz

and Aspergillus aeration flow rate 0.5 L/min, substrate et al., 2025)
niger moisturizing pulse of 30 mL/d)

4.4. Feed and compost applications

To address food security challenges, future animal feed ingredients
must not compete with resources intended for human consumption,
especially given the rapid growth of the global population and the
increasing scarcity of food supplies. A prime example is fish meal, which
is predominantly sourced from wild-caught fish, a resource with limited
availability (Péron et al., 2010).

Industrial waste biomass holds considerable promise as a feedstock
for ruminants or as compost. However, depending on its composition, a
pretreatment process may be necessary to enhance its suitability
(Chaurasia et al., 2025). Such pretreatment could involve reducing
lignin content or mitigating heavy metal contamination and toxicity
concerns. Biological pretreatments, particularly those utilizing fungi,
offer a sustainable, low-energy solution (Rasmussen et al., 2010). Spe-
cifically, white rot fungi have been shown to effectively degrade lignin
while preserving the carbohydrate content, making the biomass suitable
for ruminant consumption (Gonzalez et al., 2021; Martens et al., 2023;
Van Kuijk et al., 2015). This biological method presents a distinct
advantage over chemical treatments, such as alkali or urea, which have
significant drawbacks. In this case of fungal pretreatment, SSF is
particularly advantageous due to its simplicity, cost-effectiveness, and
minimal effluent production, making it the preferred choice of fermen-
tation (Duong et al., 2024; Pallin et al., 2024; Van Kuijk et al., 2015).

The application and impacts of fungal-based feed derived from food
and agricultural waste has been explored across the aquaculture and
poultry sectors, including for fish, chickens and broilers (Bergman et al.,
2024; Hamza and Gunyar, 2022; Khan et al., 2024a; Onomu and Okuthe,
2024; Zantioti et al., 2025). Such biomass provides essential amino acids
and fats that rival those found in fish meal or soybeans. Different studies
indicate improvements in both the nutritional profile of the fungal
biomass and the digestion efficiency for ruminants (Khan et al., 2024b;
Rulli et al., 2021; Sufyan et al., 2024). Fungal feed from Aspergillus
oryzae as supplement increases nutrient digestion and boosts milk pro-
duction yield in dairy cows (Cantet et al., 2025). Furthermore, SSF of
BSG using the edible fungus Pleurotus ostreatus has enhanced its nutri-
tional profile as animal feed, resulting in a 49.5 % increase in protein
content, a tenfold rise in f-glucans, and an 11.4 % reduction in cellulose,
thereby improving digestibility (Eliopoulos et al., 2022). Yet, variability
in waste biomass composition, risks of contaminants, and the absence of
standardized large-scale processing protocols pose critical limitations.
Future efforts must focus on safety assessments, and techno-economic
optimization to enable reliable industrial deployment. Table 5
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presents some recent studies on utilization of fungal fermentation stra-
tegies for producing feed.

5. Life cycle and techno economic assessments

Recent techno economic assessments (TEAs) consistently highlight
fungal valorization as one of the most economically attractive routes for
converting agro-industrial residues into high-value outputs, especially
lignocellulolytic enzymes. For instance, a TEA of laccase production via
SSF on perennial biomass estimated a minimum selling price of USD
0.05 per kilo-unit (kU) at small scales (~230 Mg/year), emphasizing the
cost benefits of using low-cost feedstocks and simpler downstream re-
covery processes (Rahic et al., 2025). Similarly, TEA of cellulolytic
enzyme production from coffee husk using Trichoderma reesei compared
liquid and powder formulations at an annual scale of 1,893 tons. The
analysis showed that the liquid enzyme product was the most favorable
option, achieving a net present value of USD 32.96 million, while also
meeting industrial specifications for enzyme concentration and moisture
content (Coral-Velasco et al., 2024). Recent life cycle assessment (LCA)
also reinforce both the opportunities and challenges of positioning
fungal-derived proteins within future sustainable diets. (Fernandez-
Lopez et al., 2024) highlighted that substrate choice and pretreatment
steps dominate the environmental footprint, while electricity demand
consistently emerged as the critical hotspot across fungal fermentation
systems. However, methodological inconsistencies, particularly in
defining system boundaries when organic waste streams are employed,
continue to complicate robust comparisons, and nutritional quality (e.g.,
amino acid content) remains insufficiently integrated into impact
assessments.

6. Challenges, limitations and next frontiers in fungal
biorefinery applications

Fungal-based biorefineries are gaining traction in response to global
sustainability, health and ethical concerns. Their long-term success and
viability hinges on addressing a series of technical, regulatory and so-
cioeconomic challenges and limitations. This section outlines the most
pressing aspects which is also summarized in a schematic overview in
Fig. 5.

6.1. Feedstock composition and logistics

One major challenge is the inconsistent composition of the waste
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Table 5

Recent advances on feed production using fungi and alternative substrates.

Fermentation
mode

Substrate

Fungi

Key findings  References

SmF

SSF

SmF

SmF

SSF

SSF

Sugarcane
vinasse from
bioethanol
industry

Wheat straw

Wheat straw
and food waste

Green alga
Ulva rigida

Agro residues
(groundnut
shells, pigeon
pea husk,
wheat bran)

Agro-industrial
residue of faba
bean

Aspergillus
sp. V1

P. ostreatus

Trametes
versicolor
and Pleurotus
ostreatus

Trichoderma
reesei

Endophytic
fungi
isolated
from C.
paniculatus
leaves and
twigs

Aspergillus
niger

Fungal (Del Gobbo
biomass met etal.,

the 2023)
nutritional
standards for
fish feed with
safe aflatoxin
levels. No
adverse
effects in fish
feeding
trials.
Reduced
lignin
content,
increased
crude protein
(46 %),
improved
intake,
digestibility
and cow milk
yield
Reduced
lignin
content up to
48 %.
Enriched
essential
amino acids,
and
improved
nitrogen
profile,
improving
energy and
protein value
Methionine
content, a
limiting
amino acid
increased 4
times. The
protein
digestibility
of the fungal
biomass

(Sufyan
et al.,
2024)

(Sun et al.,
2023)

(Brain-Isasi
et al.,
2021)

increased
from 71 % to
94 %
Phytate and
tannins
content
significantly
reduced in
processed
waste.
Therefore,
processed
waste can be
used up to
20 % for the
commercial
poultry diet
without any
adverse
effects.
Improved (Al-
body weight Gheffari
gain, feed etal.,
conversion, 2024)
antioxidant

status and

(Patil et al.,
2020)
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Table 5 (continued)

Fermentation Substrate References

mode

Fungi Key findings

immune
responses.
P. variotii
replaced 20
% of crude

P. variotii (Hooft
etal.,

2025)

NA Sulphite
stillage from
bioethanol
production side protein in
streams grown diets for
on Atlantic
lignocellulosic salmon. This
waste dietary

inclusion
increased
nutrient
utilization
efficiency,
improved gut
health and
exhibited
immune-
modulatory
capacity in
the intestine
of salmon. It
also reduced
GHG
emissions
and
dissolved
waste
output.

derived and side stream feedstocks, which often varies due to season-
ality, processing methods, or source heterogeneity (Khatami et al., 2021;
Mou et al., 2024). Such fluctuations can significantly affect fungal
growth, enzyme activity, and overall process performance, requiring
adaptive strategies or additional processing steps to ensure stable
product quality (Novy et al., 2021). In addition, logistics for collection,
transportation, and storage impose extra costs, especially at industrial
scale. One potential solution is the integration of fungal bioprocesses
within existing industrial settings, such as food processing, or biofuel
facilities, where waste streams are generated on-site. This not only re-
duces logistical burdens but also supports the development of multi-
stream biorefineries. However, this transition demands further infra-
structure upgrades and financial investment, and supportive policy
frameworks.

In recent years, several successful pilot and demonstration scale
implementations have been supported by Horizon Europe and CBE_JU
funding programs, underscoring the feasibility of fungal biorefineries.
For instance, FI’Our Planet (GA ID: 190144130) has established a scal-
able SSF platform (100 T/y capacity), converting fruit and vegetable
side streams into high value functional food ingredients. Other projects,
including PROLIFIC (under GA No 790157), FUNGUSCHAIN (under GA
No 720720), MY-FI (GA ID: 101000719) and Smart protein (under GA
No 862957), have demonstrated the valorization of various side streams
into mycoprotein, dietary fibers, bioplastics, materials, antimicrobial
and antioxidant compounds.

6.2. Product safety and health concerns

When using waste-derived substrates, toxins such as mycotoxins and
cyanotoxins may form during fermentation, requiring additional safety
measures and downstream processing to ensure product safety, partic-
ularly for food and feed applications. Additionally, in food applications,
products like mycoproteins may contain high nucleic acid levels, which
have been linked to kidney stone formation (Gundupalli et al., 2024;
Sillman et al., 2019). Furthermore, long-term health impacts of fungal-
based foods, such as their effects on glycemic index, immune function,
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Fig. 5. Current limitations and next frontiers of fungal based biorefineries.

and metabolic health, shall be further studied.

Nevertheless, fungal proteins pose lower allergenic risks in com-
parison to other alternative proteins such as insect proteins and soy,
while the reported adverse reactions remain limited in comparison. In
this regard, the allergenic risks of fungal protein, particularly myco-
protein, have been extensively evaluated and found to be very low
compared with common food allergens. Following its “GRAS” approval
in the United States, only a handful of confirmed allergic cases have been
reported since its introduction, with large-scale reviews concluding that
adverse reactions occur at extremely low frequencies around 1 in 9
million packages sold. Most reported reactions are gastrointestinal and
largely attributed to the high fiber content of mycoprotein rather than
true IgE-mediated allergy (Finnigan et al., 2019; Miller and Dwyer,
2001).

6.3. Emerging feedstocks

Algal residues, both micro- and macroalgae offer a promising sub-
strate for fungal fermentation, as they are abundant, fast growing, non-
dependent on freshwater, and rich in nutrients and have low allerge-
nicity (Bora et al., 2024; Fabris et al., 2020; Kaur et al., 2025). Future
work should explore proteins and other high-value compounds derived
from fungi-algae processes, including bioactives, enzymes, and mate-
rials. One major challenge in utilizing algal biomass lies in its high
moisture content, making it perishable and prone to microbial spoilage
(Lytou et al., 2021). Fungal metabolism can stabilize the algal biomass,
enhance its shelf life and reduce the need for energy intensive drying.
Moreover, fermentation of algal residues has shown to improve organ-
oleptic properties, reducing undesirable tastes and odors and enriching
biomass in proteins and essential amino acids (Bonilla Loaiza et al.,
2022; Saritas et al., 2024). The resulting fermented biomass can be
tailored for various applications. Several Horizon EU-funded projects,
including CIRCALGAE (GA ID:101060607) and ProFuture (GA
ID:862980) are exploring the integration of algal bioprocesses to
develop ingredients for food, feed and cosmetics, increasing the indus-
trial relevance of these synergies.

Another potential feedstock is biofuel production residues. Bio-
ethanol production from corn generates distillers dried grains with sol-
ubles (DDGS) as a major byproduct, with global ethanol production
reaching 35.53 billion gallons in 2024. On average, 100 kg of corn in dry
mill biorefineries produces 27 kg of DDGS, which is rich in proteins up to
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31 % and 8-12 % lipids, making it a promising substrate for fungal
fermentation (Renewable Fuels Association, 2022; Veljkovi¢ et al.,
2018). DDGS has been successfully used to produce organic acids and
hydrolytic enzymes. For instance, Rhizomucor miehei fermentation of
DDGS generated dry fermented solids (DFS) with lipase activity, which
catalyzed esterification of oleic acid and ethanol, achieving conversion
rates of 72 % and 80 % in tray and fixed-bed reactors, respectively
(Aguieiras et al., 2024).

6.4. Research and technological innovation

To fully exploit the potential of side stream and waste-derived sub-
strates, especially for food applications, multi-omics tools such as met-
agenomic sequencing and metabolic profiling, can be applied to map
microbial communities and fermentation pathways. As shown by (Maini
Rekdal et al., 2024), this integrative analysis can elucidate key in-
teractions and improve process efficiency and product quality. For
example, transcriptomic and metabolomic integration has already been
used in Aspergillus species to reveal condition-dependent activation of
cryptic biosynthetic gene clusters (BGCs), while proteomics validated
the presence of key enzymes, linking gene expression to metabolite
production (Prakash et al., 2025).

Moreover, the application of artificial intelligence (AI) in fungal
fermentation is a highly promising yet underutilized field. Al-driven
models can support process optimization, strain selection, and feed-
stock matching, particularly when working with heterogeneous and
variable side streams. For example, the Circular Bio-Based Europe (CBE)
founded ZEST project (GA ID:101157382) is currently trying to inte-
grate Al-based monitoring in process optimization and zero-waste pro-
duction systems for fungal fermentation proteins with applications in
food, feed and cosmetics. Additionally, AlphaFold-based protein struc-
ture prediction has been applied to fungal enzymes, such as cytochrome
P450s in Aspergillus, where Al-driven modeling of enzyme-substrate
interactions helped identify pathway bottlenecks and guided fermenta-
tion optimization strategies (Prakash et al., 2025). Similarly, Al and
machine learning were applied to optimize SmF of Aspergillus terreus for
L-asparaginase production, an enzyme with applications in cancer
therapy and food processing (Baskar et al., 2025).

When combined with omics tools, Al could enable even more resil-
ient and adaptive fermentation systems, aligned with circular bio-
economy principles.
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6.5. Consumer perception and market integration

Despite environmental benefits, the acceptance of alternative pro-
teins and generally products derived from waste streams still faces
consumer skepticism. Consumer acceptance ultimately depends on
sensory attributes and price competitiveness, which often outweigh
sustainability arguments. Neophobia and the “waste-derived” stigma
remain major barriers, particularly for food and cosmetic applications
(Altintzoglou et al., 2021; Giacalone and Jaeger, 2023; Lin et al., 2025).
However, flexitarian and climate-conscious consumer segments are
rapidly growing, offering new opportunities for fungal derived products.
Addressing concerns around safety, quality, and transparency through
clear labeling through positive framing, storytelling, and co-creation
strategies (Coderoni and Perito, 2020), education and communication
strategies, and regulatory support is crucial for their market adoption.
Ultimately, aligning product development with consumer expectations
in terms of taste, convenience, and affordability will be key to their
market integration (Drewnowski and Monsivais, 2020).

6.6. Prioritization of challenges

Among these challenges, ensuring feedstock consistency and product
safety remains the most urgent, as they directly affect process reliability
and consumer trust. By contrast, advances in Al-driven optimization,
omics integration, and improved bioreactor design appear more solvable
in the short to medium term, supported by ongoing EU-funded projects.
In the longer run, achieving market acceptance and regulatory harmo-
nization will be essential to unlock the full potential of fungal bio-
refineries in food, feed, and biomaterials.

7. Conclusions

Fungal fermentation offers a powerful and sustainable platform for
trasforming industrial and agricultural residues into high-value bio-
molecules, bridging waste valorization with renewable bio-
manufacturing. Its versatility and scalability position fungi as a key
catalyst in advancing circular bioeconomy principles through efficient
resource recovery and low-carbon production.

Fungal fermentation stands at the crossroads of biotechnology, food
innovation and environmental stewardship. By coupling process opti-
mization with the intelligent use of diverse side streams, it can drive
global sustainability; reducing waste, closing nutrient cycles and
generating renewable sources of protein, enzymes and biochemicals.
The continued evolution of fungal biorefineries, guided by interdisci-
plinary innovation and industrial collaboration, will be crucial to
shaping resilient and resource-efficient bioeconomy that truly feeds,
fuels and sustains the future.
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